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Abstract

The rate-independent damage model recently developed in [BMRO09| allows for
complete damage, such that the deformation is no longer well-defined. The evolu-
tion can be described in terms of energy densities and stresses. Using concepts of
parametrized I'-convergence, we generalize the theory to convex, but non-quadratic
elastic energies by providing I'-convergence of energetic solutions from partial to
complete damage under rather general conditions.

1 Introduction

There is a rich literature on rate-independent mechanical models for damage in brittle
materials, cf. |Ort85, FrM93, DPO94, FrN96, DMT01, MaA01, HaS03|, and recently sev-
eral mathematical approaches [FrM98, FKS99, FrG06| were developed, in particular the
abstract theory of rate-independent processes [MiT99, MiT04, Mie05] proved very helpful
as it allows one to employ the machinery of incremental minimization.

Here we want to contribute to the models discussed in [MiR06, BMR09, MRZ07|. Let
u : Q — R? be the displacement and z : © — [0,1] the damage variable, then the
rate-independent system is given by the triple (FxZ,&, D), where u € F, z € Z. The
energy-storage functional has the form

Es(tyu,z) = /QW5(x,e(uD(t)+u)(x),z(a:))d:c +G(z), where e(u) = %(Vu—l—(Vu)T),

and the dissipation is D(z,2) = [, D(z, 2(z),2(x)) dz. Here up € C'([0,T]; W'?(Q))
prescribes time-dependent boundary displacements on the Dirichlet part I'p of the total
boundary 0f). For § > 0 the stored-energy density is regularized in the form Ws(e, z) =
W (e, z) + dle|P, which renders Wy coercive while W may be non-coercive for complete
damage z = 0.

For 0 > 0 existence of energetic solutions (us, zs) is known for general W, see |[MiR06,
ThMO09]. The limit passage for 6 — 0 in the sense of I'-limits was established in [BMR09,
MRZ07| under the assumption that e — W (x, e, z) is quadratic. However, this is not a
realistic model, since it implies that damage behaves symmetric under compression and
extension. The purpose of this work is to generalize the approach to a much larger class
of functionals. For instance, we are able to treat the model
c

5 (min{O,tre})Hﬁ, c>0and 3€]0,1].

Wie, z) = ge:C:e +

which displays resistance to compression even after complete damage, like powderized
concrete.



The difficulty is that W is not coercive, hence in the limit 6 — 0 we are not able
to control ug, and convergence should only be valid for zs. The task is to define a limit
equation in terms of z. In particular, one needs a replacement of the power of the external
forces that provides the limit of

at&;(t, U5(t), Zg(t)) = / Z(sie(’dD)dlL’ with 25 = DEW(;(G(UD—FU(;), 25). (1)
Q
We will show that it is possible to control the limit of the stresses X5 while in general
the strains e; = e(up+ug) will have no limits. Hence, we follow the ideas of [BMR09| to
eliminate the elastic variable u completely by defining the reduced functional

T5(t,2) = min{ E(t, 0, 2) |u € F} with F = {u € W(Q) | ulr, =0}

and to apply the I'-convergence theory to the rate-independent systems (Z,Zs, D). Note
that a convergence theory for the systems (F x Z, &, D) is doomed to fail because of the
missing uniform coercivity with respect to u € F.

However, the total elimination of the displacements, and hence of the strains, leads
to missing information on the stresses which is needed to control the limit in (1). Thus,
the second important idea in [BMRO09| is the introduction of an intermediate functional
defined in terms of the boundary displacements up. More precisely, we let

Js(e, z) = min{ /Q Ws(e+e(u), z)dx + G(2) |u € F }.

Here e can be taken from all of E = LP(Q,ngXH‘f), but the minimization with respect to
all admissible displacements shows that it depends only on much less information to be

extracted from e. The point about the definition of Js is that it provides the formulas
(i) Zs(t, 2) = Ts(e(un(t), 2) (i) 8Zs(t,2) = (DeJs(e(un(t)), 2),e(in(t)).  (2)

In fact, D.Js(e(up), z) € E* = LP'(Q,R¥*?) provides the equilibrium stresses associated

Sym
with the given boundary data up and thz damage state Z.

In Section 3 we will discuss the theory of I'-convergence for a family of functionals
Js : ExZ — R, where the I'-convergence is done with e € E treated as a parameter, i.e.,
Js(e, ) 5 J(e, ). The main question is how properties of the functions Js(-,2) : E — R
are inherited to the limit J(-, z). For this we introduce the notion of simultaneous I'-limits
for parametrized families (Js(e,))s>o by asking that for each two points e; and ey and
each z € Z there exists a recovery sequence (z5)s=o such that Js(e;, z5) — J(ej, 2) for
jJ = 1 and 2. With this condition we are able to coclude that convexity and differentiability
with respect to e passes from Js(+, z) to J(-, z). In particular, we provide the following

convergence of stresses, which is crucial in the theory of rate-independent systems (cf.
[FrMO06, Prop. 4.4]):

Zs — 20

¥75(67 Z(S) - 3(6, Zo) } = Dej5(€, ’25) - Ded(e, Z(]) in E*.

Combining this result with (2ii) we are able to obtain the limit 0,Z5(t, z5) — 0;3(t, zo).
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For the complete-damage problem one easily obtains the simultaneous I'-convergence
by taking [-convergence with respect to strong convergence in W'?(Q), because of the
strong continuity of G and the monotonicity of z — W (e, z), see Proposition 4.5. The
main difficulty is then to establish our main structural assumption (see (17)) that weak
convergence along so-called stable sequences implies strong convergence. In this work we
show that this condition holds under the additional assumption W'?(Q) c C(Q), i.e.
r > d. However, in Section 6.1 we give arguments in favor of our conjecture, that the
strong convergence can also be established for r € [1,d].

Our main result is formulated in Theorem 2.3 for r > d: any family of energetic
solutions 25 : [0,T] — Z for (Z,Z;, D) has a subsequence (zs,)jen With §; — 0 and
z5;(t) — 2(t) for all t € [0,T], where z : [0,7] — Z is an energetic solution of the
complete-damage system given by (Z,J,D). The result is based on the abstract theory
of I'-convergence for rate-independent systems developed in [MRSO08|.

