
Knowledge and Information Systems
https://doi.org/10.1007/s10115-022-01826-x

REGULAR PAPER

Information extraction pipelines for knowledge graphs

Mohamad Yaser Jaradeh1 · Kuldeep Singh2 ·Markus Stocker3 · Andreas Both4 ·
Sören Auer3

Received: 29 September 2021 / Revised: 16 December 2022 / Accepted: 25 December 2022
© The Author(s) 2023

Abstract
In the last decade, a large number of knowledge graph (KG) completion approacheswere pro-
posed.Albeit effective, these efforts are disjoint, and their collective strengths andweaknesses
in effective KG completion have not been studied in the literature. We extend Plumber, a
framework that brings together the research community’s disjoint efforts on KG completion.
We includemore components into the architecture of Plumber to comprise 40 reusable com-
ponents for various KG completion subtasks, such as coreference resolution, entity linking,
and relation extraction. Using these components, Plumber dynamically generates suitable
knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the opti-
mization problem of choosing optimal pipelines based on input sentences. To do so, we
train a transformer-based classification model that extracts contextual embeddings from the
input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the
KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research
Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically
generating KG completion pipelines, outperforming all baselines agnostic of the underlying
KG. Furthermore, we provide an analysis of collective failure cases, study the similarities
and synergies among integrated components and discuss their limitations.

Keywords Information extraction · NLP pipelines · Software reusability · Semantic search ·
Semantic web

1 Introduction

Since the early twenty-first century [8], there have been continuous efforts to extend theWeb
with a global data graph using the Resource Data Framework (RDF) to publish structured

B Mohamad Yaser Jaradeh
jaradeh@l3s.de

1 L3S Research Center, Leibniz University Hannover, Hanover, Germany

2 Zerotha-Research and Cerence GmbH, Aachen, Germany

3 TIB Leibniz Information Centre for Science and Technology, Hanover, Germany

4 Anhalt University of Applied Sciences, Bernburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01826-x&domain=pdf
http://orcid.org/0000-0001-8777-2780


M. Y. Jaradeh et al.

data on theWeb. One of the pivotal steps in this effort was the emergence of publicly available
Knowledge Graphs (KG) such as DBpedia [4] and Yago [28] as large sources of structured
data. Since then, these KGs have become a rich source of structured content used in various
applications, including Question Answering (QA), fact checking, and dialog systems [6].
The research community addresses the problem of populating a KG from multiple angles,
one of them is the semantic labeling of (semi-)structured data [1, 60], others use unstructured
text to populate a KG. We focus on the latter efforts in our work. Numerous approaches
to extract triple statements [66], keywords/topics [16, 17], tables [36, 37, 67], or entities
[54, 55] from unstructured text to complement KGs have been developed by the community.
Despite extensive research, public KGs are not exhaustive and require continuous effort to
align newly emerging unstructured information to the concepts of the KGs.

In this article, we extend our previous work in [40] in the following regards:

– We formalize the workflow of the framework and include details of how components are
selected and how pipelines are generated.

– We further include eight new components to the list of community-created components
that Plumber can use to generate dynamic information extraction pipelines.

– We evaluate further on another widely used KG (Wikidata) with a big dataset that is used
by the community.

– We further analyze error rates, time efficiency, and conduct a more detailed ablation
study on the newly supported dataset and the old ones. Furthermore, we show how the
framework can be used in a human-in-the-loop workflow to improve extractions and
results.

1.1 Research problem

This work was motivated by an observation with recent approaches [20, 26, 54, 55, 67] that
automatically align unstructured text to structured data on the Web. Such approaches are
not viable in practice for extracting and structuring information because they only address
very specific subtasks of the overall KG completion problem. If we consider the exemplary
sentence Rembrandt painted The Storm on the Sea of Galilee. It was painted in 1633. To
extract statements alignedwith the DBpedia KG from the given sentences, a systemmust first
recognize the entities and relation surface forms in the first sentence. The second sentence
requires an additional step of coreference resolution, where It must be mapped to the correct
entity surface form (namely, The Storm on the Sea of Galilee). The last step requires mapping
of entity and relation surface forms to the respective DBpedia entities and predicates.

There has been extensive research in aligning concepts in unstructured text to KG, includ-
ing entity linking [26, 30, 35], relation linking [6, 55, 57], and triple classification [25].
However, these efforts are disjoint, and little has been done to align unstructured text to
the complete KG triples [41, 64]. Furthermore, many entity and relation linking tools have
been reused in pipelines of QA systems [42, 58]. The literature suggests that once different
approaches put forward by the research community are combined, the resulting pipeline-
oriented integrated systems can outperform monolithic end-to-end systems. For example,
Liang et al. [43] propose a modular QA system built reusing a variety of existing NLP com-
ponents that outperform all existing end-to-end methods on the DBpedia-based QA task.
For the KG completion task, however, to the best of our knowledge, approaches aiming at
dynamically integrating and orchestrating various existing components do not exist.

123



Information extraction pipelines for knowledge graphs

Fig. 1 Plumber in action: three information extraction pipelines that convert natural language text into
structured triples aligned with respective knowledge graphs. The optimal pipeline for each text snippet and
corresponding KG is highlighted. Throughout the article, we use CR, coreference resolution; TE, triple extrac-
tion; EL, for entity linking; RL, relation linking

1.2 Objective and contributions

Based on these observations, we dynamically assemble and evaluate information extraction
pipelines from previously disjoint efforts on the KG completion task under a single umbrella.
We present the Plumber framework (originally described here [40], cf. Fig. 1) for creating
Information Extraction (IE) pipelines for KG completion. Plumber integrates 40 reusable
components released by the research community for the subtasks entity linking, relation
linking, text triple extraction (subject, predicate, object), and coreference resolution. Overall,
there are 432 different composable KG completion pipelines1 (generated by the possible
combination of the available 40 components). Plumber implements a transformer-based
classification algorithm that intelligently chooses the best pipeline based on the unstructured
input text.

We perform an exhaustive evaluation of Plumber on the three large-scale KGs DBpedia,
Wikidata [63] and Open Research Knowledge Graph (ORKG) [38] to investigate the efficacy
of Plumber in creatingKG triples fromunstructured text.Wedemonstrate that independently
of the underlying KG, Plumber can find and assemble different extraction components
to produce optimized KG triple extraction pipelines, significantly outperforming existing
baselines. In summary, we provide the following novel contributions:

– ThePlumber framework is the first of its kind for dynamically assembling and evaluating
information extraction pipelines based on sequence classification techniques and for
a given input text. Plumber is easily extensible and configurable, thus enabling the
rapid creation and adjustment of new information extraction components and pipelines.
Researchers can also use the framework for running IE components independently for
specific subtasks such as triple extraction and entity linking.

– A collection of 40 reusable IE components that can be combined to create 432 distinct
IE pipelines.

– The exhaustive performance evaluation and our detailed ablation study of the integrated
components and composed pipelines on various input text will guide future research for
collaborative KG completion.

The article is organized as follows: Section2motivates ourwork. Relatedwork is reviewed
in Sect. 3, and we formalize our approach along with the problem definition in Sect. 4.

1 For DBpedia: 3 CRs, 8 TEs, and 10 EL/RLs, hence, 3 ∗ 8 ∗ 10 = 240. And the same for Wikidata:
3CRs*8TEs*7EL/RL = 168. For the ORKG: 4CRs*3TEs*2EL/RL=24 pipeline. In total: 240 + 168 + 24 =
432.

123



M. Y. Jaradeh et al.

Section5 presents Plumber, which is evaluated in Sect. 6. Section7 discusses the results.
Section8 concludes and outlines directions for future work.

2 Motivating example

Let us consider as a running example the sentence Rembrandt painted The Storm on the
Sea of Galilee. It was painted in 1633. The sentence can be represented using the DBpedia
vocabulary as follows:

@prefix dbr: <http :// dbpedia.org/resource />.
@prefix dbp: <http :// dbpedia.org/property />.

dbr:Rembrandt dbp:artist dbr:The_Storm_on_the_Sea_of_Galilee .
dbr:The_Storm_on_the_Sea_of_Galilee dbp:year "1633".

Multiple steps are required to extract these formally represented statements from the
given text. First, the pronoun it in the second sentence should be replaced by The Storm
on the Sea of Galilee using a coreference resolver. Next, a triple extractor should extract
the correct text triples from the natural language text, i.e., <Rembrandt, painted,
The Storm on the Sea of Galilee>, and <The Storm on the Sea of
Galilee, painted in, 1633>. In the next step, the entity and relation link-
ing component aligns the entity and relation surface forms extracted in the previ-
ous step to the DBpedia entities: dbr:Rembrandt for Rembrandt van Rijn, and
dbr:The_Storm_on_the_Sea_of_Galilee for The Storm on the Sea of Galilee,
and for relations: dbp:artist for painted, and dbp:year for painted in.

