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A gradient-robust well-balanced scheme for the compressible isothermal
Stokes problem

Mine Akbas , Thierry Gallouët , Almut Gaßmann , Alexander Linke , Christian Merdon

ABSTRACT. A novel notion for constructing a well-balanced scheme — a gradient-robust scheme — is in-
troduced and a showcase application for a steady compressible, isothermal Stokes equations is presented.
Gradient-robustness means that arbitrary gradient fields in the momentum balance are well-balanced by the
discrete pressure gradient — if there is enough mass in the system to compensate the force. The scheme
is asymptotic-preserving in the sense that it degenerates for low Mach numbers to a recent inf-sup stable
and pressure-robust discretization for the incompressible Stokes equations. The convergence of the cou-
pled FEM-FVM scheme for the nonlinear, isothermal Stokes equations is proved by compactness arguments.
Numerical examples illustrate the numerical analysis, and show that the novel approach can lead to a dra-
matically increased accuracy in nearly-hydrostatic low Mach number flows. Numerical examples also suggest
that a straight-forward extension to barotropic situations with nonlinear equations of state is feasible.

1. INTRODUCTION

In recent years, novel concepts and discretization approaches for the incompressible Navier-Stokes equa-
tions appeared around the so-called pressure-robustness property. Such discretizations allow for a priori
error estimates of the discrete velocity that are independent of the pressure and the viscosity parameter
that otherwise gives rise to a severe locking phenomenon [18, 25, 31, 2, 32, 31, 1, 19, 29, 21, 5, 29, 33, 42]
demonstrated in several benchmark examples [18, 25, 24, 2, 15] even in coupled problems to simulate
electrolyte flows [11]. Surprisingly, an astonishingly simple modification that manipulates locally the velocity
test functions in the right-hand side (and the material derivative if present) in order to restore the orthogo-
nality between discretely divergence-free functions and gradients renders any classical inf-sup stable finite
element method a pressure-robust method [26, 2, 1, 20].

In this contribution we apply this modification to a provably convergent discretization of the compressible
Stokes equations inspired by [12, 10]. The proposed modification does not compromise the convergence
analysis, but improves the accuracy in nearly hydrostatic low Mach number flows. Thereby, a novel notion for
a certain class of well-balanced schemes — gradient-robust schemes — for vector-valued partial differential
equations like the compressible Euler, the compressible Navier–Stokes or the shallow-water equations is
introduced.

The notion gradient-robust wants to emphasize that the accuracy of these schemes does not suffer from
the appearance of dominant gradient fields in the momentum balance, leading to an accurate, implicitly
defined discrete vorticity equation [18]. Indeed, several schemes for several different vector PDEs can be
classified as gradient-robust, e.g., see [6, 28, 17]. In the meteorology community such schemes have been
introduced by Cotter and Thuburn and their well-balanced property has been explained by exact sequences
in the setting of finite element exterior calculus [6]. The proposed explanation for the well-balanced property
of these schemes below is complementary, but sets a different focus. Emphasizing the importance of an L2

orthogonality of certain (discretely) divergence vector fields against (arbitrary) gradient fields for accuracy
reason allows to build novel gradient-robust schemes.

In order to compare gradient-robustness with classical well-balanced schemes [38, 3], we regard the mo-
mentum balance of isothermal hydrostatics

(1.1) pρuqt `∇ ¨ pρub uq `∇p “ ´ρ∇φ,
for the compressible and the incompressible Euler equations on a bounded polyhedral Lipschitz domain D.
Here, the potential φ is assumed to depend on the space variable x only, i.e., we search for a steady density
ρpxq and pressure solutions ppxq fulfilling (1.1) with u ” 0. The goal of the comparison is to understand the
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necessary properties for a space discretization that discretely preserves incompressible or compressible
hydrostatics.

In the incompressible case, it holds ρ “ const and therefore one concludes for a hydrostatic balance

∇p “ ´ρ∇φ “ ∇ p´ρφq ,
i.e., the hydrostatic pressure is given (up to a constant) by p “ ´ρφ ` const. A consistent discretization
of incompressible hydrostatics requires to balance arbitrary gradient fields ∇p´ρφq by the discrete pres-
sure gradient, i.e., a consistent, pressure-robust discretization possesses an appropriately defined discrete
Helmholtz projector Ph — an L2 projector onto discretely divergence-free vector fields — whose kernel
contains arbitrary (!) gradient fields in L2, i.e., it holds

(1.2) Php´ρ∇φq “ 0,

for all φ P H1pDq. Pressure-robust schemes for incompressible flows achieve this goal by exploiting the L2-
orthogonality of vector-valued, divergence-free Hpdivq-conforming finite element test functions (with van-
ishing normal component at the boundary) against arbitrary gradient fields. Thus, pressure-robust schemes
can be constructed on general unstructured grids. Note that most classical finite element, finite volume and
Discontinuous Galerkin schemes are not pressure-robust. The kernel of their discrete Helmholtz projectors
contains only a subspace of discrete pressure gradients [25, 18].

Assuming for the isothermal (T “ const) compressible case an ideal gas law p “ ρRT , the hydrostatic
balance is given by

∇p “ ´ρ∇φ ô ∇ρ “ ρ∇
ˆ

´
φ

RT

˙

,

which can be explicitely integrated, leading to

ρ “ ρ0 exp

ˆ

´φ

RT

˙

, p “ ρ0RT exp

ˆ

´φ

RT

˙

.

Exploiting this explicit solution, one confirms the identity

RT exp

ˆ

φ

RT

˙

∇
ˆ

exp

ˆ

´φ

RT

˙˙

“ ´∇φ

and — as an example — the classical well-balanced scheme [38] is based on a space discretization of the
right hand side term in the form

(1.3) ´ ρ∇φ “ ρ0RT ∇
ˆ

exp

ˆ

´φ

RT

˙˙

.

The key ideas of a gradient-robust well-balanced scheme for compressible flows, which is based on the
notion of pressure-robustness for incompressible flows, rely on the following observations:

(a) A hydrostatic balance
∇p “ ´ρ∇φ

is only possible if ρ∇φ is a gradient-field, which is only a-priori clear in the incompressible case ρ “ const;
thus it seems to be plausible for variable ρ that a more accurate treatment of gradient forces may increase
the overall accuracy of the scheme in a nearly-hydrostatic situation.
(b) Actually, we demonstrate in this contribution that it is possible to construct gradient-robust schemes on
arbitrary unstructured grids, which allow a well-balanced property of the form

∇p “ ´∇ψ
for arbitrary gradient fields ∇ψ P L2pDq — if there is enough mass in the system to compensate the
gradient force ´∇ψ.
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(c) The velocity field of nearly-hydrostatic flows is of low Mach number type. Thus, its non-divergence-free
part is small, i.e., of order Op 1

Ma2
q, and for an accurate treatment in nearly-hydrostatic, low Mach number

flows it suffices to achieve that the divergence-free part of the velocity field vanishes in the hydrostatic limit
case. Exactly this is achieved in this contribution for the barotropic compressible Stokes equations, since it
is shown that the divergence-free part of the velocity fulfills the incompressible Stokes equations — where
(incompressible) pressure-robustness can be exploited.

Although, this paper develops an appropriate space discretization for the rather simple compressible Stokes
equations, it is a first step to develop and analyze gradient-robust schemes for the full compressible Navier–
Stokes equations. Nevertheless, even this simple physical problem is highly relevant in atmospheric and
oceanic modeling where the correct representation of the hydrostatic balance between pressure gradient
and gravity is of vital importance in stably stratified airflows over a topography. It has been early recognized
that discretization errors especially in terrain-following coordinates — leading to rather structured grids —
can become large and deteriorate the accuracy of the numerical solutions. Such errors are especially
severe, if a resting fluid is located over steep terrain [41]. Several attempts were made over the years to
ameliorate the simulations. Proposed methods are the increase of the order of accuracy [7, 40, 27], the
improvement of the lower boundary condition [13], the usage of cut cells or step mountain coordinates
instead of the terrain following coordinates [35, 36, 34], the reduction of the steepness of the slopes [30],
the damping of error induced noise [39], covariant formulations of the pressure gradient term [23, 22], curl-
free pressure gradient formulations [37], and energy conserving schemes (discrete Poisson brackets) that
hinder the spurious increase of kinetic energy in the perturbations [14]. These references are just to be
thought to reflect the importance of the problem in applications.

