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Adaptation required to preserve future high-end river
flood risk at present levels
Sven N. Willner,1,2 Anders Levermann,1,2,3* Fang Zhao,1 Katja Frieler1

Earth’s surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon
emission reduction currently considered. The associated changes in rainfall patterns can result in an increased
flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at
present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United
States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the
strongest adaptation effort. More than half of the United States needs to at least double their protection within
the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting in-
dustrialized regions as much as developing countries.
INTRODUCTION
Fluvial floods are among themost commonanddevastating natural dis-
asters worldwide (1). Flood events were the main cause of internal
displacement in 2008 to 2015 (2), affecting people’s assets and physical
well-being, as well as regional infrastructure and economy. Globally, the
physical hazard (for example, flood volume) (3) and exposure to floods
in terms of people and properties (4) have increased. Assuming fixed
population, people affected by 100-year return period floods are
projected to increase in a warmer future (5). At the same time, global
fatalities and direct damages from floods have stabilized or decreased
since 1990, reflecting success in floodprotectionmeasures (3).However,
on a global scale, a comprehensive assessment of the regional adaptation
requirements was lacking the incorporation of spatially heterogeneous
flood protection: Generally, studies either assume no protection (3) or
assume a universal flood return period (5). By contrast, real flood pro-
tection varies greatly across different regions and countries for various
reasons (for example, economic ability and political will toward protec-
tion investment). In light of possible future flood events, a number of
countries with a large population and strong economic performance
(for example, India and the United States) require extensive adaptation
measures to keep flood risk at its present level.

Here, we compute the increase in flood protection that is required to
keep the observed high-end flood risk of the past constant in the next
25 years.We relate these changes to the existing protection level (6) that
was chosen by the different societies in the different regions in their
specific assessment of vulnerability and risk. Exposure is calculated
based on a fixed present-day distribution of population. Changes in risk
are derived fromchanges in floodhazards computed fromamultimodel
ensemble of climate models and hydrological models within the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP) framework
(7). The inertia in the climate systemmakes it possible to predict, within
model uncertainty, changes in flood hazards up to the year 2040, in-
dependent of the specific carbon emission pathway that is chosen by
society within the next 25 years (8).

