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AbstratWe present an asymptoti analysis of time-delayed feedbak ontrol of steadystates for large delay time. By saling arguments, and a detailed omparison withexat solutions, we establish the parameter ranges for suessful stabilization of anunstable �xed point of fous type. Insight into the ontrol mehanism is gained byanalysing the eigenvalue spetrum, whih onsists of a pseudo-ontinuous spetrumand up to two strongly unstable eigenvalues. Although the standard ontrol shemegenerally fails for large delay, we �nd that if the unontrolled system is su�ientlylose to its instability threshold, ontrol does work even for relatively large delaytimes.1 introdutionThe stabilization of unstable and haoti systems is the subjet of extensive investigationsin physis, hemistry, biology, and mediine [1, 2, 3℄. Starting with the work of Ott, Grebogiand Yorke [4℄ a variety of methods for haos ontrol have been developed in order to stabilizeunstable periodi orbits (UPOs) embedded in a haoti attrator. A partiularly simpleand e�ient sheme is time-delayed feedbak whih uses the di�erene s(t)− s(t− τ) of asignal s at a time t and a delayed time t − τ as suggested by Pyragas [5℄. This method isnoninvasive sine the stabilized state exists already - though unstable - in the unontrolledsystem, and the ontrol fore vanishes when a UPO of period τ is reahed. This shemewas improved by Soolar et al. [6℄ by onsidering multiple delays in form of an in�niteseries (extended time-delay autosynhronization or ETDAS), and other variants have alsobeen elaborated [7, 8, 9, 10, 11, 12℄. Some analytial results on the onditions for ontrolan be obtained from the Floquet spetrum of the UPOs [13, 14, 15, 16, 17℄, and a detailednumerial bifuration analysis has been performed [18℄.Time-delayed feedbak with appropriate time delay an also be used to stabilize unsta-ble steady states [19℄. This sheme is more robust than derivative ontrol of �xed points[20, 21℄, and has been applied to eletrohemial systems [22, 23℄ and nonlinear eletroniiruits [24℄. All-optial realizations are another important appliation of time-delay au-tosynhronisation. In partiular, a time-delayed optial feedbak ours naturally in semi-ondutor lasers [25, 26, 27, 28℄, and often the delay time is rather large [29, 30℄. Time-delayed feedbak ontrol of steady states has been studied in semiondutor lasers underresonant feedbak from a Fabry-Perot resonator [31℄.1



It is the purpose of this paper to obtain deeper analytial insight into the time-delayedfeedbak ontrol of steady states for large delay by relating asymptoti properties of theeigenvalue spetrum with the exat solutions, and by disussing the shape of the ontroldomain in the spae of the ontrol parameters. It has been shown that time-delayedfeedbak ontrol fails if the number of positive eigenvalues of the �xed point (or moregenerally: positive Floquet exponents of the UPO) is odd [14, 15℄, hene we onsider anunstable �xed point of fous type with two omplex onjugate eigenvalues Λ = λ±iω, λ > 0.If λ → 0, a reverse Hopf bifuration ours, and the �xed point beomes stable. Threedi�erent timesales are of importane in suh a ontrol problem: (i) the inverse divergenerate of trajetories around the unstable �xed point 1/λ, (ii) the period of undampedosillations around the �xed point T0 = 2π/ω, where ω is the osillation frequeny, and (iii)the delay time τ used in the feedbak ontrol loop. Here we onsider the ase τ ≫ 1/λ, andstudy a generi model equation whih desribes an unstable fous above a Hopf bifuration.The paper is organized as follows. In Set. II we present the analytial solution of theomplex spetrum as a funtion of delay time using the Lambert funtion. In Set. IIIthe saling properties of the spetrum for large delay are derived. From this the ontroldomain lose to the Hopf bifuration of the �xed point is onstruted (Set. IV). Theappendix ontains the expliit analytial form of the boundary of the ontrol domain.2 Stabilization of unstable �xed pointThe stability of a �xed point x
∗ in a general nonlinear dynami system is obtained bylinearizing the vetor �eld around x

∗. Hene, in order to study the stabilization of �xedpoints by time-delayed feedbak ontrol it is su�ient to onsider the generi model ofa two-variable linear system whih, in the absene of delay, has an unstable fous at
x∗ = 0, y∗ = 0 with eigenvalues of the Jaobian λ ± iω, λ > 0, ω 6= 0.Applying the standard diagonal time-delayed feedbak ontrol sheme, we obtain the basimodel equation for stabilizing unstable steady states [19℄