The rest of the paper is structured as follows. Section 2 introduces the steady, compressible isothermal
Stokes equations, which serve as a model problem. Section 3 explains our discretization, in particular the
finite-volume scheme for the continuity equation and the finite element scheme for the momentum equation
with the gradient-robust right-hand side modification. Section 4 motivates and discusses the new gradient-
robustness property and links it to pressure-robustness in the incompressible setting or the well-balanced
known from shallow water equations. Section 5 proves the existence of a discrete solution by standard
compactness arguments, while Section 6 proves the convergence of a series of discrete solutions to a
weak solution of the continuous system. In Section 7 the theoretical findings are validated by appropriate
numerical benchmarks.

2. A MODEL PROBLEM: THE STEADY COMPRESSIBLE ISOTHERMAL STOKES EQUATIONS

The isothermal compressible Stokes problem seeks for pf ,gq P L2pΩq ˆ L8pΩq some velocity field u,
pressure p and non-negative density % ě 0 with

ş

Ω % dx “M such that

´∇ ¨ σ `∇p “ f` %g,

divp%uq “ 0

p “ ϕpρq :“ cρ,

(2.1)

where friction is modeled as in linear elasticity by

(2.2) σ “ 2µεpuq ` λp∇ ¨ uqI,

with εpuq :“ 1
2p∇u`p∇uqT q, µ P R`, λ P R with λ ě λ ą ´2µ, compare e.g. with [9], and where the

equation of state function ϕ :“ cρ with c ą 0 is prescribed in addition to homogeneous Dirichlet velocity
boundary conditions to close the system. Note, that the constant c may model (in a dimensionless setting)
the squared inverse of the Mach number.
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The compressible Stokes problem is thus a nonlinear problem and can be written in the following weak form
[8]: search for pu, p, %q P H1

0pΩq ˆ L
2pΩq ˆ L2pΩq with

a1pu, vq ` a2pu, vq ` bpp, vq “ F pvq `Gp%, vq for all v P H1
0pΩq,(2.3)

cp%, u, φq “ 0 for all φ PW 1,8pΩq,

where the multilinear forms used above read as

a1pu, vq :“ 2µ

ż

Ω
εpuq : εpvq dx, a2pu, vq :“ λ

ż

Ω
divpuqdivpvq,

bpp, uq :“ ´

ż

Ω
p divpuq dx, cp%,u, φq :“

ż

Ω
%u ¨∇φ dx,

F pvq :“

ż

Ω
f ¨ v dx, Gp%, vq :“

ż

Ω
%g ¨ v dx.

Qualitative properties of the velocity solution u can be investigated by introducing the spaces

V0 “ tv P H1
0pΩq : ∇ ¨ v “ 0u

VK “ tv P H1
0pΩq : pεpvq, εpwqq “ 0 for all w P V0u(2.4)

and with the help of the orthogonal splitting — in the scalar product pεp‚q, εp‚qq—

u “ u0 ` uK

with u0 P V0 and uK P VK. Testing the equation with an arbitrary v0 P V0 one recognizes that it holds

(2.5) 2µpεpu0q, εpv0qq “ pf` ρg,v0q

for all v0 P V0. Thus, for fixed ρ or for g “ 0 the divergence-free part u0 of the solution u fulfills a linear
incompressible Stokes equations. Moreover, introducing the space

(2.6) L2
σ “ tv P L

2pΩq : pv,∇φq “ 0 for all φ P H1pΩqu,

one obtains the orthogonal decomposition

(2.7) L2pΩq “ L2
σ ‘L2 t∇φ : φ P H1pΩqu

and L2
σ represents the space of weakly divergence-free L2 vector fields with vanishing normal component

at the boundary [18]. Exploiting the Helmholtz–Hodge decomposition (2.7), one can introduce the L2-
orthogonal Helmholtz–Hodge projector P : L2pΩq Ñ L2

σ of a vector field f P L2pΩq by

pPpfq,wq “ pf,wq for all w P L2
σ,

see [18]. Then, due to the orthogonal decomposition (2.7) one obtains:

Lemma 2.1. For all φ P H1pΩq it holds

Pp∇φq “ 0.

Using the concept of the Helmholtz–Hodge projector, one can refine (2.5) to observe

(2.8) µpεpu0q, εpv0qq “ pPpf` ρgq,v0q

for all v0 P V0, i.e., the divergence-free part u0 does not depend on the entire data f` ρg, but only on its
divergence-free part Ppf` ρgq.
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3. WELL-BALANCED BERNARDI–RAUGEL FINITE ELEMENT - FINITE VOLUME METHOD

The proposed discretization is based on the finite element-finite volume scheme of [12]. Here, the con-
tinuity equation is discretized by some finite volume technique that ensures the non-negativity and mass
constraints of the piecewise-constant discrete density %h.

For the velocity the classical H1-conforming Bernardi–Raugel finite element method is employed — instead
of the nonconforming Crouzeix–Raviart element used in [12, 10]. This has several advantages: First, the
conforming method is cheaper in terms of the number of degrees of freedom. Second, it easily allows
for the use of the stress tensor σ, whereas the Crouzeix–Raviart element does not fulfill a discrete Korn
inequality. Third, the conforming setting makes some of the compactness arguments easier, in order to
prove convergence to a weak solution of this nonlinear problem, without resorting to additional stability
terms.

However, the main important difference to the scheme [12] is a modified discretization of the right-hand side
f ` ρg that delivers more accurate results in nearly hydrostatic situations. The modification is inspired by
certain pressure-robust schemes for the incompressible Stokes equations, see e.g. [18, 25]. Fundamental
is an appropriate discrete equivalent of (2.8), where the discretely divergence-free part u0

h of the discrete
solution uh does only depend on the continuous Helmholtz–Hodge projector Ppf` ρhgq.

3.1. Notation. Consider a shape-regular triangulation T with nodes N and faces F . The subset FpΩq
denotes the interior faces of the triangulation. The set PkpT q consists of all scalar-valued polynomials of
total degree k on the simplex T P T . Moreover, the set of piecewise polynomials is denoted by

PkpT q :“ tvh P L
2pΩq : vh|T P PkpT q for all T P T u.

Vector-valued quantities or functions are addressed by bold letters.

3.2. Finite Element Method and a divergence-free reconstruction operator. The numerical discretiza-
tion employs the Bernardi–Raugel finite element spaces

Vh :“
`

P1pT q X H1
0pΩq

˘

‘ BpFpΩqq and Qh :“ P0pT q X L2
0pΩq,

where BpFpΩqq denotes the normal-weighted face bubbles, i.e.

BpFpΩqq :“ tbFnF : F P FpΩqu.
For d “ 2, bF is the standard quadratic face bubble on the face F P F . For d “ 3, the corresponding
standard face bubble is cubic. The L2 projection in the discrete pressureQh will be denoted in the following
by π0.

Then, the discrete divergence operator divh : Vh Ñ Qh of the Bernardi–Raugel element is denoted by

(3.1) divhpvhq :“ π0pdivvhq.

Note that the Bernardi–Raugel element is discretely inf-sup stable on shape-regular meshes [16]. The
space of discretely divergence-free vector fields will be denoted as

(3.2) V0
h “ tvh P Vh : divhvh “ 0u.