Method summary
Our computation is based on a multimodel ensemble of all 50 natura-
lized runs of 10 hydrological models (GHMs) and bias-corrected (9)
daily forcing from five different global climatemodels (GCMs) (10) un-
der historical emissions and the four representative concentration path-
ways (RCPs) (11). Using the river routing model CaMa-Flood (12), we
estimate for each model combination’s runoff time series the annual
maximum daily flood discharge in two periods: a historic period,
1971 to 2004, and a future period, 2035 to 2044 (the ensemble median
of mean daily discharge is shown in Fig. 1). We then fit an extreme value
distribution to the historic time series of eachmodel run (34 data points).
Following a novel approach (see Materials and Methods), we subse-
quently correct for natural variability and selection bias in the historic
period by incorporating 12 realizations in a preindustrial control run of
439 years total length. Thismethod yields an ensemble of extreme value
fits to estimate the return period value of each historical and future data
point. To correct for model-specific bias, we translate the resulting return
period into flood depth using a historical simulation forced by observed
climate variables (5). The flooddepth is thendownscaled to yield a flooded
area at 2.5′ resolution and multiplied by spatially explicit population data
to yield the number of affected people. The population distribution is kept
constant based on the 2010 values (13). Regionally specific present-day
protection measures are accounted for by considering only flood events
where discharge exceeds the spatially explicit protection level from the
FLOPROS database (6). This combines empirical data about existing
flood protection infrastructure and protection standards and require-
ments set by policy with modeled data to achieve detailed, global cover-
age. For each of the two temporal periods and each subnational region, a
distribution of the number of affected people is obtained from the different
model simulations corrected for each realization. We define the high-end
flood risk as the 90th percentile of that distribution, that is, the absolute
number of people affected by the 90th percentile of the flood events in
the corresponding period. Finally, the additional protection that is required
to keep the historic high-end flood risk in the future period is interpreted as
the adaptation required. This is to be interpreted in the sense of flood pro-
tection level in the FLOPROS database, that is, a mixture of physical pro-
tection andpolicy requirements.We show themedianof all 12 realizations
(correction periods drawn from the preindustrial control run) and the
16.7th and 83.3rd percentile as the lower and upper bound of the “likely”
range as defined by the Intergovernmental Panel on Climate Change.
RESULTS
During the next 25 years, the high-end flood risk will strongly increase
in all equatorial regions, Northern America, Northern Europe, and
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Northeast Asia (Fig. 2). Because of the associated uncertainty, especially
arising from the extreme value distribution fit, we sort current and ad-
ditional protectionmeasures into levels bounded by powers of 2 in years
return period (0, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512; lower bound
included); numbers given aremedian and theminimumandmaximum
33rd percentile likely range around it in brackets [16.7th percentile; 83.3rd
percentile] (see Materials and Methods for details). The associated in-
crease in protection that is required to keep the additionally affected
population below zero is given in number of protection levels in Fig. 3
(corresponding lower and upper bounds of the likely range are shown in
figs. S1 and S2). As an example, for a region protected against 20-year
floods, an increase by 2 protection levels means a necessary protection
against at least 64- to 128-year events. Depending on current protection
levels, this number can thus have very different qualitativemeanings for
different regions. We also show relative increase in protection (fig. S3),
number of affected people in the historic (fig. S4) and in the future
period (fig. S5), and absolute increase in the affected population (fig. S6).
In the following, we present our results for an exemplary choice of re-
gions per continent and conclude with a generalization as far as this is
possible here. Here, we use the word “affected” in two different ways,
each referring to the future period unless stated otherwise. First, the
affected population of a region is the absolute number of people at
the 90th percentile of all people experiencing flood events in a period,
that is, people living in areas flooded by particular events. Second, an
affected region is a regionwith affected population. As explained inDis-
cussion, these numbers are subject to a set of assumptions, especially
that of changing physical flood exposure while keeping human factors
constant.

For the United States (Figs. 2A and 3A), 42 of the 50 states, and
the District of Columbia, will experience an increased flood risk if no
additional protection measures are taken. To keep their high-risk pro-
tection, a number of states with a 100-year protection level will have to
increase their protection: Illinois, Iowa, and Missouri by 3 [3; 3] levels;
Wisconsin by 2 [1; 3] levels; and Minnesota by 1 [1; 2] level. Unlike
smaller East Coast states, 30 states with 500-year protection need to
increase protection by 1 additional level. In Europe (Figs. 2B and
3B), the strongest adaptation need arises in a band near the Baltic
Sea including Sweden, Germany, and Poland. Germany in total needs
to adapt to an increase in flood risk with 710,000 people affected in the
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future period [320,000; 1.6 million, to be denoted “M” in the
following] compared to 76,000 [20,000; 320,000] in the historical period,
especially in north Germany. In Poland, the northern Voivodeships’
current protection is not exceeded in the historical period. To keep
the high-end flood risk at zero, German and Polish coastal regions
have to increase the protection by a range between 1 and 3 levels. In
France, the areas along Rhone, Loire, and Seine—total risk increase
8000 [4000; 59,000] to 128,000 [12,000; 540,000] people—need to
increase their protection by at least 1 level.

