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Abstract

We are concerned with a nonstandard phase field model of Cahn–Hilliard type. The model, which
was introduced by Podio-Guidugli (Ric. Mat. 2006), describes two-species phase segregation and
consists of a system of two highly nonlinearly coupled PDEs. It has been recently investigated by
Colli, Gilardi, Podio-Guidugli, and Sprekels in a series of papers: see, in particular, SIAM J. Appl.
Math. 2011, and Boll. Unione Mat. Ital. 2012. In the latter contribution, the authors can treat the
very general case in which the diffusivity coefficient of the parabolic PDE is allowed to depend
nonlinearly on both variables. In the same framework, this paper investigates the asymptotic limit
of the solutions to the initial-boundary value problems as the diffusion coefficient σ in the equa-
tion governing the evolution of the order parameter tends to zero. We prove that such a limit
actually exists and solves the limit problem, which couples a nonlinear PDE of parabolic type with
an ODE accounting for the phase dynamics. In the case of a constant diffusivity, we are able to
show uniqueness and to improve the regularity of the solution.

1 Introduction

In this paper, we consider the following system(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ, ρ)∇µ

)
= 0 (1.1)

∂tρ− σ∆ρ+ f ′(ρ) = µ g′(ρ) (1.2)(
κ(µ, ρ)∇µ

)
· ν|Γ = 0 and ∂νρ|Γ = 0 (1.3)

µ(0) = µ0 and ρ(0) = ρ0, (1.4)

in the unknown fields µ and ρ, where the partial differential equations (1.1)–(1.2) are meant to hold
in a three-dimensional bounded domain Ω, endowed with a smooth boundary Γ, and in some time
interval (0, T ). Relations (1.4) specify the initial conditions for µ and ρ, while (1.3) are nothing but
homogeneous boundary conditions of Neumann type, involving precisely those boundary operators
that match the elliptic differential operators in (1.1)–(1.2).

This system has been recently addressed in the paper [6]: the existence of solutions has been proved,
thus complementing and extending the results of the papers [3, 4, 5] concerned with simpler or reduced
versions of the problem.

Here, we are interested to investigate the asymptotic behavior of the above initial-boundary value
problem (1.1)–(1.4) as the positive diffusion coefficient σ appearing in (1.2) tends to 0.

Let us briefly explain the modelling background for (1.1)–(1.4). Such a system comes from a general-
ization of the phase-field model of viscous Cahn-Hilliard type originally proposed in [14], and it aims to
describe the phase segregation of two species (atoms and vacancies, say) on a lattice in presence of
diffusion. The state variables are the order parameter ρ, interpreted as the volume density of one of
the two species, and the chemical potential µ. For physical reasons, µ is required to be nonnegative,
while the phase parameter ρ must of course take values in the domain of f ′.
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We also recall the features of [3] and what has been generalized in [5, 6]. Firstly, the nonlinearity
f considered in [3] is a double-well potential defined in (0, 1), whose derivative f ′ diverges at the
endpoints ρ = 0 and ρ = 1: e.g., for f = f1 + f2 with f2 smooth, one can take

f1(ρ) = c (ρ log(ρ) + (1− ρ) log(1− ρ)), (1.5)

with c a positive constant. In this paper, we let f1 : R → [0,+∞] be a convex, proper and lower
semicontinuous function so that its subdifferential (and not the derivative) is a maximal monotone
graph from R to R. Then, we rewrite equation (1.2) as a differential inclusion, in which the derivative
of the convex part f1 of f is replaced by the subdifferential β := ∂f1, i.e.,

∂tρ− σ∆ρ+ ξ + f ′2(ρ) = µg′(ρ) with ξ ∈ β(ρ). (1.6)

Note that f1 needs not be differentiable in its domain, so that its possibly nonsmooth and multivalued
subdifferential β := ∂f1 appears in (1.2) in place of f ′1. In general, β is only a graph, not necessarily
a function, and it may include vertical (and horizontal) lines, as for example when

f1(ρ) = I[0,1](ρ) =

{
0 if 0 ≤ ρ ≤ 1

+∞ elsewhere
(1.7)

and β = ∂I[0,1] is specified by

ξ ∈ β(ρ) if and only if ξ


≤ 0 if ρ = 0

= 0 if 0 < ρ < 1

≥ 0 if ρ = 1

. (1.8)

Secondly, while in [3] g was simply taken as the identity map g(ρ) = ρ, in [5, 6] g is allowed be any
nonnegative smooth function, defined (at least) in the domain where f1 and its subdifferential live.
The presence of such a function g allows for a more general behavior of (the related term in) the free
energy, which reads

ψ(ρ,∇ρ, µ) = −µ
2
− µ g(ρ) + f(ρ) +

σ

2
|∇ρ|2. (1.9)

Indeed, in particular g(ρ) is not obliged, as it was instead for g(ρ) = ρ, to take its minimum value at
ρ = 0, be increasing and with maximum value at ρ = 1 (when D(f1) = [0, 1]), but we may have
many other instances like, e.g., a specular behavior of g around the extremal points of the domain of f .
Here, we have to impose an additional restriction on g, which however looks reasonable from the
modelling point of view: we postulate that g is a (smooth) concave function, which in turn implies
convexity with respect to ρ of the term −µ g(ρ) in the free energy (1.9). However, let us recall that f
may stand for a multi-well potential in which the nonconvex perturbations are incorporated into f2, so
that ψ in its entirety needs not be convex with respect to ρ.

An important generalization that is considered in this paper concerns the diffusivity κ. In [3], κ was just
assumed to be a constant function, but it can be a positive-valued, continuous, bounded, and nonlinear
function of µ (and this was the setting of [5]), or of µ and ρ as it is postulated in [6]. For simplicity, we
confine ourselves to study of the convergence properties of the solution under an assumption that
guarantees uniform parabolicity, i.e., κ ≥ κ∗ > 0. We point out that [5] treats the situation of κ
depending only on µ and possibly degenerating somewhere.
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Therefore, the system (
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ, ρ)∇µ

)
= 0 (1.10)

∂tρ− σ∆ρ+ ξ + f ′2(ρ) = µg′(ρ) with ξ ∈ β(ρ), (1.11)(
κ(µ, ρ)∇µ

)
· ν|Γ = 0 and ∂νρ|Γ = 0 (1.12)

µ(0) = µ0 and ρ(0) = ρ0, (1.13)

turns out to be the initial and boundary value problem for a nonstandard and highly nonlinear phase
field system in which however the role usually played by the temperature is here conducted by the
chemical potential µ. In the study of phase field systems, it has been always considered rather im-
portant to analyze the behavior of the problem as the coefficient σ of the diffusion term in the phase
parameter equation tends to 0. The limiting case σ = 0 corresponds indeed to a pointwise ordinary
differential equation (or inclusion)

∂tρ+ ξ + f ′2(ρ) = µg′(ρ), ξ ∈ β(ρ), (1.14)

in place of (1.11), and to an expression for the free energy (1.9) in which the last quadratic term
accounting for nonlocal interactions is removed.

In fact, especially for the choice (1.7)–(1.8), the limiting problem can be formulated in terms of hystere-
sis operators: in particular, the so-called stop and play operators are involved; the interested reader
can find some discussion and various results on this class of problems in [7, 8, 9, 10, 11, 12, 13].

