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Abstract. Large eddy simulations (LESs) are performed for

the area of the Caribbean island Barbados to investigate is-

land effects on boundary layer modification, cloud genera-

tion and vertical mixing of aerosols. Due to the presence

of a topographically structured island surface in the domain

center, the model setup has to be designed with open lateral

boundaries. In order to generate inflow turbulence consistent

with the upstream marine boundary layer forcing, we use the

cell perturbation method based on finite amplitude potential

temperature perturbations. In this work, this method is for the

first time tested and validated for moist boundary layer simu-

lations with open lateral boundary conditions. Observational

data obtained from the SALTRACE field campaign is used

for both model initialization and a comparison with Doppler

wind and Raman lidar data. Several numerical sensitivity

tests are carried out to demonstrate the problems related to

“gray zone modeling” when using coarser spatial grid spac-

ings beyond the inertial subrange of three-dimensional tur-

bulence or when the turbulent marine boundary layer flow

is replaced by laminar winds. Especially cloud properties in

the downwind area west of Barbados are markedly affected

in these kinds of simulations. Results of an additional sim-

ulation with a strong trade-wind inversion reveal its effect

on cloud layer depth and location. Saharan dust layers that

reach Barbados via long-range transport over the North At-

lantic are included as passive tracers in the model. Effects

of layer thinning, subsidence and turbulent downward trans-

port near the layer bottom at z≈ 1800 m become apparent.

The exact position of these layers and strength of downward

mixing is found to be mainly controlled atmospheric stability

(especially inversion strength) and wind shear. Comparisons

of LES model output with wind lidar data show similarities

in the downwind vertical wind structure. Additionally, the

model results accurately reproduce the development of the

daytime convective boundary layer measured by the Raman

lidar.

1 Introduction

A series of ground-based and airborne remote sensing mea-

surements took place at and around Barbados during the

SALTRACE (Saharan Aerosol Long-range Transport and

Aerosol-Cloud-Interaction Experiment) 2013 summer cam-

paign. Since Barbados is the easternmost island in the

Caribbean and steady easterly trade winds are present, it is

not affected by other surrounding islands. For that reason,

Barbados is suitable for island effect studies both from the

measurement and the modeling point of view. First of all,

mineral dust emitted from the Saharan region is transported

for more than 4000 km over the Atlantic Ocean with almost

no anthropogenic influence. Dust layers arriving at Barba-

dos can be detected with respect to layer height and thick-

ness as well as aerosol composition. Secondly, cloud stud-

ies are possible due to persistent trade-wind circulation at

the eastern Caribbean. For example, extensive investigations

on shallow cumulus cloud properties and their response to

different ambient cloud condensation nuclei (CCN) num-
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ber concentrations took place during the CARRIBA (Cloud,

Aerosol, Radiation and tuRbulence in the trade wInd regime

over BArbados) project in 2010/2011 (Siebert et al., 2013).

Within CARRIBA, airborne in situ measurements were con-

ducted east of Barbados. The field site of the Max Planck In-

stitute for Meteorology (MPI-M), Hamburg, Germany, with

ground-based instruments is located at the east coast as well.

The choice of these locations ensures that the island itself

has very little to no influence on the measurements and thus

marine boundary layer properties can be accurately inves-

tigated. During SALTRACE, the TROPOS (Leibniz Insti-

tute for Tropospheric Research, Leipzig) and LMU (Ludwig-

Maximilians-Universität Munich) field sites were located at

the area of the local Caribbean Institute for Meteorology

and Hydrology (CIMH) near the west coast of Barbados

(see Fig. 1), whereas the DLR (Deutsches Zentrum für Luft-

und Raumfahrt) research aircraft Falcon was stationed at the

international airport of Barbados. Regarding the measure-

ment field site, incoming air masses at these sites are already

influenced by the island due to surface roughness change,

different energy fluxes and topographical features. Whereas

the first two properties primarily influence the atmospheric

boundary layer (ABL), gravity waves caused by the latter

also propagate within the free troposphere.

There are several works regarding the understanding of

airflow and thermodynamic quantities around Barbados.

A first detailed observational study using pilot balloon mea-

surements was done by DeSouza (1972) and further inter-

preted by Garstang et al. (1975). DeSouza’s calculated ver-

tical wind velocity fields showed a daytime divergence and

nighttime convergence over the island. Mahrer and Pielke

(1976) did a series of two- and three-dimensional numerical

studies and found that DeSouza’s calculations only hold for

a flat island, because he neglected significant effects of ter-

rain slope in his divergence calculations. Heat island effects

on vertical mixing of aerosols at Cape Verde islands were

studied by Engelmann et al. (2011) using aircraft lidar mea-

surements and idealized large eddy simulations (LESs) with

flat island surfaces. They found indications that the differ-

ential heating and the orographic impact control downward

mixing of African aerosols, which results in a complex ver-

tical layering over the Cape Verde region. Taking the topo-

graphical structures into account, Mahrer and Pielke (1976)

pointed out some main characteristics, e.g., diurnal changes

in the vertical wind velocity fields downwind (i.e., west coast

of Barbados) with sinking motions over the center and west-

ern part of the island and an upwind cell off the west coast.

Considering numerical sensitivity studies by Savijärvi and

Matthews (2004, SM04 hereafter), the general conclusion

was that these forced rising and sinking motions and their

consecutive effects can only be explained if island orography

is included in the numerical models. In their 2-D study, SM04

added a 200 m high central mountain to a 20 km wide is-

land and showed that sea-breeze circulations are enhanced by

upslope winds during the day. These topographically forced

components will dominate if the large-scale mean wind is

in the order of magnitude of at least 10 ms−1, which is the

case for Barbados. Smith et al. (1997) assigned different is-

land structures to different mountain wake types. Since the

highest elevation of Barbados (Mt. Hillaby, with a height

of 340 ma.s.l.) does not exceed the critical height for wave

breaking, no wind wake can develop. However, a long trail

of cumulus clouds extending westwards can evolve during

the afternoon hours (cumulus cloud street). Kirshbaum and

Fairman (2015) found that surface fluxes control the down-

wind circulation strength and the trade inversion controls

precipitation and thus the disruption of cloud trails. Other

influence factors like terrain height, wind speed and their

interactions have multiple impacts on flow regimes, turbu-

lence, cloud trail lengths etc. Another study on island ef-

fects with similar topographical heights compared to Bar-

bados was done by Minda et al. (2010). They investigated

the evolution of the convective boundary layer (CBL) above

Okinawa Island, Japan. It was found that for a flat island sim-

ulation, the warmed land already induces a distinct roll cloud

that is in agreement with the observations. However, the in-

clusion of island terrain leads to reinforced moisture uplifts,

which in turn induce strong convection that can penetrate

into the free atmosphere. Idealized numerical studies were

conducted by Kirshbaum and Grant (2012) to investigate the

impact of mesoscale ascent (with an island height of 500 m)

on cumulus convection. There, a particularly important pro-

cess with regard to the mean horizontal cloud size has been

found. The broader the clouds are, the lower is the fractional

entrainment rate in these clouds, which in the end leads to

an increase in precipitation rates downstream. A key result

from another combined theoretical and numerical study by

Kirshbaum and Wang (2014) was that nonlinear interactions

between mechanical and thermal flow over taller mountains

were significant and thus lead to a strengthening of the lee-

side convergence band.

There are also many studies where the focus lies on the

orographic influence of tall islands (e.g., Hawaii Island or

Dominica with mountain heights above 1 km) on the leeward

flow and precipitation patterns. Esteban and Chen (2008)

state that for a strong trade-wind flow, the daily rainfall totals

at the windward side of the island of Hawaii show a nocturnal

maximum due to the convergence of katabatic flow, whereas

for weak trades (≤ 5 ms−1) the rainfall amounts have their

maximum in the late afternoon due to anabatic winds. In

a work by Smith et al. (2009), orographic precipitation for

the Caribbean island Dominica was studied. There, the con-

ditionally unstable trade-wind layer together with terrain-

forced lifting leads to convective triggering over the wind-

ward slope. The reduced instability on the lee side destroys

convective clouds and creates a rainless area. A complemen-

tary study with airborne observations and cloud-resolving

modeling for the same island was performed by Minder et al.

(2013). The comparison showed that the dynamical struc-

tures are very well reproduced but that it was difficult to
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Figure 1. Left panel: part of the Caribbean including the Lesser Antilles. Right panel: topographical map of Barbados. The topographical

data are obtained from the Consortium for Spatial Information (CGIAR-CSI) Shuttle Radar Topography Mission (SRTM) data set at 200 m

resolution. The white star denotes the location of the CIMH, which is close to the measurement field site.

reproduce the observed rainfall using the model. Overall,

mesoscale flow controls convection and rainfall over Do-

minica. At lower wind speeds, the circulations seem to be

more thermally driven by solar heating.

The main objective of this work is to study local island

effects on the modification of the boundary layer structure,

microphysical properties and downwind vertical mixing of

aerosols for selected days during the first SALTRACE field

campaign. Regarding aerosols, especially Saharan dust, it is

known from several studies that notable amounts of mineral

dust reach Barbados via long-range transport over the North

Atlantic, e.g., from first observations at the end of the 1960s

(Prospero et al., 1970; Prospero and Carlson, 1970) or from

back-trajectory calculations by Ellis and Merrill (1995).