In Africa (Figs. 2C and 3C), adaptation needs to be increased from
the generally low protection level currently in place. The largest adap-
tation needwill arise in theNiger River basin (inland and coastal deltas),
Nile, andZambezi. ForNigeria, we observe an almost 50% increase (4M
[2M; 5M] to 6M [5M; 7M]) of high-end flood risk. InMali (1.1M [1.0M;
1.2M] to 1.5M [1.4M; 1.6M]), regions along theNiger River would need
more than 2 levels of adaptation, given the current lowprotection of 2 to
3 years (excluding Bamako). In Chad, a total rise in affected people
(0.7M[0.6M;1.2M] to1.4M[1.2M;1.8M]), particularly in the southwestern
regions, is to be expected. Egypt shows the highest increase in people
under high-end flood risk globally on a country level (0.2M [0; 1.1M]
to 3M [0.9M; 8.3M]) with an adaptation need of 1 to 3 levels. Governor-
ates along the Nile are affected, most of which will experience a flood
risk beyond 100,000 people for the first time (for example, Suhaj, 0.2M
[0; 0.6M]). Cairo (in Al Qahirah region) itself is sufficiently protected
with a 100-year protection. Further upstream of the Nile, Sudan
(0.7M [0.5M; 1M] to 1.3M [1M; 1.4M]; 2 to 6 levels of protection in-
crease needed for keeping risk at the present-day level), South Sudan
(1.2M [1M; 1.3M] to 1.4M [1.3M; 1.5M]; 1 to 3 levels of protection in-
crease needed), andUganda (1.4M [1.3M; 1.5M] to 1.6M [1.5M; 1.7M])
will be most affected in the future.

Asia (Figs. 2D and 3D) is the continent with the largest historical
high-end flood risk as well as the strongest increase in that risk. His-
torically, Pakistan is already highly affected and will observe almost
a doubling in high-end flood risk on a subnational level, from 6M
[4M; 8M] to 11M [9M; 13M] people without additional protection. All
of its eight provinces are already affected in the historic period. Five
of them show an increase of more than 10% within the next 25 years.
Most affected are the eastern provinces, Punjab (4.6M [3.2M; 6.4M]
to 9.5M [7.7M; 11.2M]) and Sind (0.8M [0.8M; 1.2M] to 1.3M [1.2M;
Fig. 1. Mean daily discharge (historic period, 1971 to 2004). Median over the ensemble of all 50 combinations of 10 hydrological and 5 climate models. Their runoff output
was routed by the river routingmodel CaMa-Flood (12) to derive their mean daily discharge in the historic period; plotted here is themedian of all model combinations. Very dry
cells (discharge, <0.1 mm/day) are masked (white); this mask is also used for the other figures.
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1.7M]), which need an increase in protection by 3 [2; 3] and 2 [2; 3]
levels, respectively. A similarly strong flood risk and adaptation need
can be seen in 26 of India’s 36 states and union territories, 3 of which
exceed 1M people. Most affected is the province of Bihar (1.8M
[0.6M; 5M] to 9.2M [5.4M; 18.7M]). Most of the affected states show
an adaptation need of 3 additional protection levels.

China will observe an increased high-end flood risk from 24M
[18M; 34M] to 55M [46M; 69M] affected people. All but Shanghai
show an increase in high-end risk of at least 20%; 14 of 31 provinces
will have more than a million people each under high-end risk. Even
the comparably strongly protected Hubei (100-year protection as
Willner et al., Sci. Adv. 2018;4 : eaao1914 10 January 2018
opposed to the average of 20 years over the whole of China) will face
a 10-fold increase (from 0.3M [0.1M; 1M] to 3.3M [2M; 4M] people)
if the protection is not increased by 3 [3; 3] levels. The most affected
regions are close to Shanghai, which itself is not affected by river flood
(currently protected against 200-year floods). Guangdong, the province
surrounding Hong Kong, is furthermore heavily affected and shows a
massive increase from 0.7M [0.7M; 1.4M] to 3.8M [3.2M; 5.1M] people,
with an adaptation need of 3 [2; 4] levels. Hong Kong itself is not
expected to show an increase in high-end risk.