By collecting a number of estimates independent of σ for the solution (µσ, ρσ) to the problem (1.10)–
(1.13), by weak and weak star compactness we prove that any limit in a suitable topology of a conver-
gent subsequence of {(µσ, ρσ)} yields a solution to the limiting problem in which (1.11) is replaced by
(1.14). Furthermore, under natural compatibility conditions on the nonlinearities and the initial data, we
show boundedness for all the components of any solution to the limit problem. Finally, in the special
case of a constant mobility κ in (1.10), we prove that the solution is unique and more regular than
required.

The paper is organized as follows. In the next section, we state precise assumptions along with our
results. The basic a priori estimates independent of σ are proved in Section 3 and they allow us to
pass to the limit by compactness and monotonicity techniques. Finally, the last section is devoted to
the study of the limit problem and our boundedness, uniqueness, and further regularity properties are
proved.

2 Assumptions and results

The aim of this section is to introduce precise assumptions on the data for the mathematical problem
under investigation, and establish our main result. We assume Ω to be a bounded connected open set
in R3 with smooth boundary Γ (treating lower-dimensional cases would require only minor changes)
and let T ∈ (0,+∞) stand for a final time. We introduce the spaces

V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂νv = 0 on Γ} (2.1)

and endow them with their standard norms, for which we use a self-explanatory notation like ‖ · ‖V . For
powers of these spaces, norms are denoted by the same symbols. We remark that the embeddings
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W ⊂ V ⊂ H are compact, because Ω is bounded and smooth. The symbol 〈 · , · 〉 denotes the
duality product between V ∗, the dual space of V , and V itself. Moreover, for p ∈ [1,+∞], we write
‖ · ‖p for the usual norm in Lp(Ω); as no confusion can arise, the symbol ‖ · ‖p is used for the norm
in Lp(Q) as well, where Q := Ω× (0, T ).

Now, we present the structural assumptions we make. It is useful to fix an upper bound for σ, that is,

0 < σ ≤ 1. (2.2)

Then, for the diffusivity coefficient κ we assume that

κ : (m, r) 7→ κ(m, r) is continuous from [0,+∞)× R to R, (2.3)

the partial derivatives ∂rκ and ∂2
rκ exist and are continuous, (2.4)

κ∗, κ
∗ ∈ (0,+∞), (2.5)

κ∗ ≤ κ(m, r) ≤ κ∗, |∂rκ(m, r)| ≤ κ∗, |∂2
rκ(m, r)| ≤ κ∗ for m ≥ 0 and r ∈ R, (2.6)

and for the other nonlinearities we require that

f = f1 + f2 , f1 : R→ [0,+∞], f2 : R→ R, (2.7)

f1 is convex, proper, l.s.c. and f2 is a C2 function, (2.8)

g ∈ C2(R), g(r) ≥ 0 and g′′(r) ≤ 0 for r ∈ R, (2.9)

f ′2, g, and g′ are Lipschitz continuous. (2.10)

It is convenient to introduce the notations

κ′ := ∂rκ, κ′′ := ∂2
rκ, β := ∂f1 , and π := f ′2 (2.11)

K(m, r) :=

∫ m

0

κ(s, r) ds, K1(m, r) :=

∫ m

0

κ′(s, r) ds, K2(m, r) :=

∫ m

0

κ′′(s, r) ds

for m ≥ 0 and r ∈ R. (2.12)

We denote by D(f1) and D(β) the effective domains of f1 and β, respectively. Thanks to (2.6), it is
clear that

max{|K(m, r)|, |K1(m, r)|, |K2(m, r)|} ≤ κ∗m for every m ≥ 0 and r ∈ R. (2.13)

We also note that the structural assumptions of [5] are fulfilled if κ only depends on m, and that, due
to the presence of β(ρ), a strong singularity in equation (1.11) is allowed. On the other hand, equation
(1.10) is uniformly parabolic, since g is nonnegative and κ is bounded away from zero.

Remark 2.1. Let us recall that any convex, proper, l.s.c. function is bounded from below by an
affine function (cf., e.g., [1, Prop. 2.1, p. 51]), whence the assumption f1 ≥ 0 looks reasonable,
as one can suitably modify the smooth perturbation f2. Moreover, we point out that the sign
conditions g ≥ 0 and g′′ ≤ 0 are just needed on the set D(β), for g can be extended outside of
D(β) accordingly.

Concerning the initial data, we require that

µ0 ∈ V, µ0 ≥ 0 a.e. in Ω, (2.14)

ρ0 ∈ V, ρ0 ∈ D(f1) a.e. in Ω, f1(ρ0) ∈ L1(Ω) (2.15)
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and point out that the above assumptions regard the initial data for the limiting problem, i.e., the one
with (1.14) in place of (1.11). On the other hand, let us consider a family of initial data µ0σ, ρ0σ with

µ0σ ∈ V ∩ L∞(Ω), µ0σ ≥ 0 a.e. in Ω, (2.16)

ρ0σ ∈ W, there is ξ0σ ∈ H such that ρ0σ ∈ D(β), ξ0σ ∈ β(ρ0σ) a.e. in Ω, (2.17)

that approximate µ0, ρ0 in the sense that

µ0σ → µ0 and ρ0σ → ρ0 weakly in V, (2.18)

‖f1(ρ0σ)‖1 is bounded independently of σ. (2.19)

For the reader’s convenience, we show that such a family {µ0σ, ρ0σ} actually exists. Of course, if
µ0 6∈ L∞(Ω) we can take as µ0σ some truncation of µ0, e.g., µ0σ = min{µ0, 1/σ}. Concerning
ρ0σ, one possible choice is letting ρ0σ ∈ W denote the solution to

ρ0σ − σ∆ρ0σ + σξ0σ = ρ0, with ξ0σ ∈ β(ρ0σ), a.e. in Ω. (2.20)

Indeed, the elliptic problem (2.20) has a unique solution for all σ > 0, since −∆ + β is a maximal
monotone graph in H ×H with effective domain

{v ∈ W : ∃ η ∈ H such that v ∈ D(β), η ∈ β(v) a.e. in Ω}.

Thus, ρ0σ is nothing but the outcome of the application of the resolvent of −∆ + β to ρ0 (let us refer
to [1] and [2] for basic definitions and properties of maximal monotone operators). A formal test of the
equality in (2.20) by ξ0σ and the definition of subdifferential lead us to the estimate∫

Ω

f1(ρ0σ) + σ‖ξ0σ‖2
H ≤

∫
Ω

f1(ρ0), (2.21)

which ensures (2.17) and (2.19), thanks to the nonnegativity of f1. A rigorous way of proving the
existence of ρ0σ and estimate (2.21) passes through the use of the Yosida approximation βσ (see,
e.g., [2, p. 28]) in place of β.

Now, we recall the result proved in [6] that allows us to specify a solution to the problem (1.10)–(1.12),
with σ > 0, which fulfills the appropriate initial conditions.