If the uniform differentiability property does not hold, one can still use convexity
arguments. If each Js(+, 2) is convex, the parametrized I'-limit is convex as well. This
convexity allows us to characterize the Clarke differential of J(-, z) using the left and right
partial derivative in ¢:

'3t 2) = |07 3(t, 2),0,3(t,z)|, where §;73(t,z) = lim £ (J(t+te,2)-T(t, 2)).

e—0t

In fact, we have 07 J(t, z) = £sup{ +(o,e(up(t))) | o € "*J(e(up(t)), 2) }.

We generalize the notion of energetic solutions [Mie05| to generalized energetic solutions
by keeping stability (S) and replacing the energy balance by

J(t, z(t)) + Dissp(z, [0,t]) = (0, 2(0)) + /0 p(t)dr with p(r) € 05'3(r, 2(7)),

see Definition 6.1. Theorem 6.2 establishes existence of generalized energetic solutions to
the rate-independent system (2,3, D).

2 Setup of the model

We first discuss the physical setup and provide the existence result for the coercive case
0 > 0. Afterwards we discuss the reduction of the problem by eliminating the displacement
while keeping the boundary strains ep(t) = e(up(t)).

2.1 Discussion of the coercive model

The body ©Q C R? is described by a bounded Lipschitz domain. The state of the system is
described by the displacement % : Q — R? and the scalar damage variable z : Q — [0, 1],
where z = 1 denotes no damage and z = 0 means that the maximal damage has been
reached (all microscopic breakable structures are broken). The displacement u will satisfy



time-dependent Dirichlet boundary conditions on I'p C 9Q via up € C([0, T], W(Q))
in the form

u(t) = up(t) + u(t) withu(t) € F={ve W(Q)|v|r, =0}.
We also use the infinitesimal strain tensor e(u) = 3(Vu + (Vu)") and set
ep(t) = e(up(t)) and ép(t) = e(up(t)) where = = 9.
The stored energy of the system is given via the functional
E(t,u,z) = / W (x,ep(t,z)+e(u) (), z(x))dx + G(2) (3a)
Q

with G(z) = /Qb(x, 2(z)) + G(z, Vz(x))" dz. (3b)

Here b: Q2 x [0,1] — R and G : Q x R? — R are Carathéordory functions satisfying

3C >0V (z,2): 0<b(z,2) <C, (4a)
VaxeQ: z— b(x,z) is non-decreasing, (4b)
3C >0,r>1V(z,a): |Cé[ —C < G(z,a) < Cla|"+ C, (4c)
VeeQ: a— G(x,a) is strictly convex. (4d)

The function G contains the regularizing term and is typically of the form x(x)|a|”. Thus,
the suitable space for the damage states is Z = { z € Wh"(2)|0 < z < 1}. The additional
term b is intended to model cohesive effects (or healing), i.e., if the stresses in the material
are released then the damage may heal (2 > 0) by using up some energy.

The stored energy density W : QxE;x[0, 1] — R, where E; = Rg;rff, is a Carathéordory
function satisfying

V(z,2)eQ: W(x,- 2) € CYEy), (5a)
3C >0V (z,e,2): 0<W(x,e,z) <Cle|P 4+ C, (5b)
V(z,z): e W(z, e, z) is convex, (5¢)
V(z,e): z— W(x,e,z) is nondecreasing, (5d)
Jey, eV (x,e,2): |0.W (e, 2)| < er(W(x, e, 2)+cy) 7P, (5e)

Condition (5d) means that the material becomes weaker if damage increases, and (5e) is
called “stress control”, since it allows us to control the size of the stresses in terms of the
energy alone, uniformly in (z, z). A typical function W has the form

Wi(x,e,z) =Wz, e) +a(z)W'(z,e),

where W, and W, are smooth and convex, W may be non-coercive while W1 is coercive,
a(z) > ¢z and d'(z) > 0. As above we set Wi(e, z) = Wi(e, z) + d|e|’ and define & as in
(3a) with W replaced by W.



For the time-dependent Dirichlet boundary data we impose
up € CH([0, T], WHP(Q; R?) with p from (5). (6)

Finally we describe the dissipation functional D : Z x Z — [0, 00| via

D0, 1) :[ZD(x,zo(x),zl(x))dx,

where D : Q x [0,1]?> — [0, 00| is a normal integrand. For each z, D satisfies the triangle
inequality and the coercivity D(x,z,2) > ¢|z—z]. The typical choice is D(z,z,2) =
04(2—2) for 2 < z and §_(2—=2) for z < Z, where §; € (0,00) and 0_ € (0,00]. Here
0_ = oo is the unidirectional case that enforces that damage can only increase, thus
healing is forbidden. The latter can only take place if 6_ + ¢/(z) < 0 for some z € [0, 1].
We refer to [SHS06], where healing is modeled under the name cohesion.

With these functionals we define notion of energetic solution for the rate-independent
system (Q,&s, D), where Q = F x Z (see [MiT99, MiT04] and the surveys [Mie05,
MiR08]). A mapping ¢ = (u,z) : [0,7] — Q is called energetic solution if 7 —
0,Es(,q(7)) lies in L*((0, 7)) and if for all ¢ € [0, 7] we have stability (S) and energy
balance (E):

(S8) Va=(u2)eQ: &t q(t) <&t q)+D(z(t),2);

_ ¢ (7)
(E)  &f(t,q(t)) + Dissp(z, [0>t])=55(0,Q(0))+/0 0,&5(1,q(7))dr.

Here Dissp(z, [r, s]) is defined to be the supremum of 37 D(z(t;_1, z(t;)) over all finite
partitions r < g < t;---ty < s. For each ¢ € Q the power of the external forces 9,E5(t, q)
is well defined by using (5e).