Due to the general theory of mixed finite element spaces [16], the space of discretely divergence-free
Bernardi–Raugel functions has optimal approximation properties versus V0. More precisely, it holds for all
v0 P V0 that

(3.3) inf
v0
hPV

0
h

}∇pv0 ´ v0
hq} ď p1` CF q inf

vhPVh

}∇pv0 ´ vhq},

where CF denotes the (uniformly bounded) stability constant of the corresponding Fortin operator [16] of
the Bernardi–Raugel element.
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The gradient-robust modification of the Bernardi–Raugel finite element method employs a reconstruction
operator Π in the right-hand side functionals, which maps discretely divergence-free functions onto weakly
divergence-free ones in the sense of L2

σ [25]. For the Bernardi–Raugel finite element method, this can
be ensured by standard interpolators into either the Raviart–Thomas RT0 or the Brezzi–Douglas–Marini
BDM1 finite element spaces [4]. Here, we employ the Brezzi–Douglas–Marini standard BDM1 standard
interpolator defined by

ż

F
qhpΠvh ´ vhq ¨ nF ds “ 0 for all qh P P1pF q and F P F .

Also note, that Πpvhq “ vh whenever vh P P1pT q X H1
0, hence only face bubbles are modified by the

reconstruction operator (and their reconstruction equals their RT0 standard interpolation).

Remark 3.1. In order to give an impression how the proposed space discretization can actually be im-
plemented, we describe the discretization variant with the Raviart–Thomas standard interpolator in detail,
although we will not use this slightly less accurate variant in our numerical experiments.

The Raviart–Thomas standard interpolator can be elementwise defined in an explicit way by

(3.4) ΠRT0pvhq|T “ aT `
cT
d
px´ xT q ,

where xT denotes the barycenter of the element T , cT denotes the elementwise divergence computable
by

(3.5) cT :“
1

|T |

ÿ

FPFpT q

ż

F
vh ¨ nF dS

and aT denotes the average velocity computable by

aT :“
1

|T |

ÿ

FPFpT q

ˆ
ż

F
vh ¨ nF dS

˙

pxF ´ xT q,

where xF denotes a face barycenter of the face F .

The following lemma collects some more important properties.

Lemma 3.2 (Properties of Π). It holds, for all v P H1
0pΩq,

divpΠvq “ divhv,(3.6)

}u´Πv}L2pT q ď hT }∇v}L2pT q for all T P T ,(3.7)
ż

Ω
∇φ ¨ pΠvq dx “ ´

ż

Ω
φ divhv dx for all φ P H1pΩq.(3.8)

Proof. The properties (3.6) and (3.7) follow from the properties of the standard interpolation into the spaces
BDM1 (and RT0), see e.g. [4]. Property (3.8) follows from an integration by parts and property (3.6). �

Remark 3.3. The cornerstone of the novel gradient-robust scheme is given by the following statement: for
all discretely-divergence-free Bernardi–Raugel vector fields v0

h P V
0
h and all φ P H1pΩq it holds

ż

Ω
∇φ ¨ pΠv0

hq dx “ ´

ż

Ω
φ divhv

0
h dx “ 0,

i.e., the reconstruction operator Π enables to repair the L2 orthogonality of discretely divergence-free vector
fields and arbitrary gradient fields ∇φ.
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3.3. Coupling to finite volume upwind discretization of continuity equation. This finite element scheme
is coupled to a finite volume discretization for the continuity equation. Altogether, our discretization seeks
some puh, ph, %hq P Vh ˆQh ˆQh such that

a1puh, vhq ` a2pΠuh,Πvhq ` bpph, vhq “ F pΠvhq `Gp%h,Πvhq for all vh P Vh,(3.9)

divupwp%huhq “ 0,

ph “ ϕp%hq.

The upwind discretization divupwp%huhq P P0pT q of divp%huhq is defined on all T P T by

divupwp%huhq|T :“
1

|T |

ÿ

FPFpT qXFpLq
u`T,F%h|T ´ u

´
T,F%h|L

“
1

|T |

ÿ

FPFpT qXFpLq
%upw
F uT,F ,

where uT,F “
ş

F uh ¨ nT ds is the integral over the face F in outer normal direction of the simplex T and
u`K,F ě 0 and u´T,F ě 0 is the positive and negative part, respectively. Hence, %upw

F :“ %h|T if uT,F ą 0

and %upw
F :“ %h|L else for F “ BT X BL.

The introduction of the upwind divergence leads to a (singular) matrix

divupwp%huhq “ 0 ô D%h “ 0 where Djk :“ divupwpχjuhq|Tk(3.10)

where χj is the characteristic function of Tj P T .

Lemma 3.4 (Properties of D). It holds

p1q D is weakly diagonal-dominant,i.e.

Djj ě 0 and
ÿ

k

Djk “ 0 for all j “ 1, . . . , T ,

p2q DT 1 “ 0,

p3q D1 “ divupwpuhq “ π0divpuhq.

Proof. The proof of (1) and (2) is common for finite volume discretizations and follows straightforwardly from
the relation u˘T,F “ u¯L,F for F P FpT q X FpLq. For the proof of (3) recall uL,F “ u`L,F ´ u

´
L,F . �

Since (3.9) is a nonlinear problem, it has to be solved iteratively and one has to choose a reasonable
solution %h with divupwp%huhq “ 0 that satisfies the non-negativity and mass constraints. Consider a given
approximation uh and %n´1

h (from a previous fixpoint iterate or an initial solution). To compute a unique
update %nh of the discrete density that preserves the non-negativity and the integral mean of %n´1

h , we
suggest to employ the backward Euler method. Given the (diagonal) P0 mass matrix M , i.e. Mjj :“ |Tj |
and some time step τ , this leads to the linear problem

pM ` τDq%nh “M%n´1
h .(3.11)

Here, %nh has to be understood as a column vector with the elementwise constant values of %nh P P0pT q.

Lemma 3.5 (Preservation of non-negativity and integral mean). It holds

p1q %nh ě 0 if %n´1
h ě 0,

p2q Mp%nh ´ %
n´1
h q ¨ 1 “ 0.

DOI 10.20347/WIAS.PREPRINT.2641 Berlin 2019
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Proof. SinceM is a positive diagonal matrix,M `τD is diagonal-dominant and hence anM -matrix. This
implies that the inverse pM ` τDq´1 is totally positive and hence preserves the non-negativity of %n´1

h .
The second property follows from DT 1 “ 0 used in the identity

pM%nhq ¨ 1 “ %nh ¨ ppM ` τDqT 1q “ ppM ` τDq%nhq ¨ 1 “ pM%n´1
h q ¨ 1.

This concludes the proof. �

The pseudo time-stepping (3.11) is embedded into the iterative algorithm in Section 5.1.

4. ON GRADIENT-ROBUSTNESS AND WELL-BALANCED SCHEMES

In analogy to (2.4), consider the discrete space

VK
h :“ tvh P Vh : pεpvhq, εpw

0
hqq “ 0 for all w0

h P V
0
hu

which allows for the orthogonal splitting Vh :“ V0
h ‘VK

h in the discrete scalar product pεp‚q, εp‚qq. The
main structural property of the gradient-robust scheme (3.9) is now derived by:

Theorem 4.1. Exploiting the splitting uh “ u0
h ` uKh with u0

h P V0
h and uK P VK

h , the discretely
divergence-free part u0

h fulfills a pressure-robust discretization of the incompressible Stokes problem in the
form: for all v0

h P V
0
h it holds

a1pu
0
h,v

0
hq “ F pΠv0

hq `Gp%h,Πv0
hq “ pPpf ` ρhgq,Πv0

hqq.

Remark 4.2. Theorem 4.1 is the discrete equivalent to the continuous relation (2.8). We emphasize the
appearance of the continuous Helmholtz–Hodge projector Ppf ` ρhgq. Actually, it is again Theorem 4.1
that makes the scheme asymptotic-preserving in the low Mach number limit, where the non-divergence-free
part uKh of the discrete velocity solution uh should vanish in the limit.