Proposition 2.2. Assume that both (2.3)–(2.12) and (2.16)–(2.17) hold. Then, there exists at least
one triplet (µσ, ρσ, ξσ) satisfying

ρσ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.22)

ξσ ∈ L∞(0, T ;H), (2.23)

µσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L∞(Q), µσ ≥ 0 a.e. in Q, (2.24)

div
(
κ(µσ, ρσ)∇µσ

)
∈ L2(Q) and

(
κ(µσ, ρσ)∇µ

)
· ν = 0 a.e. on Σ, (2.25)

and solving the system of equations and conditions in the following strong form(
1 + 2g(ρσ)

)
∂tµσ + µσ g

′(ρσ) ∂tρσ − div
(
κ(µσ, ρσ)∇µσ

)
= 0 a.e. in Q, (2.26)

∂tρσ − σ∆ρσ + ξσ + π(ρσ) = µσ g
′(ρσ) and ξσ ∈ β(ρσ) a.e. in Q, (2.27)

µσ(0) = µ0σ and ρσ(0) = ρ0σ a.e. in Ω. (2.28)
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Let us point out that equation (2.26) can be rewritten as

∂tuσ − div
(
κ(µσ, ρσ)∇µσ

)
= µσ g

′(ρσ) ∂tρσ,

where uσ = (1 + 2g(ρσ))µσ, a.e. in Q, (2.29)

and the auxiliary variable uσ has been added. Now, we take advantage of a variational formulation of
(2.29) which also accounts for the boundary condition in (2.25), that is,

〈∂tuσ(t), v〉+

∫
Ω

(
κ(µσ, ρσ)∇µσ

)
(t) · ∇v =

∫
Ω

µσ g
′(ρσ) ∂tρσ v

for all v ∈ V and a.a. t ∈ (0, T ). (2.30)

The main result of this paper reads as follows.

Theorem 2.3. Assume that (2.3)–(2.12) and (2.14)–(2.19) hold. For any σ ∈ (0, 1] let (µσ, ρσ, ξσ) be
the triplet defined by Proposition 2.2 and let uσ := (1+2g(ρσ))µσ. Then, there exists a subsequence,
still labelled by the parameter σ, and a quadruplet (µ, ρ, ξ, u) such that

µσ → µ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (2.31)

ρσ → ρ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (2.32)

ξσ → ξ weakly in L2(Q), (2.33)

uσ → u weakly in W 1,4/3(0, T ;V ∗) ∩ L2(0, T ;W 1,3/2(Ω)) (2.34)

as σ ↘ 0. Moreover, any quadruplet (µ, ρ, ξ, u) that is found as limit of converging subsequences
yields a solution to the following limit problem

〈∂tu(t), v〉+
∫

Ω
κ(µ, ρ)∇µ(t) · ∇v =

∫
Ω
µ g′(ρ) ∂tρ v

for all v ∈ V and a.a. t ∈ (0, T ), (2.35)

u = (1 + 2g(ρ))µ a.e. in Q, (2.36)

∂tρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (2.37)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (2.38)

Remark 2.4. The nonnegativity property µ ≥ 0 a.e. in Q plainly follows from (2.24) and (2.31).

Remark 2.5. One standard situation for the limit problem (2.35)–(2.38) is obtained for β = ∂I[0,1]

(cf. (1.7)–(1.8)). In this case (2.37) becomes

−π(ρ) + µ g′(ρ)− ∂tρ ∈ ∂I[0,1](ρ) a.e. in Q. (2.39)

Then, if one introduces the generalized “freezing index”

w(x, t) :=

∫ t

0

(−π(ρ) + µ g′(ρ))(x, s)ds, (x, t) ∈ Q,

we thus have ∂tw−∂tρ ∈ ∂I[0,1](ρ), or equivalently, ρ = SK [w], where SK is the stop hysteresis
operator associated with the closed convex set K = [0, 1] (see, e.g., [10, 11, 12]). Hence, we
may rewrite (2.39) as

∂tw = −π(SK [w]) + µ g′(SK [w]) a.e. in Q.

6



In addition to the convergence result stated in Theorem 2.3, one can derive boundedness for both the
components ρ and ξ of any solution to the limit problem, provided that special additional requirements
are satisfied, namely, by assuming that there exist real constants ρ∗, ρ∗, ξ∗, ξ∗ such that

ρ∗, ρ
∗ ∈ D(β), ξ∗ ∈ β(ρ∗), ξ∗ ∈ β(ρ∗), (2.40)

ξ∗ + π(ρ∗) ≤ 0, ξ∗ + π(ρ∗) ≥ 0, (2.41)

g′(ρ∗) ≥ 0, g′(ρ∗) ≤ 0. (2.42)

Theorem 2.6. In addition to the assumptions of Theorem 2.3, suppose that (2.40)–(2.42) and

ρ∗ ≤ ρ0 ≤ ρ∗ a.e. in Ω (2.43)

hold. Then, the components ρ and ξ of any solution (µ, ρ, ξ, u) to problem (2.35)–(2.38) satisfy

ρ∗ ≤ ρ ≤ ρ∗ and ξ∗ ≤ ξ ≤ ξ∗ a.e. in Q. (2.44)

If moreover
µ0 ∈ L∞(Ω) (2.45)

and κ = κ0 is constant, then the solution of Problem (2.35)–(2.38) is unique and

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.46)

Remark 2.7. We observe that the above result is very general. Indeed, assumptions (2.40)–(2.42)
are fulfilled with suitable constants for any graph β with bounded domain that generalizes the
examples (1.5) or (1.7). Of course, the decreasing function g′ (cf. (2.9)) should not assume a
definite sign on D(β).

Now, we list a number of tools and notations we owe to throughout the paper. We repeatedly use the
elementary Young inequalities

a b ≤ γa2 +
1

4 γ
b2 and a b ≤ ϑa

1
ϑ + (1− ϑ)b

1
1−ϑ

for every a, b ≥ 0, γ > 0, and ϑ ∈ (0, 1) (2.47)

as well as the Hölder and Sobolev inequalities. The precise form of the latter we use is the following

W 1,p(Ω) ⊂ Lq(Ω) and ‖v‖q ≤ Cp,q‖v‖W 1,p(Ω) for every v ∈ W 1,p(Ω),

provided that 1 ≤ p < 3 and 1 ≤ q ≤ p∗ :=
3p

3− p
(2.48)

with a constant Cp,q in (2.48) depending only on Ω, p, and q, since Ω ⊂ R3. Moreover

the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact if 1 ≤ q < p∗. (2.49)

The particular case p = 2 of (2.48) becomes

V ⊂ Lq(Ω) and ‖v‖q ≤ C‖v‖V for every v ∈ V and q ∈ [1, 6] (2.50)

where C depends only on Ω. Moreover, the compactness inequality

‖v‖q ≤ ε‖∇v‖2 + Cq,ε‖v‖2 for every v ∈ V , q ∈ [1, 6), and ε > 0 (2.51)
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holds for some constant Cq,ε depending on Ω, q, and ε, only. We also recall the interpolation inequal-
ities, which hold for any ϑ ∈ [0, 1],

‖v‖r ≤ ‖v‖ϑp ‖v‖1−ϑ
q ∀ v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞] and
1

r
=
ϑ

p
+

1− ϑ
q

. (2.52)

‖v‖Lr1 (0,T ;Lr2 (Ω)) ≤ ‖v‖ϑLp1 (0,T ;Lp2 (Ω)) ‖v‖1−ϑ
Lq1 (0,T ;Lq2 (Ω))

∀ v ∈ Lp1(0, T ;Lp2(Ω)) ∩ Lq1(0, T ;Lq2(Ω)),

where pi , qi , ri ∈ [1,+∞] and
1

ri
=
ϑ

pi
+

1− ϑ
qi

for i = 1, 2. (2.53)

We observe that (2.52) implies ‖v‖r ≤ ϑ‖v‖p+(1−ϑ)‖v‖q for every v ∈ Lp(Ω)∩Lq(Ω) thanks to
the Young inequality, and a similar remark holds for (2.53). Thus, we have the continuous embeddings

Lp(Ω) ∩ Lq(Ω) ⊂ Lr(Ω) and Lp1(0, T ;Lp2(Ω)) ∩ Lq1(0, T ;Lq2(Ω)) ⊂ Lr1(0, T ;Lr2(Ω)).