For non-coercive problems (i.e. 6 = 0), where u is no longer well-defined and we cannot
guarantee ¢ € Q. It is the main problem how to define this partial derivative 0,€(t, q).
Thus, it is an open problem whether under the above assumption a general existence result
holds. However, the coercive case 6 > 0 was solved under more general assumptions
including unilateral constraints and volume forces, cf. [MiR06, ThM09]. The following
result provides existence in the case where the growth rate r for the regularizing term
just needs to satisfy r > 1. Originally [MiR06| used the embedding W'?(Q) c C(Q),
which leads to the assumption 7 > d. In [ThM09| a new construction of the joint recovery
sequence allowed for the generalization to all » > 1.

Theorem 2.1 If the above assumption hold with p, r > 1 and if 6 > 0, then for all stable
initial states ¢° € Q (i.e., (S) holds at t = 0 with q(0) replaced by q°) there exists an
energetic solution qs : [0,T] — Q of the rate-independent system (Q, Es, D) with q(0) = qo,
q € L>([0,T], WP (Q)x W' (Q)), and z € BV([0, T],L*(2)).

In general one cannot expect more regularity of the solutions with respect to time. In
particular, the solution may have jumps. In |[ThMO09| convexity conditions on (e, z)
W (e, z) are discussed which imply simple continuity, Holder or Lipschitz continuity.
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2.2 Reduction by eliminating the displacements

The approach for solving non-coercive problems was indicated already in [MiR06| and fi-
nally solved in [BMR09| under the additional assumption that W is quadratic: W(x,e, z) =
Ze:C:e; however more general quadratic forms e:C(z):e+g(2):e+7(z) would work equally
well. The main idea is to approximate the non-coercive case with a coercive one by setting

Wi(z,e,z) = Wiz, e, z) + 6(1+]e[?)P/2. (8)

Then for each § > 0 there is a solution g5 = (us, 25) of the rate-independent energetic
system (Q, Es, D). Moreover, using the stress control (5e) it is not difficult to show that
there exists C' > 0 such that for all § € (0,1) and all ¢ € [0,7] we have Es(t,qs5(t)) +
Dissp(zs, [0,t]) < C.

Now, using the theory of I'-convergence of rate-independent energetic systems [MRS08|
it is then possible to pass to the limit in the reduced system, where the displacement
is minimized out. The latter step is essential, since it is not to be expected that us or
e(ug) converges in any reasonably sense. In regions where z = 0 holds we may have
W (z,e,0) = 0 for a large and possibly unbounded set of strains e € E; due to the missing
coercivity.

To define the reduced problem we use the strict convexity (5¢) to find that Es(t, -, 2)
has a unique minimizer u = Us(t, 2) € F. With this we have

Is(t, 2) = LWg(x,eD(t)+e(U5(t, 2)), z)dx + G(z).

A classical argument [KnM08, KMZ08| shows that 0,Zs(t, z) = 0,&5(t, Us(t, 2), 2).

While the limit of the energy Zs(¢, zs) along energetic solutions gs can be understood
in the sense of I'-limits, it is nontrivial to control the power

0 Ls(t, z5) = [, 05(t):ep(t)dz with
os(t,x) = 0. W (x,ep(t, r)+e(us(t))(x), zs(t, z)).

The main observation is that the stress-control assumption (5e) and the usual energy a
priori estimates provide bounds for s in L?/®~Y(Q, E,) that are independent of § > 0.

The essential idea to make the limit tractable is to introduce an auxiliary functional in
which it is possible to keep control over the ['-limit. Denote by E = LP(£; E;) the strain
space, and for (e,z) € E x Z let

Js(e, z) = Vs(e, z) + G(z) with (9)
Vs(e, z) = min{ [, Ws(z, ete(u), z)dz |u € F}.

In fact, the functional Vs should not be considered as a functional on E but rather on
B = {ulsq|u € F}, since all the other information is minimized out. Moreover, for fixed
z € Z, the mapping e — Vs(e, 2) is convex and differentiable with

DoVs(e, 2) = AW (x, ete(Vie, 2)), 2) € B = L2/ #=D(Q By),

where V (e, z) € F is the unique minimizer in (9). This shows that o = D.V;(e, 2) is in
fact an equilibrium stress, and thus satisfies dive = 0 in Q and o v =0 on 9Q\I'p.
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The importance of the functional Vj is that on the one hand it is possible to do the
[-limit for 6 — 0 and keep some of the main features and that on the other hand, by
construction the reduced functional Zs and its partial derivative with respect to ¢ can be
easily expressed:

T5(t, 2) = Vs(en(t), 2)+G(2) and 8,Zs(t, 2) = (D Vs(en(t), 2), ep(t)).

Thus, we have found a way to express the energies in terms of the damage alone and we
still have control over the equilibrium stresses D.Vs(ep(t), z) that are needed to control
the power generated by the boundary data up(t).

2.3 The main convergence and existence result

In this subsection we provide convergence results of (subsequences of) energetic solutions
for (Z£,Zs,D) to solutions of the complete damage problem (Z,3,D). Here J is the
parametrized [-limit J(¢, -) = I-lims_o+ Zs(t, -). The main difficulty in the limit procedure
is to show the convergence of the power

O Ls(t, z5(t)) — 0 I(t, 2(t)),
for which it is necessary to know that J(-,2z) € C!([0,7]). For this we will show that

Y(e, ) = I-lims_ o+ Vs(e, ) exists and is differentiable with respect to e € E.

For this, we need an additional uniform differentiability assumption on the the stored
energy density W, which reads as follows:

3C >036 €]0,min{l,p—1}] Veg,e1 € E4Vz€0,1]:
W (x,ep, 2) + Wz, e1,2) — 2W (x, 3 (eo+er), 2) (10)

1-(1+
< C(1+ W(z, 3(epter), 2) + |e1—eo?) s le1—eq| 7,

where p is as in (5). It is easy to construct nontrivial examples fulfilling this condition,
because it is additive in the following sense: If the nonnegative densities Wy, ..., Wy
satisfy (10) with the same p, §, and C4,. .., Cy, respectively, then the sum W = Z'f W;

satisfies the condition as well with C' = Zlf C;.

