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Abstra
tThe rate-independent damage model re
ently developed in [BMR09℄ allows for
omplete damage, su
h that the deformation is no longer well-de�ned. The evolu-tion 
an be des
ribed in terms of energy densities and stresses. Using 
on
epts ofparametrized Γ-
onvergen
e, we generalize the theory to 
onvex, but non-quadrati
elasti
 energies by providing Γ-
onvergen
e of energeti
 solutions from partial to
omplete damage under rather general 
onditions.1 Introdu
tionThere is a ri
h literature on rate-independent me
hani
al models for damage in brittlematerials, 
f. [Ort85, FrM93, DPO94, FrN96, DMT01, MaA01, HaS03℄, and re
ently sev-eral mathemati
al approa
hes [FrM98, FKS99, FrG06℄ were developed, in parti
ular theabstra
t theory of rate-independent pro
esses [MiT99, MiT04, Mie05℄ proved very helpfulas it allows one to employ the ma
hinery of in
remental minimization.Here we want to 
ontribute to the models dis
ussed in [MiR06, BMR09, MRZ07℄. Let
u : Ω → Rd be the displa
ement and z : Ω → [0, 1] the damage variable, then therate-independent system is given by the triple (F×Z, E ,D), where u ∈ F , z ∈ Z. Theenergy-storage fun
tional has the form

Eδ(t, u, z) =

∫

Ω

Wδ(x, e(uD(t)+u)(x), z(x))dx + G(z), where e(u) =
1

2
(∇u+(∇u)T),and the dissipation is D(z, ẑ) =

∫
Ω

D(x, z(x), ẑ(x)) dx. Here uD ∈ C1([0, T ]; W1,p(Ω))pres
ribes time-dependent boundary displa
ements on the Diri
hlet part ΓD of the totalboundary ∂Ω. For δ > 0 the stored-energy density is regularized in the form Wδ(e, z) =
W (e, z) + δ|e|p, whi
h renders Wδ 
oer
ive while W may be non-
oer
ive for 
ompletedamage z = 0.For δ > 0 existen
e of energeti
 solutions (uδ, zδ) is known for general W , see [MiR06,ThM09℄. The limit passage for δ → 0 in the sense of Γ-limits was established in [BMR09,MRZ07℄ under the assumption that e 7→ W (x, e, z) is quadrati
. However, this is not arealisti
 model, sin
e it implies that damage behaves symmetri
 under 
ompression andextension. The purpose of this work is to generalize the approa
h to a mu
h larger 
lassof fun
tionals. For instan
e, we are able to treat the model

W (e, z) =
z

2
e:C:e +

c

2

(
min{0, tr e}

)1+β
, c > 0 and β ∈ ]0, 1] .whi
h displays resistan
e to 
ompression even after 
omplete damage, like powderized
on
rete. 1



The di�
ulty is that W is not 
oer
ive, hen
e in the limit δ → 0 we are not ableto 
ontrol uδ, and 
onvergen
e should only be valid for zδ. The task is to de�ne a limitequation in terms of z. In parti
ular, one needs a repla
ement of the power of the externalfor
es that provides the limit of
∂tEδ(t, uδ(t), zδ(t)) =

∫

Ω

Σδ:e(u̇D)dx with Σδ = DeWδ(e(uD+uδ), zδ). (1)We will show that it is possible to 
ontrol the limit of the stresses Σδ while in generalthe strains eδ = e(uD+uδ) will have no limits. Hen
e, we follow the ideas of [BMR09℄ toeliminate the elasti
 variable u 
ompletely by de�ning the redu
ed fun
tional
Iδ(t, z) = min{ Eδ(t, ũ, z) | u ∈ F } with F = { u ∈ W1,p(Ω) | u|ΓD

= 0 }and to apply the Γ-
onvergen
e theory to the rate-independent systems (Z, Iδ,D). Notethat a 
onvergen
e theory for the systems (F ×Z, Eδ,D) is doomed to fail be
ause of themissing uniform 
oer
ivity with respe
t to u ∈ F .However, the total elimination of the displa
ements, and hen
e of the strains, leadsto missing information on the stresses whi
h is needed to 
ontrol the limit in (1). Thus,the se
ond important idea in [BMR09℄ is the introdu
tion of an intermediate fun
tionalde�ned in terms of the boundary displa
ements uD. More pre
isely, we let
Jδ(e, z) = min{

∫

Ω

Wδ(e+e(u), z)dx + G(z) | u ∈ F }.Here e 
an be taken from all of E = Lp(Ω, Rd×dsym), but the minimization with respe
t toall admissible displa
ements shows that it depends only on mu
h less information to beextra
ted from e. The point about the de�nition of Jδ is that it provides the formulas(i) Iδ(t, z) = Jδ(e(uD(t)), z) (ii) ∂tIδ(t, z) = 〈DeJδ(e(uD(t)), z), e(u̇D(t))〉. (2)In fa
t, DeJδ(e(uD), z) ∈ E
∗ = Lp′(Ω, Rd×dsym) provides the equilibrium stresses asso
iatedwith the given boundary data uD and the damage state Z.In Se
tion 3 we will dis
uss the theory of Γ-
onvergen
e for a family of fun
tionals

Jδ : E×Z → R∞, where the Γ-
onvergen
e is done with e ∈ E treated as a parameter, i.e.,
Jδ(e, ·) Γ→ J(e, ·). The main question is how properties of the fun
tions Jδ(·, z) : E → Rare inherited to the limit J(·, z). For this we introdu
e the notion of simultaneous Γ-limitsfor parametrized families (Jδ(e, ·))δ>0 by asking that for ea
h two points e1 and e2 andea
h z ∈ Z there exists a re
overy sequen
e (zδ)δ>0 su
h that Jδ(ej , zδ) → J(ej , z) for
j = 1 and 2. With this 
ondition we are able to 
o
lude that 
onvexity and di�erentiabilitywith respe
t to e passes from Jδ(·, z) to J(·, z). In parti
ular, we provide the following
onvergen
e of stresses, whi
h is 
ru
ial in the theory of rate-independent systems (
f.[FrM06, Prop. 4.4℄):

zδ ⇀ z0

Jδ(e, zδ) → J(e, z0)

}
=⇒ DeJδ(e, zδ) ⇀ DeJ(e, z0) in E

∗.Combining this result with (2ii) we are able to obtain the limit ∂tIδ(t, zδ) → ∂tI(t, z0).2



For the 
omplete-damage problem one easily obtains the simultaneous Γ-
onvergen
eby taking Γ-
onvergen
e with respe
t to strong 
onvergen
e in W1,p(Ω), be
ause of thestrong 
ontinuity of G and the monotoni
ity of z 7→ W (e, z), see Proposition 4.5. Themain di�
ulty is then to establish our main stru
tural assumption (see (17)) that weak
onvergen
e along so-
alled stable sequen
es implies strong 
onvergen
e. In this work weshow that this 
ondition holds under the additional assumption W1,p(Ω) ⊂ C(Ω), i.e.
r > d. However, in Se
tion 6.1 we give arguments in favor of our 
onje
ture, that thestrong 
onvergen
e 
an also be established for r ∈ [1, d].Our main result is formulated in Theorem 2.3 for r > d: any family of energeti
solutions zδ : [0, T ] → Z for (Z, Iδ,D) has a subsequen
e (zδj

