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Creating Weyl nodes and controlling their energy by magnetization rotation
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As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an

electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature,
Weyl nodes have been predicted to strongly affect the transverse electronic response, like in the anomalous Hall
or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the
Fermi level, which implies the band structure must be tuned by an external parameter, e.g., chemical doping.

Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by
rotation of the magnetization. First, taking as example the elementary magnet hcp-Co, we use electronic structure
calculations based on density-functional theory to show that by canting the magnetization away from the easy
axis, Weyl nodes can be driven exactly to the Fermi surface. Second, we show that the same phenomenology
applies to the kagome ferromagnet Co3Sn,S,, in which we additionally show how the dynamics in energy and
momentum of the Weyl nodes affects the calculated anomalous Hall and Nernst conductivities. Our results
highlight how the intrinsic magnetic anisotropy can be used to engineer Weyl physics.
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Materials hosting unconventional quasiparticles, such as
Weyl semimetals, constitute a framework with potential for
novel electronic devices. One ground for such expectation is
the possibility of enhancing the response to external fields by
engineering topological properties of the electronic states. For
a material to specifically host Weyl fermions, the spin degen-
eracy of the electronic bands has to be removed by breaking
either time-reversal symmetry (®) or inversion. Karplus and
Luttinger [1] first noticed that in a ®-broken system the
spin-orbit coupling can introduce in the manifold of Bloch
states a left-right asymmetry which in turn, in the presence
of an electric field, causes a Hall current at zero magnetic
field. This scattering-independent mechanism originates in the
so-called anomalous velocity of the wave packets, which can
be written in terms of the Berry curvature of the Bloch states
in momentum space. Weyl nodes are monopoles of Berry
curvature, which implies first that they can only be created and
annihilated in pairs of opposite monopole charge and second
that wave packets made out of Weyl fermions can have a large
anomalous velocity. As this velocity is perpendicular to the
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electric field, Weyl systems can exhibit enhanced transverse
electronic responses, as in the Hall or Nernst effects.

This effect has been argued to be at work in different
materials in which the anomalous velocity contribution intrin-
sic to the band structure is at the heart of enhanced electric
and thermoelectric performance in the regimes of both linear
[2-5] and nonlinear [6,7] response. Still, a central problem for
optimizing Berry-curvature-based effects is the energy of the
Weyl nodes, which currently is not a controlled variable from
a material design point of view. Indeed, as the only symmetry
restriction is to break inversion or ®, Weyl nodes can occur
at any momentum and energy [8—10]. The interplay with
the symmetry enables interesting effects of external magnetic
fields as, e.g., using the field to split symmetry-protected
fourfold crossing to create Weyl nodes [11-16]. In this work,
we analyze a different interplay between magnetism and
topology, one that does not rely on the existence of such kind
of crossings: We explore the effects of changing the orien-
tation of the magnetization (m) on the electronic structure
topology of ferromagnets. Rotation of m can be achieved by
changing thermodynamic variables such as external magnetic
fields [17], temperature [18,19], hydrostatic pressure [20], and
uniaxial strain [21].

Here, we show that the magnetization reorientation can be
used as a strategy to tune Weyl nodes to the Fermi surface. We
consider two examples, the elementary magnet hcp-Co and
the half-metal Co3Sn,S,, a ferromagnet recently found to be a
Weyl semimetal and to display a large anomalous Hall effect
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FIG. 1. (a) Crystal structure of hcp-Co and definition of 6.
(b) GGA band structure with the magnetization along the easy
axis (0 = 0) or along 6 = 7 /4. The Fermi level at zero energy is
indicated by a dotted line. (c) Brillouin zone. The red point is a
Weyl node close to the Fermi level at 6 = 7 /4 and has coordinates
~27 /a[0.088, 0, 0.104]. (d) Energy of four specific Weyl nodes as
a function of 6. Different colors correspond to sets of Weyl nodes
degenerated by symmetry.