Within this work, the following questions are addressed:

– How does the model setup have to be chosen to get an

as realistic as possible representation of an island–ocean

system in the trade-wind regime through the example of

Barbados?

– How do turbulent inflow characteristics and grid spac-

ing affect the simulation results?

– Can the daytime convective island boundary layer ex-

plain downward mixing of low-altitude Saharan dust

layers?

– Are the simulation results comparable with lidar mea-

surements over and in the lee of the island?

This paper is structured as follows. Section 2 deals with

the general model setup. There, the numerical method, model

physics, computational domain, boundary conditions, initial

data and forcings are described. To generate a turbulent ma-

rine boundary layer, a novel method based on potential tem-

perature perturbations is adopted, verified and applied to our

numerical model and particular setup. Results for two case

studies in June 2013 and two sensitivity tests are presented

and discussed in Sect. 3. In Sect. 4, the simulation results are

compared with stationary and airborne lidar data. Section 5

provides a summary and concluding remarks.

2 Model setup

All LESs are performed with the latest version of the

non-hydrostatic, fully compressible All Scale Atmospheric

Model (ASAM). An extensive model description is presented

in Jähn et al. (2015), both covering numerical discretization

methods and physical parameterizations. A special feature

of ASAM is the usage of so-called cut cells for the orog-

raphy. There, a grid box is cut by the intersection of the

orographical structure. This method can handle steep terrain

gradients and prevents discretization errors compared to tra-

ditional methods like terrain-following coordinates, also con-

serving the original shape of the topography to a high degree.

The dynamical core solves the flux-form tendency equations

for mass, momentum, energy (in terms of density potential

temperature) and other scalars. The most important physi-

cal parameterizations include a Smagorinsky subgrid-scale

model and a two-moment cloud microphysics scheme. Fur-

ther details on the model are described in Appendix A.

In the next subsections, the computational domain, bound-

ary conditions (BC), data initialization and forcings for the

cases of study are described, followed by a novel method to

generate inflow turbulence.

2.1 Domain and boundary conditions

To simulate atmospheric flow for the island–ocean system,

the size of the model domain has to have appropriate values

dependent on the island size. The main criterion in this case

is that a marine boundary layer has to develop at least sev-

eral kilometers before it interferes with the island area. Also,

the downwind area should approximately be twice of the is-

land width so that resulting structures induced by the island

can be properly represented. Since Barbados is a 24 km wide

(west–east) and 34 km long (south–north) island, a model do-

main with a spatial extent of 102.4 km× 102.4 km is chosen.

The island is located at the domain center. The model top is

set to 5 km altitude. Because of the required domain size and

for computational reasons, the horizontal grid spacing is set
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to 1x =1y = 200 m. Such a resolution can be considered a

“coarse” LES; however, it is sufficient to resolve some por-

tion of inertial range scales, as will be shown later on through

spectral analysis.

Due to the presence of the island area, non-cyclic lat-

eral boundary conditions have to be used. Within the finite

volumes/differences discretization strategy adopted herein,

a “zero-gradient” boundary condition is applied to all

scalars and velocity components at each lateral boundary

(north, east, south, west). This means that the boundary-

perpendicular flux for these quantities is set to zero, which

leads to a simple radiation condition near the outlets with

minimal wave reflection. A pressure correction for sound

waves is applied to each actual normal velocity component

and not to the initial wind profile, which also suppresses ar-

tificial wave reflection near the inflow boundary. This setup

ensures stability for the whole simulation time and works ap-

propriately with the turbulence generation method, as shown

at the end of this section.

For the top boundary, a free-slip condition is applied, i.e.,

the gradient of the tangential velocity component is zero. In

order to prevent gravity wave reflection, an additional relax-

ation term is applied on the right-hand side of the momentum

equations:

8n+1
= . . .−1t · ρK(d)(8n(d)−80) , (1)

with a damping function depending on the distance to the top

boundary d:

K(d)=

{
df sin2

(
π
2
dw−d
dw

)
d < dw ,

0 d ≥ dw .
(2)

This damping layer is applied above dw = 4km model

height (20 vertical layers) with a damping parameter df =

1× 10−3.

Surface boundary conditions are represented by a mo-

mentum flux parameterization based on the Monin–Obukhov

similarity theory (Monin and Obukhov, 1954):

τzx =−ρCm|vh|u, (3)

τzy =−ρCm|vh|v . (4)

Cm is the drag coefficient for momentum, which is defined

as follows:

Cm =
k2

92
M

, (5)

with

9M = ln

(
z+ z0

z0

)
−φm

( z
L

)
, (6)

and φm representing the integrated similarity function. L

stands for the Obukhov length and k is the von Kármán con-

stant.
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Figure 2. Nighttime radiosonde soundings on 22 June 2013 (left)

and 27 June 2013 (right).

The topographic data are obtained from the Consortium

for Spatial Information (CGIAR-CSI) Shuttle Radar Topog-

raphy Mission (SRTM) data set (http://srtm.csi.cgiar.org) at

200 m resolution. A simple smoothing algorithm is applied

to guarantee a proper grid pre-processing. In the smoothed

data set, the maximum elevation is lowered by about 15 m

compared to the raw topography data, which is an acceptable

level.

Table 1 summarizes the model configuration for the Bar-

bados LESs performed in Sect. 3.

2.2 Initial data

The two cases examined (22 and 27 June 2013) mainly differ

in their atmospheric state and geostrophic forcing. Measured

nighttime radiosonde profiles of temperature and humidity

are directly used for model initialization (Fig. 2), which re-

duces the complexity of the simulations due to the absence of

horizontal inhomogeneities and a time-varying background

state. There are two reasons behind the choice of using single

profiles instead of averaging multiple profiles. Firstly, a sin-

gle initial profile is better for comparing the LES results with

lidar data (cf. Sect. 4), which are obtained for a few selected

cases during SALTRACE. Secondly, trade-wind inversions

are only poorly represented when the soundings are averaged

over many cases. This becomes apparent when considering

the sharply defined inversion at the 27 June case, which is

shown later on. Air density and pressure profiles are obtained

by vertical integration with respect to hydrostatic equilib-

rium. Some simplifications are assumed for the geostrophic

forcing. The wind direction is purely east (i.e., d = 90◦ and

vg = 0), which is also for simplicity and to make it easier to

define upwind and downwind regimes later on. The vertical

wind profiles are expressed as piecewise linear functions for

both cases. For the 22 June case, the initial wind at first lin-

early decreases above z= 1600 m altitude and then increases

Atmos. Chem. Phys., 16, 651–674, 2016 www.atmos-chem-phys.net/16/651/2016/
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Table 1. LES model configuration for the simulations performed in Sect. 3.

Model parameter Value/description

Domain 102.4× 102.4× 5 km3

Grid cells 512× 512× 100

Time step 4 s

Horizontal grid spacing 200 m

Vertical grid spacing 50 m

Start time (LT) 02:00

End time (LT) 22:00

Topography data SRTM, 200 m resolution

Turbulence scheme Standard Smagorinsky SGS model

Cloud microphysics Two-moment scheme (no ice phase) by Seifert and Beheng (2006)

Wind direction East (90◦)

Lateral BC Open radiative

Surface BC Monin–Obukhov

Top BC Free slip

Damping layer For z ≥ 4.0 km

again above z= 3000 m:

ui,1(z)= (7)

−10.0 ms−1 log(z/z0)
log(700 m/z0)

, z ≤ 0.7 km

−10.0 ms−1 , z ≤ 1.6 km

−10.0 ms−1
+ 4.29× 10−3 s−1

·(z− 3000 m) , 1.6 km< z ≤ 3.0 km

−4.0 ms−1
− 2.0× 10−3 s−1

·(z− 5000 m) , 3.0 km< z ≤ 5.0 km,

with a roughness length z0 = 0.01 m. A change in wind di-

rection to southwest is observed within the layer where the

wind speed decreases. However, this is not captured by the

LES due to the simplifications and assumptions mentioned

above. Therefore, the effect of wind directional shear might

be underestimated in the model for this case. The change in

wind direction (±15◦) is rather small at other altitudes, so

the LES input profile can be considered a good approxima-

tion. For the 27 June case, the initial wind linearly decreases

above z= 3000 m altitude:

ui,2(z)= (8)
−11.5 ms−1 log(z/z0)

log(700 m/z0)
, z ≤ 0.7 km

−11.5 ms−1 , z ≤ 3 km

−11.5 ms−1
+ 5.25× 10−3 s−1

·(z− 3000 m) , z > 3 km.

In this profile there is no distinct change in wind direction.

Figure 3 visualizes the measured (green lines) and parame-

terized (red lines) velocity profiles for both cases. The LES

background wind profiles are parameterized to closely match

the soundings. Within the boundary layer, the LES profile

should be near the nighttime measurements (dark-green line)

because this is mainly a representation of the marine bound-

ary layer. For the free troposphere, the LES profile should

roughly be a mean of all three soundings, since no large-scale
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Figure 3. Parameterized (LES) and measured wind profiles from

radiosondes on 22 June 2013 (left) and 27 June 2013 (right). Names

indicate date and time in UTC.

advection term is applied on the wind components during the

simulation time.

