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Endurance of quantum coherence due to particle
indistinguishability in noisy quantum networks
Armando Perez-Leija 1,2, Diego Guzmán-Silva3, Roberto de J. León-Montiel 4, Markus Gräfe3, Matthias Heinrich5,
Hector Moya-Cessa 6, Kurt Busch1,2 and Alexander Szameit 5

Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and
entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent
adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment.
Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial
effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting
particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state
in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady
state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
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INTRODUCTION
The influence of random fluctuating environments over the
evolution of dynamical systems has been a subject of intensive
research since the beginning of modern science.1,2 Particularly in
quantum physics, environmental noise represents a prominent
adversary that precludes the generation, control, and preservation
of fundamental properties such as coherence, entanglement, and
quantum correlations.3–7 Conventionally, quantum systems inter-
acting with the environment are termed open quantum systems
(OQS), and as such they constitute the most common structures
encountered in nature. In this regard, the standard phenomen-
ological approach to describe the evolution of OQS is the so-called
Born–Markov approximation.3 In such an approach, the system-of-
interest is weakly coupled to a large unstructured environment in
such a way that the statistical properties of the latter remain
unaffected.8 Generally, in the study of OQS the main interest is to
explore the quantum properties exhibited by the system itself and
not of the environment; as a result one restricts the investigation
to the dynamics of the reduced-OQS only.3,9

In its simplest configuration, reduced-OQS subject to Born-
Markov premises can be investigated in finite quantum networks
in which environmental effects are modeled by introducing pure
dephasing or, more generally, non-dissipative noise, into the site
energies.10 At the single particle level, the relevance of such
dephasing models have been highlighted in an interdisciplinary
framework of studies ranging from biology,11,12 via quantum
chemistry,13,14 and electronics15 to photonics16 and ultra-cold
atoms.17 As it turns out, single-particle dephasing models do not

show any divergence from wave mechanics.10,18–21 Rather the
richness and complexity of genuine quantum processes are more
prominent when a manifold of indistinguishable particles is
considered.22–30

In any setting affected by dephasing, the phase properties of
the associated quantum mechanical waves are randomly dis-
torted, as a result their interference capability or ‘coherence’ tends
to vanish.31–33 Indeed, the fragility of quantum coherence is one
of the main impediments for the development of quantum-
enhanced technologies.31 Clearly, identifying mechanisms to
prevent or slow down decoherence effects in quantum systems
is an issue of scientific and practical importance. In this respect, it
has been demonstrated, theoretically34 and experimentally,35 that
some types of quantum correlations can be arrested into
judiciously prepared quantum states that resist the impact of
non-dissipative noise. More precisely, it has been recognized that
when multiqubit Bell-diagonal states are exposed to dephasing,
quantum coherence defined with respect to certain reference
basis remains unaffected indefinitely,35 that is, the ‘amount’ of
quantum coherence becomes stationary. Beyond this particular
framework, there exist certain special sets of states, termed
decoherence-free subspaces, that exhibit some sort of symmetry
that gives rise to a common coupling with the environment.36

Consequently, along evolution the entire subspace will undergo
collective decoherence36 that can be factored out from the
process leaving the state undistorted.37

In the present work we investigate, theoretically and experi-
mentally, the dynamics of single and two- non-interacting
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particles in quantum networks affected by non-dissipative noise,
that is, networks subject to the Born–Markov approximation. In
particular, we focus our attention on the theoretical description of
the role of particle indistinguishability in the preservation of
coherence of two-particle states, bosons and fermions, propagat-
ing under the influence of dephasing. We stress that the choice of
using non-dissipative noise for our analysis is based on the fact
that the number of particles has to be preserved.
To perform our experiments, we exploit the fact that the

dynamics of true reduced-OQS can be effectively reproduced in
ensembles of subsystems where the fluctuating parameters, either
site energies or coupling parameters, can be implemented
physically.38 Notice, the simulation of OQS with Hamiltonian
ensembles is only possible for systems under the influence of non-
dissipative noise. For our experiments, such reduced-like OQS are
implemented in ensembles of photonic waveguide networks
inscribed in fused silica glass by means of the femtosecond laser
writing technique.39 In this photonic context, time is mapped onto
the propagation coordinate (t→ z), the waveguide propagation
constants play the role of site energies, and the hopping rates
result from the evanescent overlap between normal modes
supported by adjacent waveguides (sites).39 We emphasize that
within the single excitation manifold the mapping of the time
parameter over the propagation coordinate allows one to
literarilly observe the evolution of transition amplitudes with
time.40 Further, dephasing effects can be produced in the
waveguides by inducing random longitudinal fluctuations in the
waveguides’ refractive indices as illustrated in Fig. 1a.

RESULTS
Single particle dynamics
In order to produce stochastic fluctuations in the waveguide ‘site-
energies’, we have varied the inscription velocity while writing the
waveguides at intervals of one centimeter. This effectively
produces random changes in the site-energies every ~33 ps.
Mathematically, single-particle dynamics in such photonic net-
works is governed by the stochastic Schrödinger equation
�i ddz ψnðzÞ= βnðzÞψnðzÞ+