There exists a plethora of techniques and components for extracting such statements from
a given text. However, the performance of the tools varies widely and depends strongly on
the input text (cf. [58]). Figure2 illustrates our running example and shows three Plumber
IE pipelines with different results. In Pipeline 1, the coreference resolver is unable to map
the pronoun it to the respective entity in the previous sentence. Moreover, the triple extractor
generates incomplete triples, which also hinders the task of the entity and relation linker in
the last step. Pipeline 2 uses a different set of components, and its output differs from the
first pipeline. Here, the coreference resolution component is able to correctly co-relate the
pronoun it to The Storm on the Sea of Galilee and extract the text triple correctly. However,
the overall result is only partially correct because the second triple is not extracted. Also,
the entity linking component is not able to spot the second entity. It is important to note that
the entity linking component in the second pipeline (i.e., DBpedia Spotlight [18]) does not
perform relation linking. Hence, even if the information extraction step produces the correct
results, triples could not be mapped correctly.

Pipeline 3 correctly extracts both triples. This pipeline employs the same component as
the second pipeline for coreference resolution but also includes an additional information
extraction component (i.e., ReVerb [29]) and a joint entity and relation linking component,
namely Falcon [54]. With this combination of components, the text triple extractors were
able to compensate for the loss of information in the second pipeline by adding one more
component. Using the extracted text triples, the last component of the pipeline, a joint entity
and relation linking tool, can map both triple components correctly to the corresponding KG
entities.

With the availability of a large pool of components, such as those employed in Plumber,
a suitable pipeline for a given text can be identified experimentally by executing all possible
pipelines.However, this brute force approach is impractical. Therefore,we suggest amachine-

123



Information extraction pipelines for knowledge graphs

Fig. 2 Three example information extraction pipelines showing different results for the same text snippet.
Each pipeline consists of coreference resolution, triple extractors, and entity/relation linking components. For
the sake of readability, we hide some intermediate triples and mappings. DBpedia was chosen over other
KGs because it has human-readable URIs. The first layer from the top denotes the coreference resolution
components in the pipelines. The middle one refers to textual triple extractors in the pipelines. And the bottom
one indicates joint entity and relation linkers

learning model (cf. Section4.3) for identifying a suitable candidate pipeline for a given input
text.

3 Related work

In the last decade, many open-source tools have been released by the research community to
tackle IE tasks in the context of KG completion (see Table 2). These IE components are not
only used for end-to-end KG triple extraction but also for various other tasks, such as:

3.1 Text triple extraction

The task of open information extraction is a well-studied researched task in the NLP commu-
nity [3]. It relies on NER (Named Entity Recognition) and RE (Relation Extraction). MinIE
[34] extracts relation surface forms. SalIE [52] uses MinIE in combination with PageRank

123



M. Y. Jaradeh et al.

and clustering to find facts in the input text. Furthermore, OpenIE [3] leverages linguis-
tic structures to extract self-contained clauses from the text. For a detailed survey on open
information extraction, we point readers to a comprehensive survey by Niklaus et al. [51].
Another system Graphene [11] employs two layered transformations of clausal and phrasal
embedding to simplify text and extract linguistic triples.

3.2 Entity and relation linking

Entity and relation linking is a widely studied researched topic in the NLP,Web, and Informa-
tion Retrieval research communities [5, 6, 20]. Often, entity and relation linking is performed
independently. DBpedia Spotlight [18] is one of the first approaches for entity recognition
and disambiguation over DBpedia. TagMe [30] links entities to DBpedia using in-linkmatch-
ing to disambiguate candidates entities. Open Tapioca [20] uses semantic matching of entity
candidates for Wikidata. Other tools such as RelMatch [57] do not perform entity linking
and only focus on linking the relation in the text to the corresponding KG relation. Recon [6]
assumes entities are already linked in the text and aims to map relations between the entities
to the KG using a graph neural network. EARL [26] is a joint linking tool over DBpedia and
models the task as a generalized traveling salesperson problem. Sakor et al. [54] proposed
Falcon, a linguistic rule-based tool for joint entity and relation linking over DBpedia. Falcon
2.0 [55] performs joint entity and relation linking on Wikidata.

3.3 Coreference resolution

This task is used in conjunction with other tasks in NLP pipelines to disambiguate text and
resolve syntactic complexities. TheStanfordCoreferenceResolver [53] uses amultipass sieve
of deterministic coreference models. Clark and Manning [15] use reinforcement learning to
fine-tune a neural mention-ranking model for coreference resolution. More recently, Sanh
et al. [56] introduced a hierarchical model that is capable of multitask learning including
coreference resolution.

3.4 Frameworks and dynamic pipelines

There have been few attempts in various domains aiming to consolidate the disjoint efforts
of the research community under a single umbrella for solving a particular task. The Gerbil
platform [62] provides an easy-to-use web-based platform for the agile comparison of entity
linking tools using multiple datasets and uniform measuring approaches. OKBQA [42] is
a community effort for the development of multilingual open knowledge base and QA sys-
tems. Frankenstein integrates 24 QA components to build QA systems collaboratively on-top
of the Qanary integration framework [10]. Plumber is closely inspired by the concept of
Frankenstein but also differs in several ways. Firstly, Plumber surpasses Frankenstein in
the number of integrated components. Furthermore, Frankenstein implements one classifier
per component to predict the performance of each component for a given input question.
Frankenstein treats each task independently. Hence, even if a classifier predicts that a spe-
cific component should be a part of the pipeline, it may be possible that the error propagated
from previous steps reduces the overall performance. We argue that for selecting the best
pipeline it is crucial to consider the end-to-end performance instead of treating each com-
ponent independently. Hence, we trained a single transformer-based classifier that not only

123



Information extraction pipelines for knowledge graphs

learns from the linguistic features but also from the results of other pipelines while suggesting
the optimal pipeline. The results in Table 5 support our hypothesis, which is fundamentally
different from the Frankenstein approach.

3.5 End-to-end extraction systems

More recently, end-to-end systems are gaining more attention due to the boom of deep
learning techniques. Such systems draw on the strengths of deep models and transformers
[23, 44]. Kertkeidkachorn and Ichise [41] present an end-to-end system to extract triples and
link them to DBpedia. Other attempts such as KG-Bert [66] leverage deep transformers (i.e.,
BERT [23]) for the triple classification task, given the entity and relation descriptions of a
triple. KG-Bert does not attempt end-to-end alignment of KG triples from a given input text.
Liu et al. [45] design an encoder–decoder framework with an attention mechanism to extract
and align triples to a KG.

4 Approach formalization

An end-to-end information extraction pipeline is composed of all IE tasks (i.e., KG comple-
tion subtasks) needed to transform a sequence of natural language text into a set of structured
triples in the form of (subject, predicate, object). However, since each component of the
IE pipeline performs different tasks, we first formalize the interfaces of the IE tasks. We
then state the problem, a formal approach implemented in Plumber and how pipelines are
generated.

4.1 Defining various IE task interfaces

We formally define a pipeline P as a triple extraction and alignment function, from text T
to a set of aligned KG triples ϒ .

P : T → ϒ (1)

A text element T is a white-spaced separated sequence of words and sentences. Let ⊕ be the
composition operator (i.e., the input of a function is the output of the previous one).We define
P as a composition of four subfunctions, each corresponding to an IE task in the pipeline:

P := � ⊕ Z ⊕ � ⊕ � (2)

An overview of the notation used in the problem formalization can be found in Table 1.
(i) Coreference resolution (CR) The first step is to disambiguate the input text and replace

pronouns and acronyms with its associated entity mention. This step is formally defined as:

θ := T → T ′, T ′ := �(T , c), c := {(m, a) ⊆ T |m, a �= ∅} (3)

where T ′ is a text resulting from the transformation function � and the coreference chain c.
m is the mention in the text T and a is the pronoun or other alias that refers to the mention
m. The resulting text T ′ is a text without ambiguities in mentions and pronouns.

(ii) Text triple extraction (TE) For the second step, we define a text triple as combination
of three keyphrases or text snippets usually in the form of (subject, predicate, object). TE

123



M. Y. Jaradeh et al.

Table 1 Symbol notation used to formalize Plumber pipelines interfaces

P IE extraction pipeline P composed of several IE components

�, θ Set of coreference resolution (CR) components � and individual CR components θ ∈ �

Z , ζ Set of triple extractor (TE) components Z and individual TE components ζ ∈ Z

�, ψ Set of entity linking/relation linking components � and individual EL/RL components ψ

�, ω Set of end-to-end (E2E) components � and individual E2E components ω

ϒ , υ Set of KG triples ϒ and individual KG triple υ

�(.) Transformation function that enriches a text T

c Coreference chain c = {m, a},m := Mention, a := Alias

γ Text triple γ =< s, p, o >, s := subject, p := predicate, o := object

λ Mapping pair λ = (m, u),m := Mention, a := KG uri

K Knowledge Graph K also referred to as Knowledge Base

components extract such textual triples from the disambiguated text T ′. Formally:

ζ := T ′ → T̄ , T̄ := �(T ′, γ ), γ := {(s, p, o) ∈ T ′|s, p, o �= ∅} (4)

Each triple set γ is formed of triplets (i.e., {s, p, o}). The transformation function � in this
step enriches the disambiguated text T ′ with set of triples producing T̄ .