Example 2.2 We list a few examples of uniformly differentiable functions:
(i) 3e:Cie, (i) minf{0,tre}?, (iii) |e|®.

For (i) we can take any (€ ]0,1] and p > 1+5. For (ii) and (iii) the condition (10) is
satisfied if and only if 1 < 140 < g < p.

The main result is restricted to the case r > d, which provides the helpful embedding
WE(Q2) € C(Q). However, in Section 6 we discuss possibilities of generalizations.

Theorem 2.3 (I'-convergence) Let the assumptions of Section 2.1 and (10) hold with
r > d. For § > 0 consider energetic solutions zs : [0,T| — Z of (£,Zs,D), then there
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exists a subsequence (zs,)jen with 0; — 0% and an energetic solution z : [0,T] — Z of

(Z,3,D) such that the following holds for all t € [0,T]:

(0) 25,(6) — 2(t) in W@,
(ii) Dissp(zs;,[0,t]) — Dissp(z, [0,1]),
(iii) I5j( ) #8; (t)) - j(t, Z(t)),

) DVs,(ep(t), zs,(t)) — DDB(ep(t), 2(1)).
Moreover, for each stable zy € Z, i.e. 3(0,29) < J(0,2) + D(z0,2) for all Z € Z, there

exists at least one energetic solution z : [0,T] — Z for the complete damage problem

(2,3,D).

(iv

The proof of this result, which is given in Section 5, follows closely the theory developed
in [MiR06, BMRO09|, and thus relies on the abstract theory of I'-convergence for rate-
independent systems developed in [MRSO08|.

3 Parametrized I'-convergence

In this section we consider general reflexive Banach spaces E and Z and assume that Z
is a weakly closed subset of Z. We now discuss sequences of functionals Js : [E x Z2 — R
and their parametrized T-limits J(e, ) = I-lims_ o+ Js(e, ). Here e € E is treated as a
fixed parameter, and I'-convergence in Z is meant with respect to the strong convergence,
viz.

liminf estimate: 25 — 2z = Jle,z) < liém igfﬂ(e, 25), (11a)
—0

recovery sequence: ¥z € Z 3(z5)s>0: 25 — 2z and Js(e, z5) — Je, 2). (11b)

The following example shows that natural properties of the functionals Js(-, z) may be
lost for parametrized I'-limits.

Example 3.1 (Convexity) We consider E =R, Z =R and the functionals
Ts(e, z) = le—g(2/8)| +1—g(2/86)* with g(t) = max{—1,min{t, 1}}.

Clearly, each Js(-, 2) is convex. The parametrized U-limit exists and reads

~ | |e—sign(z)| for z #0,
3le,2) = { I1—|e]| for z=0.

For z # 0 we can take constant recovery sequences zs = z. For z = 0, the recovery
sequences will depend on e: for e > 0 we choose zs = § and find Js(e, z5) = |e—1|, while
for e <0 let zs = —d obtaining Js(e, z5) = |e+1|.

The following definition is made to avoid the problem of different recovery sequences
at different points.



Definition 3.2 The family (Js)s>o has the simultaneous I'-limit J : Ex Z — R, if (11a)
holds and for each R > 0 there exists R > 0 such that

Vz e Z with ||z|| < R Ve, ey € E 3(25)550 with sup ||z < R :
5>0 (12)
zs — z and Js(ej, z5) — J(e;, 2) for j =1,2.

The point of simultaneous I'-convergence is that there must exist recovery sequences
that work at each pair of two points e; and e, simultaneously. This condition will allow
us to inherit, from the family J5 to the parametrized I'-limit, all properties that can be
formulated in terms of finitely many function evaluations.

Proposition 3.3 (Convexity) If all Js(-,z) are convex and J is the simultaneous I'-
limit of (Js)s=o for 6 — 0, then J(-,2) : E — R is convex for each z € Z.

Proof: For arbitrary ey, e; and 6 € |0, 1[ we define ey = (1—60)eg + fe;. Then, convexity
of Js(+, zs) gives
Ts(eq, z5) < (1-0)Ts(eo, 25) + 0Tp(e1, 25)-

By the assumption of 2-simultaneous ['-convergence, we may assume that z5 — z recovers
the I'-limit at ey and e;. Thus, we conclude

3(eo,2) < liminf Ty(eg. 25) < liminf ((1—9)]5(eo,z5)+9j9(el,z5))

6—0t —0t

= (1-0)J(eo, 2) + 03 (e, 2),
which is the desired convexity. n

We formulate a quantitative notation of continuous differentiability. We say that 7 :
E x Z — R is B-differentiable, if all J (-, z) lie in C}(E) and for all R > 0 there exists a
constant Cr > 0 such that for all eg,e; € E, z € Z with ||eg]] + ||e1]] + [|2]] < R we have

DT (e1, 2) — DeJ (€0, 2) ||z < Crller—eq|”. (13)

We say that the family (Js)s=0 is uniformly (-differentiable if the constant Cr can be
chosen independently of 6 > 0.

The importance of this notion is that it can be equivalently formulated by using function
values only and avoiding the derivative. This equivalence is a standard exercise in Banach-
space analysis.

Lemma 3.4 A function J : E X Z — R is (-differentiable if and only if for all R >0
there exists a constant Cr > 0 such that for all 6 € 10,1[, ep,e; € E, z € Z with
lleolls lledlls |lz]] < R we have

[T (e0,2) = (1=6)T (€0, 2) = 8T (e1)] < Crb(1-6)jer—eo||" . (14)

We note that going from (13) to (14) one can estimate Cr < C,Chg, where C, is a
universal constant. Similarly, one can estimate C'gr < C,Csg for the opposite implication.
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Proposition 3.5 If the family (Js)s=o is uniformly B-differentiable and if J is the simul-
taneous I'-limit of this family, then J is also B-differentiable.