PN
m≠n κm;nψmðzÞ. Here, we have set ħ

= 1, ψn represents the single-particle wavefunction at site n, and
κm,n are the hopping rates between the (m, n) sites. Moreover,
βn(z)= βn+ ϕn(z) denotes the random site energy at the n-th site
with ϕn(z) describing a stochastic Gaussian process which satisfies
the conditions ϕnðzÞh i ¼ 0 and ϕnðzÞϕmðz0Þh i= γnδm;nδ z � z0ð Þ,
with ¼h i denoting stochastic average, and γn representing the
dephasing rates.10 Notice, the dephasing rates are directly
obtained using the relation γn ¼ σ2

nΔz,
41 where σn is the standard

deviation used to inscribe the n-th waveguide and Δz= 1 cm is
the correlation length. It is important to note that the assumption
of uncorrelated Gaussian fluctuations in the site energies
corresponds to the so-called Haken-Strobl model,12 which has
been widely used to describe dephasing processes in realistic
systems such as exciton transport in molecular aggregates and
crystals, and photosynthetic complexes.10,12 Additionally, our
experimental setup can be modified to reproduce more general,
non-Gaussian or non-Markovian, stochastic processes. However, in
such scenarios the number of particles is not necessarily
preserved, as a result, we restrict our analysis to Gaussian noise.
In the presence of noise the proper instrument to describe

quantum dynamical systems is the density matrix. Hence, by
introducing the average single-particle correlation functions
ρn;m ¼ ψnψ

�
m

� �
one obtains the master equation for the reduced

density matrix10 (see Methods)

i ddz ρn;m ¼ βm � βnð Þ � i
2 γn þ γmð Þ� �

ρn;m

þi
ffiffiffiffiffi
γn

p ffiffiffiffiffiffi
γm

p
δn;mρn;m

�P
r
κn;rρr;m

þP
r
κm;rρn;r :

(1)

Based on the fact that the optics of single-particles, bosons and
fermions, is analogous to wave mechanics, here we experimentally
analyze single-excitation dynamics utilizing laser light, see Fig. 1b
for a sketch of the experimental setup. Throughout this work we
consider as demonstrative models waveguide trimers involving
two relatively strongly-coupled sites both of which interact weakly
with a third site, Fig. 1a. To fulfill these coupling requirements, we
chose the coupling coefficients between the upper sites to be κ1,2
= κ2,1= 2 cm−1, while their coupling with the lower waveguide is
κ1,3= κ2,3= 0.6 cm−1. For all experiments the length of the
samples was 12 cm and the propagation constants were taken
randomly from a Gaussian distribution with variance σ= 3 cm−1

(σ= 2 cm−1) for the single-particle (two-particle) experiments, and
mean values β1(z)= β2(z)= 1 cm−1 and β3(z)=−1 cm−1 for the
upper and lower waveguides, respectively (see Methods).
As reference case for the single-excitation manifold, we depict

in Fig. 1d the experimental intensity evolution of light traversing a
noiseless trimer. Evidently, the light propagates in a coherent
fashion hopping predominantly between the strongly-coupled
sites (upper waveguides), and at most 10% of the total energy
hops into the farthest site (lower waveguide). In contrast, when
the trimers become disturbed by noise, the regular hopping of the
wavefunctions is no longer sustained. Instead, the average wave-
packets evolve into an incoherent superposition of delocalized
states. These effects are demonstrated experimentally by injecting
light into one of the upper sites of an ensemble containing 21
different dynamically disordered trimers. Then, after averaging the
intensities over the ensemble we find the pattern displayed in Fig.
1f. Notice at the propagation distance of z= 12 cm our observa-
tions reveal an homogeneous intensity distribution covering all
sites. Interestingly, such homogeneousness in the intensity occurs
despite the fact the associated waveguides are inscribed at
different separation distances.
Concurrently, theoretical inspection of the off-diagonal ele-

ments ρn,m elucidate a gradual decay of coherence. These effects
are shown in Fig. 2 for different dephasing strengths. Notice in all
cases the coherences ρn,m inherently decay demonstrating that
dephasing transforms single-particle states into stationary states
with nullified coherence.11–13 These results can be explained from
the fact that the off-diagonal elements ρn,m exhibit a complex
propagation constant (βm− βn)− i(γn+ γm)/2, where the negative
imaginary part implies attenuation. On the contrary, for the
diagonal elements, ρn,n, such propagation constants turn out to be
zero.
These theoretical findings along with our experimental obser-

vations unequivocally confirm that single-excitations, subject to
non-dissipative noise, coherently evolve during a certain time, and
eventually the system reaches a steady state constituted of a
uniform incoherent mixture of states.11–13 For the sake of
completeness, in Figs. 1c, e we compare the theoretically
computed diagonal elements ρn;n ¼ ψnψ

�
n

� �
, and the experimen-

tal intensity distributions for the coherent and the dephasing case,
respectively. The good agreement between the experimental and
numerical results suggest that Eq. (1) can be assumed valid.

Two-particle dynamics
In stark contrast to single-excitations, when two indistinguishable
particles co-propagate in the same type of structures, interesting
effects occur revealing that some of the corresponding coherence
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terms resist the impact of dephasing. Our theoretical framework is
based on the concept of two-particle state Ψp,q, which describes
jointly two particles populating sites (p, q).42 In terms of Ψp,q we

define the two-particle density matrix ρ(p, q), (p′, q′)= Ψp;qΨ
�
p0;q0

D E
,

whose diagonal elements, ρ(p, q), (p, q)= Ψp;qΨ
�
p;q

D E
¼ Ψp;q

�� ��2D E
,

yield the joint probability density Gð2Þ
p;q ¼ ρðp;qÞ;ðp;qÞ , also termed

coincidence rate.43 It is important to note that there have been
some previous studies investigating the impact of static disorder
on the dynamics of two-particle intensity correlations, which
represent the diagonal elements of the corresponding density
matrix.23,43