(AHE) [22-25]. Based on density functional theory (DFT),
we show that canting m away from the easy axis leads to the
creation of new Weyl nodes and to large displacements of the
Weyl points in energy and in momentum space such that, at
specific orientations, they can be placed exactly at the Fermi
surface. Furthermore, we analyze how this tuning affects the
anomalous Hall conductivity (AHC) and its thermal counter-
part, the anomalous Nernst conductivity (ANC). Calculations
as a function of the canting angle reveal that the ANC in par-
ticular is highly susceptible to the Weyl dynamics: It displays
sharp peaks when asymmetric hole and electron pockets exist
nearby the band crossing that reaches the Fermi energy.

Controlling Weyl nodes in an elementary magnet. We start
our discussion with hcp-Co (space group 164), a ferromagnet
with a magnetic anisotropy energy (MAE) of 65 ueV per Co
in favor of the easy-axis configuration [26,27]. The magnetic
field required to put the magnetic moments in plane is less
than 2 Tesla [28].

We performed DFT calculations of the ferromagnetic
phase with m in the xz plane at an angle 6 from Z [29].
Figure 1(b) presents the band structure for the cases 6 =
0, /4. The rotation of m induces appreciable changes in the
splitting between some of the bands, and even makes some
band crossings be avoided and vice versa. We searched for
Weyl nodes in a low-energy window [—40, 40] meV follow-
ing their trajectories as a function of 6 [30]. Remarkably, at
specific angles, Weyl nodes are exactly at the Fermi surface

FIG. 2. (a) Crystal structure of Co3;Sn,S,. (b) Band structure
with the magnetization along the easy axis (8 = 0) or in the plane
(60 = m/2). The Fermi level at zero energy is indicated by a dotted
line. (c) Brillouin zone. The red point corresponds to one of the Weyl
nodes at & = 0 and has coordinates ~27 /a[0.48, 0, 0.08].

[Fig. 1(d)]. Of particular interest is the case & ~ 7 /4, in which
the nodes crossing the Fermi energy form the minimum set of
only two points lying in the LI'M plane (red line).

It is interesting to note that while different exchange and
correlation functionals yield significantly different MAE [the
generalized gradient approximation (GGA) results in 8 ueV
while GGA plus the orbital polarization correction gives
150 peV], calculations based on both functionals result in
similar Weyl-node energy trajectories [31]. This shows that
the energy change of the Weyl nodes need not scale propor-
tionally to the MAE and, therefore, that analogous tuning of
the Weyl nodes to the Fermi surface can occur in magnets
with significantly different MAE. It is naturally of interest
to analyze if such tuning is also possible in materials with
a low-energy band structure simpler than that of hcp-Co.
Therefore, we focus now on the Weyl semimetal Co3Sn,S;.

The half-metal Co3Sn,S,. This system presents a ferro-
magnetic phase of Curie temperature 7 = 172K [32]. The
crystal structure has space group R-3m (no. 166) with lattice
parameters = 5.37 A and ¢ = 13.18 A and consists of quasi-
two-dimensional (quasi-2D) Co3Sn layers separated by S,Sn
layers with the particularity that the stack of cobalt atoms
forms a kagome lattice; see Fig. 2(a). Recently, different
groups [22,23] have reported in the magnetic ground state six
Weyl nodes lying 60 meV above the Fermi energy. Similar
to hep-Co, the rotation of m induces appreciable changes in
electronic structure [see Fig. 2(b)]. The ground state corre-
sponds to 6 = 0, with a magnetic moment of 0.33 wp, which
agrees well with magnetization measurements, 0.29 ug [33]
or 0.31 up [32]. The calculated MAE is ~0.19 meV per Co
atom. The field required to rotate the moment into the plane at
zero temperature is estimated to be ~26 Tesla [28,31].