Consider the compressible Stokes problem (2.3) with the right-hand sides

f :“ ∇q and g “ 0

for some q P H1pΩq. For this setting, one can observe that the solution pu, pq “ p0, q ` Cq of the
incompressible Stokes problem also solves the compressible problem if there is enough mass in the system.
Indeed, if it exists a (global) constantC , such that % :“ q{c`C satisfies the mass constraint

ş

Ω % dx “M
and is non-negative % ě 0, then the solution of the incompressible Stokes problem also is a solution of the
compressible problem.

Vice versa, assume that % ě 0 satisfies the mass constraint and ∇pϕp%qq “ ∇q. Then, it is clear
that pu, p, %q “ p0, ϕp%q, %q solves the compressible Stokes problem and pu, pq “ p0, ϕp%qq solves the
incompressible Stokes problem. This proves the following lemma.

Lemma 4.3. The compressible Stokes problem with right-hand sides

f :“ ∇q and g “ 0

has a hydrostatic solution u “ 0, if and only if it exists a (global) constant C , such that % :“ q{c ` C
satisfies the mass constraint

ş

Ω % dx “ M and is non-negative, i.e. % ě 0. The pair pu, pq :“ p0, qq also
solves the incompressible Stokes problem.

Definition 4.4 (Well-balanced property). A discretization of the compressible Stokes problem is called well-
balanced if it computes hydrostatic solutions u “ 0 correctly if the right-hand side is balanced by the
gradient of some admissible pressure-density pair.
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5. EXISTENCE OF DISCRETE SOLUTIONS

The discussion in Subsection 3.3 and in Section 4 motivates the following pseudo-time stepping algorithm
and the choice of its initial value. Subsection 5.2 proves that this algorithm has a fixed point, which is a
discrete solution of (3.9).

5.1. An iterative algorithm with well-balanced initial solution. The previous discussion motivates to
choose the initial solution by a solve of the incompressible Stokes equations and a rescaling of its pressure.
In case of a well-balanced situation as in Lemma 4.3, this then already gives a discrete solution of the
compressible system. Otherwise, one enters a suitable fixed point iteration.

Input.

� some triangulation T ,
� stepsize τ ą 0.

Initial Step.

� Set %´1 ”M{|Ω|.
� Solve the incompressible Stokes system, i.e., find u0 P Vh and p0 P Qh such that

a1pu0, vhq ` bpp0, vhq “ F pΠvhq `Gp%´1,Πvhq for all v P Vh,

bpqh, u0q “ 0 for all qh P Qh.

� Set %0 :“ p0{c` C , where C P R is chosen such that %0 satisfies
ş

Ω %0 dx “ M and %0 ě 0. If
this is not possible, start with %0 “ %´1 and uh “ 0.

Loop (start with n “ 1).

� Update matrix D according to (3.10) (with uh “ un´1
h ) and find %nh P Qh such that

pM ` τDq%nh “M%n´1
h .(5.1)

� Update the pressure according to the equation of state, i.e.

pnh :“ ϕp%nhq “ c%nh.(5.2)

� Find unh P Vh that satisfies the momentum equation

a1pu
n
h, vhq ` a2pΠunh,Πvhq “ F pΠvhq `Gp%

n
h,Πvhq ´ bpp

n
h, vhq for all vh P Vh.(5.3)

� Compute residuals of the stationary momentum equation and the continuity equation, i.e.

res :“ }a1pu
n
h, ‚q ` a2pΠunh,Π‚q ´ F pΠ‚q `Gp%

n
h,Π‚q ´ bpp

n
h, ‚q}l2 ` |divupwp%

n
hunq|

� Stop if res ă tol, otherwise increase n by one and restart loop.

Remark 5.1. Note, that one only can prove that there exists some discrete solution (see Subsection 5.2),
but it is not guaranteed that the algorithm converges. In our numerical benchmarks, we could enforce
convergence by choosing small enough time steps τ .
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5.2. Existence of a fixed point. Note, that there is no uniqueness result for the continuous compressible
Stokes system, but one can show existence of a (discrete) solution for the (discretized) compressible Stokes
problem. To do so we mainly follow the argumentation in [12]. There the existence of a weak solution with
% P L2 and p “ ϕp%q :“ c% is proven. The main argument concerns the proof of the a priori stability
estimate

mint2µ` λ, µu}∇uh}L2 ` }ph}L2pΩq ` }%h}L2pΩq À 1

which is needed in the convergence proof via some Brouwer fixed point argument. The crucial point is the
vanishing term

ż

Ω
pdivpuq “ c

ż

Ω
%divpuq “ ´c

ż

Ω
∇plog%q ¨ p%uq “ c

ż

Ω
log% divp%uq “ 0(5.4)

for % P C1pΩq, which can also be generalized to % P L2pΩq, see [8, Appendix A] for details.

A similar stability estimate holds for the discrete scheme which requires the following Lemma.

Lemma 5.2. For any convex and twice continuously differentiable function φ : r0,8q Ñ R`, it holds
ż

Ω
φ1p%hqdivupwp%huhq dx´

ż

Ω
p%hφ

1p%hq ´ φp%hqqdivpuhq dx

“
1

2

ÿ

FKLPFpΩq
φ2p%KLq

|uK,FKL
|

|FKL|
}rr%hss}

2
L2pFKLq

ě 0,

where the quantities %KL P p%h|K , %h|Lq denote intermediate values on every face FKL P FpΩq accord-
ing to remainders in corresponding Taylor expansions.

Proof. By convexity of φ and Taylor expansion, it holds

φ1pxqpx´ yq ´ φpxq ` φpyq “
1

2
φ2psqpx´ yq2 ě 0 for some s P px, yq.(5.5)

The integrals in the assertion can be rewritten into
ż

Ω
φ1p%hqdivupwp%huhq dx “

ÿ

TPT

ÿ

FPFpT q
φ1p%h|T q%

upw
F uT,F

ż

Ω
p%hφ

1p%hq ´ φp%hqqdivpuhq dx “
ÿ

TPT

ÿ

FPFpT q
p%h|Tφ

1p%h|T q ´ φp%h|T qquT,F .

Hence, their difference reads
ż

Ω
φ1p%hqdivupwp%huhq dx´

ż

Ω
p%hφ

1p%hq ´ φp%hqqdivpuhq dx

“
ÿ

TPT

ÿ

FPFpT q

`

φ1p%h|T q%
upw
F ´ %h|Tφ

1p%h|T q ` φp%h|T q
˘

uT,F

“
ÿ

FKLPFpΩq

´

φ1p%h|Kqp%
upw
FKL

´ %h|Kq ` φ
1p%h|Lqp%h|L ´ %

upw
FKL

q ` φp%h|Kq ´ φp%h|Lq
¯

uK,FKL

“:
ÿ

FKLPFpΩq
uK,FKL

θKL

where the last sum collects the flux jumps θKL over all interior faces FKL P FpΩq (on boundary faces
it holds uK,FKL

“ 0). It remains to show that each summand is non-negative. The first case assumes
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uK,FKL
ą 0 and hence %upw

FKL
“ %h|K . Then, one obtains for the jump term

θKL “ φ1p%h|Lqp%h|L ´ %h|Kq ` φp%h|Kq ´ φp%h|Lq “ φ2p%KLqp%h|K ´ %h|Lq
2 ě 0

due to (5.5) where s is renamed to %KL. In the other case uK,FKL
ă 0 it holds %upw

FKL
“ %h|L and hence

θKL “ φ1p%h|Kqp%h|L ´ %h|Kq ` φp%h|Kq ´ φp%h|Lq “ ´φ
2p%KLqp%h|K ´ %h|Lq

2 ď 0

again by (5.5) (multiplied by ´1). Hence
ż

Ω
φ1p%hqdivupwp%hvhq dx´

ż

Ω
p%hφ

1p%hq ´ φp%hqqdivpvhq dx

“
ÿ

FKLPFpΩq
|uK,FKL

|φ2p%KLqp%h|K ´ %h|Lq2

“
1

2

ÿ

FKLPFpΩq
φ2p%KLq

|uK,FKL
|

|FKL|
}rr%hss}

2
L2pFKLq

ě 0.