Fig. 1 a Schematic setup of an integrated waveguide trimer simulator of a reduced Born–Markov open quantum system. The different colors
in the waveguides represent dynamical (z dependent or time dependent) random changes in the propagation constants, whose effects
emulate site-energy fluctuations induced by the environment. Notice the orange and green waveguides represent the strongly coupled sites
and the blue waveguide represents the third site that is weakly coupled to the upper sites. b Experimental setup employed to carry out
experiments within the two-excitation manifold: a two-photon source at a wavelength of 815 nm was implemented by means of spontaneous
parametric down-conversion from a pump laser at a wavelength of 407.5 nm. Photons emerging at the output of the device are collected via a
fiber array and subsequently fed into avalanche photodiodes (APDs). In the absence of noise all waveguides have the same propagation
constants. Consequently, exciting one of the uppers sites with laser light (λ= 633 nm) creates the intensity dynamics shown in d. We observe
that light propagates through the system hopping predominantly among the upper waveguides, i.e., the strongly coupled sites. In the
presence of dephasing f, we observe the emergence of a uniform redistribution of energy among all the waveguides. Notice in c–f the green
curve represents the intensity along the excited waveguide, the orange curve describes the intensity along the second upper site and the blue
one is the intensity recorded from the lower site, see a. These experiments unequivocally demonstrate that within the single-excitation
manifold dephasing induces a uniform redistribution of energy and as a result the farthest waveguide becomes populated with about 1/3 of
the total energy. c, e depict the theoretically calculated single-excitation dynamics in a noiseless and a dephasing trimer, respectively
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In the presence of dynamic disorder, the two-particle master
equation governing the system is given as (see Methods)

i ddz ρðp;qÞ;ðp0;q0Þ ¼ �βp � βq þ βp0 þ βq0
� 	�
� i

2 γp þ γq þ γp0 þ γq0
� 	�

ρðp;qÞ;ðp0;q0Þ

þi ffiffiffiffiffiffiffiffiffiffi
γpγp0

p
δp;p0 þ ffiffiffiffiffiffiffiffiffiffi

γpγq0
p

δp;q0
h

þ ffiffiffiffiffiffiffiffiffiffi
γqγp0

p
δq;p0 þ ffiffiffiffiffiffiffiffiffiffi

γqγq0
p

δq;q0

� ffiffiffiffiffiffiffiffiffi
γpγq

p
δp;q � ffiffiffiffiffiffiffiffiffiffiffi

γp0γq0
p

δp0;q0
i
ρðp;qÞ;ðp0;q0Þ

�P
r

κr;pρðr;qÞ;ðp0;q0Þ þ κr;qρðp;rÞ;ðp0;q0Þ
h

�κr;p0ρðp;qÞ;ðr;q0Þ � κr;q0ρðp;qÞ;ðp0;rÞ
i
:

(2)

For our analysis, we consider the situations where the stochastic
trimers are excited by two indistinguishable particles in pure
separable states Ψsepj i ¼ 1ffiffi

2
p 11; 12j i± 12; 11j ið Þ, where the ± signs

determine whether the particles are bosons (+) or fermions (−). It is
worth noting that fermionic-like statistics with bosons is nowadays
possible using the polarization degree of freedom of photons,
e.g.22,44. The density matrices corresponding to these initial states,
ρbosð1;2Þ;ð2;1Þ = 11; 12j i 11; 12h j þ 11; 12j i 12; 11j i þ H:C:ð Þ=2 and
ρferð1;2Þ;ð2;1Þ = 11; 12j i 11; 12h j � 11; 12j i 12; 11h j þ H:C:ð Þ=2, are shown
in Figs. 3a, h. For bosons we also examine the evolution of entangled
two-particle states, Ψentj i= 1ffiffi

2
p 11; 11j i þ 12; 12j ið Þ, whose density

matrix is depicted in Fig. 3b. Notice, throughout this work we use the
compact notation 1m; 1nj i to represent states where one particle is
populating site m and another site n, 1mj i � 1nj i, while states ∝
1m; 1nj i þ 1n; 1mj ið Þ, are symmetrized wavefunctions. In this con-

vention the two-particle state Ψm,n corresponds to 1m; 1nj i. It is

noteworthy that the off-diagonal terms present in the initial density
matrices, Figs. 3a, h, arise by virtue of the wavefunction symmetriza-
tion needed to account for the indistinguishability and exchange
statistics of the particles.24,45 In other words, such off-diagonal
elements appear due to the identicalness of the particles and in their
present form it is not possible to identify two-particle coherence
(entanglement).24 It is also important to remark that quantum theory
demands that pure states involving identical particles have to be
described by (anti-)symmetrized state vectors. Otherwise, theoretical
predictions may exhibit dramatic discrepancies with experimental
observations, e.g.46,47. We emphasize that the (anti-)symmetrization is
referred to the particle statistics (bosons or fermions), which is the
meaningful physical property, and not to the structure of the state
with respect to the fictitious labels introduced to distinguish the
particles.
Integration of the two-particle master equation Eq. (2) with the

initial states Ψsepj i and Ψentj i renders the density matrices
displayed in Fig. 3. These results clearly show that after a
propagation distance of about 12 cm, the density matrices for
separable and entangled bosons become identical, and after
20 cm the systems reach the steady state. Once in steady state, a
closer inspection of the diagonal elements reveals that both
particles bunch into the same site with probability ρ(1,1),(1,1)= ρ(2,2),
(2,2)= ρ(3,3),(3,3)= 0.15, see Fig. 3d. Concurrently, the remaining
diagonal elements, those quantifying particle anti-bunching,
exhibit the probabilities ρ(1,2), (1,2)= ρ(1,3), (1,3)= ρ(2,1), (2,1)= ρ(2,3),
(2,3)= ρ(3,1), (3,1)= ρ(3,2), (3,2)= 0.09.
Quite interestingly, our theory predicts the existence of some

coherences in the resultant steady states as indicated by the off-
diagonal elements exhibited in the density matrix, Fig. 3d. To
better appreciate these effects we decompose the steady state