Interestingly, the number of Weyl points in the energy
range [—100, 150] meV increases from 6 to 26 as 6 changes
from O to 7 /2. We find two regimes in the evolution of the
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FIG. 3. Weyl nodes dynamics. (a) Energy of the Weyl nodes as a
function of 6. Different colors correspond to sets of Weyl points of
different energy. The yellow marks signal the creation or annihilation
of Weyl nodes. Vertical lines indicate angles (labeled s, t,. . ., w) at
which Weyl fermions place at the Fermi surface. (b) Projection of
Weyl node trajectories on the semiplane k, = 0 with k, > 0. Filled
red and empty blue circles correspond to Weyl points at 6 = 0 and
0 = 1 /2, respectively. The thin (thick) lines indicate the trajectories
of Weyl points of positive (negative) chirality and follow the color
code of panel (a) while the arrows indicate the sense of motion as 6
increases. Weyl points A and B annihilate each other by approaching
the Brillouin zone border when their separation reaches a reciprocal
lattice vector. (s)—(w) For the angles in which a Weyl node crosses
the chemical potential, energy dispersion along paths centered at the
corresponding Weyl point. The paths have length 27 /(5a) and the
rows from top to bottom correspond to k., k,, and k., respectively.

band structure as m goes from out of plane to in plane. The
first occurs at small angles and consists in the splitting in
energy of the original six Weyl points due to the breaking of
the C; symmetry. Namely, the nonmagnetic point symmetry
group is Ds3y(b) [31] and a finite m breaks ® and affects
some of the unitary symmetry operations. In total, for m || Z,
there are 12 point symmetry operations and the application
of these to a Weyl node that lies in the k, = 0 plane leads to
six degenerated Weyl nodes. Upon canting m at an angle 6
towards X, the only remaining symmetries—in addition to the
identity and to inversion—are ©® - C;(y) and ® - M(y). This
forces the six Weyl nodes to split in energy as a doublet
(formed by those with k, = 0) and a quartet. Figure 3(a)
shows the calculated energy of the Weyl nodes as a function
of 6. For 6 < m /4, this splitting is smaller than 4 meV.
Further increasing 0, the second regime is signaled by
large changes in the Weyl-node structure. In particular, the
Weyl-node quartet goes from above to below the Fermi level
and new Weyl nodes are created. Notice that in this angle
range, the symmetry does not change. Therefore, the Weyl-
node creation is not due to the splitting of a Dirac point as in

Ref. [11-16]. The vertical lines in Fig. 3(a) indicate the angles
(labeled s, t, . . ., w) at which a Weyl node crosses the Fermi
surface. The remarkable changes in energy go hand in hand
with large displacements in momentum space. Figure 3(b)
shows the projection of the trajectories on the semiplane k, =
0 with k, > 0, illustrating the rich dynamics controlled by 6.
As shown in Figs. 3(s)-3(w), the energy dispersion close to
the nodes reaching the Fermi energy can differ significantly
among the different cases [34].

Experimental consequences. We analyze next observables
that can make evident the rich Weyl dynamics induced by
rotating m. We focus on response functions that originate in
the Berry curvature of the Bloch states through the anomalous
velocity [35]. We compute the Hall response to an electric
field £ or to a temperature gradient VT at zero external
magnetic field. In the linear response, the Hall current is
Ja = oy — gy VT, where o, and ), read

_ 2
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Here, €, is the Levi-Civita tensor, E,x is the energy dis-
persion of the nth band, €2, . is the ¢ component of the
Berry curvature, and ,(k) = Vi x A, (k), where A, (k) =
—i{unk | Okunk) [36], fo is the equilibrium Fermi distribu-