(iii) Entity and relation linking (EL/RL) The third and concluding step in the pipeline is
the alignment of triples in T̄ to a knowledge graph K . We define a KG triple υ ∈ ϒ similarly
to a text triple γ whereby they have the same structure alike {s, p, o}. However, a KG triple
assumes that the subject s and predicate p components are URIs referring to a KG K , and the
object o is either a URI as well or a literal value (i.e., string snippet). Formally, it is defined
as:

ψ := T̄ → ϒ,ϒ := M(T̄ , λ, K ),

λ := {(m, u),m ∈ T̄ , u ⊂ K |m, u �= ∅} (5)

Here M(T̄ , λ, K ) denotes a mapping function that takes the enriched text T̄ , a knowledge
graph K (which is constant), and a set of mappings λ to construct a set of aligned KG triples
ϒ .

(iv) End-to-end extraction (E2E) resembles the composed pipelines P and is defined as
ω := T → ϒ . End-to-End pipelines produce results that are concatenated to results of the
� components.

4.2 Generating candidate IE pipelines

Generating candidate pipelines relies on the interfaces of the IE tasks and the set of require-
ments r . The set of pipelines ξ(r) is populated with candidate pipelines �i following a
composition:

�i := ⊕τ∈�

{
χτ
r

}
(6)

where � the list of IE tasks following the specifications of the interfaces formalized previ-
ously. χτ

r a set of possible IE components that perform the IE task τ and comply with the
requirements r (i.e., the knowledge graph K ). It is created by concatenating IE components

123



Information extraction pipelines for knowledge graphs

carrying out a task τ (i.e., concatenating components is running them in parallel and con-
catenating the results). If ‖ denotes the concatenation of IE components, then the set of IE
components χ is defined as follows:

χτ
r := ‖i {C(τ )} , for i = 1, . . . , n (7)

where C(τ ) retrieves a component from the set of IE components addressing task τ and n
is the number of needed components per task. The n parameter is introduced to limit the
space of candidates generation. Hence, pipelines can be generated and added to the pool of
IE pipeline selection mechanism.

4.3 Determining suitable IE pipeline

4.3.1 Problem

Herewe tackle the pipeline selection problem. The pipeline selection problemdealswith find-
ing a suitable pipeline of IE components ρr

s , for a sequence of text s and a set of requirements
r . Formally, we define the optimization problem as follows:

ρr
s := arg max

�∈ξ(r)
{Q(�, s)} (8)

where ξ(r) constitute the set of IE extraction pipelines that conform to the requirements r
and Q(�, s) corresponds to the estimated performance of a pipeline � on a text sequence s.

4.3.2 Solution

We understand the problem at hand as a k-class classification problem [46]. In order to be
able to solve this problem, we decompose it into a series of smaller and simpler two-class
problems. Suppose we have k pipelines (i.e., classes). LetW be the training set for a k-class
problem:

W := {(Xl , Yl)}Ll=1 (9)

where Xl is an input text sequence, Yl ∈ R
k is the desired output, and L is the number of

training data. Following the class decomposition methods [2, 14, 31], a k-class problem can
be divided into k two-class problems. The training set for each of the two-class problems is
as follows:

Wi :=
{
(Xl , y

i
l )

}L

l=1
, for i = 1, ..., k (10)

where yil ∈ R
1 is the desired output defined as:

yil =
{
1 − ε , Xl ∈ Ci

ε , Xl ∈ C̄i (11)

where ε is a small positive real number and C̄i denotes all classes except Ci . A sequence
classifier � can now be trained on the decomposed training datasetW and is able to classify
the performance of a pipelineQ(�, s) into a class κ ∈ k that maps to a pipeline configuration
(i.e., a set of IE components). This is the best pipeline to run on the input sequence s. Hence,
we rewrite Eq.8 as follows:

ρr
s := argmax

κ∈k {�(s, ξ(r))} (12)

123



M. Y. Jaradeh et al.

Fig. 3 Overview of Plumber’s architecture highlighting the components for pipeline generation, selection,
and execution. Plumber receives an input sentence and requirement (underlying KG) from the user. The
framework intelligently selects the optimum pipeline based on the contextual features captured from the input
sentence

which stands for a problem of classifying a sequence of text s based on a set of candidate
pipelines ξ(r).

5 Dynamic pipelining framework

Plumber orchestrates and evaluates IE components to select the most suitable pipeline con-
figuration based on the input text for the KG completion task. We now detail its architecture.

5.1 Architecture overview

Plumber has amodular design (see Fig. 3) where each component is integrated as amicroser-
vice. To ensure a consistent data exchange between components, the framework maps the
output of each component to a homogeneous data representation using the Qanary [10]
methodology. Qanary follows the linked data principles [7] employing an ontology to sys-
tematize the process of connecting components. Plumber follows three design principles:
(i) Isolation, the IE components are independent from each other and they can be accessed
through exchangeable interfaces; (ii) Reusability, the framework is open source and can be
reused in different contexts and variations; (iii) Extensibility, Plumber provides common
interfaces to expand and add further IE components in such a way that new components and
tools are directly integrated in the framework and operate within the pipelines. The design
of the framework is inspired by the work of [10, 58, 62]. The Qanary framework was used
as basis for our architecture because it demonstrated why each of the previously mentioned
principles is required, and it has been used extensively by other frameworks and systems
such as [24, 58].

123



Information extraction pipelines for knowledge graphs

Plumber uses a RoBERTa [44]-based classifier that given a text and a set of requirements,
it predicts the most suitable pipeline to extract KG triples (further details in Sect. 6.2).

Plumber includes the following modules:

– IE components pool All information extraction components that are integrated within the
framework are parts of the pool. The components are divided based on their respective
tasks, i.e., coreference resolution, text triple extraction, as well as entity and relation
linking (cf. Table 2).

– Pipeline generator Thismodule creates possible pipelines depending on the requirements
of the components (i.e., the underlying KG). Users can manually select the underlying
KG and, using the metadata associated with each component, Plumber aggregates the
components for the concerned KG (cf. Sects. 4.1, 4.2).

– IE pipelines pool Plumber stores the configurations of the possible pipelines in the pool
of pipelines for faster retrieval and easier interaction with other modules.

– Pipeline selector Based on the requirements (i.e., underlying KG) and the input text, a
RoBERTa-based model extracts contextual embeddings from the text and classifies the
input into one of the possible classes. Each class corresponds to one pipeline configuration
that is held in the IE pipelines pool (cf. Sect. 4.3 for details of proposed optimization
solution).

– Pipeline runnerGiven the input text, and the generated pipeline configuration, themodule
executes the pipeline to add the extracted triples to the KG.

Since Plumber seeks to converge the disjoint efforts of the community under one
umbrella, it does not reinvent the wheel or re-implement any IE component it encompasses.
Plumber relies on whatever interface the different IE components provide (see Table 2). In
other words, if public APIs are available, then such interfaces are reused by the framework.
However, if no API is available, then the IE component is integrated locally into the codebase
(e.g., ClausIE & MinIE).2

6 Evaluation

In this section, we detail the empirical evaluation of the framework in comparison with base-
lines on different datasets and knowledge graphs. As such, we study the following research
question RQ: How does the dynamic selection of pipelines based on the input text affect the
end-to-end KG completion task?. Throughout the paper, we use the term dynamic pipeline
to refer to dynamic pipeline generation.

6.1 Assumptions

Our empirical evaluation of the Plumber framework is conducted with one assumption in
mind.All externally accessible components (i.e., viaAPIs) are considered always operational,
and any type of failure from their side is considered empty result set and treated accordingly
in the evaluation procedure.

2 See below for more details about such tools.

123



M. Y. Jaradeh et al.

6.2 Experimental setup

Knowledge graphs To study the effectiveness of Plumber in building dynamic KG comple-
tion pipelines, we use the following KGs during our evaluation:
DBpedia [4] (DBP) is containing information extracted automatically from Wikipedia info
boxes. DBP consists of approximately 11.5B triples [54].
Wikidata [63] (WD) is a crowd-sourced knowledge base providing structured data for inte-
gration inWikipedia. In contrast to DBP,WD also allows user-created entities and predicates.
WD consists of over 4.9B triples [47].
Open research knowledge graph [38] (ORKG) collects structured scholarly knowledge pub-
lished in research articles, using crowd sourcing and automated techniques. In total, ORKG
consists of approximately 1.7M triples.
Datasets Throughout our evaluation, we employed a set of both existing and newly created
datasets for structured triple extraction and alignment to knowledge graphs: the WebNLG
[33] dataset for DBP, the T-Rex [27] dataset for WD, and COV-triples for ORKG. The choice
of datasets relied on three aspects: (i) the availability of the data (i.e., how much it is used
in the community and the size of the data), (ii) the domain of the dataset (i.e., what is the
dataset about), (iii) whether the selected IE components can handle the dataset (i.e., can
extract entities and triples from it).
WebNLG3 is theWeb Natural Language Generation Challenge. The challenge introduced the
task of aligning unstructured text to DBpedia. In total, the dataset contains 46K triples with
9K triples in the testing and 37K in the training set.
T-Rex4 is a dataset of a large-scale alignment of Wikipedia text with Wikidata. It comprises
approximately 11M triples aligned to the WD knowledge graph. The data were split using
an 80/20 ratio for training and testing.