)j∈N with δj → 0 and
zδj

(t) → z(t) for all t ∈ [0, T ], where z : [0, T ] → Z is an energeti
 solution of the
omplete-damage system given by (Z, J,D). The result is based on the abstra
t theoryof Γ-
onvergen
e for rate-independent systems developed in [MRS08℄.If the uniform di�erentiability property does not hold, one 
an still use 
onvexityarguments. If ea
h Jδ(·, z) is 
onvex, the parametrized Γ-limit is 
onvex as well. This
onvexity allows us to 
hara
terize the Clarke di�erential of I(·, z) using the left and rightpartial derivative in t:
∂Cl

t I(t, z) =
[
∂−

t I(t, z), ∂+
t I(t, z)

]
, where ∂±

t I(t, z) = lim
ε→0+

±1
ε

(
I(t±ε, z)−I(t, z)

)
.In fa
t, we have ∂±

t I(t, z) = ± sup{±〈σ, e(u̇D(t))〉 | σ ∈ ∂sub
e J(e(uD(t)), z) }.We generalize the notion of energeti
 solutions [Mie05℄ to generalized energeti
 solutionsby keeping stability (S) and repla
ing the energy balan
e by

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ with p(τ) ∈ ∂Cl
τ I(τ, z(τ)),see De�nition 6.1. Theorem 6.2 establishes existen
e of generalized energeti
 solutions tothe rate-independent system (Z, I,D).2 Setup of the modelWe �rst dis
uss the physi
al setup and provide the existen
e result for the 
oer
ive 
ase

δ > 0. Afterwards we dis
uss the redu
tion of the problem by eliminating the displa
ementwhile keeping the boundary strains eD(t) = e(uD(t)).2.1 Dis
ussion of the 
oer
ive modelThe body Ω ⊂ Rd is des
ribed by a bounded Lips
hitz domain. The state of the system isdes
ribed by the displa
ement ũ : Ω → Rd and the s
alar damage variable z : Ω → [0, 1],where z = 1 denotes no damage and z = 0 means that the maximal damage has beenrea
hed (all mi
ros
opi
 breakable stru
tures are broken). The displa
ement ũ will satisfy3



time-dependent Diri
hlet boundary 
onditions on ΓD ⊂ ∂Ω via uD ∈ C1([0, T ], W1,p(Ω))in the form
ũ(t) = uD(t) + u(t) with u(t) ∈ F = { v ∈ W1,p(Ω) | v|ΓD

≡ 0 }.We also use the in�nitesimal strain tensor e(u) = 1
2

(
∇u + (∇u)T

) and set
eD(t) = e(uD(t)) and ėD(t) = e(u̇D(t)) where ˙ = ∂t.The stored energy of the system is given via the fun
tional
E(t, u, z) =

∫

Ω

W (x, eD(t, x)+e(u)(x), z(x))dx + G(z) (3a)with G(z) =

∫

Ω

b(x, z(x)) + G(x,∇z(x))r dx. (3b)Here b : Ω × [0, 1] → R and G : Ω × Rd → R are Carathéordory fun
tions satisfying
∃C > 0 ∀ (x, z) : 0 ≤ b(x, z) ≤ C, (4a)
∀x ∈ Ω : z 7→ b(x, z) is non-de
reasing, (4b)
∃C > 0, r > 1 ∀ (x, a) :

|a|r
C

− C ≤ G(x, a) ≤ C|a|r + C, (4
)
∀x ∈ Ω : a 7→ G(x, a) is stri
tly 
onvex. (4d)The fun
tion G 
ontains the regularizing term and is typi
ally of the form κ(x)|a|r. Thus,the suitable spa
e for the damage states is Z = { z ∈ W1,r(Ω)|0 ≤ z ≤ 1 }. The additionalterm b is intended to model 
ohesive e�e
ts (or healing), i.e., if the stresses in the materialare released then the damage may heal (ż > 0) by using up some energy.The stored energy density W : Ω×Ed×[0, 1] → R, where Ed = Rd×dsym, is a Carathéordoryfun
tion satisfying
∀ (x, z) ∈ Ω : W (x, ·, z) ∈ C1(Ed), (5a)
∃C > 0 ∀ (x, e, z) : 0 ≤ W (x, e, z) ≤ C|e|p + C, (5b)
∀ (x, z) : e 7→ W (x, e, z) is 
onvex, (5
)
∀ (x, e) : z 7→ W (x, e, z) is nonde
reasing, (5d)
∃ c1, c2 ∀ (x, e, z) : |∂eW (x, e, z)| ≤ c1(W (x, e, z)+c2)

1−1/p. (5e)Condition (5d) means that the material be
omes weaker if damage in
reases, and (5e) is
alled �stress 
ontrol�, sin
e it allows us to 
ontrol the size of the stresses in terms of theenergy alone, uniformly in (x, z). A typi
al fun
tion W has the form
W (x, e, z) = W 0(x, e) + a(z)W 1(x, e),where W0 and W1 are smooth and 
onvex, W 0 may be non-
oer
ive while W 1 is 
oer
ive,

a(z) ≥ czα and a′(z) ≥ 0. As above we set Wδ(e, z) = W (e, z) + δ|e|p and de�ne Eδ as in(3a) with W repla
ed by Wδ. 4



For the time-dependent Diri
hlet boundary data we impose
uD ∈ C1([0, T ], W1,p(Ω; Rd) with p from (5). (6)Finally we des
ribe the dissipation fun
tional D : Z × Z → [0,∞] via

D(z0, z1) =

∫

Ω

D(x, z0(x), z1(x))dx,where D : Ω × [0, 1]2 → [0,∞] is a normal integrand. For ea
h x, D satis�es the triangleinequality and the 
oer
ivity D(x, z, z̃) ≥ c|z−z̃|. The typi
al 
hoi
e is D(x, z, z̃) =
δ+(z−z̃) for z̃ ≤ z and δ−(z̃−z) for z ≤ z̃, where δ+ ∈ (0,∞) and δ− ∈ (0,∞]. Here
δ− = ∞ is the unidire
tional 
ase that enfor
es that damage 
an only in
rease, thushealing is forbidden. The latter 
an only take pla
e if δ− + b′(z) < 0 for some z ∈ [0, 1].We refer to [SHS06℄, where healing is modeled under the name 
ohesion.With these fun
tionals we de�ne notion of energeti
 solution for the rate-independentsystem (Q, Eδ,D), where Q = F × Z (see [MiT99, MiT04℄ and the surveys [Mie05,MiR08℄). A mapping q = (u, z) : [0, T ] → Q is 
alled energeti
 solution if τ 7→
∂τEδ(τ, q(τ)) lies in L1((0, T )) and if for all t ∈ [0, T ] we have stability (S) and energybalan
e (E):(S) ∀ q̃ = (ũ, z̃) ∈ Q : Eδ(t, q(t)) ≤ Eδ(t, q̃) + D(z(t), z̃);(E) Eδ(t, q(t)) + DissD(z, [0, t]) = Eδ(0, q(0)) +