We stress the important case of the spaceL∞(0, T ;L2(Ω))∩L2(0, T ;L6(Ω)), which occurs several
times in the sequel and corresponds to p1 = ∞, p2 = 2, q1 = 2, and q2 = 6. In particular,
the choices ϑ = 2/5 and ϑ = 1/7 yield the inequalities (for every v of the above space) and the
continuous embeddings

‖v‖L10/3(Q) ≤ ‖v‖
2/5
X ‖v‖

3/5
Y and X ∩ Y ⊂ L10/3(Q) (2.54)

‖v‖L7/3(0,T ;L14/3(Ω)) ≤ ‖v‖
1/7
X ‖v‖

6/7
Y and X ∩ Y ⊂ L7/3(0, T ;L14/3(Ω)) (2.55)

where X := L∞(0, T ;L2(Ω)) and Y := L2(0, T ;L6(Ω)).

Notice that we can take v ∈ L∞(0, T ;H)∩L2(0, T ;V ) in (2.54)–(2.55), since V ⊂ L6(Ω). Finally,
we set

Qt := Ω× (0, t) for t ∈ [0, T ], (2.56)

and, again throughout the paper, we use a small-case italic c for different constants, that may only
depend on Ω, the final time T , the shape of the nonlinearities f and g, and the properties of the
data involved in the statements at hand; a notation like cε signals a constant that depends also on the
parameter ε. The reader should keep in mind that the meaning of c and cε might change from line
to line and even in the same chain of inequalities, whereas those constants we need to refer to are
always denoted by capital letters, just like C in (2.50).

3 The asymptotic analysis

In this section, we prove Theorem 2.3, which ensures the existence of a solution to problem (2.35)–
(2.38) along with the convergence properties stated in (2.31)–(2.34).

Then, for any σ ∈ (0, 1] we let (µσ, ρσ, ξσ) denote the triplet defined by Proposition 2.2 and set
uσ := (1 + 2g(ρσ))µσ. The existence of (µσ, ρσ, ξσ) has been proved in [6]: we follow in parts the
arguments developed there in order to recover useful estimates independent of σ. Before that, let
us remark that the property µσ ≥ 0 can be verified by simply multiplying equation (2.26) by −µ−σ ,

8



the negative part of µσ, and integrate over Qt. In principle, in this computation one has to define κ
everywhere, e.g., by taking an even extension κ̄ with respect to the first variable. We observe that[(

1 + 2g(ρσ(t))
)
∂tµσ + µσ g(ρσ) ∂tρσ

]
(−µ−σ ) =

1

2
∂t
(
(1 + 2g(ρσ(t))) |µ−σ |2

)
.

Hence, by using µ0σ ≥ 0 and owing to the boundary condition in (2.25), we have

1

2

∫
Ω

(1 + 2g(ρσ(t))) |µ−σ (t)|2 +

∫
Qt

κ̄(µσ, ρσ)|∇µ−σ |2 = 0 for a.a. t ∈ (0, T ).

As both g and κ̄ are nonnegative, this implies µ−σ = 0, that is, µσ ≥ 0 a.e. in Q.

First a priori estimate. We test (2.26) by µσ and point out that[(
1 + 2g(ρσ)

)
∂tµσ + µσ g

′(ρσ) ∂tρσ
]
µσ =

1

2
∂t
[
(1 + 2g(ρσ)µ2

σ

]
. (3.1)

Thus, by integrating over (0, t), where t ∈ [0, T ] is arbitrary, we obtain∫
Ω

(
1 + 2g(ρσ(t))

)
|µσ(t)|2 + 2

∫
Qt

κ(µσ(s), ρσ(s))|∇µσ|2 =

∫
Ω

(1 + 2g(ρ0σ))µ2
0σ .

We recall that g is nonnegative and Lipschitz continuous (cf. (2.9)–(2.10)). Moreover, ρ0σ, µ0σ are
both uniformly bounded in V by (2.18), whence∫

Ω

(1 + 2g(ρ0σ))µ2
0σ ≤ c

(
‖µ0σ‖2

2 + ‖ρ0σ‖2‖µ0σ‖2
4

)
≤ c

owing to the Hölder and Sobolev inequalities (see (2.50)). Then, in view of g ≥ 0 and κ ≥ κ∗ > 0,
from (3.1) it follows that

‖µσ‖L∞(0,T ;H) + ‖µσ‖L2(0,T ;V ) ≤ c. (3.2)

Second a priori estimate. We add ρσ to both sides of (2.27) and test by ∂tρσ. On account of (2.7)–
(2.8) and (2.11), we obtain∫

Qt

|∂tρσ|2 +
1

2
‖ρσ(t)‖2

H +
σ

2
‖∇ρσ(t)‖2

H +

∫
Ω

f1(ρσ(t))

=
σ

2

∫
Ω

|∇ρ0σ|2 +

∫
Ω

f(ρ0σ) +
1

2

∫
Ω

(
ρ2
σ(t)− 2f2(ρσ(t))

)
+

∫
Qt

µσg
′(ρσ)∂tρσ

for every t ∈ [0, T ]. Then, thanks to the Lipschitz continuity of f ′2 and g, and owing to the bounds
entailed by (2.18)–(2.19), we find out that∫

Qt

|∂tρσ|2 +
1

2
‖ρσ(t)‖2

H +
σ

2
‖∇ρσ(t)‖2

H +

∫
Ω

f1(ρσ(t))

≤ c+ c

∫
Ω

|ρσ(t)|2 +
1

4

∫
Qt

|∂tρσ|2 + c‖µσ‖2
L∞(0,T ;H).

On the other hand, by the chain rule and the Young inequality (2.47) we have that

c

∫
Ω

|ρσ(t)|2 ≤ c

∫
Ω

|ρ0σ|2 +
1

4

∫
Qt

|∂tρσ|2 + c

∫ t

0

‖ρσ(s)‖2
H ds.
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Then, as f1 is nonnegative, by accounting for (3.2), with the help of the Gronwall lemma we infer that∫
Qt

|∂tρσ|2 + ‖ρσ(t)‖2
H + σ ‖∇ρσ(t)‖2

H ≤ c for all t ∈ [0, T ].

Thus, we conclude that
‖ρσ‖H1(0,T ;H) + σ1/2‖ρσ‖L∞(0,T ;V ) ≤ c. (3.3)

Third a priori estimate. We proceed formally and test (2.27) by−∆ρσ. Hence, integrating by parts
and with respect to time, we deduce that

1

2
‖∇ρσ(t)‖2

H + σ

∫
Qt

|∆ρσ|2 +

∫
Qt

β′(ρσ)|∇ρσ|2

≤ 1

2

∫
Ω

|∇ρ0σ|2 −
∫
Qt

π′(ρσ)|∇ρσ|2 +

∫
Qt

g′(ρσ)∇µσ · ∇ρσ +

∫
Qt

g′′(ρσ)µσ|∇ρσ|2, (3.4)

where the equality ξσ = β(ρσ) has been used along with the smoothness of β, according to our formal
procedure. In fact, what is important is that the related term on the left-hand side is nonnegative, i.e.,∫

Qt

β′(ρσ)|∇ρσ|2 ≥ 0.