This concludes the proof. �

Lemma 5.3 (Discrete stability estimate). For any solution puh, ph, %hq of the discrete scheme, it holds

mint2µ` λ, µu}∇uh}L2 À }f}L2 ` }%h}L2pΩq}g}L8 ,(5.6)
ÿ

FKLPFpΩq
%´1
KL

|uK,FKL
|

|FKL|
}rr%hss}

2
L2pFKLq

À c´1 mint2µ` λ, µu´1
`

}f}L2 ` }%h}L2pΩq}g}L8
˘

,(5.7)

If g ” 0 ùñ }ph}L2pΩq “ c}%h}L2pΩq À }f}L2 ` c.(5.8)

The hidden constants in À depend neither on the mesh width h, nor the viscosity parameters µ and λ nor
on c.

Proof. Testing the momentum equation with uh yields

2µ}εpuhq}
2
L2 ` λ}divhuh}

2
L2 ´

ż

Ω
phdivuh dx “

ż

f ¨Πuh dx`

ż

%hg ¨Πuh dx.(5.9)

The approximation properties of Π yield
ż

f ¨Πuh dx ď pCF ` hCΠq}f}L2}∇uh}L2 .

The integral with g is estimated similarly by
ż

%hg ¨Πuh dx ď pCF ` hCΠq}%h}L2pΩq}g}L8}∇uh}L2

and it remains to handle the integral on the left-hand side. Lemma 5.2 shows, for φpsq :“ s logpsq and
with divupwp%huhq “ 0 due to (3.9), that
ż

Ω
phdivpuhq dx “ c

ż

Ω
%hdivpuhq dx

“ c

ż

Ω
p1` logp%hqqdivupwp%huhq dx´ c

ÿ

FKLPFpΩq

φ2p%KLq

2|FKL|
|uK,FKL

|}rr%hss}2L2pFKLq

“ ´c
ÿ

FKLPFpΩq

%´1
KL

2|FKL|
|uK,FKL

|}rr%hss}2L2pFKLq
ď 0.(5.10)
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Assume that λ ě 0. Then, it holds

λ}divhu}2L2 ě 0

and hence

µ}∇uh}
2
L2 ď 2µ}εpuhq}

2
L2 À

`

}f}L2 ` }%h}L2pΩq}g}L8
˘

}∇uh}L2 .

Division by }∇uh}L2 concludes the proof in this case.

In the case 0 ą λ ą ´2µ, elementary vector calculus identities yield

mintµ, 2µ` λu}∇uh}
2
L2 ď µ}rotu}2L2 ` p2µ` λq}divu}2L2 “ 2µ}εpuhq}

2
L2 ` λ}divu}2L2 .

Moreover, it holds

0 ě λ}divhu}2L2 ě λ}divu}2L2

and hence

mintµ, 2µ` λu}∇uh}
2
L2 ď 2µ}εpuhq}

2
L2 ` λ}divhu}2L2 À

`

}f}L2 ` }%h}L2pΩq}g}L8
˘

}∇uh}L2 .

Division by }∇uh}L2 concludes the proof of (5.6). The proof of (5.7) follows from a combination of (5.9)
and (5.10) together with the already proven estimate (5.6), i.e.

ÿ

FKLPFpΩq
%´1
KL

|uK,FKL
|

|FKL|
}rr%hss}

2
L2pFKLq

À c´1
`

}f}L2 ` }%h}L2pΩq}g}L8
˘

}∇uh}L2

À c´1 mint2µ` λ, µu´1
`

}f}L2 ` }%h}L2pΩq}g}L8
˘2
.

For the proof of (5.8), consider a test function vh with divhpvhq “ ph ´ ph, where ph :“ |Ω|´1
ş

Ω ph dx,
and }∇vh}L2 À }ph ´ ph}L2 , using discrete inf-sup stability. Inserting this test function in the momentum
equation and using also bounds from (5.6), it follows the estimate

}ph ´ ph}
2
L2 “ λ

ż

Ω
divhpuhqdivhpvhq dx` 2µ

ż

Ω
εpuhq : εpvhq dx´

ż

f ¨Πvh dx

À }f}L2}ph ´ ph}L2(5.11)

where the constant C also depends on }f}L2 (note that we assumed here that g ” 0). For the following
estimate we also need a bound on }ph}L2 that can be obtained due to

ph “
1

|Ω|

ż

Ω
ph dx “

c

|Ω|

ż

Ω
%h dx “

cM

|Ω|
.(5.12)

A Pythagoras argument and the combination of (5.11) and (5.12) results in

}ph}
2
L2 “ }ph ´ ph}

2
L2 ` }ph}

2
L2 À }f}2L2 `

pcMq2

|Ω|
À }f}2L2 ` c

2.

This concludes the proof of (5.8). �

Lemma 5.4 (Existence of a discrete solution). On every (fixed) shape-regular mesh in the sense of Section
3, the discrete nonlinear equation system (3.9) has at least one solution.

Proof. The existence of a discrete weak solution puh, ph, %hq P Vh ˆQh ˆQh is proved by the Brouwer
fixed-point theorem. We start the algorithm presented in Subsection 5.1 with %´1 ”M{|Ω| and u´1 “ 0,
p´1 “ ϕp%´1q. Obviously, the discrete start value pu´1, p´1, %´1q P Vh ˆ Qh ˆ Qh lies in a finite-
dimensional product space of convex sets with finite diameter that is itself convex. Now a mapping

f : Vh ˆQh ˆQh Ñ Vh ˆQh ˆQh,

pun, pn, %nq ÞÑ fpun, pn, %nq :“ pun`1, pn`1, %n`1q
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is constructed by composition of (5.1), (5.2) and (5.3) where an (arbitrary) stepsize τ ą 0 is fixed. Then, the
mapping defined by (5.1) is linear and continuous, since pM ` τDq is an invertible matrix. The mapping
defined by (5.2) is again continuous. Finally, the mapping defined by (5.3) is linear and continuous, since the
assumptions on the viscosities µ and λ assure that the discrete bilinear form a1puh, vhq`a2pΠuh,Πvhq is
coercive. Therefore, the composed mapping f constructed in the algorithm in Subsection 5.1 is continuous.

Due to discrete mass conservation in (5.1) (see Lemma 3.5), it follows

}ρn`1}L1 “ }ρn}L1 “ . . . “ }ρ´1}L1 “M.

Due to this and the equivalence of all norms in finite dimensions, it holds }pn}L2 “ c}ρn}L2 ď Cphq
for all n ě ´1. Hence, all ppn, %nq for n ě ´1 lie in the same convex set. Finally, similar to the proof
of (5.6), a discrete bound can be proved for }∇un`1}L2 . The only difference is that one cannot assume
that un`1 fulfills the discrete mass conservation in (3.9) with divupwp%n`1un`1q “ 0. Therefore, the term
ppn`1, divpun`1qq has to be estimated in a different way. However, since the grid is fixed, the argument
above yields

|ppn`1, divpun`1qq| ď }pn`1}L2}∇un`1}L2 ď Cphq}∇un`1}L2 ,

and one derives a similar estimate like in (5.6). Therefore, f is a continuous function that maps a convex
set into itself. According to the Brouwer fixed point theorem, this mapping has a fixed-point that is a solution
of (3.9). �

6. CONVERGENCE OF THE SCHEME

This section proves convergence of the discrete solutions to a weak solution of (2.3).