∫ t

0

∂τEδ(τ, q(τ))dτ.
(7)Here DissD(z, [r, s]) is de�ned to be the supremum of ∑N

1 D(z(tj−1, z(tj)) over all �nitepartitions r ≤ t0 < t1 · · · tN ≤ s. For ea
h q ∈ Q the power of the external for
es ∂tEδ(t, q)is well de�ned by using (5e).For non-
oer
ive problems (i.e. δ = 0), where u is no longer well-de�ned and we 
annotguarantee q ∈ Q. It is the main problem how to de�ne this partial derivative ∂tE(t, q).Thus, it is an open problem whether under the above assumption a general existen
e resultholds. However, the 
oer
ive 
ase δ > 0 was solved under more general assumptionsin
luding unilateral 
onstraints and volume for
es, 
f. [MiR06, ThM09℄. The followingresult provides existen
e in the 
ase where the growth rate r for the regularizing termjust needs to satisfy r > 1. Originally [MiR06℄ used the embedding W1,p(Ω) ⊂ C(Ω),whi
h leads to the assumption r > d. In [ThM09℄ a new 
onstru
tion of the joint re
overysequen
e allowed for the generalization to all r > 1.Theorem 2.1 If the above assumption hold with p, r > 1 and if δ > 0, then for all stableinitial states q0 ∈ Q (i.e., (S) holds at t = 0 with q(0) repla
ed by q0) there exists anenergeti
 solution qδ : [0, T ] → Q of the rate-independent system (Q, Eδ,D) with q(0) = q0,
q ∈ L∞([0, T ], W1,p(Ω)×W1,r(Ω)), and z ∈ BV([0, T ], L1(Ω)).In general one 
annot expe
t more regularity of the solutions with respe
t to time. Inparti
ular, the solution may have jumps. In [ThM09℄ 
onvexity 
onditions on (e, z) 7→
W (e, z) are dis
ussed whi
h imply simple 
ontinuity, Hölder or Lips
hitz 
ontinuity.5



2.2 Redu
tion by eliminating the displa
ementsThe approa
h for solving non-
oer
ive problems was indi
ated already in [MiR06℄ and �-nally solved in [BMR09℄ under the additional assumption that W is quadrati
: W (x, e, z) =
z
2
e:C:e; however more general quadrati
 forms 1

2
e:C(z):e+g(z):e+γ(z) would work equallywell. The main idea is to approximate the non-
oer
ive 
ase with a 
oer
ive one by setting

Wδ(x, e, z) = W (x, e, z) + δ(1+|e|2)p/2. (8)Then for ea
h δ > 0 there is a solution qδ = (uδ, zδ) of the rate-independent energeti
system (Q, Eδ,D). Moreover, using the stress 
ontrol (5e) it is not di�
ult to show thatthere exists C > 0 su
h that for all δ ∈ (0, 1) and all t ∈ [0, T ] we have Eδ(t, qδ(t)) +
DissD(zδ, [0, t]) ≤ C.Now, using the theory of Γ-
onvergen
e of rate-independent energeti
 systems [MRS08℄it is then possible to pass to the limit in the redu
ed system, where the displa
ement uis minimized out. The latter step is essential, sin
e it is not to be expe
ted that uδ or
e(uδ) 
onverges in any reasonably sense. In regions where z = 0 holds we may have
W (x, e, 0) = 0 for a large and possibly unbounded set of strains e ∈ Ed due to the missing
oer
ivity.To de�ne the redu
ed problem we use the stri
t 
onvexity (5
) to �nd that Eδ(t, ·, z)has a unique minimizer u = Uδ(t, z) ∈ F . With this we have

Iδ(t, z) =

∫

Ω

Wδ(x, eD(t)+e(Uδ(t, z)), z)dx + G(z).A 
lassi
al argument [KnM08, KMZ08℄ shows that ∂tIδ(t, z) = ∂tEδ(t, Uδ(t, z), z).While the limit of the energy Iδ(t, zδ) along energeti
 solutions qδ 
an be understoodin the sense of Γ-limits, it is nontrivial to 
ontrol the power
∂tIδ(t, zδ) =

∫
Ω

σδ(t):ėD(t)dx with
σδ(t, x) = ∂eW (x, eD(t, x)+e(uδ(t))(x), zδ(t, x)).The main observation is that the stress-
ontrol assumption (5e) and the usual energy apriori estimates provide bounds for σδ in Lp/(p−1)(Ω,Ed) that are independent of δ > 0.The essential idea to make the limit tra
table is to introdu
e an auxiliary fun
tional inwhi
h it is possible to keep 
ontrol over the Γ-limit. Denote by E = Lp(Ω;Ed) the strainspa
e, and for (e, z) ∈ E ×Z let
Jδ(e, z) = Vδ(e, z) + G(z) with
Vδ(e, z) = min{

∫
Ω

Wδ(x, e+e(u), z)dx | u ∈ F }. (9)In fa
t, the fun
tional Vδ should not be 
onsidered as a fun
tional on E but rather on
B = { u|∂Ω | u ∈ F }, sin
e all the other information is minimized out. Moreover, for �xed
z ∈ Z, the mapping e 7→ Vδ(e, z) is 
onvex and di�erentiable with

DeVδ(e, z) = ∂eW (x, e+e(V (e, z)), z) ∈ E
∗ = Lp/(p−1)(Ω;Ed),where V (e, z) ∈ F is the unique minimizer in (9). This shows that σ = DeVδ(e, z) is infa
t an equilibrium stress, and thus satis�es div σ = 0 in Ω and σ ν = 0 on ∂Ω\ΓD.6



The importan
e of the fun
tional Vδ is that on the one hand it is possible to do the
Γ-limit for δ → 0 and keep some of the main features and that on the other hand, by
onstru
tion the redu
ed fun
tional Iδ and its partial derivative with respe
t to t 
an beeasily expressed:

Iδ(t, z) = Vδ(eD(t), z)+G(z) and ∂tIδ(t, z) = 〈DeVδ(eD(t), z), ėD(t)〉.Thus, we have found a way to express the energies in terms of the damage alone and westill have 
ontrol over the equilibrium stresses DeVδ(eD(t), z) that are needed to 
ontrolthe power generated by the boundary data uD(t).2.3 The main 
onvergen
e and existen
e resultIn this subse
tion we provide 
onvergen
e results of (subsequen
es of) energeti
 solutionsfor (Z, Iδ,D) to solutions of the 
omplete damage problem (Z, I,D). Here I is theparametrized Γ-limit I(t, ·) = Γ-limδ→0+ Iδ(t, ·). The main di�
ulty in the limit pro
edureis to show the 
onvergen
e of the power
∂tIδ(t, zδ(t)) → ∂tI(t, z(t)),for whi
h it is ne
essary to know that I(·, z) ∈ C1([0, T ]). For this we will show that

V(e, ·) = Γ-limδ→0+ Vδ(e, ·) exists and is di�erentiable with respe
t to e ∈ E.For this, we need an additional uniform di�erentiability assumption on the the storedenergy density W , whi
h reads as follows:
∃C > 0 ∃ β ∈ ]0, min{1, p−1}] ∀ e0, e1 ∈ Ed ∀ z ∈ [0, 1] :

W (x, e0, z) + W (x, e1, z) − 2W (x, 1
2
(e0+e1), z)

≤ C
(
1 + W (x, 1

2
(e0+e1), z) + |e1−e0|p

)1−(1+β)/p |e1−e0|1+β,

(10)where p is as in (5). It is easy to 
onstru
t nontrivial examples ful�lling this 
ondition,be
ause it is additive in the following sense: If the nonnegative densities W1, . . . , Wksatisfy (10) with the same p, β, and C1, . . . , Ck, respe
tively, then the sum W =
∑k