Fig. 2 Theoretically computed evolution of the coherence terms (off-diagonal terms ρm,n, m ≠ n) of the reduced density matrices arising in
waveguide trimers exhibiting dephasing rates (top) γ= 0.3γexp, (center) γ= 0.6γexp, and (bottom) γ= γexp, where γexp= (γ1, γ2, γ3)= γexp=
(1.7275, 1.7435, 1.7645) cm−1 are the dephasing rates obtained from the experimental parameters used to fabricate the structures utilized in
the experiments shown Fig. 1f. In all cases the coherences ρm,n inherently vanish after certain propagation distance. The length of the
simulated systems was 10 cm and the propagation constants were taken from a Gaussian distribution with identical variance σ= 3 cm−1, and
mean values β= 1 cm−1 and β=−1 cm−1 for the upper and lower waveguides, respectively
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Fig. 3 Theoretically computed evolution of reduced density matrices for a separable Ψsepj i= 1ffiffi
2

p 11; 12j i± 12; 11j ið Þ ! ρð1;2Þ;ð2;1Þ = Ψsepj i Ψseph j, b
entangled Ψentj i= 1ffiffi

2
p 11; 11j i þ 12; 12j ið Þ ! ρentð1;1Þ;ð2;2Þ = Ψentj i Ψenth j, and e incoherent ρincð1;2Þ;ð2;1Þ =

1
2 11; 12j i 11; 12h j þ 12; 11j i 12; 11h jð Þ bosons

propagating in the noisy trimer shown in Fig. 1a. The simulated dephasing rates correspond to the experimental ones γexp= (γ1, γ2, γ3)=
(1.3012, 1.2365, 1.293) cm−1. From c, d it is clear that at z= 12 cm, separable and entangled bosons are described by identical density matrices.
Once in the steady state, e.g., at z= 100 cm, the density matrices exhibit three main peaks along the diagonal, indicating that particle
bunching is the most probable outcome to occur d. In contrast, incoherent bosons exhibit a different behaviour where particle antibunching
exhibits the highest probability as elucidated by the density matrices at z= 100 cm g. In h–j we depict density matrices for indistinguishable
fermion pairs Ψfer

�� �
= 1ffiffi

2
p 11; 12j i � 12; 11j ið Þ ! ρferð1;2Þ;ð2;1Þ = 11; 12j i 11; 12h j− 11; 12j i 12; 11h j− 12; 11j i 11; 12h j+ 12; 11j i 12; 11h j. From this numer-

ical results we see that in agreement with the Pauli exclusion principle, both fermions never occupy the same site (fermion antibunching) and
the steady state contains off-diagonal entries demonstrating that some coherences survive the impact of dephasing
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into four sub-matrices, ρbosðzÞ= ρsepð1;2Þ;ð2;1Þ þ ρsepð1;3Þ;ð3;1Þ +

ρsepð2;3Þ;ð3;2Þ þ ρmix
ðn;nÞ;ðn;nÞ , where ρmix

ðn;nÞ;ðn;nÞ ∝
P3

n¼1 1n; 1nj i 1n; 1nh j
represents an incoherent superposition of two-particle states
(classically-correlated two-particle states42), and ρsepðp;qÞ;ðq;pÞ ∝
1p; 1q
�� �

1p; 1q
� ��þ 1p; 1q

�� �
1q; 1p
� ��þ H:C: is a coherent superposi-

tion of two-particle states. Indeed, the superposition ρsepð1;2Þ;ð2;1Þ þ
ρsepð1;3Þ;ð3;1Þ þ ρsepð2;3Þ;ð3;2Þ implies that the particles coherently inhabit
in all three sites with the same amplitude. Accordingly, within the
steady state a mixture of both classically-correlated and coherent
(indistinguishable) unentangled two-particle states perpetually
coexist. Likewise, for indistinguishable fermion pairs the steady
state exhibits some off-diagonal terms, see Fig. 3j. However, unlike
the bosonic case, the fermionic steady state is composed of only
three sub-matrices ρferðzÞ= ρsepð1;2Þ;ð2;1Þ þ ρsepð1;3Þ;ð3;1Þ þ ρsepð2;3Þ;ð3;2Þ ,
thereby indicating the coexistence of quantum superpositions of
indistinguishable two-fermion states. In fact, the absence of the
matrix elements ρmix

ðn;nÞ;ðn;nÞ in the fermionic steady state is because
according to the Pauli exclusion principle fermions cannot inhabit
in the same site simultaneously.
To explain the existence of coherence in the steady state, we

see that the two-particle density matrix exhibits a complex
propagation-constant given by the first two terms on the right-
hand-side of Eq. (2). For the diagonal elements ρ(p,q),(p,q) such
propagation-constants turn out to be zero, and the same occurs for
the off-diagonal elements accounting for particle indistinguish-
ability ρ(p,q),(q,p). The lack of the complex propagation-constant in
all diagonal and the off-diagonal elements ρ(p,q),(q,p) directly
implies that they will remain immune to the impact of dephasing.
Quantum mechanically, each particle from a pair of identical
particles that travel through sites p and q affected by dephasing
strengths γp and γq, will experience the dephasing from both sites
simultaneously. This implies that, due to the exchange symmetry,
the coherences due to particle indistinguishability will undergo
the same ‘amount’ of dephasing, as a result such coherences will
remain undistorted. Indeed, this is an example of collective
dephasing where the coherences are identically affected by the
environment. Therefore, the subspace formed by the coherences
ρ(p,q),(q,p) is a decoherence free subspace.36,37 Conversely, for the
remaining off-diagonal elements ρ(p,q),(p′,q′) the propagation-
constant is given as (−βp− βq+ βp′+ βq′)−i(γp+ γq+ γp′+ γq′)/2.
Owing to the negativity of the imaginary part, we determine that
those elements will decay as they are affected by an attenuation
factor arising from dephasing.
To shed light on the role of particle indistinguishability in the

preservation of coherence, we consider the evolution of two-
particle states exhibiting classical probabilities, ρmix