Note: Though COV-triples is a small dataset in comparison with the others, it
is used here to show the generalizability of the system specially on domains
where not much training data is available.

COV-triples is a handcrafted dataset that focuses on COVID-19-related scholarly articles.
The COV-triples dataset consists of 21 abstracts from peer-reviewed articles and aligns the
natural language text to the corresponding KG triples in the ORKG. Three semantic Web
researchers verified annotation quality, and triples approved by all three researchers are part
of the dataset. The dataset contains only 75 triples. Hence, we use the WebNLG dataset for
training, and 75 triples are used as a test set.
Components and implementationThe Plumber framework integrates 40 components, shown
in Table 2 along with the associated subtasks and underlying KG.

Note: the architecture of Plumber allows for easy integration of new compo-
nents.

The IE components were chosen purely from the background knowledge of the authors and
related work research. Our framework is implemented in Python, and we adapted a pre-
trained version of RoBERTa from its public GitHub5 and fine-tuned it on the employed

3 https://webnlg-challenge.loria.fr/.
4 https://hadyelsahar.github.io/t-rex/.
5 https://github.com/pytorch/fairseq/.

123

https://webnlg-challenge.loria.fr/
https://hadyelsahar.github.io/t-rex/
https://github.com/pytorch/fairseq/


Information extraction pipelines for knowledge graphs

datasets. All experiments were performed on a system with 768GB RAM, 96 CPUs, and one
GPU (NVIDIA GeForce 1080 Ti). The implementation code of Plumber and all related
resources are publicly available online.6

Baselines We include the following baselines:

– T2KG [41] is an end-to-end static system that aligns a given natural language text to
DBpedia KG triples.

– Frankenstein [58] dynamically composes Question Answering pipelines over the DBpe-
diaKG. It employs logistic regression-based classifiers for each component for predicting
the accuracy and greedily composes a dynamic pipeline of the best components per task.
We adapted Frankenstein for the KG completion over DBpedia andWikidata since some
of its components also perform entity and relation linking.

– KnowledgeNet [49] represents a benchmarking dataset for KG completion alongside a
baseline model. The KnowledgeNet baseline model performs knowledge graph comple-
tion and population on the WD knowledge graph.

Training the model Plumber relies on a classification model to find a suitable pipeline.
Each pipeline is represented as a class, making this a multiclass classification problem. To
train the model, for every entry in the datasets, every possible pipeline is composed run on
the input snippet.

Note: Running all possible pipelines is just needed for the training phase of the
system, afterwards the framework generalizes on unseen data.

The results in terms of F1 scores are used to decide which pipeline performed better than the
others. Next step for our underlying model (RoBERTa) is to create contextualized embed-
dings from the input text and learn to classify it into its corresponding class (i.e., the better
performing pipeline from the IE pipelines pool). We choose a transformer-based architecture
due to its ability to encode the contextual knowledge from the input text, providing a more
accurate classification.

With the underlying model trained on the data, it can now dynamically compose informa-
tion extraction pipelines on unseen data. However, if new IE components are added to the
pool of available components, the framework would require the retraining of the model to
include these new components as candidates.

6.3 Experiments

This section summarizes a variety of experiments to compare thePlumber framework against
other baselines. Note that evaluating the performance of individual components or their
combination is out of this evaluation’s scope, since theywere already used, benchmarked, and
evaluated in the respective publications.We report values of the standardmetrics precision (P),
recall (R), and F1 score (F1) adapted from [13]. In all experiments, end-to-end components
(e.g., T2KG) are not part of Plumber.
Performance of static pipelines In this experiment, we report results of the static pipelines,
i.e., no dynamic selection of a pipeline-based on the input text is considered.

6 https://github.com/YaserJaradeh/ThePlumber.

123

https://github.com/YaserJaradeh/ThePlumber


M. Y. Jaradeh et al.

Table 2 IE components implemented and integrated within the Plumber framework along with their respec-
tive publications, API links, underlying KGs, and respective task

Pipeline
component

IE Task Knowledge
graph

Open source Custom built Rest API

Ollie [48] TE – ✓ ✗ ✗

OpenIE [3] TE – ✓ ✗ ✗

ClausIE [19] TE – ✓ ✗ ✗

MinIE [34] TE – ✓ ✗ ✗

POS Extractora TE – ✓ ✓ ✗

Dependency Extractorb TE – ✓ ✓ ✗

Graphene [11] TE – ✓ ✗ ✗

ReVerb [29] TE – ✓ ✗ ✗

R0 Extractor TE ORKG ✓ ✓ ✗

Stanford KBP Extractor [12] TE – ✓ ✗ ✗

Falcon [54] EL+RL DBP ✓ ✗ ✓

Falcon 2.0 [55] EL+RL WD ✓ ✗ ✓

EARL [26] EL+RL DBP ✓ ✗ ✓

Spacy ANNc EL+RL DBP+WD ✓ ✓ ✗

Spacy ANNc EL+RL ORKG ✓ ✓ ✗

Falcon NER [54] + ESd EL+RL DBP+WD ✓ ✓ ✗

Falcon 2.0 NER + ESd EL+RL WD ✓ ✓ ✗

EARL NER [26] + ESd EL+RL DBP+WD ✓ ✓ ✗

Meaning Cloude EL DBP ✗ ✗ ✓

Text Razorf EL DBP+WD ✗ ✗ ✓

DBpedia Spotlight [18] EL DBP ✓ ✗ ✓

TagMe [30] EL DBP ✓ ✗ ✓

OpenTapioca [20] EL WD ✓ ✗ ✓

TagMe NER [30] + ESd EL DBP+WD ✓ ✓ ✗

Ambiverse-nlu [35] EL WD ✓ ✗ ✗

RelMatch [57] RL DBP ✓ ✗ ✗

Stanford Coref Resolver [53] CR – ✓ ✗ ✗

NeuralCoref [15] CR – ✓ ✗ ✗

PyCobaltg CR – ✓ ✗ ✗

HMTL [56] CR – ✓ ✗ ✗

aBased on https://github.com/tdpetrou/RDF-Triple-API/
bAdapted from https://github.com/anutammewar/extract_triplets/
chttps://github.com/microsoft/spacy-ann-linker/
dhttps://www.elastic.co/elasticsearch/
ehttps://www.meaningcloud.com/
f https://www.textrazor.com/technology/
ghttps://github.com/Lambda-3/PyCobalt

123

https://github.com/tdpetrou/RDF-Triple-API/
https://github.com/anutammewar/extract_triplets/
https://github.com/microsoft/spacy-ann-linker/
https://www.elastic.co/elasticsearch/
https://www.meaningcloud.com/
https://www.textrazor.com/technology/
https://github.com/Lambda-3/PyCobalt


Information extraction pipelines for knowledge graphs

Table 3 Performance comparison of the Plumber static pipeline against the baselines on different KGs

System Dataset Knowledge graph P R F1 # Mapped triples

T2KG [41] WebNLG DBP 0.133 0.140 0.135 1.26K/9.0K

KnowledgeNet [49] T-Rex WD 0.243 0.254 0.247 0.56M/2.2M

Frankenstein [58] WebNLG DBP 0.177 0.189 0.181 1.70K/9.0K

T-Rex WD 0.228 0.249 0.238 0.55M/2.2M

Plumber WebNLG DBP 0.210 0.225 0.215 2.02K/9.0K

T-Rex WD 0.282 0.296 0.289 0.65M/2.2M

The total number of mapped triples in test set (Extracted/Expected) is given in the last column to indicate how
many triples the systems produce regardless of correctness

Note: T2KG can only be evaluated against WebNLG because it is a DBpedia-
oriented tool and is built with only that direction in mind. Same goes for
KnowledgeNet on Wikidata KG and it does not work on other KGs. Hence,
their evaluation was restricted to their corresponding compatible dataset.

We ran all 432 pipelines, and Table 3 reports the performance of the best Plumber pipeline
against the baselines. Plumber static pipeline for DBpedia comprises NeuralCoref [15] for
coreference resolution, OpenIE [3] for text triple extraction, TagMe [30] for EL, and Falcon
[54] for RL tasks. For Wikidata, the static pipeline contains NeuralCoref [15] for coref-
erence resolution, Graphene [11] for text triple extraction, Falcon 2.0 [55] jointly for EL
and RL tasks. Also, in case of Frankenstein, we choose its best-performing static pipeline.
Results illustrated in Table 3 confirm that the static pipeline composed by the components
integrated in Plumber outperforms all baselines on DBpedia andWikidata. We observe that
the performance of pipeline approaches is better than an end-to-end monolithic KG com-
pletion approaches. Although the Plumber pipeline outperforms the baselines, the overall
performance is relatively low. All our components have been trained on distinct corpora
in their respective publications, and our aim was to put them together to understand their
collective strengths and weaknesses. Note Frankenstein addresses the QA pipeline problem
and not all components are comparable and can be applied in the context of information
extraction. Thus, we integrated the NeuralCoref coreference resolution component and the
OpenIE triple extraction component used in the Plumber static pipeline into Frankenstein
in order to provide the same experimental settings.