Almost constant flood risk is expected in Cambodia. Half the
affected population lives in the province of Kândal with 2M [2M; 2M]
Fig. 2. Relative increase in affected people without adaptation measure (realization ensemblemedian). Increase is given as the multiple of change between future and
historic periods relative to the historic period. A value of 2means that three times as many people are at risk of high-end river flooding during 2035 to 2044 compared to 1971 to
2004. Regions with affected population in the future period, but none in the historic one, are marked “new” (black). Subfigures show regional foci on the (A) United States,
(B) Europe, (C) Africa, and (D) Southeast and East Asia. Decrease in affected population is cut off to 0. Pop. density, population density.
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people underhigh-end risk, directly surroundingPhnomPenh (currently
protected against 24-year floods), itself not affected in neither the his-
toric nor the future period. Vietnam is strongly affected, historically
and in the future (10M [4.7M; 18.2M] to 17.9M [14.5M; 21.5M]),
especially the Đông Nam Bô. region (2.7M [0.3M; 2.7M] to 2.8M
[2.7M; 2.9M], 2 [1; 2] levels of adaptation needed) and HồChí Minh
City (0.2M [0.2M; 2.7M] to 2.7M [2.7M; 2.7M]). Here, the required ad-
aptation is smaller than 1 level (0 [0; 1] levels), which is due to the al-
ready high risk in the historical period and only a very slight trend in
time. Overall, 53 of 63 provinces are under increased high-end risk. The
main island Java is the most affected region in Indonesia, although its
Willner et al., Sci. Adv. 2018;4 : eaao1914 10 January 2018
current protection against 100-year events is comparably high. Eastern
Java, Jawa Timur, shows the largest increase from 0 [0; 36,000] to
300,000 [199,000; 705,000] people affected with strong adaptation need
(3 [2; 3] levels).

In addition, Central and South America show increased flood risk.
For Mexico, we find an almost 25% increase in flood risk (450,000
[120,000; 870,000] to 560,000 [300,000; 960,000] affected people), with
the strongest adaptation need around Mexico City, whereas the capital
itself is under no additional risk. A similar difference between metro-
politan and surrounding areas can be observed for Argentina’s capital,
BuenosAires: TheBuenosAires regionneeds 1 [1; 1] additional protection
Fig. 3. Increase in the regional flood protection level required to preserve the current high-end flood risk for the period 2035 to 2044 (realization ensemblemedian).
Additional protection is given in levels, startingwith 0 for regionswithout adaptation need. Level boundaries are 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1000 years return period.
Numbers shown are absolute difference in level numbers to current protection per subnational region in the FLOPROS database (6). Subfigures show regional foci on the
(A) United States, (B) Europe, (C) Africa, and (D) Southeast and East Asia.
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level to keep its current value of 99,000 [79,000; 461,000] people under
high-end risk. However, Buenos Aires City is already sufficiently pro
tected. The country’s overall increase in affected people is more than a
doubling from 0.6M [0.3M; 1.2M] to 1.3M [0.8M; 1.8M]. In Brazil, states
in the Paraná River basin are most affected. This especially includes
the highly populated São Paulo state, for which we expect a 55% in-
crease in people under high-end flood risk (0.3M [0.1M; 0.6M] to
0.5M [0.3M; 0.8M]) without adaptation. An increase by 1 [0; 1] pro-
tection level would keep the future risk at its present level.

In summary, we find pressure for adaptation to high-end flood
risk widely distributed around the globe. We identify two qualitatively
different challenges. On the one hand, regions with an already high level
of flood protection have a low flood risk but need to adapt their protec-
tion to keep that risk low in the future. On the other hand,many regions
with low protection level are already at high flood risk, which will, in
many cases, increase in the future. We find this distinction not only be-
tween industrial and developing countries but also for cities and their
rural surroundings.
DISCUSSION
It should be noted that our investigation is an estimate based on the
current state of precision that can be obtained on a global level. The
exact numbers in the results should be interpreted with caution be-
cause of several methodological challenges. On the one hand, GHMs
do not resolve a number of small-scale processes (14). On the other
hand, GCMs have uncertainty in the representation of extreme pre-
cipitation events because of their spatial scale. To account for this, we
combine climate models that are bias-corrected toward an observation-
based data set (15) using a trend-preserving method (9) with a number
of different hydrological models. Another caveat that the present study
shares with previous studies is that the extreme value statistics is lim-
ited by a short time period of 34 years. We address this uncertainty by
correcting the short time periods to a much longer preindustrial con-
trol run (a more detailed description of the uncertainty analysis for
which we developed a new method is provided in the Supplementary
Materials). In a few regions, the 90th percentile is dominated by few
climate models (figs. S7 to S12). Given that we look at possible high-
end risk, we chose to include those outcomes nevertheless in our statis-
tics for these regions.