ð1;1Þ;ð2;2Þ =
11; 11j i 11; 11h j þ 12; 12j i 12; 12h jð Þ=2 and ρincð1;2Þ;ð2;1Þ =
11; 12j i 11; 12h j þ 12; 11j i 12; 11h jð Þ=2. Physically, ρmix

ð1;1Þ;ð2;2Þ involves
two indistinguishable particles entering together into either one
of the upper sites of the trimer with exactly the same classical
probability. That is, ρmix

ð1;1Þ;ð2;2Þ is a two-particle state presenting the
strongest possible classical correlation.42 Conversely, the state
ρincð1;2Þ;ð2;1Þ is made of identical particles that are initially
distinguishable.
Remarkably, for the initial state ρmix

ð1;1Þ;ð2;2Þ, integration of the
master equation, Eq. (2), renders a steady state which is identical
to the ones obtained for separable and entangled bosons, Fig. 3d.
In contrast, ρincð1;2Þ;ð2;1Þ yields a different density matrix where the
anti-bunching elements, (ρ(1,2), (1,2)= ρ(1,3), (1,3)= ρ(2,1), (2,1)= ρ(2,3),
(2,3)= ρ(3,1), (3,1)= 0.15), become larger than the bunching ones,
ρ(1,1), (1,1)= ρ(2,2), (2,2)= ρ(3,3), (3,3)= 0.09. Interestingly, even though
the initial state involves two distinguishable bosons, we identify
some signatures of coherence in the density matrix, see off-
diagonal elements in Fig. 3g. The explanation behind the
appearance of those coherences is that during evolution, the

initially distinguishable particles can tunnel into the same site, and
since the particles are identical when they reach the same site
they become indistinguishable. Hence, a soon as the coherences
manifest themselves in the state, our theory predicts that they will
remain immune to dephasing.
In order to quantify the difference between all steady states we

use the trace-distance criterion D ρm; ρnð Þ= 1
2 Tr ρm � ρnj j, which

yields zero if and only if ρm= ρn.
48 In the present case ρm,n

represents any combination of steady states arising from the initial

states ρbosð1;2Þ;ð2;1Þ; ρ
ent
ð1;1Þ;ð2;2Þ; ρ

mix
ð1;1Þ;ð2;2Þ; ρ

inc
ð1;2Þ;ð1;2Þ


 �
. By doing so we

find D (ρm, ρn)= 0 for all cases where the particles were
indistinguishable since the begining, and D (ρm, ρn)= 0.25 for
the cases comprising steady states of initially indistinguishable
and distinguishable particles.
To quantify the amount of surviving coherence in the steady

states, we use two different coherence measures, the physically
intuitive norm of coherence CnðρÞ ¼

P
i≠j ρi;j
�� ��,32 and the relative

entropy of coherence CRE(ρ)= S (ρdiag)−S (ρ),31 with S represent-
ing the von Neumann entropy and ρdiag the matrix obtained from
the density matrices ρ after removing all off-diagonal elements.
Notice, in both measures, a totally mixed (incoherent) state is
signaled by a vanishing coherence measure. In Fig. 4 we show the
evolution of the norm of coherence and the entropy of coherence
for the initial states separable (solid line), path-entangled (dashed
line), and incoherent (dash-dotted line) states, respectively.
Importantly, when distinguishable particles are injected into the
system (Cn= CRE= 0), coherence due to indistinguishability
rapidly emerges and the system evolves into a steady-state where
Cn= 0.25 and CRE= 0.06. From these theoretical results we
convincingly state that under the influence of dephasing, identical
particles always evolve into a steady state in which coherences
due to indistingushability perpetually prevail. In the Methods
section we present the resulting two-particle steady states for
different dephasing rates, and we demonstrate that the same
steady state occurs even in the presence of strong dephasing, see
Figs. 7 and 8. The extension of the theory to the case of N particles
should be straightforward as indicated in the Methods.
As we pointed out above, the diagonal elements of the density

matrices are equal to the joint particle probability density,
Gð2Þ
p;q ¼ ρðp;qÞ;ðp;qÞ. Hence, to experimentally prove the validity of

the two-particle master equation, Eq. (2), we have performed two-
photon intensity correlation measurements for separable,
entangled, classically correlated, and distinguishable two-photon
(two-boson) states using an ensemble of 37 waveguide trimers.

Fig. 4 Evolution of the relative entropy of coherence CRE(ρ) (top
panel) and the norm of coherence Cn(ρ) (bottom panel) for the initial
states separable (solid line), path-entangled (dashed line), and
incoherent (dash-dotted line)
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The details regarding the state preparation and waveguide
fabrication are given in the Methods section.
The experimental average photon coincidence measurements

are depicted in Figs. 5e–g where it is clear that, under the
influence of dephasing, initial states involving indistinguishable
photons are driven to undergo identical correlation patterns. More
specifically, for all three cases involving indistinguishable two-
particle states (separable, entangled, and classically correlated),
the measurements reveal the tendency of the photons to bunch
into the same site including the farthest weakly-coupled
waveguide. Concurrently, photon coincidences (antibunching)
occur with similar probabilities, but less frequently than bunching
events as illustrated by the off-diagonal elements in Figs. 5e–g.
Finally, when exciting the same stochastic networks with
distinguishable (incoherent) photons coupled separately into the
upper sites, the correlation patterns were found to exhibit the
higher probabilities in the off-diagonals (antibunching) terms, Fig.
5h. Note the correlation matrices, Gð2Þ

p;q ¼ ρðp;qÞ;ðp;qÞ, have been
arranged in a way that the bunching elements, (ρ(1,1),(1,1), ρ(2,2),(2,2),
ρ(3,3),(3,3)), are shown along the diagonal, while the anti-bunching
terms, (ρ(1,2),(1,2), ρ(1,3),(1,3), ρ(2,1),(2,1), ρ(2,3),(2,3), ρ(3,1),(3,1), ρ(3,2),(3,2)), are
displayed in the off-diagonals entries.
Since the elements of the experimental correlation matrices