Table 2 shows a comparison of the two simulated

cases with respect to mean flow properties, trade inversion

strength, moisture load (all derived from radiosonde pro-

files), CCN concentrations (obtained by ground-based mea-

surements at Ragged Point station) and the location of the

Saharan dust layer (estimated from BERTHA lidar measure-

ments at CIMH). The differences in the geostrophic forc-

ing are already discussed. Regarding the atmospheric stabil-

ity, there is a much stronger trade inversion for the 27 June

case with a local virtual potential temperature gradient of

14 Kkm−1. As mentioned in the introduction, the trade inver-

sion controls the amount of precipitation and the lifetime of

cloud streets. Furthermore, there is a 18 % stronger moisture

load for the 27 June case, where a faster cloud development

is expected. Due to the vertical and temporal variability in the

www.atmos-chem-phys.net/16/651/2016/ Atmos. Chem. Phys., 16, 651–674, 2016
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CCN number concentrations, a mean value of 300 cm−3 has

been chosen for both cases, which is a typical magnitude for

days with a moderate dust load, where aerosol optical depths

between 0.2 and 0.4 are observed.

2.3 Forcings

Surface sensible and latent heat fluxes over the island and

the ocean are obtained by separate 1-D simulations with full

model physics. The parameterizations there include the radi-

ation scheme (Fu and Liou, 1993) as well as land-use and soil

models. The soil class “loam” was chosen to represent the av-

erage island soil type. Hydraulic and thermal parameters of

this soil type can be found in Doms et al. (2011) and Jähn

et al. (2015). For land surface parameterization, “shrubland”

appears to be a good compromise between coastal beach ar-

eas and forest in the island interior. The roughness length of

this land type is zR,island = 0.2 m, whereas the ocean rough-

ness length is set to zR,ocean = 0.01 m. The usage of direct

(compared to interactive) fluxes reduces computational costs

for the LES runs and makes it easier to potentially repro-

duce these simulations by other models, especially due to

a large number of existing radiation and land-use models.

Figure 4 shows the diurnal variation in sensible and latent

heat fluxes over the island area. The maximum sensible heat

flux over the island is QSHFmax,island = 425 Wm−2 and the

corresponding maximum latent heat flux is QLHFmax,island =

105 Wm−2. Surface heat fluxes over the ocean are constant

during the whole simulation time withQSHF,ocean = 6 Wm−2

and QLHF,ocean = 56 Wm−2. Sunrise is at 05:36 LT and sun-

set is at 18:29 LT, whereby the fluxes are shifted by 30 min to

represent the delay due the fact that the soil has to be heated

first before energy exchange with the lower atmosphere can

take place.

Later on, reference simulations with periodic boundary

conditions are performed to obtain information of marine

boundary layer characteristics. For these simulations, large-

scale forcings from the BOMEX LES study of trade-wind cu-

mulus convection (Siebesma et al., 2003) are applied. They

include a piecewise linear subsidence velocity profile with

an absolute peak value of −560 mday−1, radiative cooling

of −2 Kday−1 and large-scale advection of dry air into the

lower boundary layer of −1 gkg−1 day−1:

wsub =


−4.33× 10−6 s−1z , z ≤ 1500 m

−0.0065+ 1.08× 10−5 s−1

·(z− 1500 m) , 1500 m< z ≤ 2100 m

0.0 , z > 2100 m

,

(9)

dθ

dt
=


−2.315× 10−5 Ks−1 , z ≤ 1500 m

−2.315× 10−5 Ks−1

+2.315× 10−8 Ks−1 m−1

·(z− 1500 m) , 1500 m< z ≤ 2500 m

0.0 , z > 2500 m

,

(10)

dqv

dt
=


−1.2× 10−8 s−1 , z ≤ 300m

−1.2× 10−8 s−1

+6× 10−11 s−1 m−1

·(z− 300 m) , 300 m< z ≤ 500 m

0.0 , z > 500 m

(11)

2.4 Turbulence generation – the cell perturbation

method

The LES modeling technique has the advantage of allow-

ing explicit resolution of turbulent production and part of

the inertial range scales, and is today the most accurate and

computationally feasible modeling approach in the context

of high Reynolds number flows. LES results are strongly de-

pendent on boundary conditions, therefore requiring specifi-

cation of realistic inflow turbulence characteristics that prop-

agate through the domain into the area of interest. In order

to ensure that the incoming boundary layer characteristics at

Barbados correspond to fully developed turbulence consis-

tent with the imposed marine boundary layer forcing, we use

the cell perturbation method recently proposed by Muñoz-

Esparza et al. (2014). The cell perturbation method uses

a novel stochastic approach based upon finite amplitude per-

turbations of the potential temperature field applied within

a region near the inflow boundaries of the LES domain.

This method has demonstrated superior performance when

compared to a state-of-the-art synthetic turbulence generator

and is computationally inexpensive (Muñoz-Esparza et al.,

2015).

Previous studies where the cell perturbation method was

developed and validated dealt with transitions from smooth

mesoscale flow to nested LES (Muñoz-Esparza et al., 2014,

2015). In these idealized cases, boundary conditions at the

LES domain boundaries were imposed from the mesoscale

model instantaneous solution (Dirichlet boundary condi-

tions), in which moisture effects were not considered. Herein,

we further extend the application of the cell perturbation
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method to turbulence inflow generation for cloud model-

ing including terrain effects. As explained in earlier sec-

tions, zero-gradient open radiative lateral boundary condi-

tions need to be used in order to minimize wave reflec-

tions at the boundaries that do develop in fully compress-

ible codes like the ASAM LES model when the domain in-

cludes terrain features. In order to test the best configura-

tion for the cell perturbation method in this particular con-

text, we perform a series of calculations where only the up-

stream region of the Barbados island is considered (i.e., in-

coming marine boundary layer). The reduced subset of the

domain consists of a 51.2 km× 51.2 km area in the horizon-

tal, with the same vertical extent and large-scale forcing de-

scribed in Sect. 2.3 for the 22 June 2013 case study. To rep-

resent the marine boundary layer conditions that are going

to be imposed through the entire simulation period, constant

sensible and latent heat fluxes of QSHF,ocean = 6 Wm−2 and

QLHF,ocean = 56 W m−2 are used (see Fig. 4).

We explore the sensitivity of the generated turbulence by

the cell perturbation method to the optimum perturbation

Eckert number, Ec= U2
g /cpθ̃pm = 0.2, where θ̃pm is the max-

imum potential temperature perturbation, and the perturba-

tions are random and uniformly distributed in the interval[
−θ̃pm,+θ̃pm

]
. Three square cells adjacent to the east bound-

ary are used, which were found to provide the fastest tran-

sition to a fully developed turbulent state (Muñoz-Esparza

et al., 2015). The cell size is set to 4× 4 grid points to en-

sure that the cell wavelength falls within the inertial range of

three-dimensional turbulence. The perturbation timescale, tp,

was obtained from 0 = tpU1(4dx)−1
= 1 (Muñoz-Esparza

et al., 2015), with U1 being the horizontal wind speed in

the first vertical layer, resulting in a frequency to seed in-

stantaneous perturbations of tp = 145 s. Figure 5 shows in-

stantaneous contours of vertical velocity at z= zi/2= 375 m

for different perturbation Eckert numbers, Ec= 0.2, 0.33 and

0.4, and for the periodic reference run. The cell perturbation

method for the three Ec numbers considerably accelerates

the formation of three-dimensional turbulent structures that

agree with the ones obtained in the reference simulation us-

ing periodic lateral boundary conditions. As the perturbation

Eckert number increases (maximum perturbation amplitude

decreases), the strength of the vertical velocities induced by

the temperature perturbations is progressively reduced, and

the onset of forcing-consistent turbulence seems to qualita-

tively occur at earlier distances from the inflow boundary.

In order to have a better understanding of the turbu-

lence initiation and development processes, the energy spec-

trum evolution in the streamwise direction for the three ve-

locity components is presented in Fig. 6. The cell pertur-

bation method causes a rapid development of the upper-

wavenumber portion of the energy spectrum for the u and

v components. The larger scales (lower wavenumbers) re-

quire longer distances to be established due to large buoy-

ant plumes having to emerge from the surface and pop-

ulate across the entire extent of the boundary layer. This

flow development pattern is consistent with the findings from

Muñoz-Esparza et al. (2014) for convective conditions. In

contrast, the energy spectrum for the vertical velocity re-

veals a rapid growth of turbulent energy that reaches levels

10 times greater than the periodic quasi-equilibrium solution

(dashed black line) and that progressively dissipates as the

flow transitions through the domain. We attribute this behav-

ior to the cell size, 4dx, which for the resolution employed

in this study may fall in the vicinity of the limit of the in-

ertial range. Smaller cell sizes were not considered due to

the energy dissipation at high wavenumbers present in fi-

nite differences/volumes discretizations. There, an interac-

tion with fully resolved scales and triggering of an accel-

erated transition to a developed turbulence state would not

have taken place. In addition, the use of zero-gradient lat-

eral boundary conditions helps to maintain the signature of

the perturbations more than in the case of Dirichlet boundary

conditions, hence contributing to strengthen the periodically

seeded perturbations. By increasing the perturbation Eckert

number from 0.2 to 0.4 (first row vs. third row in Fig. 6), the

energy overestimation is damped, and results after a fetch

of 40 km for Ec= 0.4 are in close agreement with the peri-

odic simulation used as a reference and have reached quasi-

equilibrium converged statistics. The Ec= 0.2 case results in

an energy deficit at wavenumbers close to the integral length

scale, and also at the highest wavenumbers for the w compo-

nent. When the cell perturbation method is not used (NOCP

panels, bottom row in Fig. 6), dramatic energy deficits are

found, together with an unrealistic spiky energy distribution

in which the expected energy production and cascade pro-

cesses are not present.