tion, s(Eux) = fo(Em)(Ex — 1)/T — kglog (1 — fo(Enx)) is
the entropy density, and w the chemical potential [37-46]. As
T — 0K, the entropy vanishes and so does ¢, while at finite
T, s(E,) is maximum at u and decreases exponentially away
from the Fermi surface. Joint measurements of electric and
thermoelectric coefficients can determine o,;, and o, [47].
Figures 4(a) and 4(b) show the calculated AHCs as a
function of 6 [48]. For § = 0, only o, is nonzero and its very
large value 1200 (2 cm)~! is in good agreement with values
reported of 1310 (Qcm)~! [23] and 1100 (Q cm)~!'[22].
When m acquires a finite projection on %, the only symmetry
involving a mirror plane is ®M(y) and both oy, and oy, are
symmetry allowed. Namely, under mirror symmetry, € be-
haves as a pseudovector so that M (y)2, (k) = 2, (k,, —ky, k;)
while M(y)Q2(k) = = (ky, —ky, k;), where Q refers to
the components of 2 along X and Z (parallel to the mir-
ror plane). Therefore, if ®M(y) is a symmetry, the Berry
curvature satisfies Q,(k) = —Q,(—ky, k,, —k;) and (k) =
Q) (—ky, ky, —k;) and these constraints only make oy, vanish.
As 0 increases, o,, and oy, follow opposite trends and
at 0 = /2, 0y, ~200(Qcm)~! is much larger than oy,. At
this angle, the xy component does not vanish as it is still
symmetry allowed. The smallness of its value is still related
to the effects of the symmetries on the Berry curvature flux.
In this compound, the large AHC arises mainly from the
nodal lines that become gapped when spin-orbit coupling is
included. When m points along 2, the combination of C; and
the mirror planes ®M (x), ®M (y) forces the different patches
of the nodal lines to contribute additively to the flux of €2,
[31]. When m acquires a component along %, the reduction in
the symmetries removes this constraint and large cancelations
occur due to the opposite flux of €2, at different points (k,, k).
This geometrical effect controls the overall evolution of oy,
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FIG. 4. [(a), (b)] Anomalous Hall conductivity (xy and yz com-
ponents) at zero temperature as a function of 6. The red arrow
indicates an angle at which pairs of Weyl nodes are created.
[(c), (d)] Nernst conductivity as a function of # for different tem-
peratures (indicated in units of K for each curve). Note that «,, is
multiplied with —1. (e) Entropy-flow density as a function of energy
for 6 =s, s+ with § ~ 4°. (f) Entropy-flow density for 6 = v,
v £ §. The data correspond to the yz component and at 7 = 51 K.
(g) DOS as a function of energy associated with the states close to
the corresponding Weyl nodes at the Fermi surface for & = s and v.

which is, therefore, quite smooth and monotonous. oy, lacks
this geometrical effect and, as a result, is more sensitive to
detailed changes in the band structure and Weyl dynamics,
as shown in Fig. 4(b). For instance, the red arrow in the plot
indicates an angle at which the creation of Weyl nodes leads to
a steplike increase of oy.. As 6 increases further, a set of Weyl
nodes reaches the Fermi energy at & = s and oy, exhibits a
small plateau. The energy dispersion of these Weyl fermions is
shown in Fig. 3(s) and makes clear that this node is type I, and
therefore the observed plateau is consistent with the general
prediction for such Weyl nodes when their energy approaches
the Fermi level [49].

Admittedly, the resulting changes in the AHC related to
the Weyl nodes are not large. It turns out that the ANC shows

much larger changes when Weyl nodes approach the Fermi
energy. Figures 4(c) and 4(d) show the ANCs as a function
of 6 for different values of T. Since thermal fluctuations of
the Co magnetic moments are not considered in Eq. (1), we
restrict our analysis to a range of 7 where the magnetiza-
tion is essentially saturated (T < 100 K) [32]. Remarkably,
the dependence on 6 is nonmonotonous and includes sharp
peaks at specific angles. The peaks are centered at some of
the angles in which a Weyl node crosses the Fermi energy
(specifically, & = t and v) and become broader as T increases.
The nonmonotonicity remains, however, clearly visible for all
temperatures. The magnitude of the enhancements is worth
noting: At 91 K, starting from ~0.1 AmK)~! at /4, loy |
reaches a maximum 1.8 A(mK)~!. This is five times the
maximum obtained in Mn3Sn [47,50] and half of the giant
ANC in Co,MnGa [51].