represent the diagonal elements of the density matrix, we can

compute the average fidelity between the experimental Gð2Þ�exp
p;q

and theoretical Gð2Þ�th
p;q ¼ ρðp;qÞ;ðp;qÞ two-particle probability den-

sities. This is done using the expression S=P
p;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð2Þ�exp
p;q Gð2Þ�th

p;q

q� 
2

/
P

p;q G
ð2Þ�exp
p;q

P
p;q G

ð2Þ�th
p;q ,49,50 which

gives fidelities of 0.9935, 0.9945, and 0.9948 for the entangled,
separable, and incoherent input states, respectively. In the
Methods section we compare the experimental correlations, Figs.
5e–h, versus the diagonal elements of the theoretically-computed
density matrices displayed in Figs. 3d, g, see Fig. 6.

DISCUSSION
At this point it is worth emphasizing that there is an ongoing
debate regarding the observability or physical significance of
correlations due to symmetrization.24,51,52 Indeed, the controversy
arises because correlations of the type (ρ(p,q),(q,p), ρ(q,p),(p,q))
represent superpositions of two-particle states where the only
difference is the order of the particles. Formally, such coherences
do not represent manipulable superpositions, but their presence
in the steady state implies that the particles retain their capability
to interfere (indistinguishability) in experiments of the Hong-Ou-
Mandel type.46,53–55 Indeed, it has been shown that superpositions
originated from the exchange symmetry can become accessible
and exploitable.53,56–59

We stress the results presented in this work differ from the ones
reported in refs.34,35. In the present case, we have shown that
indistinguishable particles always evolve towards a steady state
exhibiting some coherences that imply particle indistinguishabil-
ity. On the other hand, in refs.34,35 it is demonstrated that under
certain conditions the amount of coherence exhibited by certain
Bell-diagonal states remains stationary. Regarding our experi-
mental setup, it differs from the one shown in ref.16, in the fact
that here we implement the effects of dephasing by modifying
the properties of the waveguides. On the contrary, in16 the
environmental effects are modeled by tuning the input field and
the analysis is restricted to the single-excitation manifold.
In this work, we have investigated, theoretically and experi-

mentally, Born–Markov OQS within the single and two-excitation
manifolds. We showed that even when individual particles do not
preserve any quantum coherence in the presence of noise,
indistinguishable two-particle states retain, on average, quantum
coherence despite the impact of dephasing. More importantly, we
have shown that due to the exchange symmetry the prevailing
coherences undergo collective dephasing, as a result, the set of
coherences due to particle indistinguishability form a
decoherence-free subspace. Finally, we point out that quantum
technologies are frequently based on identical particles, bosons or

Fig. 5 Experimental two-point (intensity) correlation functions, Gð2Þ
p;q ¼ ρðp;qÞ;ðp;qÞ, for separable a, entangled b, classically correlated c, and

incoherent photon pairs d coupled into the upper sites of the waveguide trimer shown in Fig. 1a. The initial states are shown in a–d. The
corresponding output correlation patterns, after a propagation distance of z= 12 cm, are shown in e–h. From these experimental results it
becomes evident that indistinguishable two-photon states produce similar correlation patterns where photon bunching exhibits the highest
probability, while for incoherent distinguishable photons exhibit the highest probability in the antibunching terms
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fermions. That is, identical particles constitute the elementary
building blocks of quantum systems. Hence, one can in principle
encode information in the correlations due to particle indis-
tinguishability, and since those correlations are robust against
dephasing, the information can be transmitted through dephasing
channels without any distortion.

METHODS
Devices fabrication and specifications
The waveguides samples employed in the experiments were inscribed in
high-purity fused silica (Corning 7980, ArF grade) using a RegA
9000 seeded by a Mira Ti:Al2O3 femtosecond laser. Pulses centred at
800 nm with duration of 150 fs were used at a repetition rate of 100 kHz
with energy of 450 nJ. The pulses were focused 250 μm under the sample
surface using a numerical aperture= 0.6 objective while the sample was
translated at different speeds ranging from 60 to 240mmmin−1 for the
classical experiments and from 70 to 131mmmin−1 for the quantum. The
samples were translated by a high-precision positioning stages (ALS130,
Aerotech Inc.). The random changes in the speed inscription were chosen
from a gaussian distribution at intervals of one centimeter, effectively
producing stochastic fluctuations in the site-energies every ~33 ps. Note
we have used two different sigmas because for the single-particle
experiments the operation wavelength is 633 nm, while for two photons
is 808 nm. Hence, the parameters have been adjusted to fabricate
waveguides to operate at the desired wavelengths. The mode field
diameters of the guided mode were 18 × 20 μm at 815 nm. At the
wavelength of interest, propagation losses and birefringence were
estimated at 0.3 dB cm−1 and in the order of 10−7, respectively. The
waveguides are equally spaced by 127 μm at the input-output facets to
couple into standard V-groove fibre arrays for the in- and out-coupling of
the photons. The waveguides then smoothly converge through fanning
arrangements to their eventual configuration in the functional sections.

Experiments with classical light
To experimentally demonstrate the functionality of the suggested
waveguide system, we use an ensemble of 21 different dynamically
disordered waveguide trimers. The input signal is prepared by focusing a
beam from a HeNe laser onto the front facet of the sample. Then, by
exploiting the fluorescence from colour centres within the waveguides, we
monitor the full intensity evolution from the input to the output plane by
using a CCD camera. After recording the intensity from the 21 samples we
perform the average intensity and the final result is presented in Fig. 1f.

The average of the fluorescence images, Fig. 1f, clearly shows the
emergence of a uniform redistribution of energy among all the
waveguides.