Finally, we examine the vertical distribution of relevant

boundary layer quantities at a downstream distance of 40 km

from the east boundary (i.e., x = 11.2 km). Vertical profiles

(Fig. 7) show the best agreement with the periodic simula-

tion for the Ec= 0.4 and 0.33 cases, in particular for the

turbulent kinetic energy levels and boundary layer structure.

Momentum flux profiles exhibit slightly larger values in the

first 250 m, due to the differences in the horizontal wind

speed distribution near the surface. However, the boundary

layer structure is similar, with the differences being related

to distinct quasi-equilibrium solutions for the periodic and

the open boundary condition simulations. Similar conclu-

sions are found for the sensible and latent heat fluxes. The

cell perturbation method was originally developed and tested

in the context of dry boundary layers (Muñoz-Esparza et al.,

2014, 2015). It is worth emphasizing that we have herein

demonstrated for the first time, as can be seen from the la-

tent heat flux profile, that the cell perturbation method has

the ability to develop turbulent moisture features that are

in agreement with the imposed forcing. The Ec= 0.2 case

fails to produce a boundary layer structure that is similar to

the reference periodic case, with excessive mixing attributed

to an enhanced effect of the perturbations for the reasons

mentioned above. Also, the NOCP case does not provide
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Figure 5. Instantaneous contours of vertical velocity at z= zi/2= 375 m for different perturbation Eckert numbers, Ec= 0.2,0.33,0.4, and

the periodic case.

realistic turbulent boundary layer features corresponding to

a strongly underdeveloped turbulent state. Therefore, we se-

lect the Ec= 0.4 setup as the inflow to be used for the is-

land simulations presented in the remainder of the paper

since it produces the most rapid development and stabiliza-

tion of forcing-consistent turbulence. For the island cases, we

use a domain with horizontal extent of 102.4km×102.4 km,

which leaves sufficient fetch for the marine boundary layer to

develop prior to the start of interaction with the topography

of Barbados and its local stability effects.

3 Results

To investigate the effects of the Barbados island area on

boundary layer properties, cloud generation and vertical mix-

ing of aerosols, we define two subdomains that are consid-

ered to be representative of the upwind and downwind area,

respectively. Figure 8 shows the position of these two sub-

domains. They both cover a base area of 10 km× 20 km and

are used for averaging of vertical profiles and time series of

the relevant quantities. The upwind domain east of Barbados

(representing the marine boundary layer) is approximately

15 km away from the eastern boundary to avoid contamina-

tion from the inflow boundaries where turbulence has to be

generated first. Looking into the model data, it becomes ap-

parent that the flow has to pass at least half of the island area

(≈ 12 km) before a well-mixed convective layer can fully de-

velop. For that reason, the downwind subdomain is located

between 35 km< x < 45 km and thus covers the west coast

island area and the marine offshore area in equal parts. The

following analysis mainly consists of comparisons between

these two regimes to investigate island effects on various pa-

rameters.

3.1 Overview of simulations performed

Besides the two mentioned case studies, two additional sen-

sitivity studies are part of the island effect analysis. Here, the

22 June 2013 case serves as a reference case (REF). For the

first sensitivity case (NOCP), the cell perturbation method

is disabled so that the upwind flow is strongly underdevel-

oped. With this setup, the effect of having a realistic turbu-

lent boundary layer around the island rather than idealized

constant winds is investigated. In the next sensitivity case

(DX400), the grid resolution is halved from 200 to 400 m

horizontally and from 50 to 100 m vertically to point out the

deficiencies in the use of coarser resolution without appro-

priate resolved turbulence and gray zone modeling (Wyn-

gaard, 2004) for particular aspects of interest in boundary

layers and cloud modeling. In this simulation, the cell pertur-

bation method is also put off since the usage of a turbulent

inflow in coarse resolution studies has not been utilized be-

fore and, moreover, appears to be questionable because the

inertial subrange of the turbulence spectrum is not resolved

anymore. The simulation ensemble is completed by the 27
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Figure 6. Spatial evolution of time-averaged energy spectra of u (left), v (middle) andw component (right) in the y direction at z/zi = 0.5 for

three perturbation Eckert numbers and the NOCP case. Color lines indicate distance from the east lateral boundary in steps of 0.8 km, 51.2 :

−0.8 : 1.6 km, from blue to red. The dashed black line corresponds to the reference spectrum from the periodic computation, additionally

averaged in the streamwise direction.

June 2013 case, mainly characterized by its strong trade-

wind inversion (INV) and stronger background trade winds

compared to the REF case. Table 3 summarizes the settings

for all simulations that deviate from the standard configura-

tion in Tables 1 and 2.

3.2 Boundary layer and cloud characteristics

To get a qualitative impression of the local situation simu-

lated by the LES model, Fig. 9 shows a three-dimensional

snapshot of the temperature and humidity field as well as

cumulus clouds with up- and downdrafts visualized by iso-

surface fields at 12:00 LT for the reference case. The day-

time convection is clearly visible by multiple updraft cells

distributed over the whole island area, which subsequently

leads to the development of non-precipitating shallow cu-

mulus clouds. Advection of heated air from the central and

southern part of the island towards the west can be seen in

the surface temperature field (which is meant as temperature

of the lowest model layer in this context), whereas the cooler

marine flow narrows the thermal wake toward the meridional

center of the domain up to 40 km downwind. This effect

is connected with an island-induced change in wind speed

and direction. The change in the humidity profile can be ob-

served in the vertical cut plane at the western model bound-

ary. A large amount of moisture is transported vertically up-

wards in the central region where also occasional cumulus

clouds are present. A few tens of kilometers away in the

y direction, dryer air from heights of 500–1000 m is mixed

downward.

For further insight into flow dynamics, especially for the

downwind region, Fig. 10 provides the vertical wind field at

z≈ zi/2 for all four considered cases. Looking at the REF

and INV case, several turbulent updraft bands with lengths
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Figure 7. Vertical profiles of horizontal wind speed 〈U〉 (top left panel), potential temperature 〈θ〉 (top middle), turbulent kinetic energy

〈TKE〉 (top right), momentum flux 〈τm〉 (bottom left), sensible heat flux ρ0cpd〈w
′θ ′〉 (bottom middle) and latent heat flux ρ0L0〈w

′q ′v〉

(bottom right) at a downstream distance of 40km from the east boundary for different Ec numbers and the NOCP case (averaged along the

y direction and in time). The solid black line corresponds to the reference profile from the periodic computation, additionally averaged in the

streamwise direction. The profiles are valid for the 22 June 2013 case.

Table 2. Parameter values of the cases to be examined: 22 June and 27 June 2013.

Parameter Unit 22 June 27 June

2013 2013

Maximum geostrophic wind |ug| ms−1 10.0 11.5

Top altitude of trade-wind inversion zinv, t m 2200 2000

Bottom altitude of trade-wind inversion zinv, b m 1600 1800

Inversion strength dθv/dz Kkm−1 5.67 13.89

Surface pressure p0 hPa 1014.2 1013.9

Integrated water vapor content up to z= 2 km kgmkg−1 22.14 26.16

CCN concentration at 1 % supersaturation NCCN,1 % cm−3 300 300

Top altitude of Saharan dust layer m 2800 2900

Bottom altitude of Saharan dust layer m 1800 1700

of about 10 km in the zonal direction and vertical veloci-

ties up to 2.5 ms−1 develop all over the island area. How-

ever, one main band at y ≈ 52 km remains persistent, even at

higher altitudes. This updraft band is a result of the dynamic

and thermal instability over the island, forming quasi two-

dimensional horizontal vortex rolls with their axes aligned in

the downwind direction (e.g. Etling and Brown, 1993). To-

ward the evening, as the surface sensible heat flux is not pos-

itive anymore and convection fades away, the band decouples

from the island and vanishes (not shown). Turbulent updraft

cells within the marine boundary layer with vertical veloci-

ties between 0.5 and 1 ms−1 are also visible since a turbu-

lent inflow is generated with the cell perturbation method de-

scribed in Sect. 2.5. In the INV case, these updrafts are a bit

weaker, which is most likely due to the stronger mean hori-

zontal wind speed. Wave-like structures in the upwind verti-

cal velocity field are observed in the NOCP case. There, the

flow remains laminar in this region, and since no perturbation

is applied but surface fluxes are present, these artificial con-

vergence lines are forming. Note that this effect is not seen in

the REF and INV case. This underscores the importance of

having an explicit inflow turbulence generation when work-

ing on LES scales. Just by visibly comparing the “coarse”

simulation DX400 with the other cases, it becomes appar-

ent that there is a lot of structure loss in the vertical wind

field. All up- and downdraft bands – even the main updraft

band downwind – are almost perfectly aligned in the x direc-

tion. This shows the importance of using a grid spacing that

resolves the inertial subrange of the velocity spectrum (cf.