Proof: It suffices to show that J satisfies (14). We first note that this estimate holds
uniformly in § for all J;5. For a given R > 0 we choose R according to Definition 3.2.
First choose a simultaneous recovery sequence zs; — z for the points eg and e;. Then,

J(eq, z) — (1—=0)J(eo, 2) — O3 (e, 2)
< timinf (Jien, 25) — (1-0)Ts(eo, ) = 0o(e1,2) ) < Cab(1—b)er—co™*”.

The opposite estimate is obtained by multiplying with —1 and choosing a recovery se-
quence for the point eg:

(1-0)J(eo, 2) + 03(e1, 2) — J(eq, 2)
< 1ig(i)£1f <(1—9)%(60, z5) + 0Tg(e1, z5) — Ts(eq, Z5)> < éﬁ@(l-@)”@l—eo””ﬁ.

This proves (14) with Cg = éﬁ. "

For convex functions the notion of uniform differentiability can be simplified as one
estimate in (14) holds automatically. Moreover, it suffices to reduce to the case § = 1/2
(cf. |Zal02]), i.e. one can replace (14) by

0 < J(eo,2) + T (e1,2) — 2T (3(eoter), 2) < Crlleo—e1||*°. (15)

Proposition 3.6 Assume that the family (Js)s=o is uniformly (-differentiable and that
all Js(-, z) are convex. Moreover, assume that J is the simultaneous I'-limit of this family,
then J is (-differentiable and each J(-,z) is convex. Moreover, we have the following
convergence of stresses:

— )

o Z_)“%i ; } . D.Js(e, ) — D3, 2) in E-. (16)
Proof: The results on (-differentiability and convexity for J are already established
above. The convergence of stresses follows from the differentiability, which means that the
subdifferential 0,3 is a singleton containing D.J. In fact, 35 = D.Js(e, 2s) is bounded in
[E*, and we may choose a subsequence ¢; — 0% such that Y5, — Yo in E* and J5, (e, z(;j) —
J(€) for all € € E. The latter pointwise convergence follows from Arzela-Ascoli’s theorem
because of the uniform Lipschitz continuity of the Js(-, z5) on all balls Bg(e), R € N.

As J:E — R is the pointwise limit of a the family (Js, (-, 25,)); € IV, which is convex
and uniformly [-differentiable, J has these properties as well. By construction we also
have J(e) = J(e, z) and J(€) > J(€, z). This implies ¥, = DJ(e) = D.J(e, 2).

Moreover, convexity implies J5(€, z5) > Js(e, zs) + (X5, €—e), and passing to the limit
d; — 0 gives J(€) > J(e) + (Xo,e—e). Thus, we conclude ¥y = DJ(e). In turn, this
implies 35 — DJ(e) = D.J(e, 2) (no subsequence), which is the desired result. m

10



4 The complete-damage problem via I'-convergence

Before we can apply the abstract theory of the previous section, we have to deal with the
fact that Js : (e, z) — Vs(e, 2) + G(2) is defined by minimizing & with respect to u € F.
Hence, Vs is only defined implicitly, which makes is more difficult to check convexity and
(G-differentiability.

4.1 Convexity and differentiability for the reduced damage func-
tionals

We recall the definition of Js(e, z) = Vs(e, 2) + G(z), where
Vs(e, z) = min{ Ws(e+e(u), z) |u € F} with Ws(e, z) = / Ws(z,e(x), z(x))dx
Q

with Ws(z, e, z) = W(z,e, z) + dle|P, where W satisfies (5), which includes the convexity
condition (5¢). Since in this section we treat the dependence on e only, we omit the
constant term G(z) that always cancels in convexity and differentiability conditions.

For ¢ > 0 the stored-energy density Wj is strictly convex with respect to e € Ejy.
Moreover, for § > 0 we have the coercivity Ws(z, e, z) > d|e[P which implies that there
exists for each z € Z and each e € E a unique u = Us(e, z) such that

Vs(e, z) = Ws(e+e(Us(e, 2)),2), Us(e,z) € F.

In particular, we have Vs(e+e(u), z) = Vs(e, 2) for all u € F, because of Us(e+e(u), z) =
Us(e,z) — u. This shows that Vs(-,z) : E — R is highly degenerate and should be
considered as a functional on E/¢(7).

Lemma 4.1 (Convexity of Vs) Let W satisfy (5). Then, the functionals Vs(-,z) : E —
R are convezr and satisfy the estimates 0 < Vs(e, z) < C(1+4||e||?) + d|le]|?.

Proof: For arbitrary 6 € ]0,1], e, ; € E and z € Z we have

Vs(eo, ) Ws(eo+Us(eo, 2), 2) < We(eg+(1-0)Us(eo, 2) + 0Us(ex, 2), 2)
((1 9)[60+U5(€0, )] + ‘9[61+U5(61, Z)], Z)
< (1-0)Ws(eotUs(eo, 2), 2) + OWs(e1+Us(er, 2), 2)
= (1-0)Vs(eo, z) + OVs(eq, 2).
This is the desired convexity.
For the estimates we first derive 0 < Wy(e, z) < C(1+]|e||?), which follows easily by
integration. We then use 0 < Ws(e+Us(e, 2), z) = Vs(e, z) < Wy(e, z) + 0|le||?. "

To obtain uniform [-differentiability of Vs in the form (15), we use the additional
uniform differentiability condition (10) on the energy density W. It is easy to derive the
corresponding condition for the functional Wjs, but is is essential that the condition is also
stable under the reduction from W; to V.
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Proposition 4.2 Let W satisfy (5) and (10). Then, for each R > 0 there exists a
constant Cr > 0 such that for all § € ]0,1], ey, e1 € E, and z € Z, we have

Vs(eo, 2) + Vs(er, 2) — 2Vs(e1/2, 2) < Chrller—eol*™7.

Proof: We note that W satisfies all the assumptions uniformly for § € [0, 1]. Integration
of (10) for W5 and using Holder’s inequality gives, for eg, e; € E and z € Z,

Wi(eo, 2)+Wil(er, 2) —2Ws(er 2, 2) < C(IQ4+Ws(e ), 2)+ller—eol|P) ™7 ey —eo|| .