Concerning the right-hand side of (3.4), we have that
1

2

∫
Ω

|∇ρ0σ|2 ≤ c due to (2.18), and the

estimate

−
∫
Qt

π′(ρσ)|∇ρσ|2 +

∫
Qt

g′(ρσ)∇µσ · ∇ρσ ≤ c

∫ t

0

‖∇ρσ(s)‖2
Hds+ c ‖µσ‖2

L2(0,T ;V )

owing to the boundedness of π′ and g′ (see (2.10)–(2.11)). About the last term, (2.9) and (2.24) imply∫
Qt

g′′(ρσ)µσ|∇ρσ|2 ≤ 0,

so that the sign properties of g′′ and µσ become crucial to control this term. Then, in view of (3.2),
from (3.4) it follows that

1

2
‖∇ρσ(t)‖2

H + σ

∫
Qt

|∆ρσ|2 ≤ c+ c

∫ t

0

‖∇ρσ(s)‖2
H ds for all t ∈ [0, T ],

and the Gronwall lemma and (3.3) allow us to deduce that

‖ρσ‖L∞(0,T ;V ) + σ1/2‖ρσ‖L2(0,T ;W ) ≤ c. (3.5)

Note that here we have used the regularity theory for elliptic equations, owing to the bound on
σ‖∆ρσ‖2

2 and to the homogeneous Neumann boundary condition satisfied by ρσ (cf. (2.22)). Finally,
an easy consequence of (3.3) and (3.5) comes out from a comparison of terms in (2.27), which yields

‖ξσ‖L2(0,T ;H) ≤ c. (3.6)
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Fourth a priori estimate. As uσ = (1 + 2g(ρσ))µσ, by (2.10) we have that

|uσ| ≤ c (1 + |ρσ|) |µσ|,
|∇uσ| = |2g′(ρσ)µσ∇ρσ + (1 + 2g(ρσ))∇µσ| ≤ c |µσ| |∇ρσ|+ c (1 + |ρσ|) |∇µσ|.

Now, taking (3.2) into account, we see that |∇µσ| is bounded in L2(0, T ;L2(Ω)), while |µσ| is
bounded in L2(0, T ;L6(Ω)) thanks to the Sobolev inequality (2.50). On the other hand, (3.5) pro-
vides a bound for |∇ρσ| in L∞(0, T ;L2(Ω)) and for |ρσ| in L∞(0, T ;L6(Ω)). Hence, using Hölder’s
inequality, it is not difficult to check that the products |µσ| |∇ρσ| and |ρσ| |∇µσ| are bounded in
L2(0, T ;L3/2(Ω)), whereas |ρσ| |µσ| is even bounded in L2(0, T ;L3(Ω)). Therefore, we conclude
that

‖uσ‖L2(0,T ;W 1,3/2(Ω)) ≤ c . (3.7)

Fifth a priori estimate. Let us recall that (3.2) and (2.50) imply the boundedness of {µσ} in the
space L∞(0, T ;L2(Ω))∩L2(0, T ;L6(Ω)). Then, we can apply (2.52) with p = 2, q = 6, ϑ = 1/2,
r = 3 to see that

‖µσ(t)‖2
3 ≤ ‖µσ(t)‖2‖µσ(t)‖6 for a.a. t ∈ (0, T ),

whence squaring and integrating with respect to t lead to

‖µσ‖4
L4(0,T ;L3(Ω)) ≤ ‖µσ‖2

L∞(0,T ;L2(Ω)) ‖µσ‖2
L2(0,T ;L6(Ω)) ≤ c. (3.8)

Consider now (2.30) which turns out to be a variational formulation of (2.26). As we want to prove that

‖∂tuσ‖L4/3(0,T ;V ∗) ≤ c , (3.9)

we use (2.30) and let v vary in L4(0, T ;V ). By integrating with respect to time and invoking (2.6), the
boundedness of g′ and Hölder’s inequality, we obtain∣∣∣∣∫ T

0

〈∂tuσ(t), v(t)〉 dt
∣∣∣∣

≤ κ∗‖∇µσ‖L2(0,T ;H)‖∇v‖L2(0,T ;H) + c

∫ T

0

‖µσ(t)‖3‖∂tρσ(t)‖2‖v(t)‖6 dt.

Hence, in view of (3.2), by applying the Hölder and Sobolev inequalities (see (2.50)) in the time integral,
we infer that ∣∣∣∣∫ T

0

〈∂tuσ(t), v(t)〉 dt
∣∣∣∣

≤ c‖v‖L2(0,T ;V ) + c‖µσ‖L4(0,T ;L3(Ω))‖∂tρσ‖L2(0,T ;H)‖v‖L4(0,T ;V ).

Now, the continuous embedding L4(0, T ;V ) ⊂ L2(0, T ;V ), (3.8) and (3.3) allow us to conclude
that ∣∣∣∣∫ T

0

〈∂tuσ(t), v(t)〉 dt
∣∣∣∣ ≤ c‖v‖L4(0,T ;V ),

whence (3.9) follows.

Passage to the limit. By the above estimates, there are a quadruplet (µ, ρ, ξ, u), with µ ≥ 0 a.e.
in Q, and a function k such that (2.31)–(2.34) are satisfied as long as

κ(µσ, ρσ)→ k weakly star in L∞(Q) (3.10)

11



at least for a subsequence σ = σi↘0. By the weak convergence of time derivatives, the Cauchy
conditions (2.28) hold for the limit pair (ρ, u). By (2.32), (2.34), and the compact embedding (2.49),
we can apply well-known strong compactness results (see, e.g., [15, Sect. 8, Cor. 4]) and infer that
(possibly taking another subsequence)

ρσ → ρ strongly in C0([0, T ];Lp(Ω)) for p < 6 and a.e. in Q (3.11)

uσ → u strongly in L2(0, T ;Lp(Ω)) for p < 3 and a.e. in Q. (3.12)

The weak convergence (2.33), together with (3.11) with p = 2, implies that ξ ∈ β(ρ) a.e. in Q (see,
e.g., [2, Prop. 2.5, p. 27]), due to the maximal monotonicity of the operator induced by β on L2(Q).
Now, we deal with the other nonlinear terms and the products. We first observe that (3.11) also entails
that

φ(ρσ)→ φ(ρ) strongly in C0([0, T ];Lp(Ω)) for p < 6 and a.e. in Q (3.13)

for φ = g, g′, π, 1/(1+2g), thanks to the Lipschitz continuity of such functions. This is sufficient to es-
tablish equation (2.37). Indeed, by accounting for (2.31), we see that the product µσg(ρσ) converges to
µg(ρ) weakly (e.g.) in L2(Q). On the other hand, (3.5) implies that σ∆ρσ converges to zero strongly
in L2(Q). Now, we prove equations (2.35)–(2.36), which involve the whole triplet (µ, ρ, u). The first
step is showing strong convergence for µσ and relation (2.36). By combining (3.13) with (3.12), we
see that