Bryan et al., 2003). Note that with coarser grid spacings the

orographical structures of the island are also less represented.

Atmos. Chem. Phys., 16, 651–674, 2016 www.atmos-chem-phys.net/16/651/2016/



M. Jähn et al.: LES studies of boundary layer, clouds and aerosol mixing at Barbados 661

Island boundary layer 
subdomain 

Marine boundary layer 
subdomain 

0     10    20    30        40     50    60     70    80    90   100 

Distance (km) 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

D
ist

a
n

c
e

 (
km

) 
Downwind domain 
(island BL) 

Upwind domain 
(marine BL) 

Figure 8. Definitions of subdomains for spatial averaging to cover

different boundary layer characteristics: upwind marine regime east

of Barbados (right) and downwind island regime over the west coast

area (left).

Figure 9. Perspective view of surface temperature and specific hu-

midity field at the western boundary for the REF case. Clouds are

visualized by 0.1 gkg−1 isosurface in white coloring. Red color-

ing depicts an isosurface of 2 ms−1 updrafts. Snapshot taken at

12:00 LT. A model area of 80 km× 60 km× 5 km is shown.

Figure 11 shows the surface wind fields and liquid water

path for all simulated cases at 14:00 LT. In all these cases,

the island convection affects both the strength (up to 4 ms−1

stronger wind speeds compared to marine surface winds) and

direction (±30◦) of the wind in the downwind area of Bar-

bados, thus leading to strong surface convergence and sub-

sequently forming the updraft band as seen in Fig. 10 at

y = 52 km. Despite having this elongated band, very little

cloud formation is observed in this area for the REF, NOCP

and INV cases, which is also the case for other times of the

day (not shown). This means that no continuous cloud street

is modeled on 22 and 27 June 2013, respectively. While cloud

streets occur on around 60 % of undisturbed days, there are

several effects that suppress cloud street generation (Kirsh-

Table 3. Parameter choices for the sensitivity simulations per-

formed.

Simulation Date 1x, 1y 1z Turbulent

name inflow

(m) (m)

REF 22 Jun 2013 200 50 yes

NOCP 22 Jun 2013 200 50 no

DX400 22 Jun 2013 400 100 no

INV 27 Jun 2013 200 50 yes

baum and Fairman, 2015). In the REF (and NOCP) case, the

relatively low moisture load (RH= 80 % near the surface,

decreasing below 60 % at z≈ 1300 m) and a weak trade-

wind inversion leads to a suppression of the development of

a cloud trail. Both moisture and stratification are increased

in the INV case but the stronger mean trade winds (almost

12 ms−1) are the suppressing factor here (Kirshbaum and

Fairman, 2015). Due to the absence of a turbulent inflow ve-

locity field, the cumulus clouds over the island are horizon-

tally aligned to the mean wind direction in the NOCP case.

In the REF and INV cases, more realistic scattered cumulus

cloud fields over the island area and downwind are modeled.

Besides the distinct cloud bands, the DX400 case shows fur-

ther very notable differences in the cloud field. First of all,

clouds are broader because of the coarser grid spacing. In

addition to that, a continuous cloud street is modeled, which

can be considered an artifact since such a cloud band is not

seen in either other simulations or satellite observations. Fur-

thermore, the downwind horizontal velocity field is slightly

stronger compared to the other cases. We attribute this be-

havior to the lack of resolved small scales that cannot extract

energy from the large eddies and therefore grow and become

more coherent. This effect is also observed to a lesser extent

for the NOCP case.

In the following, the diurnal development of the convec-

tive island boundary layer is investigated. Figure 12 shows

time series of boundary layer and cloud properties for the

downwind region around the west coast of Barbados. Further

mean quantities of boundary layer and cloud characteristics

are diagnosed and summarized in Table 4. The REF and the

INV case have some properties in common. They both show

a strong increase in cloud cover in the downwind region be-

tween 07:00 and 08:00 LT up to a maximum value of about

16 %. The boundary layer height zi displays a diurnal varia-

tion, growing up to z= 1350 m around 13:00 LT in the REF

case. For the INV simulation, zi is approximately 100–150 m

shallower. This parameter is calculated via the bulk Richard-

son criterion, where the boundary layer height is defined as

the height where the bulk Richardson number Rib exceeds

a value of 0.25, with

Rib =
g

θv0

θv− θv0

u2+ v2
z , (12)
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Figure 10. Vertical wind at z= 375 m a.s.l. at 14:00 LT for the four simulation cases (see Table 3).

Figure 11. Horizontal cut planes (xy) of surface wind vectors and contours of liquid water path for all four simulation cases (see Table 3).
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Figure 12. Time series of boundary layer height, maximum vertical

velocity, cloud cover, cloud base height and liquid water path for

the downwind domain. Spatial averaging as indicated in Fig. 8.

where θv0 is the virtual potential temperature at the sur-

face. Being relatively similar in boundary layer character-

istics and cloud cover, there is a clear distinction between

REF and INV with regard to cloud microphysical proper-

ties. Due to higher cloud base height in the REF case, the

cumulus clouds tend to grow deeper, which is seen in the

mean liquid water path (LWP) values as well as in the cloud

base and top heights (see Table 4). The cloud cover, how-

ever, is fairly comparable for these two cases. Peak updraft

values also show a diurnal variation, starting from approx-

imately wmax = 1 ms−1 (which is equivalent to the upwind

area value) up to wmax = 7 ms−1 around noon. The DX400

case has overall weaker peak updrafts; however, this does not

mean that there is less vertical transport of energy, moisture,

momentum etc. Due to the coarser grid spacing in every spa-

tial direction there is a higher net upward transport.

To further investigate daytime-dependent vertical mixing

and layering, Fig. 13 shows hourly averaged vertical pro-

files boundary layer and cloud parameters for the downwind

domain compared to the daily upwind average. Comparing

again the REF and INV cases, daytime-dependent differ-

ences in the density potential temperature and specific hu-

midity profiles can be noticed (not shown). Lower levels at

z < 700 m are warmer and dryer compared to the marine

background. The vertical turbulent transport is evidenced by

the profiles of sensible and latent heat fluxes. The sensible

heat flux is linearly decreasing within the mixing layer up

to heights between 700 m< z < 900 m, depending on the

time of day. The maximum latent heat fluxes occur between

600 m< z < 800 m. Above that layer, the cloud water con-

tent reaches its maximum, which is connected to latent heat

release and thus to an increase in the sensible heat flux and

a decrease in the latent heat flux. In the INV case, the trade

inversion around z≈ 2000 m inhibits further cloud develop-

ment above this height, whereas in the REF simulation there

is also a notable amount of cloud water above 2000 m. The

presence of wind shear above 1500 m height leads to a sec-

ondary maximum of TKE around z= 2000 m, which is not

the case in the shearless INV simulation.

In the NOCP case, i.e., without a turbulent inflow, persis-

tent updraft bands form over the island area, which is consis-

tent with the modeled cloud field from Fig. 11. The inflow

characteristics have little effect on boundary layer proper-

ties like TKE, vertical velocity variance (not shown), sen-

sible and latent heat flux (cf. Fig. 13). However, the values

for the NOCP case tend to be a bit higher than in REF, es-

pecially between 500 and 700 m. One reason for this could

be that the upwind marine boundary layer already vertically

transported some amount of energy, which is missing in the

NOCP case. More remarkable differences are noticeable with

regard to cloud development. The LWC around z≈ 1000 m

during noon is nearly doubled for the NOCP case. There is

also a particularly pronounced secondary maximum of LWC

around z≈ 2100 m in the same order of magnitude. With the

average over the whole daytime period taken, the mean LWP

is more than doubled in the NOCP case compared to the REF

case, which is in agreement with higher LWC values and also

higher cloud cover (≈+3 %).

More undesired effects become apparent when using

a coarser spatial resolution as in the DX400 case, which is

most noticeable in the averaged vertical profiles. First of all,

there is less variability in the potential temperature and spe-

cific humidity fields for altitudes z > 1000 m, which can be

explained by the lack of turbulent vertical transport within

the boundary layer (this effect can be seen in the vertical

profile of TKE in Fig. 13 and in the profile of the vertical

velocity variance). The LWC, however, has maximum val-
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Table 4. Diagnostics the four sensitivity simulations (see Table 3), including cloud cover, cloud base height zcb, cloud top height zct, boundary

layer height zi , water vapor path (WVP), liquid water path (LWP), and maximum updraft values wmax. All quantities are spatially averaged

for the downwind area and temporally averaged between 06:00 and 18:00 LT.