Theorem 6.1. We assume that it holds g “ 0. Consider a sequence of shape-regular triangulations
pTkqkPNq with mesh width hk Ñ 0. Let puk, pk, %kq denote the corresponding discrete solutions of (3.9)
on the meshes Tk. Then, up extraction of a subsequence, it holds

piq the sequence pukqkPN converges weakly/strongly in H1
0pΩq{L

2pΩq to a limit u P H1
0pΩq,

piiq the sequence ppkqkPN “ pc%kqkPN converges weakly in L2pΩq to a limit p “ c% P L2pΩq,

piiiq the limit pu, p, %q is a solution of (2.3).

Proof. The weak convergence and the existence of the limit pu, p, %q P H1
0pΩq ˆ L

2pΩq ˆ L2pΩq follows
from Lemma 5.3 and standard arguments from linear functional analysis. Hence, it remains to prove (iii).

Step 1. pu, pq satisfy the momentum equation, i.e., the first equation of (2.3).

Consider an arbitrary test function v P C80 , which is dense in H1
0pΩ), and define vk P Vk on Tk as its best

approximation in the H1
0 norm, i.e., it holds for all wh P Vh: p∇vh,∇whq “ p∇v,∇whq. From standard

arguments follows the strong convergence

vh Ñ v in H1
0pΩq.(6.1)

This strong convergence and the weak convergence of pukq to u in H1
0pΩq allows to conclude

ż

Ω
εpukq : εpvkq dx Ñ

ż

Ω
εpuq : εpvq dx.

Similarly, (6.1) and the weak convergence of ppkq to p in L2pΩq yield
ż

Ω
pkdivpvkq dx Ñ

ż

Ω
pdivpvq dx.
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Since also }divhpvq ´ divpvq}L2pΩq Ñ 0, it follows
ż

Ω
divhpukqdivhpvkq dx “

ż

Ω
divpukqdivpvq dx`

ż

Ω
divpukq pdivhpvkq ´ divpvqq dx

Ñ

ż

Ω
divpuqdivpvq dx.

It remains to show convergence of the right-hand side integrals, which follows again by (6.1) and the weak
convergence of p%kq to % in L2pΩq, i.e.

ż

Ω
f ¨ vk dx Ñ

ż

Ω
f ¨ v dx.

The combination of all convergence results concludes the proof of Step 1.

Step 2. pu, %q satisfy the continuity equation, i.e. the second equation of (2.3).

We define on every element T P T
(6.2) qh|T :“ IRT0

h p%upwuh|T q,

which is Hpdiv,Ωq-conforming and divergence-free. For an arbitrary scalar P1 function ψh, it holds

0 “ pψh, div qhq “ ´pqh,∇ψhq “ ´pqh ´ %huh,∇ψhq ´ p%huh,∇ψhq.
We estimate now the term

|pqh ´ %huh,∇ψhq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

T

∇ψh|T ¨
ż

T
pqh ´ %huhq dx

ˇ

ˇ

ˇ

ˇ

ˇ

.

For the term under the integral we get
ż

T
pqh ´ %huhq dx “

ż

T
pqh ´ %hI

RT0
h uhq dx`

ż

T
%hpI

RT0
h uh ´ uhq dx.

Thus one obtains by the triangle inequality

|pqh ´ %huh,∇ψhq| ď
ÿ

T

ˇ

ˇ

ˇ

ˇ

∇ψh|T ¨
ˆ
ż

T
pqh ´ %hI

RT0
h uhq dx`

ż

T
%hpI

RT0
h uh ´ uhq dx

˙
ˇ

ˇ

ˇ

ˇ

ď C
ÿ

T

´

}qh ´ %hI
RT0
h uh}L1pT q ` }%hpI

RT0
h uh ´ uhq}L1pT q

¯

ď C
ÿ

T

}qh ´ %hI
RT0
h uh}L1pT q ` C}%h}L2 }IRT0

h uh ´ uh}L2 .

(6.3)

The term }%h}L2 }IRT0
h uh´uh}L2 converges to 0, according to the interpolation properties of IRT0

h and the

stability estimate for }%h}L2 . It remains to estimate
ř

T }qh ´ %hI
RT0
h uh}L1pT q. Interpolation properties

of IRT0
h yield

ÿ

T

}qh ´ %hI
RT0
h uh}L1pT q À

ÿ

T

hT
ÿ

FPFpT q

∣∣∣∣p%upw
F ´ %h|T q

ż

F
uh ¨ nF ds

∣∣∣∣
À

ÿ

FPFpΩq
hF |rr%hssF | |uF | :“ A.

It holds AÑ 0 which can be proven as follows. A Cauchy inequality shows

A À

¨

˝

ÿ

FPFpΩq
|uF |%´1

KLrr%hss
2
F

˛

‚

1{2 ¨

˝

ÿ

FPFpΩq
h2
F |uF |%KL

˛

‚

1{2

.(6.4)
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The left sum is bounded by (5.7) and it remains to show that the second sum converges to zero. A Hölder
inequality, a trace inequality and a inverse inequality on some neighboring simplex TF of F show

|uF | À }u}1{2L2pTF q
}∇u}1{2

L2pTF q
}1}L2pF q À h

d{2´1
F }u}L2pTF q.(6.5)

Then, another Cauchy inequality and some overlap arguments yield
¨

˝

ÿ

FPFpΩq
h2
F |uF |%KL

˛

‚

1{2

ď

¨

˝

ÿ

FPFpΩq
}u}2L2pTF q

˛

‚

1{4 ¨

˝

ÿ

FPFpΩq
hd`2
F %2

KL

˛

‚

1{4

À }∇u}1{2
L2pΩq

¨

˝

ÿ

FPFpΩq
hd`2
F %2

KL

˛

‚

1{4

To show that the last sum converges to zero, we use that %2
KL is smaller than %h|2TF for some neighboring

simplex TF of T and hence
¨

˝

ÿ

FPFpΩq
hd`2
F %2

KL

˛

‚

1{4

À

¨

˝

ÿ

FPFpΩq
h2
F |TF |%h|2TF

˛

‚

1{4

ď h1{2}%h}
1{2
L2 .

According to (5.8) }%h}L2 is bounded and hence, one arrives at

A À h1{2

which concludes the proof of Step 2.

Step 3. pp, %q satisfy the equation of state, i.e. p “ ϕp%q “ c%.

Consider any function ϕ P C8C pΩq and its piecewise-constant approximation ϕh :“ π0ϕ which converges
strongly to ϕ. Then its holds

ż

Ω
phϕh dxÑ

ż

Ω
pϕ dx

ż

Ω
c%hϕh dxÑ

ż

Ω
c%ϕ dx.

Since the integrals on the right-hand side are equal for any h, also their limit integrals have to be equal, i.e.
ż

Ω
pϕ dx “

ż

Ω
c%ϕ dx for all ϕ P C8C pΩq

Hence, it follows p “ c%. �

7. NUMERICAL EXPERIMENTS

This section reports on some two-dimensional numerical experiments assessing accuracy and asymptotic
convergence rates of the novel scheme, which especially illustrates the increased robustness with respect
to gradients in the momentum balance. Some experiments also show that the scheme might also converge
in barotropic cases where p “ ϕp%q :“ c%γ with γ ą 1. In this case however the proof of Step 3 in the
convergence proof (without using additional stability terms in the scheme) is non-trivial and open.

The loop in the algorithm was stopped in all experiments until the tolerance criterion was satisfied with
tol :“ 10´11. The time step in the evolution of the density was chosen small enough and usually τ « ν{c.
The term ’ndof’ refers to the number of degrees of freedom and is approximately 2T `N ` E , i.e. the size
of the ansatz spaces for density, pressure and velocity.
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FIGURE 7.1. Convergence histories for the modified method and classical method for
γ “ 1 and µ “ 1 and c “ 1 (left), c “ 100 (right).
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FIGURE 7.2. Convergence histories for the modified method and classical method for
γ “ 1 and µ “ 10´1 and c “ 1 (left), c “ 100 (right).