1 Wjsatis�es the 
ondition as well with C =
∑k

1 Cj.Example 2.2 We list a few examples of uniformly di�erentiable fun
tions:(i) 1
2
e:C:e, (ii) min{0, tr e}q, (iii) |e|q.For (i) we 
an take any β ∈ ]0, 1] and p ≥ 1+β. For (ii) and (iii) the 
ondition (10) issatis�ed if and only if 1 ≤ 1+β ≤ q ≤ p.The main result is restri
ted to the 
ase r > d, whi
h provides the helpful embedding

W1,r(Ω) ⊂ C(Ω). However, in Se
tion 6 we dis
uss possibilities of generalizations.Theorem 2.3 (ΓΓΓ-
onvergen
e) Let the assumptions of Se
tion 2.1 and (10) hold with
r > d. For δ > 0 
onsider energeti
 solutions zδ : [0, T ] → Z of (Z, Iδ,D), then there7



exists a subsequen
e (zδj
)j∈N with δj → 0+ and an energeti
 solution z : [0, T ] → Z of

(Z, I,D) su
h that the following holds for all t ∈ [0, T ]:(i) zδj
(t) → z(t) in W1,r(Ω),(ii) DissD(zδj

, [0, t]) → DissD(z, [0, t]),(iii) Iδj
(t, zδj

(t)) → I(t, z(t)),(iv) DeVδj
(eD(t), zδj

(t)) ⇀ DeV(eD(t), z(t)).Moreover, for ea
h stable z0 ∈ Z, i.e. I(0, z0) ≤ I(0, z̃) + D(z0, z̃) for all z̃ ∈ Z, thereexists at least one energeti
 solution z : [0, T ] → Z for the 
omplete damage problem
(Z, I,D).The proof of this result, whi
h is given in Se
tion 5, follows 
losely the theory developedin [MiR06, BMR09℄, and thus relies on the abstra
t theory of Γ-
onvergen
e for rate-independent systems developed in [MRS08℄.3 Parametrized ΓΓΓ-
onvergen
eIn this se
tion we 
onsider general re�exive Bana
h spa
es E and Z and assume that Zis a weakly 
losed subset of Z. We now dis
uss sequen
es of fun
tionals Jδ : E ×Z → Rand their parametrized Γ-limits J(e, ·) = Γ-limδ→0+ Jδ(e, ·). Here e ∈ E is treated as a�xed parameter, and Γ-
onvergen
e in Z is meant with respe
t to the strong 
onvergen
e,viz. liminf estimate: zδ → z =⇒ J(e, z) ≤ lim inf

δ→0+
Jδ(e, zδ), (11a)re
overy sequen
e: ∀ z ∈ Z ∃ (zδ)δ>0 : zδ → z and Jδ(e, zδ) → J(e, z). (11b)The following example shows that natural properties of the fun
tionals Jδ(·, z) may belost for parametrized Γ-limits.Example 3.1 (Convexity) We 
onsider E = R, Z = R and the fun
tionals

Jδ(e, z) = |e−g(z/δ)| + 1−g(z/δ)2 with g(t) = max{−1, min{t, 1}}.Clearly, ea
h Jδ(·, z) is 
onvex. The parametrized Γ-limit exists and reads
J(e, z) =

{
|e − sign(z)| for z 6= 0,

|1−|e|| for z = 0.For z 6= 0 we 
an take 
onstant re
overy sequen
es zδ = z. For z = 0, the re
overysequen
es will depend on e: for e > 0 we 
hoose zδ = δ and �nd Jδ(e, zδ) = |e−1|, whilefor e < 0 let zδ = −δ obtaining Jδ(e, zδ) = |e+1|.The following de�nition is made to avoid the problem of di�erent re
overy sequen
esat di�erent points. 8



De�nition 3.2 The family (Jδ)δ>0 has the simultaneous Γ-limit J : E×Z → R, if (11a)holds and for ea
h R > 0 there exists R̂ > 0 su
h that
∀ z ∈ Z with ‖z‖ ≤ R ∀ e1, e2 ∈ E ∃ (zδ)δ>0 with sup

δ>0
‖zδ‖ ≤ R̂ :

zδ → z and Jδ(ej , zδ) → J(ej , z) for j = 1, 2.
(12)The point of simultaneous Γ-
onvergen
e is that there must exist re
overy sequen
esthat work at ea
h pair of two points e1 and e2 simultaneously. This 
ondition will allowus to inherit, from the family Jδ to the parametrized Γ-limit, all properties that 
an beformulated in terms of �nitely many fun
tion evaluations.Proposition 3.3 (Convexity) If all Jδ(·, z) are 
onvex and J is the simultaneous Γ-limit of (Jδ)δ>0 for δ → 0, then J(·, z) : E → R is 
onvex for ea
h z ∈ Z.Proof: For arbitrary e0, e1 and θ ∈ ]0, 1[ we de�ne eθ = (1−θ)e0 + θe1. Then, 
onvexityof Jδ(·, zδ) gives

Jδ(eθ, zδ) ≤ (1−θ)Jδ(e0, zδ) + θJθ(e1, zδ).By the assumption of 2-simultaneous Γ-
onvergen
e, we may assume that zδ → z re
oversthe Γ-limit at e0 and e1. Thus, we 
on
lude
J(eθ, z) ≤ lim inf

δ→0+
Jδ(eθ, zδ) ≤ lim inf

δ→0+

(
(1−θ)Jδ(e0, zδ) + θJθ(e1, zδ)

)

= (1−θ)J(e0, z) + θJ(e1, z),whi
h is the desired 
onvexity.We formulate a quantitative notation of 
ontinuous di�erentiability. We say that J :
E × Z → R is β-di�erentiable, if all J (·, z) lie in C1(E) and for all R > 0 there exists a
onstant CR > 0 su
h that for all e0, e1 ∈ E, z ∈ Z with ‖e0‖ + ‖e1‖ + ‖z‖ ≤ R we have

‖DeJ (e1, z) − DeJ (e0, z)‖E∗ ≤ CR‖e1−e0‖β. (13)We say that the family (Jδ)δ>0 is uniformly β-di�erentiable if the 
onstant CR 
an be
hosen independently of δ > 0.The importan
e of this notion is that it 
an be equivalently formulated by using fun
tionvalues only and avoiding the derivative. This equivalen
e is a standard exer
ise in Bana
h-spa
e analysis.Lemma 3.4 A fun
tion J : E × Z → R is β-di�erentiable if and only if for all R > 0there exists a 
onstant ĈR > 0 su
h that for all θ ∈ ]0, 1[, e0, e1 ∈ E, z ∈ Z with
‖e0‖, ‖e1‖, ‖z‖ ≤ R we have

|J (eθ, z) − (1−θ)J (e0, z) − θJ (e1)| ≤ ĈRθ(1−θ)‖e1−e0‖1+β. (14)We note that going from (13) to (14) one 
an estimate ĈR ≤ C∗C2R, where C∗ is auniversal 
onstant. Similarly, one 
an estimate CR ≤ C∗Ĉ2R for the opposite impli
ation.9



Proposition 3.5 If the family (Jδ)δ>0 is uniformly β-di�erentiable and if J is the simul-taneous Γ-limit of this family, then J is also β-di�erentiable.Proof: It su�
es to show that J satis�es (14). We �rst note that this estimate holdsuniformly in δ for all Jδ. For a given R > 0 we 
hoose R̂ a

ording to De�nition 3.2.First 
hoose a simultaneous re
overy sequen
e zδ → z for the points e0 and e1. Then,
J(eθ, z) − (1−θ)J(e0, z) − θJ(e1, z)