ẋ(t) = λx(t) + ωy(t) − K [x(t) − x(t − τ)] , (1)
ẏ(t) = −ωx(t) + λy(t) − K [y(t) − y(t− τ)] ,where K is the feedbak ontrol strength, and τ is a feedbak delay time. In the abseneof ontrol, the zero �xed point has the eigenvalues Λ = λ ± iω, λ > 0, i.e., the parameters

λ > 0 and ω are a measure for the distane from the instability threshold, e.g., a Hopfbifuration, and the intrinsi eigenfrequeny, respetively.In the presene of the ontrol, the stability of the �xed point is determined by the roots Λof the harateristi equation
[

Λ + K
(

1 − e−Λτ
)

− λ
]2

+ ω2 = 0.This equation an be further simpli�ed to
λ ± iω = Λ + K

(

1 − e−Λτ
)

. (2)2



Note that due to the presene of the delay, Eq. (2) possesses in�nitely many solutions.Nevertheless, the stability of the �xed point is determined by a �nite number of ritial rootswith largest real parts [32℄. As a result, the stabilization problem onsists in determiningthese ritial eigenvalues and desribing their behavior. In partiular, suessful ontrol isahieved by providing onditions in terms of the ontrol parameters K and τ for whih allritial eigenvalues have negative real parts.Using the Lambert funtion W , whih is de�ned as the inverse funtion of g(z) = zez foromplex z [32℄, the solution of Eq. (2) an be expressed as
Λτ = W

(

Kτe−(λ±iω)τ+Kτ
)

+ (λ ± iω)τ − Kτ. (3)Fig. 1 shows the real parts of the ritial eigenvalues Λ as a funtion of τ for di�erent valuesof K. The insets show the same eigenvalues as urves in the omplex plane, parametrizedby τ . Note that the eigenvalue originating from the unontrolled system (red online) isthe most unstable one for su�iently small K and does not ouple to the eigenvaluesgenerated by the delay (see Figs. 1(a,b)). The ountable set of eigenvalues generated bythe delay originates from Re Λ = −∞ for τ → 0, and shows the typial nonmonotibehavior that leads to stability islands for appropriate τ and K [19℄. For larger values of
K, the eigenvalue originating from the unontrolled system is no longer separated fromthose whih are generated by the delay (see Figs. 1(,d)). Moreover, one an observe asaling behavior of the real parts of the eigenvalues for large τ : in Figs. 1(a)-(), there is asingle eigenvalue retaining a positive real part, whereas all the other real parts tend to zerofor large τ. The insets show that the eigenvalues in fat aumulate along the imaginaryaxis. This observation will be studied in detail in the following setion.3 Asymptoti properties of the spetrum for large delayThe saling behavior of eigenvalues of general linear delay-di�erential equations for largedelay τ has been analysed in [33℄. In partiular, it turns out that one an distinguish

• strongly unstable eigenvalues Λs whih have positive real parts that do not tend tozero with inreasing τ , i.e., Λs → const and Re Λs ≥ δ for some δ > 0 as τ → ∞.
• pseudo-ontinuous spetrum (PS) of eigenvalues Λp with real parts that sale as 1/τ ,i.e., Λp = 1

τ
γ + i

(

Ω + 1
τ
ϕ
)

+ O
(

1
τ2

) with some γ, Ω, and ϕ. A spetrum with thissaling behavior and positive real part leads to so-alled weak instabilities (for moredetails, see [34, 33℄).In order to obtain the strongly unstable eigenvalues, we insert Λs = const into Eq. (2)and assume τ → ∞. Sine ReΛs > δ, the exponential term vanishes and we arrive at theexpression for Λs:
Λs = λ − K ± iω,3
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020Figure 1: (olor online) Real parts of the omplex eigenvalues Λ as a funtion of τ alulatedfrom the harateristi Eq. (2) for 10 modes with the largest real parts. (a) K = 0.25, (b)
K = 0.5, () K = 0.75, and (d) K = 1.0. Inset: eigenmodes Λ in the omplex plane for
τ ∈ [0, 20]. Red urves: Eigenvalue originating from the unontrolled system; blak urves:eigenmodes reated by the delay ontrol. Parameters: ω = π, λ = 1.
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whih holds for λ − K > 0. Thus we obtain the following statement:(i) For K < λ, there exist two eigenvalues of the ontrolled stationary state, Λs1 and itsomplex onjugate Λs2, suh that Λs1 → λ − K + iω as τ → ∞. The real parts of theseeigenvalues are positive and, hene, the stationary state is strongly unstable (f. Figs. 1(a)�()).In order to obtain the asymptoti expression for the remaining pseudo-ontinuous part ofthe spetrum, we have to insert the saling Λp = 1
τ
γ + i