Case Cloud cover zcb zct zi WVP LWP wmax

(%) (m) (m) (m) (kgmkg−1) (gm−2) (ms−1)

REF 7.8 967 1167 1240 27.6 8.5 5.0

NOCP 11.0 1066 1269 1222 27.7 18.8 5.2

DX400 9.7 1029 1237 1262 29.3 19.0 3.7

INV 8.6 846 1024 1174 33.2 5.9 4.5

ues of 0.028 gm−3 around z≈ 2000 m, which is a factor of

2 higher compared to the REF case. This is accompanied by

strong latent heat fluxes in these layers. Cloud growth is also

more inhibited at finer resolutions due to explicit entrainment

of dryer environmental air (e.g. Bryan et al., 2003). Having

a distinct and quite symmetric diurnal variation in bound-

ary layer and cloud properties in the other cases, the evening

transition in the DX400 case is poorly represented, where

still a notable number of clouds exist and a deeper boundary

layer is modeled around 20:00 LT.

3.3 Vertical mixing of aerosols

After the long-range transport of Saharan dust into the

Caribbean region, these dust layers arrive at Barbados with

mean base heights of about 1.5–2 kma.s.l. Due to a possible

interaction with the convective island boundary layer, ver-

tical mixing of aerosols is investigated in this subsection.

As already shown in Sect. 2, these aerosol layers are rep-

resented by passive tracers in the model. They are initialized

with a relative concentration of 1 within the layer where the

aerosol is detected and 0 otherwise. This approach has al-

ready been used for heat island effect studies in Engelmann

et al. (2011). These relative concentrations can be related to

mass concentrations of Saharan dust, e.g., 180 µgm−3. This

mass concentration and the Saharan dust layer heights are

estimated from ground-based multi-wavelength aerosol lidar

measurements and provide a rough idea of the magnitude of

these quantities. Especially the particle depolarization ratio

indicates that the pure dust layer begins at around 1.5 km

altitude. A detailed analysis of dust layers during the cam-

paign can be found in Groß et al. (2015). Figure 14 dis-

plays height–distance profiles of the boundary layer tracer

φBLT and the Saharan dust tracer φSDT near the west coast of

Barbados. In both cases, the turbulent character over the is-

land section is visible as a vertical distribution of the passive

tracer within the higher boundary layer and the correspond-

ing decrease in tracer concentration. It is more pronounced

for the southern part of the island, which is due to the broader

land area width (20 km in the south compared to 10 km in the

north). It also indicates the wind shear at the island bound-

aries (e.g., at y = 43 km), which causes the advection of air

masses from z > 700 m into the boundary layer. This effect is

more pronounced further west (not shown). In the REF case,

the mean boundary layer height around noon was calculated

to be zi ≈ 1400 m. The passive tracer analysis additionally

shows some local overshoots at heights over 2 km a.s.l. The

Saharan dust tracers do have a different vertical structure.

For the REF simulation, the tracer is thinned out, with maxi-

mum concentrations between 1.9 km< z < 2.4 km, whereas

in the INV case it is between 1.7 km< z < 2.5 km. There are

also no overshoots visible beyond z= 1.7 km. The stronger

turbulent mixing in the REF case can be explained by the

presence of wind shear around z≈ 1.5 km height, whereas

in the INV case the strong trade-wind inversion suppresses

further development of turbulence in higher altitudes. The

logarithmic scale indicates the tracer diffusion, which shows

that about 1 % of the maximum concentration is present at al-

titudes between 1.3 and 1.5 km (depending on the case) and

locally down to 1.0 km altitude due to the island effect.

Although there are already some indications of downward

aerosol transport, a better quantification of these effects is

still needed to achieve a better understanding of the pro-

cesses behind it. For that reason, mean vertical profiles are

calculated in the same manner as the boundary layer and

cloud analysis. Figure 15 shows vertical profiles of tracer-

related quantities for the REF and the INV case. The tracer

profile is being deformed by vertical transport processes,

which can be originated by larger-scale or turbulent pro-

cesses. To distinguish between those two, the total vertical

tracer flux 〈wφSDT〉 and the turbulent vertical tracer flux

〈w′φ′SDT〉 are computed. According to the model data, there

is already a persistent downward movement east of Barbados

between 1.5 km< z < 3.0 km, which corresponds to a sub-

sidence velocity of w =−407 mday−1 for the REF case and

w =−345 mday−1 for the INV case. There is a total rela-

tive downward flux for the downwind area in the REF case

at 1.2 km height, with a maximum magnitude of 〈wφSDT〉 =

−0.03 ms−1. The height of this local extremum depends on

the time of day, with higher altitudes in the morning and

around noon and lower altitudes toward the evening. A net

positive upward flux is always present above z= 2 km, be-

coming zero at z= 3 km. About one-third to one-half of the

total downward flux is caused by turbulent mixing, having its

local maxima at z= 1.8 km, which is the lower bound of the
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Figure 13. Vertical profiles of liquid water content 〈LWC〉, resolved turbulent kinetic energy 〈TKE〉, sensible and latent heat flux ρ0cpd〈w
′T ′〉

and ρ0L0〈w
′q ′v〉 for all four considered cases (REF, NOCP, DX400 and INV from top to bottom). Spatial averaging as indicated in Fig. 8.

Black dashed lines represent the marine upwind area and are temporally averaged between 08:00 and 20:00 LT. Colored solid lines represent

for hourly averages during different times of the day for the downwind area.

Saharan dust layer. The daytime turbulent downward mixing

is about 5 times stronger in the INV case but is shifted ap-

proximately 400 m toward the surface compared to REF. Due

to the tracer subsidence, the layer also reaches these altitudes

of maximum turbulent downward mixing, which would not

be the case if the dust layer remained at its initial height of

1.7 km. The downwind total tracer flux, however, is positive

(upwards) for all altitudes and is almost 1 order of magnitude

stronger compared to REF. Since the mean wind speed only

slightly differs between the two cases and surface fluxes are

the same, it can be concluded that atmospheric stability (es-

pecially inversion strength) and the presence of wind shear

in the sub-inversion layer have a major impact on altitude

and strength of layers with preferably upward or downward

mixing properties. The model data suggest that the net effect,

i.e., effects from both mean transport and turbulent mixing, is

downward transport around the dust layer base for the down-

wind region in REF and a net upward transport in INV.

www.atmos-chem-phys.net/16/651/2016/ Atmos. Chem. Phys., 16, 651–674, 2016



666 M. Jähn et al.: LES studies of boundary layer, clouds and aerosol mixing at Barbados

Figure 14. Meridional cut planes (y–z profiles, 3 km off the west

coast of Barbados) of the relative passive tracer concentrations and

relative humidity for the REF (top panel) and the INV case (bottom

panel). Red/orange contour coloring represents the Saharan dust

tracer concentration φSDT and blue contour coloring represents the

boundary layer tracer concentration φBLT on a logarithmic scale.

White circles denote the location of the northern and southern is-

land edges. The snapshots are taken at 12:00 LT.

4 Comparison with lidar data

4.1 Doppler wind lidar: velocity fields

In order to qualitatively evaluate the results obtained by the

LES model, a comparison with the measurements performed

by an airborne Doppler wind lidar (DWL) is presented in this

section. Vertical and horizontal wind speed measurements

from a flight on 20 June 2013 are compared to the simu-

lation results of the 27 June 2013 case. A simulation with

initial data at 20 June 2013 could not have been performed

because no nighttime radiosonde data were available on this

particular day. Although the measurements and the simula-

tion correspond to different days, the comparison of the ra-

diosonde profiles used for the LES initialization launched on

27 June and the dropsonde measurements obtained during

the measurement flight on 20 June show a good agreement

in the altitude of the trade inversion, relative humidity levels

and temperature profile (Fig. 16). Especially the measured

horizontal wind speed profile from the dropsondes matches

better to the 27 June than the 22 June simulation case.

The airborne DWL used for this comparison was deployed

onboard the DLR Falcon 20 research aircraft during the

SALTRACE campaign. The system, based on an instrument

developed by Lockheed Martin Coherent Technologies and

enhanced by DLR to provide airborne measurement capabil-

ities, can be operated in either nadir-pointing mode or scan-

ning mode (Reitebuch, 2012; Chouza et al., 2015). The nadir-

pointing mode allows the retrieval of vertical wind speeds

with a vertical resolution of 100 m and a horizontal reso-

lution of approximately 200 m with a random error lower

than 0.15 ms−1 and a systematic error lower than 0.05 ms−1.

Note that these resolutions are almost identical to the grid

spacings used in the LES. The overflight took place between

10:36 and 10:44 LT at a flight altitude of 2900 m.

Figure 17 shows the flight track corresponding to the over-

flight (plane 2 in the figure) together with the LES results of

the vertical wind speed for the 27 June case at 10:30 LT. For

this overflight, vertical wind measurements on the lee side

and over the island are available.

A comparison between the measured and the simulated

vertical wind speed profiles is displayed in Fig. 18, where

some main structures can be recognized in both profiles.

Strong vertical winds associated with convective activity

over Barbados can be observed in both the simulation and the

measurements. In the case of the measurements, the presence

of convective clouds limits the lidar coverage over the island

(between 47 and 63 km on the x axis). For the measurements

performed on the lee side of Barbados and for altitudes above

1 km a series of waves with a wavelength of approximately

10 km and an amplitude of 2 ms−1 can be recognized. A sim-

ilar feature can be seen in the LES data, but with a slightly

weaker amplitude.