Preparation of two-photon states
Photon pairs were generated at a wavelength λ= 815 nm using a standard
type-I spontaneous-parametric-down-conversion source by pumping a
BiBO crystal with a 407.5 nm continuous-wave laser diode at 70mW. We
employed commercial V-groove fiber arrays to couple the photons into the
on-chip trimers as well as to collect them at the output facet of individual
waveguides. We use high-NA multimode fibers to feed the photons into
the respective avalanche photodiode. This in turn ensures low coupling
losses at the output of the chip. From the data of the photodiodes, the
photon probability distribution at the output, as well as the two-point
intensity correlations, can be extracted.
To prepare indistinguishable separable photon pairs from a SPDC source

we additionally apply filters with 3 nm bandwidth as shown in Fig. 1b.
Entangled two-photon states were readily created by simultaneously
exciting the two input modes of an integrated 50:50 directional coupler
with indistinguishable photons in a separable product state.49 Classically-
correlated two-photon states were produced in a similar fashion with the
difference that we induce a delay of ~2 ps in one of the output ports of the
integrated 50:50 directional coupler such that we have two distinguishable
two-photon states (classically-correlated states). Distinguishable two-
photon pairs were produced by delaying one of the photons ~2 ps with
respect to the other before entering the samples (this time without an
additional integrated 50:50 directional coupler). We point out that a time
delay of ~2 ps is sufficient to make the photons distinguishable and the
distinguishability was verified by the absence of interference in a standard
Hong-Ou-Mandel setup.

Derivation of the single and two-particle master equations
Single-excitation manifold. We start by considering a stochastic network
containing N coupled sites. In such configurations, the propagation of
single-particle probability amplitudes are governed by the stochastic
Schrödinger equation10

�i
d
dz

ψnðzÞ ¼ βnðzÞψnðzÞ þ
XN
m≠n

κm;nψmðzÞ: (3)

Here we have set ħ= 1, ψn(z) is the probability amplitude for a single-
particle propagating through site n, βn(z) are the stochastic site energies
which depend on the propagation distance z, and κm,n represents the

Fig. 6 Two-particle intensity correlations for separable a, d, entangled b, e, and incoherent photon pairs c, e after z= 12 cm propagation.
Upper row: Experimental data. Lower row: Numerical simulations
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coupling coefficients between sites m and n. In order to account for
environmental effects, we assume random site energies varying according
to the functions βn(z)= βn+ ϕn(z), where ϕn(z) describes a stochastic
Gaussian process satisfying the conditions

ϕnðzÞh i ¼ 0; (4a)

ϕnðzÞϕmðz0Þh i ¼ γnδm;nδ z � z0ð Þ; (4b)

with ¼h i denoting stochastic average. Note we have assumed the
simplest scenario in which the system is affected by white noise, described
by Eq. (4b), where γn denotes the noise intensity, δn,m is the Kronecker
delta used to indicate that each site energy fluctuates independently from
each other, and δ(z−z′) is a Dirac delta describing the Markovian
approximation.60

Writing Eq. (3) in differential form we have

dψn ¼ iβnψndz þ i
P
r
κn;rψrdz þ iψnϕnðzÞdz; (5)

and by introducing the so-called Wiener increments41

dWn ¼ ϕnðzÞffiffiffiffi
γn

p dz;

dWndWmh i ¼ δn;mdz;
(6)

we can cast Eq. (5) as

dψn ¼ iβnψndz þ i
X
r

κn;rψrdz þ iψn
ffiffiffiffiffi
γn

p
dWn: (7)

We note that Eq. (7) has the so-called Stratonovich form.60 In order to
compute the differential of the product ψnðzÞψ�

mðzÞ, we use Itô’s product
rule d ψmψ

�
n

� 	
= d ψnð Þψ�

m þ ψnd ψ�
m

� 	
+ d ψnð Þd ψ�

m

� 	
,60 which demands dψn

to be written in Itô’s form10

dψn ¼ iβnψn þ i
X
r

κn;rψr �
1
2
γnψn

 !
dz þ i

ffiffiffiffiffi
γn

p
ψndWn: (8)

Hence, using Eq. (8) we obtain the expression

d ψnψ
�
m

� 	¼ i βn � βmð Þ � 1
2 γn þ γmð Þ� �

ψnψ
�
mdz

þi
P
r
κn;rψrψ

�
mdz � i

P
r
κm;rψnψ

�
r dz

þi
ffiffiffiffiffi
γn

p
ψnψ

�
mdWn � i

ffiffiffiffiffiffi
γm

p
ψnψ

�
mdWm

þ ffiffiffiffiffi
γn

p ffiffiffiffiffiffi
γm

p
ψnψ

�
mdWndWm;

(9)

where we have only considered terms up to first order in dz. Finally, by
taking the stochastic average of Eq. (9) and defining the density matrix as
ρn;m ¼ ψnψ

�
m

� �
we arrive to the evolution equation for the single-particle

density matrix presented in the main text, Eq. (1).

Two-excitation manifold. We now follow a similar procedure described
above to derive the evolution equation for two-particle density matrices in
coupled networks affected by dephasing. To do so, we start by considering
pure two-particle states at sites p and q within a network comprising N
sites

Ψp;qðzÞ ¼
PN;N
m;n

φm;n Up;nðzÞUq;mðzÞ±Up;mðzÞUq;nðzÞ
� �

; (10)

where φm,n is the initial probability amplitude profile
P

n;m φm;n

�� ��2¼ 1

 �

,

and Ur,s(z) represents the impulse response of the system, that is, the
unitary probability amplitude for a particle traveling into site r when it was
initialized at site s. Moreover, the sign + and − determine whether the
particles are bosons or fermions.
From Eq. (10) we define the product Ψp;qΨ