Static pipeline for scholarlyKG In order to assess howPlumber performs on domain-specific
use cases, we evaluate the static pipelines’ performance on a scholarly knowledge graph. We
use the COV-triples dataset for ORKG. To the best of our knowledge, no baseline exists on
completing KGs of research contribution descriptions over ORKG. Hence, we execute all
static pipelines in Plumber tailored to ORKG to select the best one as shown in Table 4. The
best-performing pipeline over the COV-triples was composed of the HMTL [56] coreference
resolution component in combination with our own custom created R0 Extractor and Spacy
ANN joint entity and relation linkers.7 Plumber pipelines over ORKG extract statements
determining the reproductive number estimates for the COVID-19 infectious disease from
scientific articles as shown below.

7 Adaption of https://github.com/microsoft/spacy-ann-linker/, trained on the ORKG entites and relations.

123

https://github.com/microsoft/spacy-ann-linker/


M. Y. Jaradeh et al.

Table 4 Performance of the best-performing pipeline for scholarly knowledge extraction from COVID-19
research papers

System Dataset Knowledge graph P R F1 # Mapped triples

Plumber COV-triples ORKG 0.403 0.423 0.413 32/75

Table 5 Tenfold cross-validation of pipeline selection classifiers wrt Precision, recall, and F1 score

Pipeline selection approach Dataset Knowledge graph Classification
P R F1

Random WebNLG DBP 0.081 0.092 0.086

T-Rex WD 0.090 0.103 0.096

COV-triples ORKG 0.092 0.114 0.102

Frankenstein WebNLG DBP 0.732 0.751 0.741

T-Rex WD 0.770 0.791 0.780

COV-triples ORKG 0.832 0.858 0.845

Plumber WebNLG DBP 0.877 0.900 0.888

T-Rex WD 0.891 0.912 0.901

COV-triples ORKG 0.901 0.917 0.909

@prefix orkg: <http :// orkg.org/orkg/resource />.
@prefix orkgp: <http :// orkg.org/orkg/property />.

orkg:R48100 orkgp:P16022 "2.68" .

In this example, orkg:R48100 refers to the city of Wuhan in China in the ORKG and
orkgp:P16022 is the property has R0 estimate (average). The number “2.68” is the repro-
ductive number estimate.

Comparison of the classification approaches for dynamic pipeline selection In this experi-
ment, we study the effect of the transformer-based pipeline selection approach implemented
in Plumber against the pipeline selection approach of Frankenstein. For a comparable exper-
imental setting, we re-use Frankenstein’s classification approach in Plumber, keeping the
underlying components precisely the same.Weperforma tenfold cross-validation for the clas-
sification performance of the employed approach. Table 5 demonstrates that the Plumber
pipeline selection outperforms Frankenstein across all KGs.

Performance comparison for KG completion taskOur third experiment focuses on comparing
the performance of Plumber against previous baselines for an end-to-end KG comple-
tion task. We also report the values of best-performing static pipelines from Table 3. The
results in Table 6 illustrate that the dynamic pipelines built using Plumber for KG com-
pletion outperform the best static pipelines of Plumber as well as the dynamically selected
pipelines by Frankenstein. The end-to-end baselines, such as [41, 49], significantly underper-
form compared to dynamic pipelines. We also observe that in cross-domain experiments for
COV-triples datasets, dynamically selected pipelines perform better than the static pipeline.
In the cross-domain experiment, the static and dynamic Plumber pipelines are relatively
better-performing than the other two KGs. Unlike components for DBpedia and Wikidata,
components integrated into Plumber for ORKG are customized for KG triple extraction.We
conclude that when components are integrated into a framework such as Plumber aiming

123



Information extraction pipelines for knowledge graphs

Table 6 Overall performance comparison of static and dynamic pipelines for the KG completion task

System Dataset Knowledge graph Performance
P R F1

T2KG [41] WebNLG DBP 0.133 0.140 0.135

KnowledgeNet [49] T-Rex WD 0.243 0.254 0.247

Frankenstein (static) [58] WebNLG DBP 0.177 0.189 0.181

T-Rex WD 0.228 0.249 0.238

Plumber (static) WebNLG DBP 0.210 0.225 0.215

T-Rex WD 0.282 0.296 0.289

COV-triples ORKG 0.403 0.423 0.413

Frankenstein (dynamic) [58] WebNLG DBP 0.199 0.208 0.203

T-Rex WD 0.244 0.263 0.253

COV-triples ORKG 0.403 0.424 0.413

Plumber (dynamic) WebNLG DBP 0.287 0.307 0.297

T-Rex WD 0.361 0.397 0.378

COV-triples ORKG 0.411 0.437 0.424

for the KG completion task, it is crucial to select the pipeline based on the input text dynam-
ically. The superior performance of Plumber shows that the dynamic pipeline selection for
KG completion has a positive impact agnostic of the underlying KG and dataset. This also
answers our overall research question How does the dynamic selection of pipelines based on
the input text affect the end-to-end KG completion task?.

6.4 Ablation studies

The performance of Plumber and baselines on all the employed datasets is relatively low.
Hence, in the ablation studies our aim is to provide a holistic picture of underlying errors,
collective success, and failures of the integrated components.

In the first study, we calculate the proportion of errors in Plumber. The modular archi-
tecture of the proposed framework allows us to benchmark each component independently.
We consider the erroneous cases of Plumber on the test set of the WebNLG dataset. We
calculate the performance (F1 score) of the Plumber dynamic pipeline (cf. Table 6) at each
step in the pipeline. Figure4 presents the results of the error evaluation. Each box in the fig-
ure corresponds to an IE task. The results show that the coreference resolution components
caused 21.54% of the errors, 33.71% are caused by text triple extractors, 18.17% by the entity
linking components, and 26.58% are caused by the relation linking components.

We conclude that the text triple extractor components contribute to the largest chunk of the
errors over DBpedia. One possible reason for their limited performance is that open-domain
information extracting components were not initially released for the KG completion task.
Also, these components do not incorporate any schema or prior knowledge to guide the
extraction. We observe that the errors mainly occur when the sentence is complex (with more
than one entity and relation), or relations are not explicitly mentioned in the sentence. We
further analyze the text triple extractor errors. The error analysis at the level of the triple
subject, predicate, and object showed that most errors are in predicates (40.17%) followed
by objects (35.98%) and subjects (23.85%).

123



M. Y. Jaradeh et al.

Fig. 4 Box plot of error percentage per IE task. The Y axis shows the error percentage. Each box shows the
error percentage by all components, the average error, and some of the outliers. Higher values mean a greater
error rate. The figure shows that text triple extraction is the highest impacting component followed by relation
linking, coreference resolution, and the least impacting is the entity linking

Further analysisAiming to understand why IE pipelines performwith low accuracy, we con-
duct a more in-depth analysis per IE task. In the first analysis, we evaluated each component
independently on the WebNLG dataset. Researchers [21, 59] proposed several criteria for
micro-benchmarking tools/components for KG tasks (entity linking, relation linking, etc.)
based on the linguistic features of a sentence.Wemotivate our analysis based on the following
criteria per task:
Text triple extractionWe consider the number of words (wc) in the input sentence (a sentence
is termed “simple” if it has an average word length of 7.41 [58]. Sentences with higher
numbers of words than seven are complex sentences). Furthermore, having a comma in a
sentence (subclause) to separate clauses is another factor. Atomic sentences (e.g., cats have
tails) are a type of sentence that also affects triples extractors’ behavior. Moreover, nominal
relation as inDurin, son of Thorin is another impacting factor on the performance. Uppercase
and lowercase mentions of the words (i.e., correct capitalization of the first character and not
the entire word) in a sentence are standard errors for entity linking components. We consider
this a micro-benchmarking criterion.
Coreference resolution We focus on the length of the coreference chain (i.e., the number of
aliases for a single mention). Additionally, the number of clusters is another criterion in the
analysis. A cluster refers to the groups of mentions that require disambiguation (e.g.,mother
bought a new phone, she is so happy about it where the first cluster is mother → she and the
second is phone → it). The presence of proper nouns in the sentence is studied as well as
acronyms. Furthermore, the demonstrative nature of the sentence is also observed as a factor.
Demonstrative sentences are the ones that contain demonstrative pronouns (this, that, etc.).
Entity linking The number (e=1,2) of entities in a sentence is a crucial observation for
the entity linking task. Capitalization of the surface form is another criterion for micro-
benchmarking entity linking tools. An entity is termed as an explicit entity when the entity’s
surface form in a sentence matches the KG label. An entity is implicit when there is a
vocabulary mismatch. For example, in the sentence The wife of Obama is Michelle Obama.,
the surface form Obama is expected to be linked to dbr:Barack_Obama and considered

123



Information extraction pipelines for knowledge graphs

as an implicit entity [59]. The last linguistic feature is the number of words (w) in an entity
label (e.g., The Storm on the Sea of Galilee has seven words).
Relation linking Similar to the entity linking criteria, we focus on the number of relations
in a sentence (rel=1,2).8 The type of relation (i.e., explicit or implicit) is another parameter.
Covered relation (sentences without a predicate surface form) is also used as a feature for
micro-benchmarking: Which companies have launched a rocket from Cape Canaveral Air
Force station?where the dbo:manufacturing relation is not mentioned in the sentence.
Covered relations highly depend on common sense knowledge (i.e., reasoning) and the struc-
ture of the KG [59]. Lastly, the number of words (w>=N) in a predicate surface form is also
considered.