To get a better idea of the horizontal distribution of these

waves at a certain level, Fig. 19 shows the vertical wind

speed at the trade-wind inversion height for different times

during the day. It seems that the strength of daytime con-

vective activity plays a minor role since the overall pattern

looks very similar in all three snapshots, with the excep-

tion of minimally stronger fluctuations toward the afternoon

hours. A marked wave structure in the lee of the island is vis-

ible, which is the result of trapped gravity waves due to the

strong inversion. Again, a similar wavelength amplitude of

about 10 km can be seen and stronger amplitudes (compara-

ble to the DWL measurements) originating from the northern

part of Barbados are also visible.

Figure 20 shows a comparison between the mean and the

variance of the measured and simulated vertical wind speed

on the lee side (between 0 and 35 km on the x axis) of Bar-

bados. The mean vertical wind profiles of the measurements

(black line) show a reasonable agreement with the LES re-

sults regarding the overall structure (e.g., cut planes 1, 2

and 5, which are located at the southern and northern edge

of Barbados, covering a similar spatial area as in the flight

route). The mean vertical velocity below 1 km height indi-

cates a downdraft region on the lee side of Barbados. This

can be explained by the daytime circulation pattern in the lee

of Barbados since the updraft band located between the cen-

ter and southern part of the island causes downdrafts at its

lateral flanks. Planes 3 and 4 reflect this behavior with pos-

itive vertical velocities below 1 km height. The variance of

the vertical wind field shows an overall increase with alti-

tude both for measurement and model results. However, the

strength of these fluctuations is increased in the measurement
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data, which could result from differences in the forcing, e.g.,

stronger surface fluxes than the prescribed ones in the LES

model.

4.2 Multi-wavelength Raman lidar: convective

boundary layer structure

A stationary lidar system deployed at the CIMH during

the SALTRACE campaign was the polarizing Raman lidar

BERTHA (Backscatter, Extinction, lidar Ratio, Temperature,

Humidity profiling Apparatus; Tesche et al., 2011). Contin-

uous measurements were performed on 22 June 2013 from

09:49 to 17:23 LT and after sunset (around 18:30 LT) from

19:32 to 22:30 LT.

The range-corrected signal for the 532 nm cross polarized

channel is shown in the top panel of Fig. 21. The vertical res-

olution is 7.5 m and the time resolution varies from 3 to 15 s.

The mean wind speed (< 3 km altitude) was approximately

10 ms−1, which results in a horizontal resolution of 30 to

150 m. A first strong dust layer in a very dry environment

(20–30 % RH) was detected between 1.8 and 2.8 km, topped
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Figure 17. Locations of the five considered vertical planes for the

comparison between the LES results and the DWL measurements

within a domain of 60 km (y) and 80 km (x) up to an altitude of

2.5 km (z). The vertical wind (in m s−1) along the planes is indi-

cated in red (updrafts) and blue (downdrafts). Plane 2 is similar to

the Falcon flight track. Planes 1 and 5 have no intersection with the

island area, which is visualized by surface cut cells of the computa-

tional grid. Ocean area is in blue.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60

z 
(k

m
)

x (km)

-1

-0.5

 0

 0.5

 1

w
 (

m
 s

-1
)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60

z 
(k

m
)

x (km)

-1

-0.5

 0

 0.5

 1

w
 (

m
 s

-1
)

Figure 18. LES model output of zonal height–distance profiles of

vertical wind speed component (upper panel) at 10:30 LT. DWL

vertical wind speed component (lower panel) between 10:36 and

10:44 LT. Location indicated in Fig. 17. Island area is between

47 km< x < 63 km.

by a second, weaker dust layer between 2.8 and 3.7 km which

was more humid (40–50 % RH). Temperature inversions set

the limits of the total dust layer or Saharan Air Layer. The

lidar signal shows clouds all over the day around 1 km height

and close to 1800 m. On average, 20 clouds per hour cross

the lidar beam with an increasing number in the afternoon,

leading to a cloud cover (in this context defined on a tempo-

ral scale) of roughly 50 %. At nighttime only a single cloud

was detected within 3 h of measurement, which confirms the

convective character of the daytime clouds at the investigated

day over the west coast of Barbados. The bottom panel in Fig.

21 shows the LES model output of the corresponding height–

time profile of relative humidity for this day and the same lo-

cation. The diurnal variation in convective vertical moisture

transport is clearly pronounced. Clouds (white/red coloring)

develop at the same altitudes as in the BERTHA lidar mea-

surements. Even higher and deeper clouds up to the top of

the trade inversion at z= 2 km are resolved. Higher cloud ac-

tivity can be noticed in the measurements, whereas the LES

model results show fewer clouds toward the late afternoon.

This effect can be attributed to the relatively low ocean la-

tent heat flux from the marine boundary layer forcing, which

tends to dry out the lower troposphere over a longer period

of time (i.e., toward the afternoon and evening hours). Addi-

tionally, there is a notable increase in moisture during the af-

ternoon (see the 16:01 LT radiosonde launch compared to the

other ones) within the first 800 m of the lower troposphere.

Because of the fact that no additional large-scale forcing (in

this case, advection of moist air) is applied during the simu-

lation time, this effect expectedly cannot be captured by the

LES.

Further comparisons regarding the cloud base height are

conducted, revealing an even better agreement between the

BERTHA lidar measurements and the model results. Fig-

ure 22 shows the temporal evolution of the cloud base height

derived from the REF case LES output and the cloud base

height derived from BERTHA lidar measurements during

22 June 2013. The cloud base was detected from the lidar sig-

nal with an accuracy of ±50 m. The algorithm sets the cloud

base if the 52.5 m vertically smoothed 532 nm total signal

increases by a factor of 2 within 50 m. To get an overview

of the day, the temporal resolution was set to 30 s. This pro-

cedure reproduces the temporal cloud evolution in Fig. 22.

The spread gives an idea about the cloud thickness due to the

fact that if a cloud overpasses the lidar beam, it is very likely

that cloud water near the cloud top is detected at the begin-

ning and/or at the end of the overpass. However, in some

cases, it indicates some single clouds that start at an altitude

of 1600 m. At noon, the cloud base gets higher and the clouds

are generally thinner, which can be seen the in range of varia-

tion in the lidar data, which is very low at this period of time.

Overall, there is less variability in the LES data due to the

spatial averaging over the downwind region.

5 Conclusions

We have presented a numerical study for investigating island-

induced effects on boundary layer structure, cloud genera-

tion and vertical mixing of aerosol layers at the easternmost

Caribbean island of Barbados. The simulations were per-

formed with the model ASAM on large eddy scale, where

the horizontal resolution of 1x =1y = 200 m is adequate

to still resolve the lower wavenumber end of the inertial sub-

range of the turbulence spectrum.
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Figure 19. LES model output of vertical wind fields around the trade-wind inversion height at z= 1975m at 10:00, 14:00 and 18:00 LT on

27 June 2013. The gray dashed line indicates the Falcon flight track (similar to cut plane 2 in Fig. 17).
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Figure 20. Comparison between the mean (left panel) and the

variance (right panel) of the measured (black line) and simulated

(colored lines) vertical wind fields at the lee side of Barbados at

10:30 LT. The wind profiles are horizontally averaged in the x di-

rection along the five different cut planes indicated in Fig. 17.

In order to generate inflow turbulence consistent with the

upstream marine boundary layer forcing, the cell perturba-

tion method based on finite amplitude perturbations was

used. This method has been successfully adapted to moist

boundary layer simulations with open lateral boundary con-

ditions. Spectral analysis and examinations of vertical pro-

files of boundary layer quantities were used to determine the

optimal Eckert number for the simulations. It was found that

a value of Ec= 0.4 is most suitable for the island simula-

tions, guaranteeing rapid development of turbulence that is

very close to results from periodic BC simulations. This per-

turbation Eckert number differs from the optimum Ec= 0.2

derived for neutral stability (Muñoz-Esparza et al., 2015).

These weaker-amplitude temperature perturbations appear to

be due to a combination of the use of open boundary condi-

tions and near production range grid resolution.

After the model was set up, several simulations were per-

formed to analyze island effects. The atmospheric state is

described by a horizontally homogeneous profile obtained

via nighttime radiosonde launches. On the one hand, the

used profile cannot be seen as a representative state, which

could have been achieved by averaging multiple profiles.

On the other hand, these quasi-idealized simulations en-

abled the possibility to compare the LES output data with

DWL measurements. Large-scale forcings are not applied

during the simulation time, i.e., a time-invariant background

state is used, which makes it easier to analyze daytime

changes in boundary layer and cloud characteristics as a re-

sult of convective island activity. The radiosonde profile from

22 June 2013 served as a reference case for a crucial sensi-

tivity study, which revealed the following:

– Disadvantages of neglecting a turbulent inflow and

modeling within the “terra incognita” or “gray zone”

become apparent (Wyngaard, 2004). If the turbulent in-

flow generation is turned off, i.e., no marine boundary

layer develops, cloud properties are drastically changed

over and in the lee of the island. There, cloud cover,

liquid water path and cloud base height have signif-

icantly higher values compared to the reference case.