�
p0;q0 , and using the Itô’s

product rule60 we compute the z-derivative as follows

d
dz Ψp;qΨ

�
p0;q0

h i
¼ d

dzΨp;q
� �

Ψ�
p0;q0 þ Ψp;q

d
dzΨ

�
p0;q0

h i
þ d

dzΨp;q
� �

d
dzΨ

�
p0;q0

h i
: (11)

To compute Eq. (11) we need the Itô’s form for the differential [dΨp,q],
which is given by

dΨp;q ¼ i βp þ βq
� 	

dzΨp;q

þi
P
r

κr;pΨr;q þ κr;qΨp;r
� 	

dz

� 1
2 γp þ γq
� 	

Ψp;qdz

þi ffiffiffiffiffi
γp

p dWp þ ffiffiffiffiffi
γq

p dWq


 �
Ψp;q

� ffiffiffiffiffiffiffiffiffi
γpγq

p
Ψp;qdWpdWq:

(12)

Equation (12) can be easily obtained by taking the derivative of Eq. (10)
and using the fact that Ur,s are single-particle probability amplitudes which
obey Eq. (7), namely

dUp;n ¼ iβpUp;ndz þ i
X
r

κp;rUr;ndz þ iUp;n
ffiffiffiffiffi
γp

p
dWp: (13)

Fig. 7 Density matrices (absolute value) for entangled two-photon states ρentð1;1Þ;ð2;2Þð0Þ propagating through waveguide trimers affected by a
dephasing rate of 5γexp

Endurance of quantum coherence due to particle indistinguishability. . .
A Perez-Leija et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2018)  45 



Then, by defining the density matrix ρðp;qÞ;ðp0;q0Þ ¼ Ψp;qΨ
�
p0;q0

D E
, and after

some algebra we obtain the evolution equation for the two-particle
density matrix presented in the main text, Eq. (2).
The generalization to N indistinguishable particles is straightforward

following similar steps as for the two-particle case and introducing the N-
particle probability amplitude

Ψp;q;r;¼ ðzÞ ¼ PN
a;b;c;¼

φa;b;c;¼ χp;q;r;¼a;b;c;¼ þ χpera;b;c;¼ þ ¼
h i

; (14)

where we have defined χp;q;r;¼a;b;c;¼ = Up,a(z) Uq,b(z) Ur,c(z)…, with Um,n

representing the probability amplitude for a single-particle at site n when
it was launched at site m, and the superscript per means cyclic
permutations of superscripts p, q, r, ….
In order to integrate Eqs. (1) and (2) it is necessary to obtain the

individual dephasing rates γm for m= 1, 2, 3. This is easily done using the
relation γm ¼ σ2mΔz,

41,61 where σm is the standard deviation of the m-th
site, Δz is the correlation length. To perform the simulations shown in Figs.
2 and 3, we have used the σm obtained from the data utilized to inscribe
the waveguides

σexp ¼ σ1 ¼ 1:3143 cm�1; σ2 ¼ 1:3204 cm�1; σ3 ¼ 1:3283 cm�1ð Þ; Classical:
σexp ¼ σ1 ¼ 1:1407 cm�1; σ2 ¼ 1:112 cm�1; σ3 ¼ 1:1371 cm�1ð Þ;Quantum:

(15)

In both cases, classical and quantum, Δz= 1 cm. Hence, using these σexp
we obtain the individual dephasing rates for numerical integration of Eqs.
(1) and (2)

γexp ¼ γ1 ¼ 1:7275 cm�1; γ2 ¼ 1:7435 cm�1; γ3 ¼ 1:7645 cm�1ð Þ;Classical:
γexp ¼ γ1 ¼ 1:3012 cm�1; γ2 ¼ 1:2365 cm�1; γ3 ¼ 1:2930 cm�1ð Þ;Quantum:

(16)

Experimental-theoretical comparison of two-photon correlations
In Fig. 6 we show the intensity correlation matrices for separable Figs. 6a, d,
entangled Figs. 6b, e, and distinguishable (incoherent) photon pairs Figs.
6c, f after a propagation distance of z= 12 cm. The upper row depicts the
experimental coincidence measurements, whereas the lower one shows
our theoretical predictions.

Impact of strong dephasing on two-photon density matrices
In order to elucidate the impact of dephasing over two-boson states
coupled into the upper sites of the waveguide trimer shown in Fig. 1a, we
consider an entangled two-photon state

ρentð1;1Þ;ð2;2Þð0Þ ¼
1
2

11; 11j i 11; 11h j þ 11; 11j i 12; 12h j þ 12; 12j i 11; 11h j þ 12; 12j i 12; 12h jð Þ;
(17)

and perform numerical integration of Eq. (2) for two different dephasing
rates. Specifically, we employ dephasing rates γ= 5γexp, and 50γexp, where
γexp represents the dephasing rate utilized in our experiments. These
dephasing values correspond to changing proportionally the variance of
the Gaussian distribution used to chose the random energies of the
waveguides. For a dephasing rate of γ= 5γexp, integration of Eq. (2)
renders the density matrices shown in Fig. 7. These results indicate that for
the initial state ρentð1;1Þ;ð2;2Þð0Þ, the steady state emerges at z ≈ 40 cm. That is,
the system reaches the steady state at approximately twice the distance
with respect to the case when γ= γexp. For the second case where the
dephasing rate is increased to 50γexp, Fig. 8 indicates that the evolution
towards the steady state becomes slower in comparison with the case γ=
5γexp. From these results we can state that in the presence of non-
dissipative noise, the system will evolve towards the steady state either
much slower or much faster depending on the dephasing strength: weak-
to-moderate dephasing will drive the system into its steady state faster
than strong dephasing will do. At first sight, these results seem to be
counter-intuitive, however, the effects of high dephasing can be thought
of as an example of the quantum Zeno effect where the evolution of the
system is suppressed by a rapid dephasing. That is, the Zeno effect will
suppress the transport and keep the excitation localized in the two upper
sites.
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