Figure 5 illustrates micro-benchmarking of various Plumber components per task. We
observe that across IE tasks, the F1 score of the components varies significantly based on
the sentence’s linguistic features. In fact, there exists no single component which performs
equally well on all the micro-benchmarking criteria. This observation further validates our
hypothesis to design Plumber for building dynamic KG completion pipelines based on the
strengths and weaknesses of the integrated components.

In Fig. 5, all the CR components report limited performance for the demonstrative sen-
tences (demonstratives). When there is more than one coreference cluster in a sentence, all
other CR components observe a discernible drop in F1 score. The NeuralCoref [15] compo-
nent performs best for proper nouns, whereas PyCobalt [32] performs best for the acronyms
feature (almost being tied with NeuralCoref). In the TE task, Graphene [11] shows the most
stable performance across all categories.However, the performance of all components (except
Dependency Parser) drops significantly when the number of words in a sentence exceeds
seven (wc>7). Case-sensitivity also affects the performance and all components observe a
noticeable drop in F1 score for lowercase entity mentions in the sentence. A similar behavior
is observed for entity linking components where case-sensitivity is a significant cause of poor
performance. When the sentence has one entity and it is implicit (e=1, implicit); all entity
linking components face challenges in correctly linking the entities to the underlying KG.
Relation linking components also report lower performance for implicit relations.

We then extended micro-benchmarking of the components to Wikidata and reported their
performance in isolation.We considered all the sentences present in the T-Rex test set (approx
1.2M sentences). Figure6 illustrates the findings per linguistic feature for all IE subtasks.
Similarly as for DBpedia, we observe that no single component is superior to all micro-
benchmarking criteria. Issues such as capitalization of entity surface forms continue to impact
EL and TE components’ overall performance negatively. Relation linking components on
Wikidata inherit a similar trend as DBpedia components, where the implicit and hidden
nature of relation surface forms has the highest impact on their performance.

7 Discussion

Even though the dynamic pipelines of Plumber outperform static pipelines, the overall
performance of Plumber and baselines for the KG completion task remains low. Our
detailed and exhaustive ablation studies suggest thatwhen individual components are plugged
together, their individual performance is a major error source. However, this behavior is
expected, considering that earlier research works in other domains observe a similar trend.

8 This number of relations in inconsequential for a triple extractor, but it affects relation linkers and their
complexity.

123



M. Y. Jaradeh et al.

Fig. 5 Comparison of F1 scores per component for different IE tasks based on the various linguistic features
of an input sentence (number of entities, word count in a sentence, implicit vs. explicit relation, etc.). Darker
shades indicate a higher F1 score

123



Information extraction pipelines for knowledge graphs

Fig. 6 Comparison of F1 scores per component for different IE tasks (on the T-Rex dataset). Darker shades
indicate a higher F1 score. We observe that components for Wikidata show a similar trend in the performance
as in Fig. 5 where test sentences having linguistic features such as implicit entities, word count in a sentence,
capitalization of entity surface form, etc. negatively impact performance

123



M. Y. Jaradeh et al.

Table 7 Average runtime on all datasets in seconds

System WebNLG T-Rex COV-triples

T2KG [41] 2.8 – –

KnowledgeNet [49] – 3.4 –

Frankenstein (static) [58] 2.4 2.5 –

Frankenstein (dynamic) [58] 10.1 3.9 2.9

Plumber (static) 1.8 1.9 1.2

Plumber (dynamic) 12.3 3.9 2.7

The dynamic pipelines on WebNLG report the slowest runtime because few components have a high avg.
runtime (up to 65 sec)

For example, since its first release in 2015, the research community performed over 50,000
experiments9 to improve EL components using the Gerbil framework [62]. Similarly, in
2018 Frankenstein reported the best dynamic question answering pipeline with F1 score 0.20.
Within 2 years, the SemanticWeb research community had released several components ded-
icated to solving entity linking and relation linking [26, 50, 54], which were two weaknesses
identified by [58] for the QA task. At present, the QA system [43] reuses components from
Frankenstein and is a new state of the art on standard complex QA dataset [61] with an F1
score of 0.68. We also calculated the average runtime of Plumber and baselines on all three
datasets (cf. Table 7). The Plumber static pipeline was the fastest; however, the dynamic
pipelines on DBpedia were the slowest. The main reason for the slow dynamic pipeline was
the high runtime of DBpedia-based relation linking components. For example, Relmatch
[57] has an average runtime of 65s, thus negatively impacting the overall dynamic pipeline
runtime. Due to the direct impact of a component’s runtime on the overall efficiency (runtime
and memory consumption), improving the runtime efficiency of the Plumber pipelines was
out of scope for this work. However, including Table 7 provides insight into how different
baselines and systems perform with various datasets and data domains.

We observe that state-of-the-art components for KG completion still have much potential
to improve their performance (both in terms of runtime and F1 score). It is essential to
highlight that some of the issues observed in our ablation study basic and have been repeatedly
pointed out by researchers in the community. For instance, Derczynski et al. [21] in 2015,
followed by Singh et al. [58] in 2018, showed that case-sensitivity is a main challenge for EL
tools. Our observations in Figs. 5 and 6 again confirm that case-sensitivity of entity surface
forms remains an open issue even for newly released components. In contrast, on specific
datasets such as CoNLL-AIDA, several EL approaches reported F1 scores higher than 0.90
[65], showing that EL tools are highly customized to particular datasets. In a real-world
scenario like ours, the underlying limitations of approaches are uncovered. We also found
that relation linking and text triple extractor components contributed caused significant errors
in Plumber performance. Based on our findings, we identified the following open challenges
for KG completion tasks, which we deem crucial to guide future research:

– The text triple extractor quality is low across KGs. We need to incorporate the KG’s
underlying schema to guide the triple extraction.

– Case-sensitivity needs to be improved in entity linking approaches. Implicit entities also
challenge the entity linking performance. Yang et al. [65] introduced entity descriptions

9 http://aksw.org/Projects/GERBIL.html.

123

http://aksw.org/Projects/GERBIL.html


Information extraction pipelines for knowledge graphs

Fig. 7 Overviewof the user interface of Plumber in theORKG infrastructure: (1) Predefined pipeline selector:
used for easy access to generally stable information extraction pipeline, (2) invoke the framework to create a
dynamic pipeline on-the-fly based on the input, (3) collection of IE components that can be used in conjunction
manually or automatically, (4) additional information from components to better help the user interact with
the system, (5) pipeline runner to display the results and get feedback

as additional context to support implicit entity linking, and we deem such approaches to
be beneficial for entity linking tools dedicated for an end-to-end KG completion.

– Relation linking accuracy is limited for the KG completion task across all micro-
benchmarking features (cf. Figs. 5, 6). Handling implicit relations and covered relations
are the primary source of errors, and we expect that our findings will motivate research
to build dedicated relation linking components for KG completion.

– Overall, improving the component’s accuracy is the first viable next step for collaborative
KG completion.

Furthermore, from a human in the loop approach, we envision employing this framework
in conjunction with other knowledge management systems to allow users the possibility
to leverage automated extraction from natural language text. With the possibility for user
feedback on structured triple level, this information can be used in an active-learning style
to improve the underlying pipeline selection model or even propagate these comments and
feedback into the individual IE components for further improvement. In this use case, we inte-
grate Plumber within the ORKG infrastructure10 providing an access point to researchers
to convert textual descriptions into structured and linked triples.

Figure 7 depicts how the Plumber can be integrated within other systems (here the
ORKG). Moreover, such an integration allows for user feedback and comments to be fed into
the system [39].

10 Demo video: http://www.youtube.com/watch?v=XC9rJNIUv8g.

123

http://www.youtube.com/watch?v=XC9rJNIUv8g


M. Y. Jaradeh et al.

8 Conclusion and future work

In this paper, we presented the Plumber approach and framework for KG completion.
Plumber effectively selects the best possible pipeline for a given input sentence using the
sentential contextual features and a state-of-the-art transformer-based classification model.
Plumber has a service-oriented architecture which is scalable, extensible, reusable, and
agnostic of the underlying KG. The core idea of Plumber is to combine the strengths of
already existing disjoint research for KG completion and build a foundation for a platform to
promote reusability for the construction of large-scale and semantically structured KGs. Our
empirical results suggest that the performance of the individual components directly impacts
the end-to-end KG completion accuracy.