µσ =
uσ

1 + 2g(ρσ)
→ u

1 + 2g(ρ)
a.e. in Q. (3.14)

This and (2.31) imply µ = u/(1 + 2g(ρ)) and (2.36) is proved. Moreover, as {µσ} is bounded
in L10/3(Q) by (3.2), the Sobolev embedding V ⊂ L6(Ω), and (2.54), we can also deduce a strong
convergence. We summarize as follows:

µσ → µ strongly in Lp(Q) for every p < 10/3 and a.e. in Q. (3.15)

From this, we immediately infer that κ(µσ, ρσ) converges to κ(µ, ρ) a.e. inQ, just by continuity. Then,
(3.10) implies k = κ(µ, ρ) and

κ(µσ, ρσ)→ κ(µ, ρ) strongly in Lp(Q) for every p < +∞. (3.16)

Therefore, κ(µσ, ρσ)∇µσ converges to κ(µ, ρ)∇µ weakly inLp(Q) for every p < 2, thanks to (2.31),
and the choice p = 3/2 yields∫

Q

κ(µσ, ρσ)∇µσ · ∇v →
∫
Q

κ(µ, ρ)∇µ · ∇v for every v ∈ L3(0, T ;W 1,3(Ω)).

On the other hand, µσg′(ρσ)∂tρσ converges to µg′(ρ)∂tρ weakly at least in L1(Q), as one can easily
see by combining (2.32), (3.13), and (3.15). It follows that∫

Q

µσg
′(ρσ)∂tρσ v →

∫
Q

µg′(ρ)∂tρ v for every v ∈ L∞(Q).

Moreover, (2.34) holds. Hence, we can conclude that∫ T

0

〈∂tu(t), v(t)〉 dt+

∫
Q

κ(µ, ρ)∇µ · ∇v =

∫
Q

µg′(ρ)∂tρ v

for every v ∈ L3(0, T ;W 1,3(Ω)) ∩ L∞(Q). (3.17)

Now, we observe that ∂tu ∈ L4/3(0, T ;V ∗) by (2.34) and that κ(µ, ρ)∇v ∈ L2(0, T ;H) by
(2.31) and the boundedness of κ. Finally, µg′(ρ)∂tρ ∈ L4/3(0, T ;L6/5(Ω)), since g′ is bounded,
∂tρ ∈ L2(0, T ;H), and µ ∈ L4(0, T ;L3(Ω)) as a consequence of (2.31), V ⊂ L6(Ω), and (3.8)).
Therefore, we can improve (3.17) by a density argument and see that the variational equation still
holds for any v ∈ L4(0, T ;V ). What we obtain is equivalent to (2.35), and the proof is complete.
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4 Properties of the limit problem

In this section, we prove Theorem 2.6. In the whole section, it is understood that the assumptions
of Theorem 2.6 are satisfied, and sometimes we do not remind the reader about that. As far as the
first part of Theorem 2.6 is concerned, the true result regards ordinary variational inequalities and we
present it in the form of a lemma. For convenience, we use the same notation ρ, etc., even though it
is clear that everything is independent of x: the dot over the variable ρ denotes the (time) derivative,
here.

Lemma 4.1. Let (2.40)–(2.42) hold and ρ∗ ≤ ρ0 ≤ ρ∗. Then for every nonnegative function µ ∈
L1(0, T ), the differential inclusion

ρ̇(t) + β(ρ(t)) + π(ρ(t))− µ(t)g′(ρ(t)) 3 0 for a.a. t ∈ (0, T ) and ρ(0) = ρ0 (4.1)

has a unique solution ρ ∈ W 1,1(0, T ) such that

ρ∗ ≤ ρ(t) ≤ ρ∗ and ξ∗ ≤ ξ(t) ≤ ξ∗ for a.a. t ∈ (0, T ), (4.2)

where
ξ(t) := −

(
ρ̇(t) + π(ρ(t))− µ(t)g′(ρ(t))

)
∈ β(ρ(t)).

Moreover, there exists a constant C > 0 such that if µ1, µ2 ∈ L1(0, T ) and ρ1
0, ρ

2
0 are two inputs and

ρ1, ρ2 are the corresponding solutions of (4.1), then for every t ∈ [0, T ] we have

|ρ1 − ρ2|(t) +

∫ t

0

|ρ̇1 − ρ̇2|(τ) dτ

≤ C

(
|ρ1

0 − ρ2
0|+

∫ t

0

(
(1 + µ1)|ρ1 − ρ2|+ |µ1 − µ2|

)
(τ) dτ

)
. (4.3)

Proof. The existence of a unique solution can easily be proved, e.g., by the iterated Banach Contrac-
tion Principle, due to the monotonicity of β and to the Lipschitz continuity of the other nonlinearities. In
(4.2), we only prove the upper inequalities since the proof of the lower ones is quite similar. It suffices
to prove the desired inequalities for the solution (ρ, ξ) of the cut-off problem

ρ̇(t) + ξ(t) + π∗(ρ(t))− µ(t)g∗(ρ(t)) = 0, ξ(t) ∈ β(ρ(t)) for a.a. t ∈ (0, T ), (4.4)

ρ(0) = ρ0 , (4.5)

where π∗ and g∗ are defined by

π∗(r) := π(min{r, ρ∗}) and g∗(r) := g′(min{r, ρ∗}) .

We test (4.1) by (ρ−ρ∗)+ and integrate. Recalling (2.40)–(2.42) and noting that ξ ≥ ξ∗ and g∗(ρ) =
g′(ρ∗) where ρ > ρ∗, we obtain

1

2
|(ρ(t)− ρ∗)+|2 ≤ −

∫ t

0

(
ξ − ξ∗

)
(ρ− ρ∗)+ −

∫ t

0

(
ξ∗ + π∗(ρ∗)

)
(ρ− ρ∗)+

+

∫ t

0

(
π(ρ∗)− π(ρ)

)
(ρ− ρ∗)+ +

∫ t

0

µ g∗(ρ)(ρ− ρ∗)+

≤
∫ t

0

(
π(ρ∗)− π(ρ)

)
(ρ− ρ∗)+ ≤ c

∫ t

0

|(ρ− ρ∗)+|2
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and the assertion is obtained by the Gronwall argument. The second inequality follows from the mono-
tonicity of β. Moreover, the lower bounds can be checked in a similar way. To prove (4.3), we set
wi(t) = µi(t)g

′(ρi(t))−π(ρi(t)), ξi(t) = wi(t)− ρ̇i(t), i = 1, 2. We have (ξ1−ξ2)(ρ1−ρ2) ≥ 0
almost everywhere. The function sign(ξ1 − ξ2) (with sign(0) = 0) is bounded and measurable, and
so is sign(ρ1 − ρ2). We now claim that by testing the identity

(ξ1 − ξ2) + (ρ̇1 − ρ̇2) = w1 − w2 (4.6)

by sign(ξ1 − ξ2), we infer that

|ξ1 − ξ2|+
d

dt
|ρ1 − ρ2| ≤ |w1 − w2| a.e. in (0, T ). (4.7)

Indeed, this is obvious for all t such that sign(ξ1 − ξ2)(t) = sign(ρ1 − ρ2)(t) or such that ξ1(t) =
ξ2(t). The remaining case is sign(ξ1 − ξ2)(t) 6= 0, sign(ρ1 − ρ2)(t) = 0. For almost all t with this
property, we have ρ̇1(t) = ρ̇2(t), d

dt
|ρ1− ρ2|(t) = 0, and (4.7) follows. Using the Lipschitz continuity

properties in (2.10) and integrating (4.7) over (0, t), we obtain for t ∈ (0, T )∫ t

0

|ξ1− ξ2|(s) ds+ |ρ1−ρ2|(t) ≤ c

(
|ρ1

0 − ρ2
0|+

∫ t

0

(
(1 + µ1)|ρ1 − ρ2|+ |µ1 − µ2|

)
(τ) dτ

)
.