The corresponding inequality for Vs follows by using the minimization properties. With
Es = e(Us(e1/2, 2)) we have Vs(eq/2, 2) = Wis(e1/2+Es, 2) and find

Vs(eo, 2) + Vs(er, z) — 2Vs(e1/2, 2)
< Wis(eot+Es, z) + Ws(ei+Es, z) — 2Ws(ei o+ Es, 2)
< (190 + Vs(ers, 2) + les—eoll?) P ey —eo |14,

which provides the desired estimate after exploiting Lemma 4.1. ]

4.2 Parametrized I'-convergence for the damage functional

We now consider the I-limit for 6 — 0 and work with the functional Js5 : (e,2) +—
Vs(e, z) + G(z) again. For applying the abstract theory it is necessary to derive simulta-
neous [-limits. The main positive result was obtained in [BMRO09| for the case that the
G dominates the L™ norm of Vz with r > d, where d is the space dimension.

We generalize this result in several aspects by reducing it to the minimal structural
assumption. For this we introduce the stable sets

Ss(t)={z€ Z|oo>Ts(t,z) <ZIs(t,z) + D(z,2) for all z € Z }.

We define the parametrized I'-limit U(e, -) = [-lims_o+ Vs(e, -) with respect to the strong
topology of Z, which exists by the monotonicity, see |Bra02|. The following example,
which is inspired by [BoV88, Ex. 3| and further discussed in [BMRO09|, shows that in
general U is strictly smaller than Vy(e, z) = lims_ o+ Vs(e, 2).

Example 4.3 Consider Q = ]—1,1[ and the energy Js(e,z) = [, B2 (e+u')* dz + G(2).

Then, Vs(e, z) = (er d:L')z/ Jo ﬁ dx. Clearly, the pointwise limit Vy is obtained by
letting 6 = 0. However, the T-limit (e, -) in WLT(Q) satisfies

Y(e,z) = Vole, z) for minz >0 and Ve, z) =0 for minz = 0.

Fora € [1-1 1] let zo(z) = |z|®, then zo € Z and 0 = V(e, z) < Vo(e, z) = 1TT"‘(erdya'f.

Since G : Z — R is continuous, we also have the following parametrized I'-limits:

[-lim Js(e, ) = J(e, ) =DV(e, ) + G(-), 1;—_1})1;1(115(15, ) =73(t,-) =D(ep(t),:) +G(-).

6—0t
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We also set 6(t) ={z€ Z |00 >T(t,z) <T(t,2) + D(z,z) forall z € Z }.

In generalizing the approach in [BMRO9| for the ['-convergence we replace the condition
“r > d” there by the following

structural assumption: (a7)
(2 € 85,(t),0;, = 0, and z; = 2) = 2z — 2.

The following result shows that the structural assumption holds for » > d, where we
use the monotonicity of W(e,-) and the embedding W' (Q) c C(Q). Other sufficient
conditions will be discussed in Section 6.1.

Proposition 4.4 (Structural assumption) Let the assumptions of Section 2.1 hold.
(A) If (2j)jen is as in (17), then we have Vs, (ep(t), z;) — DV(ep(t), 2) and z € &(t).
(B) If r > d, then the structural assumption (17) holds and we have

Ve, z) = lim ( lim Vs(e, max{0,z—p})) and (Z5 =2z = Ve, z) < lign(i)gf Vs(e, 2)),

p—0t > -0t

i.e. the I'-convergence is even a Mosco convergence, cf. [Mos67].

Proof: Ad (A). We abbreviate e = ep(t), let v = limsup, ., Vs, (e, z;), and conclude
limsup, ., Zs,(t, z;) = v+ G(z). Using the stability of z; we obtain

I5j (t7 Zj) < I5j (t7 /Z\J) + D(Zj7 2])’

where we choose Z; as a recovery sequence for 2, i.e. Z; — Z and Z5,(t,Z;) — J(t,2). In the
unidirectional case we may restrict to the case z < z and assume z; < z; (by taking the
recovery sequence z; = min{z;,z;} if necessary). Thus we may pass to the limit j — oo
and obtain
J(t,z) <limsupZs,(t,2;) =v+G(2) <I(t,2) + D(z,2).
J—00

This proves the stability z € &(t).

Moreover, we may take z = z and conclude v < J(t,2) — G(z2) = D(e, z). Since
U(e, z) < v by the definition of the I'-limit we are done.

Ad (B). We first show that the double limit in the formula for U exists. For this, we de-
fine the function V(p,d,e,z) = Vs (e, max{0, z—p}). Since Wi(e, z) is nondecreasing in §
and in z, V (p, d, e, z) is nondecreasing in § and nonincreasing in p. For fixed z and p > the
limit V9(p,e,2) = lims_o+ V(p, 4, e, z) exists by monotonicity and boundedness. More-
over, V%(p, e, ) is still nonincreasing in p, and we find that (e, z) = lim, o+ V°(p, €, 2)
exists as well.

To show that U is the Mosco limit, we first establish the liminf estimate assuming the
weak convergence z; — z in W' (Q). Then, for each p > 0, there exists J, such that
zs > max{0,z—p}, where we use the embedding W™ (Q) C C(Q). Thus, Vs(e, z5) >
Vs(e,max{0, z—p}), and we obtain liminfs;_ o+ Vs(e, z5) > VO(p,e,2). Taking the limit
p — 07 we obtain the desired liminf estimate. To obtain recovery sequences, we use that
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by the definition of the double limit we may choose a continuous function g : [0,4,] —
[0, pi] with g(0) = 0 such that V(g(d),d,e,z) — D(e,z). Hence, zs = max{0,z—g(J)}
provides the desired strongly converging recovery sequence.

Now we establish the structural assumption (17). Starting from z; — z as given there

we let
v =liminf Vs (e, 2;) > V(e,2) and v = liminfG(z;) > G(2),
j—00

j—o0
which gives liminf; . Zs,(t;, z;) > J(t, 2). The stability of z; implies
Ts,(t5, z) < Is,(tj, 2°) + D(z5, 27), where 2° = max{0, z—¢}.
Doing the limsup;_ ., first and the lim._o+ afterwards gives limsup;_ . Zs,(t;,z;) <
J(t, z), and we conclude Zs (t;, z;) — (¢, 2).
In particular this implies the convergence G(z;) — v = G(2). Using the strict convexity

(4d), we conclude z; — z, see |Vis84].