This article does not focus on internal system architecture or employed algorithms in
a particular IE component to analyze the failures. The focus of the ablation studies is to
holistically study the collective success and failure cases for the various tasks. Our stud-
ies provide the research community with insightful results over three knowledge graphs,
40 components, 432 pipelines, and test datasets collectively containing over 2.2M triples
extracted from approximately 1.2M sentences. We release all the experiment results pub-
licly for reproducibility and continued research. Our work is a step in the larger research
agenda of offering the research community an effective way for effective to synergistically
combine and orchestrate various focused IE approaches balancing their strengths and weak-
nesses taking different application domains into account, applying their research to a domain
driven by many different fields, consequently requiring a collaborative approach to achieve
significant progress. We plan to extend our work in the following directions: (1) extending
Plumber to other KGs such as UMLS [9] and AI-KG [22]. AI-KG also employs a single
pipeline comprising community-released components for KG completion on their proposed
scholarly KG. (2) adding multilingual components to Plumber, considering that existing
components focus primarily on English, and (3) creating high performing relation linking
components for KG completion.

Acknowledgements We thank anonymous reviewers for their very useful comments and suggestions. This
work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID:
819536) and the TIB Leibniz Information Centre for Science and Technology. We also thank Allard Oelen
and Vitalis Wiens for their valuable feedback.

Funding Open Access funding enabled and organized by Projekt DEAL. Open Access funding enabled and
organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alobaid A, Corcho O (2018) Fuzzy semantic labeling of semi-structured numerical datasets. In: Faron
Zucker C, Ghidini C, Napoli A, Toussaint Y (eds) Knowledge engineering and knowledge management.
Springer, Cham, pp 19–33

123

http://creativecommons.org/licenses/by/4.0/


Information extraction pipelines for knowledge graphs

2. Anand R, Mehrotra K, Mohan CK, Ranka S (1995) Efficient classification for multiclass problems using
modular neural networks. IEEE Trans Neural Netw 6:117–124

3. Angeli G, Johnson Premkumar MJ, Manning CD (2015) Leveraging linguistic structure for open domain
information extraction. In: ACL, pp 344–354

4. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of
open data. In: The semantic web, pp 722–735

5. Balog K (2018) Entity linking. In: Entity-oriented search, Springer, pp 147–188
6. Bastos A, Nadgeri A, Singh K, Mulang IO, Shekarpour S, Hoffart J, Kaul M (2021) Recon: relation

extraction using knowledge graph context in a graphneural network, In: Proceedings of theweb conference
(WWW), p N/A

7. Berners-Lee T (n.d.) Linked data. https://www.w3.org/DesignIssues/LinkedData.html. Accessed on 10
June 2020

8. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43
9. Bodenreider O (2004) The unified medical language system (umls): integrating biomedical terminology.

Nucleic Acids Res 32:D267–D270
10. Both A, Diefenbach D, Singh K, Shekarpour S, Cherix D, Lange C (2016) Qanary: a methodology for

vocabulary-driven open question answering systems, vol 9678, pp 625–641
11. Cetto M, Niklaus C, Freitas A, Handschuh S (2018) Graphene: semantically-linked propositions in open

information extraction. In: Proceedings of the 27th COLING, pp 2300–2311
12. Chaganty AT, Paranjape A, Bolton J et al (n.d.) Stanford at tac kbp 2017: building a trilingual relational

knowledge graph
13. CHAI Y, (2020) Evaluation metrics of name entity recognition systems. https://ychai.uk/notes/2018/11/

21/NLP/NER/Evaluation-metrics-of-Name-Entity-Recognition-systems/
14. Chen C, You G (1993) Class sensitive neural networks. Neural Parallel Sci Comput 1:93–96
15. Clark K, Manning CD (2016) Deep reinforcement learning for mention-ranking coreference models. In:

Proceedings of the 2016 EMNLP, pp 2256–2262
16. Cui W, Liu S, Tan L, Shi C, Song Y, Gao Z, Qu H, Tong X (2011) Textflow: towards better understanding

of evolving topics in text. IEEE TVCG 17(12):2412–2421
17. Cui W, Liu S, Wu Z, Wei H (2014) How hierarchical topics evolve in large text corpora. IEEE TVCG

20(12):2281–2290
18. Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in multilingual

entity extraction. In: Proceedings of the 9th I-semantics
19. Del Corro L, Gemulla R (2013) Clausie: clause-based open information extraction. In: Proceedings of

the 22nd international conference on world wide web, WWW ’13, ACM, pp 355–366
20. Delpeuch A (2019) Opentapioca: lightweight entity linking for wikidata
21. Derczynski L, Maynard D, Rizzo G, Van Erp M, Gorrell G, Troncy R, Petrak J, Bontcheva K (2015)

Analysis of named entity recognition and linking for tweets. Inf Process Manag 51:32–49
22. Dessi D, Osborne F, Reforgiato Recupero D, Buscaldi D, Motta E, Sack H (2020) Ai-kg: an automatically

generated knowledge graph of artificial intelligence. In: International semantic web conference
23. Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers

for language understanding. In: NAACL, pp 4171–4186
24. Diefenbach D, Giménez-García J, Both A, Singh K, Maret P (2020) Qanswer kg: designing a portable

question answering system over rdf data. In: Harth A, Kirrane S, Ngonga Ngomo AC, Paulheim H, Rula
A, Gentile AL, Haase P, Cochez M (eds) The semantic web. Springer, Cham, pp 429–445

25. Dong T, Wang Z, Li J, Bauckhage C, Cremers AB (2019) Triple classification using regions and fine-
grained entity typing. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 77–85

26. Dubey M, Banerjee D, Chaudhuri D, Lehmann J (2018) EARL: joint entity and relation linking for
question answering over knowledge graphs. In: Lecture notes in computer science, Springer, pp 108–126

27. ElSahar H, Vougiouklis P, Remaci A, Gravier C, Hare JS, Laforest F, Simperl E (2018) T-rex: a large scale
alignment of natural language with knowledge base triples. In: Proceedings of the eleventh international
conference on language resources and evaluation, LREC 2018, Miyazaki, Japan, May 7–12, 2018

28. Fabian M, Gjergji K, Gerhard W et al (2007) Yago: a core of semantic knowledge unifying wordnet and
wikipedia. In: WWW, pp 697–706

29. Fader A, Soderland S, Etzioni O (2011) Identifying relations for open information extraction. In: Pro-
ceedings of the 2011 EMNLP, pp 1535–1545

30. Ferragina P, Scaiella U (2010) TAGME: on-the-fly annotation of short text fragments (by wikipedia
entities), pp 1625–1628

31. Fredrickson S, Tarassenko L (1995) Text-independent speaker recognition using neural network tech-
niques

123

https://www.w3.org/DesignIssues/LinkedData.html
https://ychai.uk/notes/2018/11/21/NLP/NER/Evaluation-metrics-of-Name-Entity-Recognition-systems/
https://ychai.uk/notes/2018/11/21/NLP/NER/Evaluation-metrics-of-Name-Entity-Recognition-systems/


M. Y. Jaradeh et al.

32. Freitas A, Bermeitinger B, Handschuh S (n.d.) Lambda-3/pycobalt: coreference resolution in python.
https://github.com/Lambda-3/PyCobalt

33. Gardent C, Shimorina A, Narayan S, Perez-Beltrachini L (2017) Creating training corpora for NLG
micro-planners, pp 179–188

34. Gashteovski K, Gemulla R, del Corro L (2017) MinIE: minimizing facts in open information extraction.
In: Proceedings of the 2017 EMNLP, pp 2630–2640

35. Hoffart J, YosefMA, Bordino I, Fürstenau H, PinkalM, SpaniolM, Taneva B, Thater S,WeikumG (2011)
Robust disambiguation of named entities in text, pp 782–792

36. Hou Y, Jochim C, Gleize M, Bonin F, Ganguly D (2019) Identification of tasks, datasets, evaluation
metrics, and numeric scores for scientific leaderboards construction. In: Proceedings of the 57th ACL,
pp 5203–5213

37. Ibrahim Y, Riedewald M, Weikum G, Zeinalipour-Yazti D (2019) Bridging quantities in tables and text.
In: 2019 IEEE 35th ICDE, pp 1010–1021

38. Jaradeh MY, Oelen A, Farfar KE, Prinz M, D’Souza J, Kismihók G, Stocker M, Auer S (2019) Open
research knowledge graph: next generation infrastructure for semantic scholarly knowledge, Marina Del
K-CAP, 19

39. Jaradeh MY, Singh K, Stocker M, Auer S (2021) Plumber: a modular framework to create information
extraction pipelines, Association for Computing Machinery, New York, pp 678–679. https://doi.org/10.
1145/3442442.3458603

40. Jaradeh MY, Singh K, Stocker M, Both A, Auer S (2021) Better call the plumber: orchestrating dynamic
information extraction pipelines. In: Brambilla M, Chbeir R, Frasincar F, Manolescu I (eds) Web engi-
neering. Springer, Cham, pp 240–254

41. Kertkeidkachorn N, Ichise R (2017) T2kg: an end-to-end system for creating knowledge graph from
unstructured text. In: AAAI workshops, vol WS-17

42. Kim J-D, Unger C, Ngomo A-CN, Freitas A, Hahm Y-g, Kim J, Nam S, Choi G-H, Kim J-u, Usbeck R
et al (2017) OKBQA framework for collaboration on developing natural language question answering
systems