Our computation of the increase in high-end flood risk is fully
consistent with previous results (5). Nevertheless, by using return periods
(in terms of the historical period) as a measure for protection, one only
accounts for an increase in flood intensity, not in frequency or duration of
flood events during a year. Therefore, the actual increase in affected people
may be even higher. Moreover, in particular, cities are often susceptible to
flash floods, which may compound river floods, causing a higher risk.
These are not captured within our analysis. An additional compounding
impact is further possible from storm surge, a common issue for coastal
cities. Therefore, a consideration of river flood risk alone is likely to
underestimate the adaptation pressure for cities especially at the coast.

The simulations we analyzed were conducted without adaptation;
we only incorporated the first-order response through the application
of flood protection. We further assume that the risk aversion in the re-
gions remains the same in the next 25 years. If that risk aversion in-
creases due to socioeconomic developments, then higher protection
might be necessary. The same holds for other factors affecting decisions
on protection levels such as financial restrictions, as well as changes in
population size and distribution, which are held constant in this study.
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In addition, economic development is a very important driver of flood
risk changes, especially in urban areas (16). Although we here study ad-
aptation in terms of protection level (physical as well as policy require-
ments), other adaptationmeasures exist, such as insurance schemes and
guided economic and structural development.

Here, we show that the adaptation need is similarly high in highly
developed countries in North America, Europe, and East Asia, as
well as for developing countries in Africa, Asia, and South America.
Many areas around big cities are strongly affected; these include the
regions around Shanghai, Hong Kong, Jakarta, Mexico City, São
Paulo, Buenos Aires, and Cairo (zoomed-in views of these regions that
stand out in this regard are shown in fig. S13). To keep the high-end
flood risk at a level to which the regional population is accustomed,
strong adaptation measures are often required in regions all around
the globe. In any case, to avoid unmanageable climate damages in the
second half of this century, it is most likely necessary to keep in line
with the Paris climate agreement (17).
MATERIALS AND METHODS
Climate data
In the framework of the ISIMIP (7), a set of five different GCMs
(HadGEM2-ES, IPSL-CM5A-LR,MIROC-ESM-CHEM,GFDL-ESM2M,
and NorESM1-M) participating in the CMIP5 project (10), at daily
0.5° resolution, were bias-corrected toward an observation-based data
set (15) using a trend-preserving method (9) that facilitates climate
change studies. These models’ output was used as the climatic forcing.

Flood model
A set of eight GHMs, one global land surface model, and one dynamic
global vegetationmodel (summarized as GHMs) were driven by the cli-
mate forcing mentioned above to generate projections of future floods.
Specifically, we used global 0.5° gridded daily runoff results from the
DBH (18), H08 (19), Mac-PDM.09 (20), MATSIRO (21), MPI-HM
(22), PCR-GLOBWB (23), VIC (24), and WBMplus (25) hydrological
models; the JULES (26) land surfacemodel; and the LPJmL (27) dynam-
ic global vegetationmodel (see table S1 for furthermodel details). GHMs
were run without direct coupling to GCMs; thus, potential feedbacks
were not represented. The simulations used (from the “nosoc” experi-
ment, no socioeconomic changes) did not consider human interference,
which likely affects drought more than floods (28). Further details
about the GHM simulations can be found in the ISIMIP simulation
protocol available at www.isimip.org.

For 34 combinations, we usedRCP2.6, RCP4.5, RCP6.0, andRCP8.5
as futureprojections,whereas for16combinations (GCMsGFDL-ESM2M,
IPSL-CM5A-LR,MIROC-ESM-CHEM, andNorESM1-M in combina-
tion with the GHMs DBH, Mac-PDM.09, MATSIRO, and VIC), only
RCP2.6 and RCP8.5 were available.