Throughout this section, pu`h , %
`
h q denotes the solution of the ’modified scheme’ (3.9) and puh, %hq denotes

the solution of the ’classical scheme’ (3.9) where Π “ 1.

7.1. Manufactured solutions to study error convergence and locking. This example on the unit square
Ω :“ p0, 1q2 studies the convergence rates of our discretization scheme and examines the exact solution

u :“ curlpx2px´ 1q2y2py ´ 1q2q{%, p “ ϕp%q :“ c%γ

for different choices of γ, µ and λ “ ´2µ{3. Assuming a linear density % :“ 1`py´1{2q{c, the first test
case considers the isothermal configuration γ “ 1 and afterwards a barotropic configuration with γ “ 1.4
is presented. In all cases

ş

Ω % dx “ 1 holds independent of c. The right-hand side functions are chosen
such that pu, p, ρq is a solution of the compressible Stokes system with

f :“ ´2µεpuq ´
µ

3
∇pdivuq `∇p, g :“ 0.

The experiments want to answer the question, whether the same locking behavior from the incompressible
Stokes problem can be observed in the compressible setting for the unmodified scheme.
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FIGURE 7.3. Convergence histories for the modified method and classical method for
γ “ 1 and µ “ 10´2 and c “ 1 (left), c “ 100 (right).
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FIGURE 7.4. Convergence histories for the modified method and classical method for
γ “ 1 and µ “ 10´4 and c “ 1 (left), c “ 100 (right).

Table 7.1 displays the calculated errors for γ “ 1, µ “ 1 and c “ 1 or c “ 100. Figure 7.1 shows
the corresponding convergence histories and convergence rates. In the compressible case (c “ 1), the
classical and the modified method both give very similar results. Interestingly, the convergence rate of the
L2 velocity error drops asymptotically to the suboptimal rate 1 with respect to the mesh size h « ndof´1{2.
In the nearly incompressible case (c “ 100) however, all convergence rates are optimal as one would
expect from the linear incompressible Stokes problem. A similar trend can be observed for µ “ 10´1 in
Figure 7.2. Here, also the convergence rate of }∇pu ´ u`h q}L2 is asymptotically significantly suboptimal
(but above 0.33). The unmodified method begins to show a similar behavior a bit later, possibly due to the
pressure-dependent consistency error that dominates in the beginning but is reduced with optimal order.

To study the locking behavior, Figures 7.3 and 7.4 show the convergence histories of the calculated errors
for µ “ 10´2 and µ “ 10´4, respectively, with c P t1, 100u. The results for µ “ 10´2 are also printed in
Table 7.2. The first important observation is that the classical scheme puh, %hq indeed shows locking and
produces errors that are several magnitudes larger than the errors of the modified scheme pu`h , %

`
h q. The

factor on coarse meshes is approximately 1{µ as expected by the theory. However, for the case c “ 1
on finer meshes the velocity error convergence rates of the modified scheme deteriorates earlier than the
ones of the classical scheme. Nevertheless, the error of the modified scheme on the finest mesh is still
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FIGURE 7.5. Convergence histories for the modified method and classical method for
γ “ 1.4 and µ “ 1 and c “ 1 (left), c “ 100 (right).
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FIGURE 7.6. Convergence histories for the modified method and classical method for
γ “ 1.4 and µ “ 10´4 and c “ 1 (left), c “ 100 (right).

much smaller than the error of the classical scheme and it is expected that the classical scheme also shows
suboptimal convergence once it arrives at the same error level similar to the case µ “ 10´1. Note, that
for the nearly incompressible case c “ 100, all convergence rates are again optimal and the gap between
puh, %hq and pu`h , %

`
h q due to the locking is as large as in the other case and, more importantly, persists

even on the finest mesh. This is the known locking behavior from the incompressible Stokes setting.

Figures 7.5 and 7.6 show some results for γ “ 1.4 and µ “ 1 and µ “ 10´4, respectively. The conver-
gence histories of the error are very similar to the isothermal case γ “ 1, quantitatively and qualitatively
concerning the locking behavior and the suboptimal convergence rates for small mu and small c.

Remark 7.1. The experiments convey that the suboptimal convergence rates on finer meshes have to do
with the discretization of the continuity equation and the compressibility of the fluid. If divpuq ‰ 0, the
upwind discretization introduces an error that does not allow any guaranteed convergence rates for the
error of the velocity gradient. However, due to an Aubin–Nitsche argument, the linear convergence of the
L2 error of the velocity is still granted and was observed in all experiments.
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FIGURE 7.7. Convergence histories for the modified gradient-robust scheme pu`h , ρ
`q

and the classical scheme puh, ρq for c “ 1 and γ “ 1 on unstructured meshes in
Section 7.2.

NDOF }u´ u`h }L2 }∇pu´ u`h q}L2 }ρ´ ρ`h }L2 }u´ uh}L2 }∇pu´ uhq}L2 }ρ´ ρh}L2

161 2.2053 ¨ 10´5 3.7917 ¨ 10´4 6.2504 ¨ 10´2 8.9555 ¨ 10´4 1.3380 ¨ 10´2 6.3856 ¨ 10´2

617 1.0756 ¨ 10´5 2.0488 ¨ 10´4 2.9448 ¨ 10´2 2.4783 ¨ 10´4 8.1682 ¨ 10´3 2.9954 ¨ 10´2

2297 1.7069 ¨ 10´6 5.9351 ¨ 10´5 1.4785 ¨ 10´2 6.4319 ¨ 10´5 4.1439 ¨ 10´3 1.5004 ¨ 10´2

9152 3.1842 ¨ 10´7 1.5058 ¨ 10´5 7.5158 ¨ 10´3 1.6349 ¨ 10´5 2.1742 ¨ 10´3 7.6230 ¨ 10´3

36326 4.5439 ¨ 10´8 4.0321 ¨ 10´6 3.7484 ¨ 10´3 4.1878 ¨ 10´6 1.0860 ¨ 10´3 3.7978 ¨ 10´3

143945 6.1867 ¨ 10´9 1.0165 ¨ 10´6 1.8826 ¨ 10´3 1.0555 ¨ 10´6 5.5162 ¨ 10´4 1.9064 ¨ 10´3

573386 8.0138 ¨ 10´10 2.5576 ¨ 10´7 9.4006 ¨ 10´4 2.6432 ¨ 10´7 2.7507 ¨ 10´4 9.5180 ¨ 10´4

TABLE 7.3. Errors of the modified gradient-robust scheme pu`h , ρ
`q and the classical

scheme puh, ρq for c “ 1 and γ “ 1 on unstructured meshes in Section 7.2.

7.2. Incompressibility limit. This example on the unit square Ω :“ p0, 1q2 examines the exact solution

u :“ 0, p “ ϕp%q :“ c%γ , %px, yq :“ 1.0` py ´ 1{2q{c

for µ “ 1 and λ “ ´2{3. These functions satisfy the compressible Stokes system with the right-hand side
functions

f “ 0 and g “ γ%γ´2

ˆ

0
1

˙

.

Note that the constant c behaves like the squared inverse of the Mach number and for c Ñ 8 the com-
pressible System converges to the incompressible Stokes system, i.e., the density converges to the constant
function 1.0.

Table 7.3 compares the error of the solutions of the classical Bernardi–Raugel scheme (Π “ 1) with the
gradient-robust scheme (where Π is chosen as described above) for c “ 1 and γ “ 1. One can clearly see,
that the velocity errors of the novel scheme are improved by about two orders of magnitudes and also show
some superconvergence behavior as depicted in Figure 7.7, i.e., the L2 velocity gradient error converges
quadratically.