(

Ω + 1
τ
ϕ
) into Eq. (2). Up to theleading order we obtain the equation

iΩ + K
(

1 − e−γe−iϕ
)

= λ ± iω, (4)and the additional ondition Ω = Ω(m) = 2πm/τ , m = ±1,±2,±3, .... Eq. (4) an besolved with respet to γ(Ω)

γ(Ω) = −1

2
ln

[

(

1 − λ

K

)2

+

(

Ω ± ω

K

)2
]

. (5)The fat that Re Λp ≈ γ(Ω)/τ and Im Λp ≈ Ω up to the leading order means that theeigenvalues Λp aumulate in the omplex plane along urves (γ(Ω), Ω), provided that thereal axis is saled as τRe Λ. The atual positions of the eigenvalues on the urves an beobtained by evaluating Ω at points Ω(m) = 2πm/τ . With inreasing τ , the eigenvaluesover the urves densely [33℄. Hene, we obtain the seond statement:(ii) The �xed point of system (1) has a set of eigenvalues whih behave asymptotially as
Λp(Ω

(k)) = 1
τ
γ(Ω(k))+ i

(

Ω(k) + 1
τ
ϕ(Ω(k))

) with γ(Ω) given by (5). We have weak instabilityif the maximum of γ(Ω) is positive, i.e.,
γmax = max

Ω
γ(Ω) = − ln

∣

∣

∣

∣

1 − λ

K

∣

∣

∣

∣

> 0,whih is the ase for K > λ/2.Figure 2 illustrates the spetrum of the �xed point of system (1) for τ = 20. One anlearly distinguish the two types of eigenvalues. For K < λ/2 (Fig. 2(a)), the �xed pointhas a pair of strongly unstable eigenvalues, whereas the PS is stable. Note that the symbols(red online) show the spetrum omputed numerially from the full eigenvalue equation,whereas the dashed lines are the urves (γ(Ω), Ω) from the asymptoti approximation wherethe PS aumulates for large τ . At K = λ/2 (f. Fig. 2(b)), the PS touhes the imaginaryaxis resulting in the appearene of a weak instability for K > λ/2. This leads to theoexistene of strong and weak instabilities for λ/2 < K < λ, (Fig. 2()). At K = λ,the strongly unstable eigenvalues disappear, being absorbed by the PS, whih develops asingularity at this moment, f. Fig. 2(d). Finally, for K > λ (Fig. 2(e)), there ours onlya weak instability indued by the PS.After inspeting all possibilities given in Fig. 2, we onlude that stabilization by thefeedbak ontrol sheme (1) always has an upper limit τc suh that for τ > τc it fails.5
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Additionally, we note that for K < λ and large delay, the stationary state is stronglyunstable with the omplex onjugate eigenvalues Λ1.2 = λ−K ± iω, and for K > λ weaklyunstable with a large number of unstable eigenvalues given by (4), the real parts of whihsale as 1/τ .4 Control domain lose to the Hopf bifurationIn this setion we show that strongly delayed feedbak an stabilize a �xed point in the asewhen the �xed point is su�iently lose to the Hopf bifuration. In our ase this meansthat λ is small. In partiular, we are going to prove that the delayed feedbak ontrolsheme will be suessful even for large delay within the range of order 1/λ2. We will alsoprovide onditions for suessful ontrol.For the �xed point whih is lose to the Hopf bifuration, we assume K > λ, and, heneit has an unstable PS, as shown in Fig. 2(e). As λ stays �xed, with inreasing τ the urveof the PS will be densely �lled with the eigenvalues (Ω(m) = 2πm/τ). The only possibilityfor the �xed point to beome stable is to assume that λ is also saled with inreasing τ .Partiularly, we will show that in order to ahieve ontrol we have to sale it as λ = λ0ε
2with �xed λ0 (here for onveniene we introdue the small parameter ε = 1/τ).Fig. 3 illustrates the part of the urve γ(Ω) whih may indue an instability in the system.More preisely, the interval of unstable frequenies is Ω1 < Ω < Ω2, where Ω1 and Ω2 aregiven by the zeros of γ(Ω):