To harmonize the output of the different hydrological models with
respect to their river network, we used the river routing model CaMa-
Flood (version 3.44) (12). We also included CaMa-Flood because it
agrees better with observed river discharges, especially for peak values,
than the direct output of the hydrological models (28). This was driven
by each model combination of daily runoff data (50 combinations each
for historical and each available future projection) to derive daily dis-
charge at 0.25° global grids. The first year of historical (1971) and future
projection (2006) runoff was repeated five times as spin-up for CaMa-
Flood. We then derived the annual maximum daily discharge for each
grid cell.
5 of 8
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Flood return periods
For each simulation and each grid cell, we fitted the generalized extreme
value (GEV) distribution (29) to the historical time series of the annual
maximum daily discharge using L-moment estimators (30) of the
distribution parameters; for small sample sizes like here (34 data points;
1 for each year), these show substantially smaller SDs than maximum
likelihood estimators (31, 32), which were also computed for com-
parison. Cells with amean daily discharge of less than 0.1mm/day of the
historical model period were excluded, because they have insufficient
data density and are not important for flood studies.

The analysis was limited by the number of available data for the
fitting of the extreme value statistics. We developed a method to cor-
rect for natural variability and bias in the selection of the small his-
torical sample; a schematic overview for the computational chain
from discharge via return period to number of affected people is
shown in fig. S14; a detailed description is given in the following
paragraphs.

For the correction, we used a preindustrial control run (“picontrol”)
of the climate model GFDL-ESM2M in combination with the hydro-
logical model LPJmL (note that simulations were only available for this
model combination). This simulation yielded 439 years (1661 to 2099)
of discharge output from CaMa-Flood, which follows the GEV
distribution verywell in nondry areas; fig. S15 shows the probability plot
correlation coefficient (33) of the corresponding GEV fit per grid cell,
where we used unbiased plotting positions (i − a)/(N + 1 − 2a) with a =
0.4 as recommended for general distributions (34).

We further separated the long preindustrial control run into 12 dis-
joint realizations of 34 consecutive years each (1661 to 1694, 1695 to
1728, etc.); fig. S16 shows the set of distributions at four representative
grid cells. For each of these realizations, we computed the adaptation
pressure as if the realization represented the historic time series
corrected to themuch better fit to the overall 439-year run. This yielded
an ensemble of 12 realizations, which we used to derive the median and
the uncertainty due to extreme value fitting to only 34 data points in the
end results. To our knowledge, such an analysis incorporating uncer-
tainty has not been done yet in this field because of lack of time series
of sufficient lengths.

The correctionwas done assuming that betweenmodels, only return
period can be transferred; other variables such as discharge are model-
specific. For a return period in GCM,GHM, we derived the corresponding
return level discharge in realization r in GFDL-ESM2M,LPJmL; the
return period used in the bias correction was then derived using the
439-year picontrol fit. LetQdenote discharge andTX(Q) be the function
that yields the return period that corresponds to the discharge Q in
model combination X. Its inverse T�1

X ðTÞ then yields the discharge in
model combination X corresponding to return period T. Thus, we used
the following total return period function (see fig. S14 for an overview of
the whole mapping procedure)

TGCM;GHM;rðQÞ
≡ TGFDL‐ESM2M;LPJmL;picontrolðT�1

GFDL‐ESM2M;LPJmL;rðTGCM;GHM;histðQÞÞÞ
Note that this is not necessarily a GEV distribution, but a distorted

one where realization and picontrol run deviate. We assume that there
is neither a trend in the picontrol run nor an autocorrelation between
the different realizations. Because the historic period already includes a
climate signal, itmight deviate from the realizations; however, this trend
is preserved by the mapping used, which only accounts for the differ-
Willner et al., Sci. Adv. 2018;4 : eaao1914 10 January 2018
ences between the realizations. In addition, the trend inside one of the
periods is assumed to be significantly smaller than the difference be-
tween the historic and future period used.

For model bias correction, we followed the approach by
Hirabayashi et al. (5): We mapped the return period from the
procedure above to the corresponding flood depth in a MATSIRO
(21) model run driven by observed climate forcing (35), in bins of
1-year (1 to 100) and 10-year (100 to 1000) return periods. Results
from this observation-driven MATSIRO output have been shown to
have realistic consistency in comparison with observation-based data.
Details for this validation work are described in Hirabayashi et al. (5).