Also, the cloud morphology is different, having hori-

zontally aligned cloud bands instead of scattered cumu-

lus clouds.

– Using a generally coarser horizontal grid spacing of

1x =1y = 400m shows the same issues regarding

cloud properties. Additionally, boundary layer turbu-

lence is not well resolved but vertical energy transport

is enhanced overall, which leads to the formation of

a cloud street along the updraft band past Barbados.

This has not been seen in the other cases and can thus

be considered an artificial effect.

– For the two considered cases (22 and 27 June 2013),

analysis of the daytime convective boundary layer

shows generally similar vertical profiles for both, al-

though slight differences were detected due to wind

shear effects in particular. Also, for the case with the

strong trade inversion, the boundary layer grew approxi-

mately 150 m deeper. Significant differences were again

visible in cloud properties. In the latter case, the trade

inversion inhibited cloud growth beyond 1800 m alti-

tude, whereas local overshoots through the weaker in-

version occurred in the 22 June case.

Vertical mixing of aerosols, in our case Saharan dust lay-

ers, has been qualitatively and quantitatively analyzed by in-
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Figure 21. Top panel: BERTHA lidar measurements at CIMH and three radiosonde profiles of 22 June 2013. The range-corrected signal of

the 532 nm cross-polarized channel is shown. The aerosol layer (in yellow) reaches up to 3.7 km. The signal peaks (in red) are liquid clouds

through which the lidar beam cannot penetrate, resulting in the lack of signal above the cloud. At 14:04 LT the temporal resolution was

changed from 15 s to 3 s. Bottom panel: LES model results of relative humidity at the CIMH grid point for the REF case, corresponding to

22 June 2013.
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Figure 22. Temporal evolution of the spatially averaged cloud base

height from the LES REF case (black line) and cloud base height

derived from BERTHA lidar measurements (green circles) during

22 June 2013 at the west coast near the CIMH.

cluding passive tracers in the LES model. They are initialized

at the same heights as they are seen in lidar data during the

considered days. The model data suggested that a continuous

subsidence velocity within these layers was present, which

led to a mean sinking of 400 m toward the surface. Layers

of turbulent downward mixing have also been detected be-

tween 1200 and 1700 m altitude. It can be concluded that if

the dust layer reaches this height range, turbulent downward

mixing of aerosol takes place, which is separated from large-

scale subsidence effects. The exact position of these layers

and the strength of downward turbulent mixing and trans-

port are mainly controlled by atmospheric stability and wind

shear. It became apparent that for the INV case the net direc-

tion of vertical transport is upwards for heights around the

Saharan dust layer base. A larger number of simulation cases

would provide further insight into this effect and the influ-

ence of trade inversion strength.

Qualitative comparisons with DWL measurements were

carried out to validate the LES model results. A lot of simi-

larities were found despite comparing different days, which,

however, were very similar in terms of atmospheric stability,

mean wind and temperature profile. First of all, large-scale

changes in dynamics occur, which expectedly cannot be di-

rectly captured by the model. Furthermore, the vertical wind

field shows a similar structure for both measurements and

LES, highlighting the convective activity over the island and

trapped gravity waves around the strong trade inversion. The

amplitude of these waves was a bit higher in the measure-

ments, which is also seen in the vertical wind variance pro-

file. Taking these comparison results into account and con-
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necting them to the boundary layer and tracer analysis, it is

possible that turbulent (downward) mixing of aerosol layers

could be even more enhanced than the LES model results

suggest.

From the stationary Raman lidar BERTHA, which was de-

ployed near the west coast of Barbados, cloud base heights

and thickness were estimated and compared with the LES

data. With these two techniques combined, a consistent pic-

ture of the diurnal convective activity and cloud generation

over the island was gained for the most part.

Possible future model development could focus on the di-

rect and indirect aerosol effect as well as shadowing effects.

This would lead to a better understanding of the effects of

dust particles in connection with low-level clouds on their

radiative feedback, e.g., as shown in Ge et al. (2014).

Furthermore, finer horizontal grid spacings than 200 m

would be desirable to either confirm the robustness of the

obtained results or reveal additional effects of finer resolved

turbulent structures. This would lead to a better simulation

of stably stratified areas, e.g., at the trade inversion. Also, it

can be expected that, with a higher effective model grid res-

olution, the computed velocity variances would be closer to

the measurement results of the Doppler lidar system. How-

ever, this requires a great deal of computational effort, espe-

cially when performing sensitivity tests with a larger number

of simulations.

As a general conclusion of this work, the simulations per-

formed provided a detailed image of downwind boundary

layer structure, cloud and vertical mixing processes, which

agree well with lidar measurements. The model data can also

help to better interpret the ground-based observations gained

during the SALTRACE campaign at the Barbados west coast

(CIMH field site).
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Appendix A: Numerical setup and model physics

ASAM numerically solves the fully compressible flux-form

Euler equations:

∂ρ

∂t
+∇ · (ρv)= 0 , (A1)

∂(ρv)

∂t
+∇ · (ρvv)=

−∇ · τ −∇p− ρg− 2�× (ρv) , (A2)

∂(ρφ)

∂t
+∇ · (ρvφ)=−∇ · qφ + Sφ . (A3)

Here, ρ is the total air density, v = (u,v,w)T is the three-

dimensional velocity vector, p is the air pressure, g is the

gravitational acceleration, � is the angular velocity vector of

the Earth, φ is a scalar quantity (representing energy and mi-

crophysical variables) and Sφ is the sum of its corresponding

source terms. The subgrid scale (SGS) terms are τ for mo-

mentum and qφ for a given scalar. The energy equation in

the form of Eq. (A3) is represented by the density potential

temperature θρ (Emanuel, 1994):

θρ = θ

(
1+ qv

[
Rv

Rd

− 1

]
− qc

)
. (A4)

Hence, the air pressure can be diagnosed via the equation

of state

p = ρRdθρ

(
p

p0

)κm

, (A5)

where θ = T (p0/p)
κm is the potential temperature, qv =

ρv/ρ is the mass ratio of water vapor in the air (specific hu-

midity), qc = ρc/ρ is the mass ratio of cloud water in the air,

p0 is a reference pressure and κm = (qdRd+qvRv)/(qdcpd+

qvcpv+ [qc+ qr]cpl) is the Poisson constant for the air mix-

ture (dry air, water vapor, cloud water, rain water) with

qd = ρd/ρ. Rd and Rv are the gas constants for dry air

and water vapor, respectively. The Coriolis parameter f =

2ω sinϕ = 3.3× 10−5 s−1 is calculated from a latitude value

of ϕ = 13.18◦, with ω being the angular velocity of the Earth.

To parameterize the SGS stress terms in Eqs. (A2) and

(A3), a standard Smagorinsky model is used to represent

the influence of the eddies smaller than the grid size into

the resolved flow structures. The SGS stress terms are τij =

uiuj −uiuj for momentum and qij = uiqj −uiqj for poten-

tial temperature. The effect of subgrid-scale motion on the

resolved large scales τij is represented by

τij =−2νtSij , (A6)

where Sij =
1
2

(
∂ui
∂xj
+
∂uj
∂xi

)
is the strain rate tensor and νt the

turbulent eddy viscosity. By taking stratification effects into

account, the eddy viscosity is determined by

νt = (Cs1)
2max

[
0,

(
|S|2

(
1−

Ri

Pr

))]1/2

, (A7)

where Ri is the Richardson number and Pr is the turbu-

lent Prandtl number (Lilly, 1962; Smagorinsky, 1963). The

Richardson number is defined as

Ri=

g
θρ

∂θρ
∂z

|S|2
, (A8)

where 1 is a length scale based on the grid spacing and

Cs = 0.2 is the Smagorinsky coefficient as estimated by Lilly

(1967), and using the Einstein summation notation for stan-

dardization:

|S| =

√
2SijSij . (A9)

By using the cut cell approach, tiny and/or anisotropic cells

might occur in the vicinity of topographical structures. Thus,

the length scale has to be a function of all local grid spacings

in orthogonal direction and prescribed correction functions

(cf. Scotti et al., 1993; Jähn et al., 2015).

The cloud microphysics parameterization is based on the

two-moment scheme Seifert and Beheng (2006) with adjust-

ments applied from Horn (2012) and without ice phase. In

this scheme, mass and number density of the hydrometeor

classes’ cloud droplets and raindrops are represented. A to-

tal of seven microphysical processes are included: condensa-

tion/evaporation, CCN activation to cloud droplets at super-

saturated conditions, autoconversion, self-collection of cloud

droplets and raindrops, accretion and evaporation of rain.

The aerosol activation process is prescribed by a power law

function based on grid space supersaturation s:

NCCN(S)=NCCN,1 %s
κ , (A10)

with the hygroscopicity parameter κ = 0.462. By having

CCN number concentration measurements available for dif-

ferent supersaturations, an extrapolated value of the CCN

number concentration at 1 % supersaturation can be deter-

mined. It is assumed that all CCN are activated at a critical

supersaturation value of smax = 1.1 %.
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