Ω1,2 = ω ± K

√

1 −
(

1 − λ

K

)2For small λ we an approximate this as
Ω1,2 = ω ±

√
2λK. (6)The length of the interval of unstable frequenies is ∆Ω = Ω2 − Ω1 = 2

√
2λK.We note that the atual position of the eigenvalues on the urve orresponds to the valuesof Ω(m) = 2πmε with any integer m. It is easy to see that the distane between thefrequenies of neighboring eigenvalues Ω(m+1) − Ω(m) = 2πε sales as ε. Therefore, theontrol an be suessful if λ = λ0ε

2. In this ase the length of the unstable interval is
∆Ω = 2ε

√
2λ0K and sales also as ε. The ontrol an be ahieved if the length is smallerthan the distane between neighboring eigenvalues, i.e., ∆Ω = 2ε

√
2λ0K < 2πε, leading to

K <
π2

2λ0
. (7)Eq. (7) gives a neessary ondition for suessful ontrol.7
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)
) on the urve orresponds to Ω(m) = 2πmε, m =

±1,±2,±3, ..., ε = 1/τ . The �xed point is stable if the imaginary parts of the eigenvaluesare outside of the interval Ω1 < Ω < Ω2. Suh a ase with Ω(m0) < Ω1 < Ω2 < Ω(m0+1) isillustrated, in whih the leading eigenvalues Λ(m0) and Λ(m0+1) have negative real parts.The relative phase of the delay plays an additional important role. Depending on thisphase, ontrol ours periodially with τ . In order to quantify this e�et, let us introdue
ωτ = 2π/τ to be the frequeny assoiated with the delay. Then the ratio of the internalfrequeny ω and ωτ is given by ω/ωτ = γτ mod 1. Here 0 < γτ < 1 measures the detuningfrom the resonane between the internal frequeny and the delay-indued one. Using thisnotation and (6), we an rewrite

Ω1,2 = m0ωτ + γτωτ ± ε
√

2λ0K = Ω(m0) + ε
(

2πγτ ±
√

2λ0K
)

.Here m0 is some integer number. The neessary and su�ient ondition for the stabilityis (f. Fig. 3) Ω(m0) < Ω1 < Ω2 < Ω(m0+1), whih leads to
√

2λ0K < 2π min {γτ , 1 − γτ}or
K <

2π2

λ0

(min {γτ , 1 − γτ})2 =
2π2

λ0

(

min

{

[ωτ

2π

]

f
, 1 −

[ωτ

2π

]

f

})2

, (8)where [

ωτ
2π

]

f
is the frational part of ωτ

2π
[35℄. Fig. 4 shows the domain of ontrol given byEq. (8) for λ = λ0/τ

2.In order to return to unsaled parameters, we have to substitute λ0 = λ/ε2 = λτ 2. Fig. 5(a)shows the obtained domain of ontrol for �xed small λ = 0.01. The maximum allowed8
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2. Parameters:

ω = π, λ0 = 1.values of K derease as 1/τ 2. More preisely, we have
Kmax(τ) =

π2

2λτ 2
. (9)The appliation of the asymptoti analysis allows to reveal many essential features andmehanisms of the stabilization ontrol sheme (1) for large delay τ . On the other hand,the obtained approximations are valid as soon as K is muh larger than λ. Figure 5 showsa omparison of the boundaries of the ontrol domain, whih are given by the asymptotimethods and exat analytial formulas derived in Appendix A. Very lose to the Hopfbifuration (λ = 0.01) the agreement is exellent even at small values of τ (Fig. 5a), whilefor larger λ (Fig. 5b) the deviations beome more visible. In addition, the approximatesolution does not give the lower boundary of the ontrol domain for small K whih onlyshows up in Fig. 6. The analytial approah whih we give in Appendix A also allowsus to identify the �peaks� of the ontrol domains, whih our at τmax = (2n + 1)π/ω,