For the following discussion we fix two meshes, one is the unstructured mesh with 489 triangles used before
and the other one is a structured mesh with 450 triangles, see Figure 7.8. Table 7.4 compares the velocity
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FIGURE 7.8. Unstructured grid (G1) with 489 triangles (left) and structured mesh grid
(G2) with 450 triangles (right) used in the examples from Section 7.2 with varying c.

c }∇pu´ u`h q}L2 (G1) }∇pu´ uhq}L2 (G1) }∇pu´ u`h q}L2 (G2) }∇pu´ uhq}L2 (G2)

1 1.0219 ¨ 10´4 8.6144 ¨ 10´3 2.9412 ¨ 10´13 1.3473 ¨ 10´2

10 1.0236 ¨ 10´5 8.2877 ¨ 10´3 9.3288 ¨ 10´14 1.3001 ¨ 10´2

100 1.0236 ¨ 10´6 8.2862 ¨ 10´3 7.8271 ¨ 10´13 1.2996 ¨ 10´2

1000 1.0236 ¨ 10´7 8.2864 ¨ 10´3 8.3695 ¨ 10´12 1.2996 ¨ 10´2

10000 1.0236 ¨ 10´8 8.2864 ¨ 10´3 6.8088 ¨ 10´11 1.2996 ¨ 10´2

TABLE 7.4. Errors }∇pu´uhq}L2 of the classical and gradient-robust scheme computed
on the two fixed grids from Figure 7.8 for γ “ 2 and different choices of c in the example
from Section 7.2.

c }∇pu´ u`h q}L2 (G1) }∇pu´ uhq}L2 (G1) }∇pu´ u`h q}L2 (G2) }∇pu´ uhq}L2 (G2)

1 7.6708 ¨ 10´5 5.7730 ¨ 10´3 1.8710 ¨ 10´6 9.0664 ¨ 10´3

10 7.1800 ¨ 10´6 5.7996 ¨ 10´3 1.3956 ¨ 10´8 9.0971 ¨ 10´3

100 7.1664 ¨ 10´7 5.8004 ¨ 10´3 1.3977 ¨ 10´10 9.0974 ¨ 10´3

1000 7.1653 ¨ 10´8 5.8005 ¨ 10´3 1.4607 ¨ 10´11 9.0974 ¨ 10´3

10000 7.1665 ¨ 10´9 5.8005 ¨ 10´3 1.0489 ¨ 10´10 9.0974 ¨ 10´3

TABLE 7.5. Errors }∇pu´uhq}L2 of the classical and gradient-robust scheme computed
on the two fixed grids from Figure 7.8 for γ “ 1.4 and different choices of c in the example
from Section 7.2.

c }∇pu´ u`h q}L2 (G1) }∇pu´ uhq}L2 (G1) }∇pu´ u`h q}L2 (G2) }∇pu´ uhq}L2 (G2)

1 5.9299 ¨ 10´5 4.1439 ¨ 10´3 2.5549 ¨ 10´6 6.4992 ¨ 10´3

10 5.1372 ¨ 10´6 4.1432 ¨ 10´3 1.6635 ¨ 10´8 6.4981 ¨ 10´3

100 5.1194 ¨ 10´7 4.1432 ¨ 10´3 1.6628 ¨ 10´10 6.4982 ¨ 10´3

1000 5.1181 ¨ 10´8 4.1432 ¨ 10´3 1.5016 ¨ 10´11 6.4982 ¨ 10´3

10000 5.1275 ¨ 10´9 4.1432 ¨ 10´3 1.6017 ¨ 10´10 6.4982 ¨ 10´3

TABLE 7.6. Errors }∇pu´uhq}L2 of the classical and gradient-robust scheme computed
on the two fixed grids from Figure 7.8 for γ “ 1 and different choices of c in the example
from Section 7.2.

error on these two meshes for different choices of c. There are two interesting observations. First, the
velocity errors of the gradient-robust scheme converge to zero for c Ñ 8, while the errors of the classical
scheme stagnates. Second, the velocity of the gradient-robust scheme is exact on structured meshes for
every c, while the classical scheme is not.
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NDOF }u´ u`h }L2 }∇pu´ u`h q}L2 }ρ´ ρ`h }L2 }u´ uh}L2 }∇pu´ uhq}L2 }ρ´ ρh}L2

161 7.5658 ¨ 10´14 1.5323 ¨ 10´12 6.2501 ¨ 10´2 1.2578 ¨ 10´3 1.8979 ¨ 10´2 6.4038 ¨ 10´2

617 1.3088 ¨ 10´16 5.2005 ¨ 10´15 2.9447 ¨ 10´2 3.4992 ¨ 10´4 1.1486 ¨ 10´2 2.9970 ¨ 10´2

2297 8.0186 ¨ 10´17 5.5293 ¨ 10´15 1.4785 ¨ 10´2 9.0438 ¨ 10´5 5.7741 ¨ 10´3 1.5006 ¨ 10´2

9152 8.2615 ¨ 10´17 1.1330 ¨ 10´14 7.5158 ¨ 10´3 2.2972 ¨ 10´5 3.0452 ¨ 10´3 7.6233 ¨ 10´3

36326 8.4962 ¨ 10´17 2.2574 ¨ 10´14 3.7484 ¨ 10´3 5.8270 ¨ 10´6 1.5099 ¨ 10´3 3.7979 ¨ 10´3

TABLE 7.7. Errors of the modified gradient-robust scheme pu`h , ρ
`q and the classical

scheme puh, ρq for c “ 1 and γ “ 1.4 on unstructured grids with right-hand sides (7.1).

NDOF }u´ u`h }L2 }∇pu´ u`h q}L2 }ρ´ ρ`h }L2 }u´ uh}L2 }∇pu´ uhq}L2 }ρ´ ρh}L2

161 6.9935 ¨ 10´17 1.2646 ¨ 10´15 6.2500 ¨ 10´2 8.9980 ¨ 10´4 1.3467 ¨ 10´2 6.3956 ¨ 10´2

617 6.6351 ¨ 10´17 2.4263 ¨ 10´15 2.9446 ¨ 10´2 2.4970 ¨ 10´4 8.1662 ¨ 10´3 2.9961 ¨ 10´2

2297 7.3217 ¨ 10´17 5.0692 ¨ 10´15 1.4785 ¨ 10´2 6.4488 ¨ 10´5 4.1437 ¨ 10´3 1.5005 ¨ 10´2

9152 7.3142 ¨ 10´17 1.0417 ¨ 10´14 7.5158 ¨ 10´3 1.6409 ¨ 10´5 2.1739 ¨ 10´3 7.6232 ¨ 10´3

36326 7.6058 ¨ 10´17 2.0748 ¨ 10´14 3.7484 ¨ 10´3 4.1974 ¨ 10´6 1.0860 ¨ 10´3 3.7978 ¨ 10´3

TABLE 7.8. Errors of the modified gradient-robust scheme pu`h , ρ
`q and the classical

scheme puh, ρq for c “ 1 and γ “ 1 on unstructured grids with right-hand sides (7.1).

Table 7.5 and 7.6 repeat this experiment for γ “ 1.4 and γ “ 1, respectively. Here the results are similar
as for the case with γ “ 2 in the sense that the gradient-robust scheme is more accurate than the classical
scheme. However, the gradient-robust variant is not exact on structured meshes in these cases which most
likely is due to the non-constant vector g.

7.3. Well-balanced property. We repeat the experiment from the previous section, but this time we as-
sume the right-hand sides

f “ γ%γ´1

ˆ

0
1

˙

and g “ 0.(7.1)

Table 7.8 displays the errors for γ “ 1 and c “ 1 for the classical and the gradient-robust scheme.
Surprisingly, the novel gradient-robust scheme computes the exact velocity even on unstructured meshes.
Also note, that the gradient-robust scheme converges after the first iteration, since the initial value based on
the (rescaled) discrete pressure from incompressible Stokes problem is already the correct discrete density.
Table 7.7 leads to the same conclusions for for γ “ 1.4.
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