Affected population
We then downscaled the flood depth using topological flood bed data of
CaMa-Flood (to 0.005° grid and then reaggregated to 2.5′) to yield in-
undation area fraction on a 2.5′ grid. On the same grid resolution, we
used aggregated 2010 gridded population data (Population Count, v4
2010) (13). For each cell and return period bin, inundation area multi-
plied by cell population yielded affected people. To save computational
effort (and because each model run’s return period data are on a 0.25°
resolution), we scaled up those to a 0.25° grid to obtain a mapping for
return period to the affected population.

We expect our results to be optimistic regarding population
distribution. Because we do not take into account scenarios of popula-
tion distributions—but stick to the 2010 population distribution—for
many of these regions, we expect an even higher number of affected
population, particularly Africa and Southeast Asia. In addition, regions
in coastal river deltas are under additional pressure of sea level rise
through increased exposure to coastal floods.

Region data
For cell-to-region mapping, we rasterized geo data from http://www.
naturalearthdata.com to a 0.25° grid (10m-admin-0-countries_lakes,
version 3.1.0, for the national level, and ne_10m_admin_1_states_pro-
vinces, version 3.0.0, for the subnational level) (36). To ensure accuracy
and inclusion of small regions, we additionally used a 0.05° grid to
correct the coarse grid according to the region with most cells in
the corresponding finer grid cells. In addition, we advanced coastal
cells toward the sea to capture population on coasts.

Protection
The current flood protection at the subnational scale has recently been
compiled in a global database, representing currently best global-scale
knowledge in the maximum return period of flood that each country/
region canprevent (6).Here, we used theMerged layer of the FLOPROS
database (6), which combines empirical data about existing protection
infrastructure (“Design layer”), data about protection standards and re-
quirements set by policy measures (“Policy layer”), and model output
from an observed relationship between gross domestic product per
capita and flood protection (“Model layer”). These data were gridded
to a 0.25° resolution with an expansion and raster correction as for
the region data.

The large differences in increased high-end risk resulted not only
from different changes in exposure to high-end floods but also from
huge differences in the current protection, representing the vulnerability
of regions; Africa sticks out in this regard. This has to be taken into ac-
count when interpreting our results with regard to changes in high-end
flood levels but does not affect our results with regard to the question of
changing risk. Accordingly, some of the differences between countries
6 of 8
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concerning required adaptation levels simply result from huge differ-
ences in current protection.

High-end flood risk
Using the mapping for return period to affected population per cell, we
created, for each model run, histograms of annual maximum flood
events for each of the twoperiods (historical period, 1971 to 2004; future
period, 2035 to 2044). There, only affected people for a return period
larger than the cell’s current protection were counted. These were then
aggregated to subnational regions, yielding a histogram per region per
period and its 90th percentile for the high-end flood risk. In that, the
histograms of all model runs were combined into one. For model com-
binations with only twoRCP runs, these were counted twice in compar-
ison to combinations with all four RCP runs available to ensure that
equal weight was put on all hydrological/climate model combinations
in the overall ensemble statistics.

This 90th percentile with 50 different model runs can be dominated
by only a few hydrological/climate model combinations; the statistics is
obtained over the affected population for each period (1700 data points
for the historic period and 1680 data points for the future period; both
are dominated by events not exceeding protection). These points are not
necessarily independent; thus, the real sample size is probably smaller.
However, this is already an improvement over previous work based on
only one impact model, and we used several RCP scenarios to increase
the ensemble size. An overview of howmany of the climate models and
hydrologicalmodels dominate the 90th percentile is given in figs. S7 and
S8 and figs. S9 and S10, respectively. Two examples of a good and a bad
model spread in that statistic are given in figs. S11 and S12. Although
different climate models show particularly different trends in the high-
end flood hazards for some regions, all climate models were justified
using various assumptions and thus represent a possible projection of
the future hazards. Given that we look at possible high-end risks, we
should include those outcomes nevertheless in our statistics.

Other studies see further increase of flood frequency in the second
half of the 21st century—for many world regions and for every carbon
emission scenario (5). Consequently, we also expect high-end flood risk
to further increase in those decades, especially if carbon emissions are not
drastically reduced andmore optimistic emission pathways are not taken.