43. Liang S, Stockinger K, de Farias TM, Anisimova M, Gil M (2020) Querying knowledge graphs in natural
language

44. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly
optimized bert pretraining approach

45. Liu Y, Zhang T, Liang Z, Ji H, McGuinness D (2018) Seq2rdf: an end-to-end application for deriving
triples from natural language text

46. Lu B-L, Ito M (1997) Task decomposition based on class relations: a modular neural network architecture
for pattern classification, pp 330–339

47. Malyshev S, Krötzsch M, González L, Gonsior J, Bielefeldt A (n.d.) Getting the most out of wikidata
48. Mausam, Schmitz M, Soderland S, Bart R, Etzioni O (2012) Open language learning for information

extraction. In: Proceedings of the 2012 joint conference on empirical methods in natural language pro-
cessing and computational natural language learning, ACL, pp 523–534

49. Mesquita F, CannaviccioM, Schmidek J, Mirza P, Barbosa D (2019) KnowledgeNet: a benchmark dataset
for knowledge base population, In: Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natural language processing (EMNLP-
IJCNLP), ACL, pp 749–758

50. MihindukulasooriyaN, RossielloG,Kapanipathi P, Abdelaziz I, Ravishankar S, YuM,GliozzoA, Roukos
S, Gray A (2020) Leveraging semantic parsing for relation linking over knowledge bases, ISWC

51. Niklaus C, Cetto M, Freitas A, Handschuh S (2018) A survey on open information extraction. In: Pro-
ceedings of the 27th COLING, pp 3866–3878

52. Ponza M, Del Corro L, Weikum G (2018) Facts that matter. In: Proceedings of the 2018 EMNLP, ACL,
pp 1043–1048

53. Raghunathan K, Lee H, Rangarajan S, Chambers N, Surdeanu M, Jurafsky D, Manning C (2010) A
multi-pass sieve for coreference resolution. In: EMNLP

54. Sakor A, Onando Mulang I, Singh K, Shekarpour S, Esther Vidal M, Lehmann J, Auer S (2019) Old is
gold: linguistic driven approach for entity and relation linking of short text, ACL, pp 2336–2346

55. Sakor A, Singh K, Patel A, Vidal M-E (2020) Falcon 2.0: an entity and relation linking tool over wikidata.
In: CIKM

56. SanhV,Wolf T,Ruder S (2019)Ahierarchicalmulti-task approach for learning embeddings from semantic
tasks. Proc AAAI 33:6949–6956

57. SinghK,Mulang IO,Lytra I, JaradehMY,SakorA,VidalM,LangeC,Auer S (2017)Capturing knowledge
in semantically-typed relational patterns to enhance relation linking. In: Proceedings of the knowledge
capture conference, K-CAP 2017, Austin, TX, USA, December 4–6, 2017, pp 31:1–31:8

123

https://github.com/Lambda-3/PyCobalt
https://doi.org/10.1145/3442442.3458603
https://doi.org/10.1145/3442442.3458603


Information extraction pipelines for knowledge graphs

58. Singh K, Radhakrishna AS, Both A, Shekarpour S, Lytra I, Usbeck R, Vyas A, Khikmatullaev A, Punjani
D, Lange C, VidalME, Lehmann J, Auer S (2018)Why reinvent the wheel: Let’s build question answering
systems together, WWW ’18, pp 1247–1256

59. Singh K, Saleem M, Nadgeri A, Conrads F, Pan JZ, Ngomo A-CN, Lehmann J (2019) Qaldgen: towards
microbenchmarking of question answering systems over knowledge graphs. In: ISWC, pp 277–292

60. Skoutas D, Simitsis A (2007) Ontology-based conceptual design of ETL processes for both structured and
semi-structured data. Int J Semant Web Inf Syst 3(4):1–24. https://doi.org/10.4018/jswis.2007100101

61. Trivedi P,Maheshwari G, DubeyM, Lehmann J (2017) Lc-quad: a corpus for complex question answering
over knowledge graphs. In: ISWC, pp 210–218

62. Usbeck R, Röder M NN et al (2015) Gerbil: general entity annotator benchmarking framework. In:
Proceedings of the 24th WWW, pp 1133–1143

63. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM
57(10):78–85

64. Weikum G, Dong L, Razniewski S, Suchanek F (2020) Machine knowledge: creation and curation of
comprehensive knowledge bases. arXiv preprint arXiv:2010.10156

65. Yang X, Gu X, Lin S, Tang S, Zhuang Y, Wu F, Chen Z, Hu G, Ren X (2019) Learning dynamic context
augmentation for global entity linking. In: EMNLP-IJCNLP, pp 271–281

66. Yao L, Mao C, Luo Y (2019) Kg-bert: bert for knowledge graph completion
67. YuW, Li Z, Zeng Q, Jiang M (n.d.) Tablepedia: automating pdf table reading in an experimental evidence

exploration and analytic system, WWW ’19, pp 3615–3619

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mohamad Yaser Jaradeh holds a MSc from Bonn University in Ger-
many and received his PhD from Leibniz University Hannover. He is
currently working as a postdoc researcher at the Data Science and Dig-
ital Libraries group at TIB in Hannover, Germany. He occupies the
roles of a backend developer and a research fellow at his institute. His
research interests are in the application of neural natural language pro-
cessing techniques on free text to extract information for the use within
knowledge graphs. Other research interests are in semantic web, gam-
ification, and question answering.

Kuldeep Singh is currently working as a Principle Product Manager.
He did his PhD thesis at the University of Bonn, Germany, focusing
on answering questions over knowledge graphs. Kuldeep received the
prestigious Marie Curie Fellowship from the European Union for his
PhD studies. He obtained a double master’s degree in Computer Sci-
ence from the Technical University of Berlin, Germany, and Aalto Uni-
versity, Finland in computer science. He regularly publishes in top con-
ferences such as The Web Conference, CIKM, ECML, EACL, ESWC,
SIGIR and ISWC.

123

https://doi.org/10.4018/jswis.2007100101
http://arxiv.org/abs/2010.10156


M. Y. Jaradeh et al.

Markus Stocker leads the Knowledge Infrastructures research group
at the TIB - Leibniz Information Centre for Science and Technology
where he co-leads the Open Research Knowledge Graph research and
development activities. His research interests lie at the intersection
between research infrastructures and research communities, and how
such infrastructures acquire, maintain, and share scientific knowledge
about human and natural worlds. He got his doctorate in Environmen-
tal Sciences (Informatics) of the University of Eastern Finland, Kuopio.
He publishes in top venues such as WWW, JCDL, K-CAP, ICWE, and
IUI.

Andreas Both studied computer science at the Martin Luther Univer-
sity Halle-Wittenberg (Germany) until 2005 and received his doctorate
in the research field of software engineering at the same university
in 2010. He held leading positions in research and development units
in companies in the fields of e-commerce and business software and
was responsible for the area of technology-oriented innovation. Until
2018, he held the role of Head of Architecture, Web Technologies &
IT Research at DATEV eG - a top-tier business software provider in
Germany. Since 2018, he has been Head of Research at DATEV and a
university professor: 2018–2022 at Anhalt University of Applied Sci-
ences (Germany), and since 2022 at the Leipzig University of Applied
Sciences (Germany). His research in the field of web and software
engineering focuses on data-driven architectures, applied AI, and ques-
tion answering over knowledge graphs.

Sören Auer is currently a professor of Data Science and Digital
Libraries at Leibniz Universität Hannover and Director of the TIB. He
has made important contributions to semantic technologies, knowledge
engineering and information systems. He is the author (resp. co-author)
of over 200 peer-reviewed scientific publications. He has received sev-
eral awards, including an ERC Consolidator Grant from the European
Research Council, a SWSA ten-year award, the ESWC 7-year Best
Paper Award, and the OpenCourseware Innovation Award. He has led
several large collaborative research projects, such as the EU H2020
flagship project BigDataEurope. He is co-founder of high potential
research and community projects such as the Wikipedia semantifica-
tion project DBpedia, the Open Research Knowledge Graph. He is an
expert for industry, European Commission, W3C, the German National
Research Data Infrastructure (NFDI) and the European Open Science
Cloud (EOSC).

123


	Information extraction pipelines for knowledge graphs
	Abstract
	1 Introduction
	1.1 Research problem
	1.2 Objective and contributions

	2 Motivating example
	3 Related work
	3.1 Text triple extraction
	3.2 Entity and relation linking
	3.3 Coreference resolution
	3.4 Frameworks and dynamic pipelines
	3.5 End-to-end extraction systems

	4 Approach formalization
	4.1 Defining various IE task interfaces
	4.2 Generating candidate IE pipelines
	4.3 Determining suitable IE pipeline
	4.3.1 Problem
	4.3.2 Solution


	5 Dynamic pipelining framework
	5.1 Architecture overview

	6 Evaluation
	6.1 Assumptions
	6.2 Experimental setup
	6.3 Experiments
	6.4 Ablation studies

	7 Discussion
	8 Conclusion and future work
	Acknowledgements
	References