≤ lim inf
δ→0+

(
Jδ(eθ, zδ) − (1−θ)Jδ(e0, zδ) − θJθ(e1, zδ)

)
≤ Ĉ bRθ(1−θ)‖e1−e0‖1+β.The opposite estimate is obtained by multiplying with −1 and 
hoosing a re
overy se-quen
e for the point eθ:

(1−θ)J(e0, z) + θJ(e1, z) − J(eθ, z)

≤ lim inf
δ→0+

(
(1−θ)Jδ(e0, zδ) + θJθ(e1, zδ) − Jδ(eθ, zδ)

)
≤ Ĉ bRθ(1−θ)‖e1−e0‖1+β.This proves (14) with CR = Ĉ bR.For 
onvex fun
tions the notion of uniform di�erentiability 
an be simpli�ed as oneestimate in (14) holds automati
ally. Moreover, it su�
es to redu
e to the 
ase θ = 1/2(
f. [Z l02℄), i.e. one 
an repla
e (14) by

0 ≤ J (e0, z) + J (e1, z) − 2J (1
2
(e0+e1), z) ≤ CR‖e0−e1‖1+β. (15)Proposition 3.6 Assume that the family (Jδ)δ>0 is uniformly β-di�erentiable and thatall Jδ(·, z) are 
onvex. Moreover, assume that J is the simultaneous Γ-limit of this family,then J is β-di�erentiable and ea
h J(·, z) is 
onvex. Moreover, we have the following
onvergen
e of stresses:

zδ → z in E

Jδ(e, zδ) → J(e, z)

}
=⇒ DeJδ(e, zδ) → DeJ(e, z) in E

∗. (16)Proof: The results on β-di�erentiability and 
onvexity for J are already establishedabove. The 
onvergen
e of stresses follows from the di�erentiability, whi
h means that thesubdi�erential ∂eJ is a singleton 
ontaining DeJ. In fa
t, Σδ = DeJδ(e, zδ) is bounded in
E∗, and we may 
hoose a subsequen
e δj → 0+ su
h that Σδj

⇀ Σ0 in E∗ and Jδj
(ẽ, zδj

) →
J(ẽ) for all ẽ ∈ E. The latter pointwise 
onvergen
e follows from Arzela-As
oli's theorembe
ause of the uniform Lips
hitz 
ontinuity of the Jδ(·, zδ) on all balls BR(e), R ∈ N .As J : E → R is the pointwise limit of a the family (Jδj

(·, zδj
))j ∈ N , whi
h is 
onvexand uniformly β-di�erentiable, J has these properties as well. By 
onstru
tion we alsohave J(e) = J(e, z) and J(ẽ) ≥ J(ẽ, z). This implies Σ∗ = DJ(e) = DeJ(e, z).Moreover, 
onvexity implies Jδ(ẽ, zδ) ≥ Jδ(e, zδ) + 〈Σδ, ẽ−e〉, and passing to the limit

δj → 0 gives J(ẽ) ≥ J(e) + 〈Σ0, ẽ−e〉. Thus, we 
on
lude Σ0 = DJ(e). In turn, thisimplies Σδ ⇀ DJ(e) = DeJ(e, z) (no subsequen
e), whi
h is the desired result.10



4 The 
omplete-damage problem via ΓΓΓ-
onvergen
eBefore we 
an apply the abstra
t theory of the previous se
tion, we have to deal with thefa
t that Jδ : (e, z) 7→ Vδ(e, z) + G(z) is de�ned by minimizing Eδ with respe
t to u ∈ F .Hen
e, Vδ is only de�ned impli
itly, whi
h makes is more di�
ult to 
he
k 
onvexity and
β-di�erentiability.4.1 Convexity and di�erentiability for the redu
ed damage fun
-tionalsWe re
all the de�nition of Jδ(e, z) = Vδ(e, z) + G(z), where

Vδ(e, z) = min{Wδ(e+e(u), z) | u ∈ F } with Wδ(e, z) =

∫

Ω

Wδ(x, e(x), z(x))dxwith Wδ(x, e, z) = W (x, e, z) + δ|e|p, where W satis�es (5), whi
h in
ludes the 
onvexity
ondition (5
). Sin
e in this se
tion we treat the dependen
e on e only, we omit the
onstant term G(z) that always 
an
els in 
onvexity and di�erentiability 
onditions.For δ > 0 the stored-energy density Wδ is stri
tly 
onvex with respe
t to e ∈ Ed.Moreover, for δ > 0 we have the 
oer
ivity Wδ(x, e, z) ≥ δ|e|p whi
h implies that thereexists for ea
h z ∈ Z and ea
h e ∈ E a unique u = Uδ(e, z) su
h that
Vδ(e, z) = Wδ(e+e(Uδ(e, z)), z), Uδ(e, z) ∈ F .In parti
ular, we have Vδ(e+e(û), z) = Vδ(e, z) for all û ∈ F , be
ause of Uδ(e+e(û), z) =

Uδ(e, z) − û. This shows that Vδ(·, z) : E → R is highly degenerate and should be
onsidered as a fun
tional on E/e(F).Lemma 4.1 (Convexity of Vδ) Let W satisfy (5). Then, the fun
tionals Vδ(·, z) : E →
R are 
onvex and satisfy the estimates 0 ≤ Vδ(e, z) ≤ C(1+‖e‖p) + δ‖e‖p.Proof: For arbitrary θ ∈ ]0, 1[, e0, e1 ∈ E and z ∈ Z we have

Vδ(eθ, z) = Wδ(eθ+Uδ(eθ, z), z) ≤ Wδ(eθ+(1−θ)Uδ(e0, z) + θUδ(e1, z), z)

= Wδ((1−θ)[e0+Uδ(e0, z)] + θ[e1+Uδ(e1, z)], z)
onvex
≤ (1−θ)Wδ(e0+Uδ(e0, z), z) + θWδ(e1+Uδ(e1, z), z)

= (1−θ)Vδ(e0, z) + θVδ(e1, z).This is the desired 
onvexity.For the estimates we �rst derive 0 ≤ W0(e, z) ≤ C(1+‖e‖p), whi
h follows easily byintegration. We then use 0 ≤ Wδ(e+Uδ(e, z), z) = Vδ(e, z) ≤ W0(e, z) + δ‖e‖p.To obtain uniform β-di�erentiability of Vδ in the form (15), we use the additionaluniform di�erentiability 
ondition (10) on the energy density W . It is easy to derive the
orresponding 
ondition for the fun
tionalWδ, but is is essential that the 
ondition is alsostable under the redu
tion from Wδ to Vδ. 11



Proposition 4.2 Let W satisfy (5) and (10). Then, for ea
h R > 0 there exists a
onstant CR > 0 su
h that for all δ ∈ ]0, 1], e0, e1 ∈ E, and z ∈ Z, we have
Vδ(e0, z) + Vδ(e1, z) − 2Vδ(e1/2, z) ≤ CR‖e1−e0‖1+β.Proof: We note that Wδ satis�es all the assumptions uniformly for δ ∈ [0, 1]. Integrationof (10) for Wδ and using Hölder's inequality gives, for e0, e1 ∈ E and z ∈ Z,