n = 0, 1, 2, ..., as double-Hopf bifuration points. The ritial time delay, above whihontrol fails, is given by τc = 2/λ.5 ConlusionsTime delays our naturally in a variety of optial, eletroni, hemial, biologial andother nonlinear systems. This feature an be used in a simple and easily realizable way tostabilize unstable steady states by time-delayed di�erene feedbak ontrol. However, theontrol sheme may fail if the delay time τ and the ontrol amplitude K are not hosen9
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appropriately. In this paper we have elaborated analytial onditions for suessful on-trol of a �xed point of fous type. By asymptoti expansion methods for large delay, anda detailed omparison with exat solutions we have established the parameter ranges forsuessful ontrol. Thereby we have not only obtained the preise shape of the islands ofontrol in the (τ, K) parameter plane, but have also gained insight into the mehanismof ontrol by analysing the eigenvalue spetrum of the �xed point of the delay-di�erentialequation, whih onsists of a pseudo-ontinuous spetrum and up to two strongly unstableomplex eigenvalues. Although our analysis has shown that the standard ontrol shemegenerally fails for large delay, we have found that if the unontrolled system is su�ientlylose to its instability threshold, i.e., a Hopf bifuration, ontrol does work even for rela-tively large delay times, ompared to the intrinsi osillation period T0 = 2π/ω, f. Fig.5(a). These results may be of interest, e.g., in appliation to laser systems where osil-latory instabilities may our above the �rst laser threshold, but stable w operation isoften desired [25℄. By suitable optial or optoeletroni feedbak using for instane externalavities and Fabry-Perot resonators, time-delayed feedbak ontrol may be realized.A Boundaries of the ontrol domainThe exat boundaries of the ontrol domain an be obtained analytially [19℄ from theharateristi Eq.(2) by setting the real part of the omplex eigenvalue Λ equal to zero,i.e., Λ = iΩ. We then obtain the two real equations
λ = K(1 − cos Ωτ) (10)

±ω = Ω + K sin Ωτ. (11)Solving this system of transendental equations and observing the positivity of the delaytime τ and the parameters λ, ω, K, we �nd three families of branhes of solutions, wherethe nonnegative integer n takes are of the di�erent leaves of the involved multivaluedfuntions:
τ1(K, n) =

2nπ + arccos K−λ
K

ω −
√

(2K − λ)λ
,

λ

2
≤ K <

ω2 + λ2

2λ
(12)

τ2(K, n) =
2(n + 1)π − arccos K−λ

K

ω +
√

(2K − λ)λ
,

λ

2
≤ K (13)

τ3(K, n) =
2(n + 1)π − arccos K−λ

K

−ω +
√

(2K − λ)λ
,

ω2 + λ2

2λ
< K (14)The orresponding eigenvalues Λ = iΩ are given by

Ω1,3 = ±
(

ω −
√

(2K − λ)λ
)

Ω2 = ±
(

ω +
√

(2K − λ)λ
)12



For the boundaries of the stability islands only the branhes τ1 and τ2 are relevant. Notethat at the points
K = Kmin =

λ

2

τ = τmin(n) =
(2n + 1)π

ωthe branh τ1(K, n) ends, but is ontinued by τ2(K, n). As it is shown in [19℄, these pairsof urves, Eqs. (12) and (13), form the boundaries of the ontrol domains in the (τ, K)parameter plane, as depited by solid lines in Figs. 5 and 6. These islands beome smallerfor inreasing n and the orresponding values for K are on�ned by
Kmin ≤ K ≤ Kmax(n),where the maximal value Kmax(n) is given by an intersetion point of the two branhes

τ1(K, n) and τ2(K, n). These intersetion points orrespond to double-Hopf points of odi-mension two. They are given by solutions of the transendental equation
arccos

λ − K

K
=

(2n + 1)π

ω

√

(2K − λ)λ. (15)The orresponding values of τ are given by
τmax(n) = τmin(n) =

(2n + 1)π

ω
. (16)Note that the ondition (15) is satis�ed also for K = Kmin. The stability domain vanishesif Kmin and Kmax oinide. Forming the derivative of (15) with respet to K we obtain

1

K
=

(2n + 1)π

ω
.Inserting K = Kmin = λ/2 �nally gives the relation

ω =
(2n + 1)πλ

2
.If this relation is satis�ed, we have a resonant double-Hopf point of odimension three.Sine n has to be an integer, this happens only for partiular hoies of λ and ω. Otherwise,the integer part of the value n obtained from this relation gives the number of nondegeneratestability islands.Using (16), the maximum delay time τc whih allows for stabilization is obtained as

τc =
2

λ
,Note that this boundary is sharp only if τ is an odd integer multiple of π/ω. For

ω

λ
<

π

2
,even the �rst stability island vanishes and stabilization is not possible.13
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