Entropy flow and Weyl fermions. To understand why and
when a peak in the ANC occurs, it proves useful to analyze
how different carriers contribute to the ANC. Since in a
fermionic system the available entropy is restricted to states
of energy ~kgT around u, we are interested in resolving the
contribution of different electronic states within this thermal
energy window. We recast the ANC as

1 [ 9o,
gy = ——/ de 22 s(e) )
e J_ de

oo

(see Ref. [31]). This equation has the overall shape of the Mott
relation—involving the derivative with respect to energy of
the AHC and the entropy—but holds for larger temperature
and motivates us to define the entropy-flow density per energy,
Srap(€) = a(f;—;:’hs(ez). The entropy flow 57 ,(¢) measures the
contribution to o, of carriers of different energy and, there-
fore, its calculation allows us to compare the contribution of
different sets of Weyl points.

We focus on oy, and first analyze 6 =s. Figure 4(e)
presents sy ,.(¢) for & =s and for two other angles close
to it, s =8 with § ~ 4°. For each angle, the entropy flow
presents a peak as a function of energy which highlights
the energy of the carriers that contribute the most to the
ANC. Notice that this peak does not need to be centered at
the energy of maximum entropy (¢ = p). For instance, at
6 = s — § the largest contribution is found ~10 meV above
1. As 6 increases, this peak achieves a larger value and its
position shifts to smaller energy in a rather monotonous way.
In particular, at & = s the contribution of carriers at the Fermi
surface is markedly smaller than that of the states conforming
the entropy-flow peak. This explicitly shows that the set of
Weyl nodes crossing the Fermi energy at this angle does not
contribute significantly to the ANC.

The situation is different at angles 6 = t and v. Figure 4(f)
shows s¢,.(¢) for 6 =v and 6 =v £ 4§ and makes clear
that the entropy-flow peak is at the chemical potential
when the Weyl nodes reach the Fermi surface (6 = v). This
indicates that in this case the Weyl points indeed dominate
the ANC.

The different contribution of different Weyl nodes to the
ANC can be traced to the band structure close to the Weyl
nodes [see Figs. 3(s), 3(t) and 3(v)]. While at 6 = s the Weyl
point at the Fermi surface is type I with only a small tilt, at
angles 8 = t and v the dispersion of one of the bands involved
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in the crossing at the Fermi level is such that it produces
asymmetric electron and hole pockets close to the node. To
illustrate this, Fig. 4(g) shows that the density of states (DOS)
in a sphere of radius 7 /(5a) centered at the corresponding
Weyl node at the Fermi surface is larger and more electron-
hole asymmetric for & = v than for s. In an analagous way, for
0 = v, the more asymmetric distribution of states close to the
nodes at the Fermi surface contributes to a larger do,./d¢ and
hence a larger entropy flow. We thus associate the enhanced
ANC at some of the angles at which a Weyl node reaches
the Fermi surface with having asymmetric hole and electron
pockets close to the Weyl point at the Fermi energy.

In summary, we have shown that in ferromagnets a rich
dynamics of Weyl points results from a change in the direction
of the magnetization: Weyl nodes can be created, annihilated,
and shifted in energy-momentum space over large distances.
This dynamics can be used to place Weyl nodes exactly at the
Fermi surface, which can lead to sharp enhancements in the
anomalous Nernst conductivity that survive up to relatively
high temperatures. Whereas we established the effect of ro-
tation of the magnetization on Weyl nodes in the elementary
magnet hcp-Co and in the semimetal Co3Sn,S,, the finding

that the energy change of the Weyl nodes does not need
to scale proportionally to the magnetic anisotropy energy
suggests that similar tuning of Weyl nodes to the Fermi
surface can be expected in a wide set of ferromagnets. This
provides a pathway to experimentally probe, manipulate, and
control Weyl-fermion transport properties in magnetic Weyl
semimetals.
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