Wδ(e0, z)+Wδ(e1, z)−2Wδ(e1/2, z) ≤ C
(
|Ω|+Wδ(e1/2, z)+‖e1−e0‖p

)1−(1+β)/p‖e1−e0‖1+β.The 
orresponding inequality for Vδ follows by using the minimization properties. With
Eδ = e(Uδ(e1/2, z)) we have Vδ(e1/2, z) = Wδ(e1/2+Eδ, z) and �nd

Vδ(e0, z) + Vδ(e1, z) − 2Vδ(e1/2, z)

≤ Wδ(e0+Eδ, z) + Wδ(e1+Eδ, z) − 2Wδ(e1/2+Eδ, z)

≤ C
(
|Ω| + Vδ(e1/2, z) + ‖e1−e0‖p

)1−(1+β)/p‖e1−e0‖1+β,whi
h provides the desired estimate after exploiting Lemma 4.1.4.2 Parametrized ΓΓΓ-
onvergen
e for the damage fun
tionalWe now 
onsider the Γ-limit for δ → 0 and work with the fun
tional Jδ : (e, z) 7→
Vδ(e, z) + G(z) again. For applying the abstra
t theory it is ne
essary to derive simulta-neous Γ-limits. The main positive result was obtained in [BMR09℄ for the 
ase that the
G dominates the Lr norm of ∇z with r > d, where d is the spa
e dimension.We generalize this result in several aspe
ts by redu
ing it to the minimal stru
turalassumption. For this we introdu
e the stable sets

Sδ(t) = { z ∈ Z | ∞ > Iδ(t, z) ≤ Iδ(t, z̃) + D(z, z̃) for all z̃ ∈ Z }.We de�ne the parametrized Γ-limit V(e, ·) = Γ-limδ→0+ Vδ(e, ·) with respe
t to the strongtopology of Z, whi
h exists by the monotoni
ity, see [Bra02℄. The following example,whi
h is inspired by [BoV88, Ex. 3℄ and further dis
ussed in [BMR09℄, shows that ingeneral V is stri
tly smaller than V0(e, z) = limδ→0+ Vδ(e, z).Example 4.3 Consider Ω = ]−1, 1[ and the energy Jδ(e, z) =
∫
Ω

δ+z
2

(e+u′)2 dx + G(z).Then, Vδ(e, z) =
( ∫

Ω
e dx

)2
/
∫
Ω

2
δ+z

dx. Clearly, the pointwise limit V0 is obtained byletting δ = 0. However, the Γ-limit V(e, ·) in W1,r(Ω) satis�es
V(e, z) = V0(e, z) for min z > 0 and V(e, z) = 0 for min z = 0.For α ∈

]
1−1

r
, 1

[ let zα(x) = |x|α, then zα ∈ Z and 0 = V(e, z) < V0(e, z) = 1−α
4

( ∫
Ω

edx
)2.Sin
e G : Z → R is 
ontinuous, we also have the following parametrized Γ-limits:

Γ-lim
δ→0+

Jδ(e, ·) = J(e, ·) = V(e, ·) + G(·), Γ-lim
δ→0+

Iδ(t, ·) = I(t, ·) = V(eD(t), ·) + G(·).12



We also set S(t) = { z ∈ Z | ∞ > I(t, z) ≤ I(t, z̃) + D(z, z̃) for all z̃ ∈ Z }.In generalizing the approa
h in [BMR09℄ for the Γ-
onvergen
e we repla
e the 
ondition� r > d � there by the followingstru
tural assumption:
(
zj ∈ Sδj

(t), δj → 0, and zj ⇀ z
)

=⇒ zj → z.
(17)The following result shows that the stru
tural assumption holds for r > d, where weuse the monotoni
ity of W (e, ·) and the embedding W1,r(Ω) ⊂ C(Ω). Other su�
ient
onditions will be dis
ussed in Se
tion 6.1.Proposition 4.4 (Stru
tural assumption) Let the assumptions of Se
tion 2.1 hold.(A) If (zj)j∈N is as in (17), then we have Vδj

(eD(t), zj) → V(eD(t), z) and z ∈ S(t).(B) If r > d, then the stru
tural assumption (17) holds and we have
V(e, z) = lim

ρ→0+

(
lim

δ→0+
Vδ

(
e, max{0, z−ρ}

)) and (
z̃δ ⇀ z̃ ⇒ V(e, z̃) ≤ lim inf

δ→0+
Vδ(e, z̃)

)
,i.e. the Γ-
onvergen
e is even a Mos
o 
onvergen
e, 
f. [Mos67℄.Proof: Ad (A). We abbreviate e = eD(t), let v = lim supj→∞ Vδj

(e, zj), and 
on
lude
lim supj→∞ Iδj

(t, zj) = v + G(z). Using the stability of zj we obtain
Iδj

(t, zj) ≤ Iδj
(t, ẑj) + D(zj, ẑj),where we 
hoose ẑj as a re
overy sequen
e for ẑ, i.e. ẑj → ẑ and Iδj

(t, ẑj) → I(t, ẑ). In theunidire
tional 
ase we may restri
t to the 
ase ẑ ≤ z and assume ẑj ≤ zj (by taking there
overy sequen
e z̃j = min{zj , ẑj} if ne
essary). Thus we may pass to the limit j → ∞and obtain
I(t, z) ≤ lim sup

j→∞

Iδj
(t, zj) = v + G(z) ≤ I(t, ẑ) + D(z, ẑ).This proves the stability z ∈ S(t).Moreover, we may take ẑ = z and 
on
lude v ≤ I(t, z) − G(z) = V(e, z). Sin
e

V(e, z) ≤ v by the de�nition of the Γ-limit we are done.Ad (B). We �rst show that the double limit in the formula for V exists. For this, we de-�ne the fun
tion V (ρ, δ, e, z) = Vδ

(
e, max{0, z−ρ}

). Sin
e Wδ(e, z) is nonde
reasing in δand in z, V (ρ, δ, e, z) is nonde
reasing in δ and nonin
reasing in ρ. For �xed z and ρ > thelimit V 0(ρ, e, z) = limδ→0+ V (ρ, δ, e, z) exists by monotoni
ity and boundedness. More-over, V 0(ρ, e, z) is still nonin
reasing in ρ, and we �nd that V(e, z) = limρ→0+ V 0(ρ, e, z)exists as well.To show that V is the Mos
o limit, we �rst establish the liminf estimate assuming theweak 
onvergen
e zδ ⇀ z in W1,r(Ω). Then, for ea
h ρ > 0, there exists δρ su
h that
zδ ≥ max{0, z−ρ}, where we use the embedding W1,r(Ω) ⊂ C(Ω). Thus, Vδ(e, zδ) ≥
Vδ(e, max{0, z−ρ}), and we obtain lim infδ→0+ Vδ(e, zδ) ≥ V 0(ρ, e, z). Taking the limit
ρ → 0+ we obtain the desired liminf estimate. To obtain re
overy sequen
es, we use that13



by the de�nition of the double limit we may 
hoose a 
ontinuous fun
tion g : [0, δ∗] →
[0, ρ∗] with g(0) = 0 su
h that V (g(δ), δ, e, z) → V(e, z). Hen
e, zδ = max{0, z−g(δ)}provides the desired strongly 
onverging re
overy sequen
e.Now we establish the stru
tural assumption (17). Starting from zj ⇀ z as given therewe let

v = lim inf
j→∞

Vδj
(e, zj) ≥ V(e, z) and γ = lim inf

j→∞
G(zj) ≥ G(z),whi
h gives lim infj→∞ Iδj

(tj , zj) ≥ I(t, z). The stability of zj implies
Iδj

(tj , zj) ≤ Iδj
(tj , z

ε) + D(zj , z
ε), where zε = max{0, z−ε}.Doing the lim supj→∞ �rst and the limε→0+ afterwards gives lim supj→∞ Iδj