To establish the stability of z, we take a general test function z with D(z,2) < oo, since
otherwise nothing is to be shown. Let (Z;);en be a recovery sequence for z, i.e. 2; — 2
and Zs,(t;,2;) — J(t,Z). Then, the stability of z; implies

I5j (tj> Zj) < I5j (tj> /Z\]) + D(zj’ 2\]) where 2\J = maX{O’ %_||Z_Zj||L°°}'
Note that z; — Z and Zs, (t;, z;) < Is,(t;,2;). Thus, (Z;);en is a recovery sequence as well.
Passing to the limit j — oo we find J(¢, 2) < Z(t,2) + D(z, 2), giving z € &(t). n

The importance of the structural assumption lies in the fact that it implies that J is a
simultaneous I'-limit.

Proposition 4.5 (Simultaneous I'-limit) Let the assumptions of Section 2.1 and (17)
hold. Then, the functional J is the simultaneous I'-limit of the family (Js5)s>o0-

Proof: Let e1,es € E be given and let (Z§)6>0, J = 1,2, be associated recovery sequences
for J(e;, z). We define Z5(z) = min{z;(z), 25 ()} and obtain Z; — 2, because of z§ — 2.
Moreover, the monotonicity of W (e, -) implies Vs(e;, Zs) < Vs(ej, z3). Thus, we conclude,
B(e;, z) < liminf Vs(e;, Z5) < limsup Vs(e;, Z5) < limsup Vs(e;, 22) = Be;, 2).
§—0F 5—0+ 5—0+

Thus, (Zs5)s>0 is a simultaneous recovery sequence. m

Now, we are able to take profit from the abstract results on parametrized I'-convergence
of Section 3. In particular, we are able to deduce convexity and differentiability of V(-, 2).

Proposition 4.6 Let the assumptions of Section 2.1 and (17) hold. Then, U(-,z) : E —
R s convex for all z € Z.

If additionally W satisfies the differentiability condition (10), then U is 3-differentiability
in the sense of (15), and for all e € E we have

zs — 2 in Z

Vs(e, z5) — Ve, 2) } = DcVs(e, z5) = DD(e, 2) in E*.

The proof of this result is a direct combination of Propositions 3.3, 3.5, 3.6, Lemma
4.1, and Propositions 4.2 and 4.5.
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5 Proof of Theorem 2.3

Our main Theorem 2.3 provides the convergence of the energetic solutions zs : [0,7] — Z
for the rate-independent systems (Z,Zs, D) for 6 — 07 to energetic solutions z : [0,7] —
Z of the limit problem (2,7, D), which represents the complete-damage problem. It is
stated under the additional assumption “r > d”.

Here we will provide a more general proof avoiding the explicit use of the embedding
WE(Q) € C(Q) and replacing it with the structural assumption (17), which is satisfied
in the case r > d, as is shown in Part B of Proposition 4.4.

For the convenience of the reader we provide an almost complete proof, where some
details are cited from previous works. We follow the six steps as introduced in [Mie05].
Step 1. A priori estimates.

The solutions zs : [0,T] — Z are stable. Hence, we have

G(zs(t)) < Zs(t, 2(t)) < Zs(t,0) + D(z5(t),0) < C.

Together with z(¢,z) € [0, 1] we obtain a uniform bound C' > 0 such that ||z5(¢)||wir < C
for all t € [0,7] and § > 0. Moreover, the total dissipation Dissp(zs, [0,77]) is bounded
independently of 6 > 0. Thus,

3C >0V6 >0 |zs5]|Leeo,mwre@) + [125]BV(0,11,01 @) < C.

Step 2. Selection of subsequences

By Helly’s selection principle (in its Banach-space version) we extract a subsequence
(0;)jen with 0; — 0% such that for all ¢ we have

Dissp(zs,, [0,t]) — A(t), z;,(t) = 2(t) in Z,

where ¢ : [0, 7] — R is nondecreasing and z lies in L°°([0, 7], W?(Q)) nBV([0, T, L1(Q))
with Dissp(z, [0,¢]) < A(¢). Using the structural assumption (17) and Part (A) of Propo-
sition 4.4 we further conclude z;,(t) — 2(t) and Zs, (¢, 25,(t)) — J(t, 2(t)), which means
that (i) and (iii) are established.
Step 3. Stability of the limit process

The desired stability (S) for energetic solutions means z(t) € &(t) for all t € [0, T], but
this is a direct consequence of Part A of Proposition 4.4.

Step 4. Upper energy estimate

For each 6 > 0 we have the energy balance
t
Zs(t, z5(t)) + Dissp(zs, [0, t]) = Z5(0,9) +/ 05 (s, zs(s))ds.
0

Using the formula (2ii) and 0,3(s, 2) = (D.B(ep(t), 2), e(ip(t))) we are now able to pass
to the limit 6; — 0" and obtain

Step 2

J(t, 2(t)) + Dissp(z,[0,T]) < J(t, 2(t)) + A(t) = T3(0, 2(t)) + /0 053(s, z(s))ds,
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where we used Proposition 4.6, which also implies (iv).

Step 5. Lower energy estimate

The lower estimate J(t, z(t)) + Dissp(z,[0,7]) > 3(0, 2(¢)) + fot 0s3(s,2(s)) ds is a
direct consequence of the stability, see e.g. [Mie05, Prop.5.7|. Thus, we conclude the
energy equality (E) and have established Dissp(z, [0,7]) = A(t), which provides (ii).
Step 6. Improved convergence

Since the convergences (i) (iv) in Theorem 2.3 are already established in the previous
steps, the convergence proof is finished.