On the other hand, (4.6) yields∫ t

0

|ρ̇1 − ρ̇2|(s) ds ≤
∫ t

0

(
|w1 − w2|+ |ξ1 − ξ2|

)
(s) ds

and (4.3) follows from the sum of the last two inequalities.

Next, if (µ, ρ, ξ, u) is a solution to problem (2.35)–(2.38), it is clear that, for almost all x ∈ Ω, the
functions µ(x, ·) and ρ(x, ·), and the constant ρ0(x) satisfy the assumptions of Lemma 4.1. Thus, the
first part of Theorem 2.6 concerning bounds (2.44) is proved. We derive an interesting consequence.

Corollary 4.2. Under the assumptions of Theorem 2.6, let (µ, ρ, ξ, u) be a solution to problem (2.35)–
(2.38) satisfying the regularity conditions specified in Theorem 2.3. Then

µ ∈ L∞(Q) and ∂tρ ∈ L∞(Q). (4.8)

Proof. We already know that both ξ and π(ρ) are bounded. Moreover, µg′(ρ) belongs to
L∞(0, T ;H)∩L2(0, T ;L6(Ω)) since µ does so and g′(ρ) is bounded. We see that also ∂tρ belongs
to such a space, just by comparison in (2.37). It follows that ∂tρ ∈ L7/3(0, T ;L14/3(Ω)) by (2.55).
From this and assumption (2.45), we derive the boundedness of µ. Indeed, we can reproduce the
proof carried out in [6, Fifth a priori estimate], since that proof acts only on the equation for µ and
works provided that an estimate of ∂tρ in L7/3(0, T ;L14/3(Ω)) is known. At this point, by comparing
in (2.37) once more, we conclude that ∂tρ is bounded as well.

Remark 4.3. The analogous estimate

ρ∗ ≤ ρσ ≤ ρ∗ a.e. in Q (4.9)

for the solution to problem (2.26)–(2.28) also holds provided that

ρ∗ ≤ ρ0σ ≤ ρ∗ a.e. in Ω. (4.10)
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We prove one of the inequalities (4.9), the other one being similar. We proceed as in the proof of
Lemma 4.1, testing (2.27) by (ρσ−ρ∗)+ and integrating. By accounting for the second inequality
(4.10), we easily obtain

1

2

∫
Ω

|(ρσ − ρ∗)+(t)|2 + σ

∫
Qt

|∇(ρσ − ρ∗)+|2

+

∫
Qt

(
ξσ − ξ∗

)
(ρσ − ρ∗)+ +

∫
Qt

(
ξ∗ + π(ρ∗)

)
(ρσ − ρ∗)+

≤
∫
Qt

(
π(ρ∗)− π(ρσ)

)
(ρσ − ρ∗)+ +

∫
Qt

µσ g
′(ρσ)(ρσ − ρ∗)+.

Now, we observe that all the terms on the left-hand side are nonnegative, the third one thanks to
(2.40) and the monotonicity of β (as before, the integrand vanishes whenever ρσ ≤ ρ∗), the last
one due to (2.41). Concerning the right-hand side, we show that the last integrand is nonpositive.
Indeed, g′ is decreasing (see (2.9)), whence g′(ρσ) ≤ g′(ρ∗) ≤ 0 if ρσ > ρ∗, and µσ ≥ 0. By
taking all this into account and owing to the Lipschitz continuity of π (cf. (2.11)), we can apply
the Gronwall lemma and conclude that (ρσ − ρ∗)+ = 0, i.e., ρ ≤ ρ∗ a.e. in Q.

Remark 4.4. A sufficient condition for (4.10) to hold at least for small σ is that ρ0σ is given
by (2.20) and the hypotheses of Theorem 2.6 are reinforced by also assuming that

either inf ess ρ0 > ρ∗ and sup ess ρ0 < ρ∗ or ξ∗ ≤ 0 ≤ ξ∗. (4.11)

The proof is rather simple and we show just one of the desired inequalities since the other one
is quite similar. We test (2.20) by (ρ0σ − ρ∗)+. We easily obtain∫

Ω

|(ρ0σ − ρ∗)+|2 + σ

∫
Ω

|∇(ρ0σ − ρ∗)+|2 + σ

∫
Ω

(ξ0σ − ξ∗)(ρ0σ − ρ∗)+

=

∫
Ω

(ρ0 − ρ∗ − σξ∗)(ρ0σ − ρ∗)+. (4.12)

In the first case (4.11), we set δ := ρ∗ − sup ess ρ0 and take σ∗ > 0 such that σ∗ |ξ∗| ≤ δ. Then,
for σ ≤ σ∗, we have ρ0 − ρ∗ − σξ∗ ≤ −δ + σ∗|ξ∗| ≤ 0 a.e. in Ω, so that the right-hand side of
(4.12) is nonpositive. In the second case (4.11), the same conclusion trivially holds. As the last
two terms on the left-hand side are nonnegative (since (2.40) holds, β is monotone, and the third
integrand vanishes whenever ρ0σ ≤ ρ∗), we conclude that (ρ0σ − ρ∗)+ = 0, whence ρ0σ ≤ ρ∗.

Proof of the second part of Theorem 2.6. Assume thus that κ(µ, ρ) = κ0 and set for simplicity
κ0 = 1. The system now reads

〈∂tu(t), v〉+

∫
Ω

∇µ(t) · ∇v =

∫
Ω

µ g′(ρ) ∂tρ v

for all v ∈ V and a.a. t ∈ (0, T ), (4.13)

u = (1 + 2g(ρ))µ a.e. in Q, (4.14)

∂tρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (4.15)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (4.16)
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Let (µi, ρi, ξi, ui), i = 1, 2 be two solutions of (4.13)–(4.16). We integrate (4.13) in time from 0 to t
and subtract the equation with index 2 from the one with index 1. We test the result by v = (µ1−µ2)(t)
and obtain, by virtue of Corollary 4.2, that∫

Ω

(u1 − u2)(µ1 − µ2)(t) +
1

2

d

dt

∫
Ω

∣∣∣∣∫ t

0

∇(µ1 − µ2)dτ

∣∣∣∣2
≤ c

∫
Ω

(
|µ1 − µ2|(t)

∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|+ |∂tρ1 − ∂tρ2|) (τ)dτ

)
. (4.17)

In addition, from Lemma 4.1 (see, in particular, (4.3)) and Hölder’s inequality it follows that∫
Ω

(∫ t

0

|∂tρ1 − ∂tρ2|(τ) dτ

)2

≤ c

∫
Ω

(∫ t

0

(|ρ1 − ρ2|+ |µ1 − µ2|)(τ) dτ

)2

, (4.18)∫
Ω

|ρ1 − ρ2|2(s) ≤ D

∫ s

0

∫
Ω

(
|ρ1 − ρ2|2 + |µ1 − µ2|2

)
(τ) dτ (4.19)

for every t, s ∈ [0, T ], thanks to the boundedness for µ1 ensured by Corollary 4.2. Note that the
constant D in (4.19) is marked for later reference.