(tj , zj) ≤
I(t, z), and we 
on
lude Iδj

(tj , zj) → I(t, z).In parti
ular this implies the 
onvergen
e G(zj) → γ = G(z). Using the stri
t 
onvexity(4d), we 
on
lude zj → z, see [Vis84℄.To establish the stability of z, we take a general test fun
tion z̃ with D(z, z̃) < ∞, sin
eotherwise nothing is to be shown. Let (z̃j)j∈N be a re
overy sequen
e for z̃, i.e. ẑj → z̃and Iδj
(tj , z̃j) → I(t, z̃). Then, the stability of zj implies

Iδj
(tj , zj) ≤ Iδj

(tj, ẑj) + D(zj, ẑj) where ẑj = max{0, z̃j−‖z−zj‖L∞}.Note that ẑj → z̃ and Iδj
(tj , ẑj) ≤ Iδj

(tj , z̃j). Thus, (ẑj)j∈N is a re
overy sequen
e as well.Passing to the limit j → ∞ we �nd I(t, z) ≤ I(t, z̃) + D(z, z̃), giving z ∈ S(t).The importan
e of the stru
tural assumption lies in the fa
t that it implies that J is asimultaneous Γ-limit.Proposition 4.5 (Simultaneous ΓΓΓ-limit) Let the assumptions of Se
tion 2.1 and (17)hold. Then, the fun
tional J is the simultaneous Γ-limit of the family (Jδ)δ>0.Proof: Let e1, e2 ∈ E be given and let (zj
δ)δ>0, j = 1, 2, be asso
iated re
overy sequen
esfor J(ej , z). We de�ne z̃δ(x) = min{z1

δ (x), z2
δ (x)} and obtain z̃δ → z, be
ause of zj

δ → z.Moreover, the monotoni
ity of W (e, ·) implies Vδ(ej , z̃δ) ≤ Vδ(ej , z
j
δ). Thus, we 
on
lude,

V(ej, z) ≤ lim inf
δ→0+

Vδ(ej , z̃δ) ≤ lim sup
δ→0+

Vδ(ej, z̃δ) ≤ lim sup
δ→0+

Vδ(ej, z
j
δ) = V(ej , z).Thus, (z̃δ)δ>0 is a simultaneous re
overy sequen
e.Now, we are able to take pro�t from the abstra
t results on parametrized Γ-
onvergen
eof Se
tion 3. In parti
ular, we are able to dedu
e 
onvexity and di�erentiability of V(·, z).Proposition 4.6 Let the assumptions of Se
tion 2.1 and (17) hold. Then, V(·, z) : E →

R is 
onvex for all z ∈ Z.If additionally W satis�es the di�erentiability 
ondition (10), then V is β-di�erentiabilityin the sense of (15), and for all e ∈ E we have
zδ → z in Z

Vδ(e, zδ) → V(e, z)

}
=⇒ DeVδ(e, zδ) ⇀ DeV(e, z) in E

∗.The proof of this result is a dire
t 
ombination of Propositions 3.3, 3.5, 3.6, Lemma4.1, and Propositions 4.2 and 4.5. 14



5 Proof of Theorem 2.3Our main Theorem 2.3 provides the 
onvergen
e of the energeti
 solutions zδ : [0, T ] → Zfor the rate-independent systems (Z, Iδ,D) for δ → 0+ to energeti
 solutions z : [0, T ] →
Z of the limit problem (Z, I,D), whi
h represents the 
omplete-damage problem. It isstated under the additional assumption � r > d �.Here we will provide a more general proof avoiding the expli
it use of the embedding
W1,r(Ω) ⊂ C(Ω) and repla
ing it with the stru
tural assumption (17), whi
h is satis�edin the 
ase r > d, as is shown in Part B of Proposition 4.4.For the 
onvenien
e of the reader we provide an almost 
omplete proof, where somedetails are 
ited from previous works. We follow the six steps as introdu
ed in [Mie05℄.Step 1. A priori estimates.The solutions zδ : [0, T ] → Z are stable. Hen
e, we have

G(zδ(t)) ≤ Iδ(t, z(t)) ≤ Iδ(t, 0) + D(zδ(t), 0) ≤ C.Together with z(t, x) ∈ [0, 1] we obtain a uniform bound C > 0 su
h that ‖zδ(t)‖W1,r ≤ Cfor all t ∈ [0, T ] and δ > 0. Moreover, the total dissipation DissD(zδ, [0, T ]) is boundedindependently of δ > 0. Thus,
∃C > 0 ∀ δ > 0 : ‖zδ‖L∞([0,T ],W1,p(Ω)) + ‖zδ‖BV([0,T ],L1(Ω)) ≤ C.Step 2. Sele
tion of subsequen
esBy Helly's sele
tion prin
iple (in its Bana
h-spa
e version) we extra
t a subsequen
e

(δj)j∈N with δj → 0+ su
h that for all t we have
DissD(zδj

, [0, t]) → ∆(t), zδj
(t) ⇀ z(t) in Z,where δ : [0, T ] → R is nonde
reasing and z lies in L∞([0, T ], W1,p(Ω))∩BV([0, T ], L1(Ω))with DissD(z, [0, t]) ≤ ∆(t). Using the stru
tural assumption (17) and Part (A) of Propo-sition 4.4 we further 
on
lude zδj

(t) → z(t) and Iδj
(t, zδj

(t)) → I(t, z(t)), whi
h meansthat (i) and (iii) are established.Step 3. Stability of the limit pro
essThe desired stability (S) for energeti
 solutions means z(t) ∈ S(t) for all t ∈ [0, T ], butthis is a dire
t 
onsequen
e of Part A of Proposition 4.4.Step 4. Upper energy estimateFor ea
h δ > 0 we have the energy balan
e
Iδ(t, zδ(t)) + DissD(zδ, [0, t]) = Iδ(0, δ) +

∫ t

0

∂sI(s, zδ(s))ds.Using the formula (2ii) and ∂sI(s, z) = 〈DeV(eD(t), z), e(u̇D(t))〉 we are now able to passto the limit δj → 0+ and obtain
I(t, z(t)) + DissD(z, [0, T ])

Step 2
≤ I(t, z(t)) + ∆(t) = I(0, z(t)) +

∫ t

0

∂sI(s, z(s))ds,15



where we used Proposition 4.6, whi
h also implies (iv).Step 5. Lower energy estimateThe lower estimate I(t, z(t)) + DissD(z, [0, T ]) ≥ I(0, z(t)) +
∫ t

0
∂sI(s, z(s)) ds is adire
t 
onsequen
e of the stability, see e.g. [Mie05, Prop. 5.7℄. Thus, we 
on
lude theenergy equality (E) and have established DissD(z, [0, T ]) = ∆(t), whi
h provides (ii).Step 6. Improved 
onvergen
eSin
e the 
onvergen
es (i)�(iv) in Theorem 2.3 are already established in the previoussteps, the 
onvergen
e proof is �nished.It remains to establish the general existen
e result for arbitrary initial 
onditions z0 ∈