It remains to establish the general existence result for arbitrary initial conditions zy €
S(0). However, it is standard to apply the existence theory developed in [Mie05, Sect. 5]
directly to the limit problem (Z,3, D). This concludes the proof of Theorem 2.3.

6 Discussion of generalizations

6.1 Sufficient conditions for the structural assumption

The reason for introducing the structural condition (17) is that we conjecture its validity
also in the case r € [1,d]. To support this conjecture, we highlight an interesting obser-
vation from [Tho09|, which applies to the uni-directional case, where D(z,2) < oo if and
only if 7 < z. For z € S5(t) we find the estimate

G(z) =TIs(t, z) — Vs(en(t), 2) < Zs(t,2) + D(2,2) — Vs(ep(t), 2)
=G(2) +D(2,2) + Vs(ep(t),z) — Vs(ep(t), z) < G(Z) + D(z,2),

for all Z < z. Thus, if we define the set
S={z€Z|G(2) <G(2)+D(z,z) forall 2 < z },
we conclude that

Vo>0Vte|0,T]: Ss(t) €S and &(t) CS.

Conjecture. Under the assumptions of Section 2.1 the set S is compact in Z with respect
to the strong topology for all r > 1.

The argument in favor of the validity of the conjecture derives from the variational
inequality defining the elements z € S. Roughly it provides a one-sided estimate of the
weak r-Laplacian and there is hope that the results in [Mur81| can be adjusted to prove
the conjecture.

Clearly, the validity of the conjecture implies that the structural condition (17) holds.
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6.2 Generalized energetic solutions

In the case that W does not satisfy the uniform differentiability property (10), we are
not able to show the differentiability of U(-, z). However, we still have convexity, which
implies together with the bounds 0 < U(e, z) < C(1+]|e||’) that of all (e,z) € E x Z the
(convex) subdifferential 3" (e, z) and the directional derivatives 6, (e, z;¢) exist:

FY(e,z) = {neE*|Ve: V(e z2) > Vle, 2) + (n,e—e) },
N1 " ub (18)
0.0 (e, z;€) = lim ﬁ<@(e+h6, z) — Ve, z)) = sup{ (o,¢) | 0 € E""V(e, 2) }.

h—0t

Using ep € C'([0,T]; E) we find that the left and right partial derivatives 9;°J(t, z) =
limy,_o+ =1 (I(txh, z) — J(t, 2)) with respect to t of T exist. We have the relations

07 3(t, 2) = —0.0(t, en(t); —én(t)) < 0.t en(t); én(t)) = O 3(t, 2).

The Clarke differential of ¢ — J(¢, 2) is given by '3 (t, 2) = [0, I(t, 2), 0, J(t, 2)].

Definition 6.1 Let z : [0,7] — Z satisfy (S) in (7) for all t € [0,T]. Then, z is called
a generalized energetic solution of the rate-independent system (Z,3,D), if there exists
p € LY([0,T]) such that p(t) € 0%T3(7, 2(7)) a.e. in [0,T] and for all t € [0,T] we have

J(t, z(t)) + Dissp(z, [0,t]) = 3(0, 2(0)) + /0 p(7)dr. (19)

Now a slight generalization of the abstract existence theory for rate-independent sys-
tems gives the following. Note that we construct the generalized energetic solutions for
(Z,3,D) directly, without reference to the solutions z;s for (Z,Zs, D).

Theorem 6.2 For all stable 2° € Z there exists a generalized energetic solution for

(2,3,D).

Proof: The existence theory follows the usual steps in the abstract theory for rate-
independent processes (cf. [Mie05, FrMO06|) via incremental minimization, uniform a priori
estimates and Helly’s selection principle. This part and the proof of the stability of the
limit process work as in [BMRO09].

For the upper energy estimate we obtain, by setting A(t) = J(¢, 2(t)) + Dissp(z, [0, t]),
As) — A(r) < / P (E) df with p™ (1) = max 093 (, 2(1)).
With a slight generalization of [Mie05, Prop. 5.7| we see that stability of the limit process

z implies the lower bound A(s) — A(r) > [*p™"(t)dt with p™"(t) = min 9;"I(¢, z(t)).

Thus, we conclude that A is absolutely continuous and satisfies p™in(¢) < A'(t) <
p™*(t). Hence, setting p(t) = A’(t) the proof is complete. m
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In the following example we show that the notion of generalized energetic solution,
which involves the weakened energy balance (19) with the Clarke differential, is really
necessary in cases where the one-sided partial derivatives satisfy 9, J(t,z) < 9, 3(t,2)
at some points. In particular, it is not possible to make an a priori choice like p(t) =
max{0'J(t, z(t))}, which worked in [KZMO09, MiR0S§|, since there 9, J(t,z) > 0, 3(t, 2)
holds.

Example 6.3 This example has a smooth energy Is such that 0,Zs exists, while in the
limit 3 is only Lipschitz in t. We let Z =R and D(z,z) = |z—z|. The energy functional
reads

Zs(t,z) = Hg (z—a(t)) and J(t, z) = 2|z—a(t)|,

where o € CH([0,T1)) is given and Hs(u) = 2u*/\/§2+u2. For the partial derivatives with
respect to time we have

0T5(t, 2) = —Hi(z—a(t))a(t) and OCI(t, z) = —2 Sign(z—a(t))|a(t)].

Since Zs(t,-) is smooth and strictly convez, the energetic solutions for (R,Zs, D) are
exactly the solutions of the doubly nonlinear equation (cf. [MiT04])

0 € Sign(2(t)) + Hs(=(t)—al(t)).

For 0 > 0 the system is smooth, while for 6 = 0 we have Hyo(u) = 2|u| and set I(t,z) =
Hy(z—af(t)).

Consider the special case a(t) = t and z5(0) = 0. If Bs is the unique solution of
H(Bs) = 1, then the unique energetic solution is zs(t) = max{0,t—0s}. Using0 < 85 — 0

we find the limit solution z(t) =t = lims_o 25(t). It is a generalized energetic solution in
the sense of Definition 6.1 by using p(t) = 1 € [-2,2] = 0F'3(t,1).
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