Now, we observe that the inequalities

(u1 − u2)(µ1 − µ2) ≥ |µ1 − µ2|2 − 2µ1

(
g(ρ1)− g(ρ2)

)
(µ1 − µ2) ≥ 1

2
|µ1 − µ2|2 − c|ρ1 − ρ2|2

hold a.e. in Q. Thus, by integrating (4.17) from 0 to s, s ∈ (0, T ), and ignoring a positive term on the
left-hand side, we obtain∫ s

0

∫
Ω

|µ1 − µ2|2(t) dt ≤ c

∫ s

0

∫
Ω

|ρ1 − ρ2|2(t) dt+ c

(∫ s

0

∫
Ω

|µ1 − µ2|2(t) dt

)1/2

×

(∫ s

0

∫
Ω

(∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|+ |∂tρ1 − ∂tρ2|) (τ)dτ

)2

dt

)1/2

. (4.20)

Hence, using Young’s inequality and (4.18), we have that∫ s

0

∫
Ω

|µ1 − µ2|2(t) dt ≤ c

∫ s

0

∫
Ω

|ρ1 − ρ2|2(t) dt

+c

∫ s

0

∫
Ω

(∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|) (τ)dτ

)2

dt. (4.21)

We now multiply (4.21) by 2D and add it to (4.19). Thus, we obtain an inequality of the form Φ(s) ≤
c
∫ s

0
Φ(t)dt, with

Φ(s) =

∫
Ω

|ρ1 − ρ2|2(s) +

∫ s

0

∫
Ω

|µ1 − µ2|2(t) dt.

From the Gronwall argument, it is straightforward to deduce that Φ(s) = 0 for all s, hence, µ1 = µ2,
ρ1 = ρ2, which implies uniqueness.

The L2 bound for ∂tµ can be established in the following way. Assume first that µ0 ∈ W . We extend
µ by µ0 and ρ by ρ0 for t < 0. Then, equation (4.13) can be written as

〈∂tu(t), v〉+

∫
Ω

∇µ(t) · ∇v =

∫
Ω

ψ(t) v for all v ∈ V and a.a. t ∈ (0, T ), (4.22)
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where ψ is defined by ψ(t) =
(
µg′(ρ)∂tρ

)
(t) for t > 0 and ψ(t) = −∆µ0 for t < 0. We observe

that ψ ∈ L∞(−T, T ;H) thanks to Corollary 4.2 and to our assumption on µ0. Next, we integrate
(4.22) in time from (t−h) to t for any fixed t ∈ (0, T ) and a small h > 0, with the intention to let h
tend to zero, and test the resulting equality by µ(t)− µ(t− h). We obtain∫

Ω

(
u(t)− u(t− h)

)(
µ(t)− µ(t− h)

)
+

1

2

∫
Ω

d

dt

∣∣∣∣∫ t

t−h
∇µ(τ) dτ

∣∣∣∣2
=

∫
Ω

(∫ t

t−h
ψ(τ) dτ

) (
µ(t)− µ(t− h)

)
≤ 1

4

∫
Ω

|µ(t)− µ(t− h)|2 +

∥∥∥∥∫ t

t−h
ψ(τ) dτ

∥∥∥∥2

H

≤ 1

4

∫
Ω

|µ(t)− µ(t− h)|2 + c h2 (4.23)

Now, we recall that (4.14) holds, that g is nonnegative and Lipschitz continuous, and that µ and ∂tρ
are bounded by Corollary 4.2. Hence, we easily derive that(

u(t)− u(t− h)
)(
µ(t)− µ(t− h)

)
≥ |µ(t)− µ(t− h)|2 − 2µ(t) |g(ρ(t))− g(ρ(t− h))| |µ(t)− µ(t− h)|

≥ |µ(t)− µ(t− h)|2 − c h |µ(t)− µ(t− h)| ≥ 1

2
|µ(t)− µ(t− h)|2 − c h2.

Therefore, by integrating (4.23) from 0 to T , forgetting the nonnegative term that involves ∇µ, and
rearranging, we obtain∫ T

0

∫
Ω

|µ(t)− µ(t− h)|2 dt ≤ c h2 + c

∫
Ω

∣∣∣∣∫ 0

−h
∇µ0 dτ

∣∣∣∣2 ≤ c h2.

As h > 0 is arbitrarily small, this implies that ∂tµ ∈ L2(Q). At this point, we are allowed to use the
Leibniz rule for the time derivative ∂tu; then, from (4.13)–(4.14) we infer that the equation(

1 + 2g(ρ)
)
∂tµ+ µg′(ρ)∂tρ−∆µ = 0 (4.24)

holds at least in the sense of distributions. By comparison, we deduce that ∆µ ∈ L2(Q), whence
µ ∈ L2(0, T ;W ). Using the identity

−
∫

Ω

∂tµ∆µ =
1

2

d

dt

∫
Ω

|∇µ|2 a.e. in (0, T ),

we see that∇µ ∈ L∞(0, T ;L2(Ω)). Thus, the regularity (2.46) is established if µ0 ∈ W .

Let now µ0 ∈ V ∩L∞(Ω) be arbitrary, and consider a sequence {µ0
k} ⊂ W bounded in L∞(Ω) and

converging to µ0 in V as k →∞. Let (µk, ρk, ξk, uk) be the corresponding solutions to (4.13)–(4.16).
Then, we can use equation (4.24) written with the index k and test it by ∂tµk. We obtain∫

Ω

|∂tµk(t)|2 +
1

2

d

dt

∫
Ω

|∇µk(t)|2 ≤
∫

Ω

|ψk(t)| |∂tµk(t)|, (4.25)

with an obvious choice of ψk ∈ L2(Q) bounded in this space (even better) independently of k.
By time integration, it is straightforward to obtain a bound for ‖∂tµk‖L2(Q) and for ‖∇µk‖L∞(0,T ;H)

independent of k. Then, by weak star compactness we infer that

µk → µ̃ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V )

17



at least for a subsequence, which implies (see, e.g., [15, Cor. 4, p. 85]) strong convergence in
C0([0, T ];H). In particular, µ̃(0) = µ0. On the other hand, (µk, ρk, ξk, uk) satisfies the estimates
stated in Lemma 4.1 and the boundedness properties for µk and ∂tρk given by Corollary 4.2, which
are uniform with respect to k. This yields weak or weak star limits ρ̃ and ξ̃. Moreover, strong conver-
gence in L1(Q) for {ρk} and {∂tρk} is ensured via a Cauchy sequence argument based on (4.3),
integration over Ω, and Gronwall’s lemma. Hence, {µk}, {ρk}, {∂tρk} converge strongly in Lp(Q)
for every p ∈ [1,∞). At this point, it is not difficult to verify that (µ̃, ρ̃, ξ̃, ũ), with the correspond-
ing ũ, actually solves problem (2.35)–(2.38) and thus coincides with the unique solution (µ, ρ, ξ, u).
Therefore, the proof is complete.
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