S(0). However, it is standard to apply the existen
e theory developed in [Mie05, Se
t. 5℄dire
tly to the limit problem (Z, I,D). This 
on
ludes the proof of Theorem 2.3.6 Dis
ussion of generalizations6.1 Su�
ient 
onditions for the stru
tural assumptionThe reason for introdu
ing the stru
tural 
ondition (17) is that we 
onje
ture its validityalso in the 
ase r ∈ [1, d]. To support this 
onje
ture, we highlight an interesting obser-vation from [Tho09℄, whi
h applies to the uni-dire
tional 
ase, where D(z, z̃) < ∞ if andonly if z̃ ≤ z. For z ∈ Sδ(t) we �nd the estimate
G(z) = Iδ(t, z) − Vδ(eD(t), z) ≤ Iδ(t, ẑ) + D(z, ẑ) − Vδ(eD(t), z)

= G(ẑ) + D(z, ẑ) + Vδ(eD(t), ẑ) − Vδ(eD(t), z) ≤ G(ẑ) + D(z, ẑ),for all ẑ ≤ z. Thus, if we de�ne the set
S = { z ∈ Z | G(z) ≤ G(ẑ) + D(z, ẑ) for all ẑ ≤ z },we 
on
lude that
∀ δ > 0 ∀ t ∈ [0, T ] : Sδ(t) ⊂ S and S(t) ⊂ S.Conje
ture. Under the assumptions of Se
tion 2.1 the set S is 
ompa
t in Z with respe
tto the strong topology for all r ≥ 1.The argument in favor of the validity of the 
onje
ture derives from the variationalinequality de�ning the elements z ∈ S. Roughly it provides a one-sided estimate of theweak r-Lapla
ian and there is hope that the results in [Mur81℄ 
an be adjusted to provethe 
onje
ture.Clearly, the validity of the 
onje
ture implies that the stru
tural 
ondition (17) holds.16



6.2 Generalized energeti
 solutionsIn the 
ase that W does not satisfy the uniform di�erentiability property (10), we arenot able to show the di�erentiability of V(·, z). However, we still have 
onvexity, whi
himplies together with the bounds 0 ≤ V(e, z) ≤ C(1+‖e‖p) that of all (e, z) ∈ E ×Z the(
onvex) subdi�erential ∂sub
e V(e, z) and the dire
tional derivatives δeV(e, z; ê) exist:

∂sub
e V(e, z) = { η ∈ E

∗ | ∀ ẽ : V(ẽ, z) ≥ V(e, z) + 〈η, ẽ−e〉 },

δeV(e, z; ê) = lim
h→0+

1

h

(
V(e+hê, z) − V(e, z)

)
= sup{ 〈σ, ê〉 | σ ∈ ∂sub

e V(e, z) }.
(18)Using eD ∈ C1([0, T ]; E) we �nd that the left and right partial derivatives ∂±

t I(t, z) =
limh→0+

±1
h

(
I(t±h, z) − I(t, z)

) with respe
t to t of I exist. We have the relations
∂−

t I(t, z) = −δeV(t, eD(t);−ėD(t)) ≤ δeV(t, eD(t); ėD(t)) = ∂+
t I(t, z).The Clarke di�erential of t 7→ I(t, z) is given by ∂Cl

t I(t, z) = [∂−

t I(t, z), ∂+
t I(t, z)].De�nition 6.1 Let z : [0, T ] → Z satisfy (S) in (7) for all t ∈ [0, T ]. Then, z is 
alleda generalized energeti
 solution of the rate-independent system (Z, I,D), if there exists

p ∈ L1([0, T ]) su
h that p(τ) ∈ ∂Cl
τ I(τ, z(τ)) a.e. in [0, T ] and for all t ∈ [0, T ] we have

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ. (19)Now a slight generalization of the abstra
t existen
e theory for rate-independent sys-tems gives the following. Note that we 
onstru
t the generalized energeti
 solutions for
(Z, I,D) dire
tly, without referen
e to the solutions zδ for (Z, Iδ,D).Theorem 6.2 For all stable z0 ∈ Z there exists a generalized energeti
 solution for
(Z, I,D).Proof: The existen
e theory follows the usual steps in the abstra
t theory for rate-independent pro
esses (
f. [Mie05, FrM06℄) via in
remental minimization, uniform a prioriestimates and Helly's sele
tion prin
iple. This part and the proof of the stability of thelimit pro
ess work as in [BMR09℄.For the upper energy estimate we obtain, by setting A(t) = I(t, z(t)) + DissD(z, [0, t]),

A(s) − A(r) ≤
∫ s

r

pmax(t)dt with pmax(t) = max ∂Cl
t I(t, z(t)).With a slight generalization of [Mie05, Prop. 5.7℄ we see that stability of the limit pro
ess

z implies the lower bound A(s) − A(r) ≥
∫ s

r
pmin(t)dt with pmin(t) = min ∂Cl

t I(t, z(t)).Thus, we 
on
lude that A is absolutely 
ontinuous and satis�es pmin(t) ≤ A′(t) ≤
pmax(t). Hen
e, setting p(t) = A′(t) the proof is 
omplete.17



In the following example we show that the notion of generalized energeti
 solution,whi
h involves the weakened energy balan
e (19) with the Clarke di�erential, is reallyne
essary in 
ases where the one-sided partial derivatives satisfy ∂−

t I(t, z) < ∂+
t I(t, z)at some points. In parti
ular, it is not possible to make an a priori 
hoi
e like p(t) =

max{∂Cl
t I(t, z(t))}, whi
h worked in [KZM09, MiR08℄, sin
e there ∂−

t I(t, z) ≥ ∂+
t I(t, z)holds.Example 6.3 This example has a smooth energy Iδ su
h that ∂tIδ exists, while in thelimit I is only Lips
hitz in t. We let Z = R and D(z, z̃) = |z̃−z|. The energy fun
tionalreads

Iδ(t, z) = Hδ

(
z−α(t)

) and I(t, z) = 2|z−α(t)|,where α ∈ C1([0, T ]) is given and Hδ(u) = 2u2/
√

δ2+u2. For the partial derivatives withrespe
t to time we have
∂tIδ(t, z) = −H ′

δ(z−α(t))α̇(t) and ∂Cl
t I(t, z) = −2 Sign(z−α(t))|α̇(t)|.Sin
e Iδ(t, ·) is smooth and stri
tly 
onvex, the energeti
 solutions for (R, Iδ,D) areexa
tly the solutions of the doubly nonlinear equation (
f. [MiT04℄)

0 ∈ Sign(ż(t)) + H ′

δ(z(t)−α(t)).For δ > 0 the system is smooth, while for δ = 0 we have H0(u) = 2|u| and set I(t, z) =
H0(z−α(t)).Consider the spe
ial 
ase α(t) = t and zδ(0) = 0. If βδ is the unique solution of
H ′

δ(βδ) = 1, then the unique energeti
 solution is zδ(t) = max{0, t−βδ}. Using 0 < βδ → 0we �nd the limit solution z(t) = t = limδ→0 zδ(t). It is a generalized energeti
 solution inthe sense of De�nition 6.1 by using p(t) = 1 ∈ [−2, 2] = ∂Cl
t I(t, t).A
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