Necessary adaptation
For the future period, we repeated the previous procedure while consec-
utively increasing the return period protection by 1 year at each iteration
in each cell of a subnational region. This procedure was continued until
the 90th percentile of affected people equaled or fell below the value of
the 90th percentile under the protection in the historic period. Then, we
compared the affected population and the protection levels (see the next
section) that the original and the increased protection fall into. This in-
crement yielded the necessary adaptation needed to hold the historic
high-end risk. The results shown are the median over all 12 realizations
in the preindustrial control run as well as the 16.7 and 83.3 percentile as
uncertainty ranges.

Protection levels (return period bins)
We classified the current protection as well as the one necessary for
keeping the high-end risk constant into levels according to their asso-
ciated theoretical uncertainty. The adaptation pressure is then given as
the number of protection levels necessary to bridge for constant high-
end risk. The main source of statistical uncertainty is the insufficient
number of discharge observation for a proper distribution fit. The
Willner et al., Sci. Adv. 2018;4 : eaao1914 10 January 2018
cumulative distribution function of the GEV distribution with param-
eters m, s > 0, x for discharge Q is given as

FðQÞ ¼
exp � exp �Q� m

s

� �� �
for x ¼ 0

exp � 1þ Q� m
s

x

� ��1=x
 !

for x≠0

8>>><
>>>:

The return period associated with a discharge Q is the reciprocal of
the probability of exceeding that value, p = 1 − F(Q),

TðQÞ ¼ 1
1� FðQÞ

Then, the error of a return period T with regard to the error in the
distribution parameter m is

∂T
∂m

����
���� ¼

����� F lnðFÞs
T2ð lnð�FÞÞx

����� ¼
����� 1s ð lnðT � 1Þ � lnðTÞÞðT � 1ÞTð lnðTÞ � lnðT � 1ÞÞx

�����≈
T
s
ð lnðTÞ � lnðT � 1ÞÞxfor T≫1

For x close to 0, this is proportional to T (analogously for s and x),
which is the case for most nondry regions; otherwise, x goes with T2.
Accordingly, we chose protection levels with widths proportional to the
corresponding return period, that is, exponentially increasing level
bounds. To have a sufficient number of levels, we simply stuck to
powers of 2; thus, our level bounds were 0, 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, and 1000; the lower bound was included, whereas the upper
one was excluded. These assumptions about the levels are only precise
for the Gumbel distribution (x = 0); nevertheless, our results further
hold qualitatively when restricting to that distribution (see fig. S17).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao1914/DC1
fig. S1. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization 16.7 percentile, lower likely range).
fig. S2. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization 83.3 percentile, upper likely range).
fig. S3. Required adaptation relative to current protection to preserve the current high-end
flood risk for the period 2035 to 2044 (realization ensemble median).
fig. S4. Affected people in the historic period.
fig. S5. Affected people in the future period.
fig. S6. Absolute increase in high-end flood risk.
fig. S7. Climate model agreement (historic period).
fig. S8. Climate model agreement (future period).
fig. S9. Hydrological model agreement (historic period).
fig. S10. Hydrological model agreement (future period).
fig. S11. Example histogram of affected people (in India).
fig. S12. Example histogram of affected people (in Egypt).
fig. S13. Zoomed-in views of selected metropolitan areas; increase in the regional flood protection
level required to preserve the current high-end flood risk for the period 2035 to 2044.
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fig. S14. Schematic of the method to yield the affected population from discharge.
fig. S15. Probability plot correlation coefficient for the preindustrial control run of 439 years as
a goodness of (GEV) fit measure.
fig. S16. Probability density functions for the fitted GEV distribution at four representative grid
cells (hot/cold and wet/dry).
fig. S17. Increase in the regional flood protection level required to preserve the current
high-end flood risk for the period 2035 to 2044 (realization ensemble median) using the
Gumbel distribution for the extreme value fit (cf. Fig. 3 for GEV fit).
table S1. Main characteristics of the GHMs as used in this study, based on the study of
Warszawski et al. (7).
CSV (comma-separated-values) file of the raw data
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