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Value at Risk approach to producer’s best response in electricity
market with uncertain demand
Martin Branda, René Henrion, Miroslav Pištěk

Abstract

We deal with several sources of uncertainty in electricity markets. The independent system
operator (ISO) maximizes the social welfare using chance constraints to hedge against discrep-
ancies between the estimated and real electricity demand. We find an explicit solution of the ISO
problem, and use it to tackle the problem of a producer. In our model, production as well as in-
come of a producer are determined based on the estimated electricity demand predicted by the
ISO, that is unknown to producers. Thus, each producer is hedging against the uncertainty of pre-
diction of the demand using the value-at-risk approach. To illustrate our results, a numerical study
of a producer’s best response given a historical distribution of both estimated and real electricity
demand is provided.

1 Introduction

In this paper, we deal with the problem which arises on the deregulated electricity markets. Since
nowadays the electricity cannot be effectively stored, one of the goals is to balance the aggregated
demand and the supply from several producers over a short time period. In particular, we focus on the
day-ahead market where the producers offer electricity deliveries a day before the real demand is ob-
served. The producers provide the bidding curves stating the price for a particular electricity quantity
that they are able to deliver. Since in the real world the aggregated demand is not precisely known
and thus is uncertain, we incorporate it into our models as a random variable leading to stochas-
tic optimization problems. An Independent System Operator (ISO) collects the bidding curves (bids)
from several producers and according to the an estimated distribution of the aggregated demand it
computes the production quantities to be dispatched. Under our settings, the ISO goal is to maximize
social welfare while satisfying the demand with a high probability. In our problems, we do not react
on past outcomes of the random variables, which would correspond to the ’wait-and-see’ approach,
but we hedge against future unknown outcomes, so our decisions must be made ’here-and-know’ and
thus are not random but deterministic.

We focus on modelling the various ways the ISO and the individual producers are facing the uncer-
tainty of (future) electricity demand in the day-ahead market. We have two main points in this respect.
First, the way the ISO and the producers manage the uncertain demand should reflect their different
roles. The ISO has to balance the supply and the demand with high reliability, whereas a producer
is more focused on the reliability of the profit. To this end, we model the ISO problem with a chance
constraint for the demand satisfaction, and we introduce a chance-constrained problem of a producer
where the upper quantile of the random profit is maximized.

Second, we argue that the uncertainty of the demand has to be modelled using distinct random vari-
ables. Indeed, in real markets producers are bidding earlier than the ISO is clearing the market. Al-
though this time difference may be relatively small, it can nevertheless force producers to use, e.g., a

DOI 10.20347/WIAS.PREPRINT.2831 Berlin 2021



M. Branda, R. Henrion, M. Pištěk 2

less precise weather forecast to compute their optimal bids. Even if this was not the case, it is reason-
able to assume that different tools and heuristics used by competing market participants to model this
uncertainty yield different results. To simplify the notation, we use one random variable for the ISO and
another one for all the producers; note that one may easily generalize the model by using an individual
random variable for each producer.

To be able to provide a numerical study, we had to estimate the probability distribution of the future
electricity demand from the point of view of the ISO as well as producers. We were unable to provide
realistic estimates, since both the data and methods used are publicly unavailable. Thus we used pub-
licly available data limited to point estimates and real observations of the demand available for several
weeks, and fit the parameters of the lognormal distribution. We are aware that this is a simplifying
approach and in practice we would need a more sophisticated method for the demand forecasting
such as time series analysis, cf. [10, 11], which can take into account seasonality effects and external
factors affecting the demand, such as weather.

General risky design equilibrium problems with stochastic elements were investigated by [18, 25].
Recently, [32] proposed a new stochastic-programming market-clearing mechanism to optimize pre-
dispatch quantities given the probability distribution of the random demand and the costs of real-
time deviations. The previously proposed stochastic real-time clearing formulation in which generation
capacity, demand and transmission line capacity are considered as random, has been extended in
[33] by employing the social surplus function which induces penalties between day-ahead and real-
time quantities.

To deal with uncertain (random) demand, we employ the chance constrained formulations of the prob-
lems of the ISO and each producer. Chance constrained problems (CCP), a standard tool of stochastic
optimization, cf. [22, 28], are usually used to get optimal solutions which are highly reliable with re-
spect to stochastic parts of the optimization problems under uncertainty. Recent progress in this area
includes sequential algorithm based on an exact penalty [13], optimality conditions and regulariza-
tion [1, 2], or new quantile cuts for MINLP reformulations [31]. First and second order differentiabil-
ity results under elliptically symmetric distributions, which can be directly employed in standard NLP
solvers, have been derived in [34]. A chance-constrained economic dispatch model was presented
by [12]. The model integrates energy storage and high renewable penetration to satisfy renewable
portfolio requirements. In our case, the stochastic problem of each producer is related to the Value at
Risk problem which was elaborated by several previous works, see, e.g., [15, 26, 27, 30]. However,
due to the specific structure of the producer problems, we are able to derive and solve a nonlinear
programming equivalent using the demand distribution function with decision dependent arguments
which is, according to our best knowledge, the first attempt in the area of CCP.

From the modelling point of view, the above described problem leads to a multi-leader-common-
follower problem, where the producers are considered as the leaders and the ISO is viewed as a
common follower. Showing existence of solution of such a bi-level problem is typically difficult. Even
if convexity is assumed at both levels, is no more satisfied once the upper-level pay-off functions are
composed with the solution map of the lower-level problem (the ISO). For a specific setting all equi-
libria may be found analytically, see e.g. [7, 8], assuming, however, that the demand is deterministic.
Alternatively, one may model electricity markets as supply function equilibrium (SFE), a concept intro-
duced in [23] that naturally generalizes market models of both Cournot and Bertrand. Modelling the
competition of producers by Nash equilibrium, the profit maximizing support functions (i.e. inverses of
bid functions) are smooth functions described by differential equations. This general model of market
competition has been well adapted to the particular situation of electricity markets, see, e.g. [5, 20]
and the references therein. Note, however, that such an approach is orthogonal to the value-at-risk
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approach used here. Indeed, supply functions determined by maximisation of (expected) profit are in
no relation to optimal bid functions of producers using value-at-risk. As far as we know, an analytical
solution to such a market is yet to be determined; our work may be considered as the first step in this
direction.

To take into account the uncertainty in the electricity demand better, we simplified the model of a
pay-as-clear day-ahead market in several aspects. Next, we will discuss our main assumptions:

1 To focus more on competition amongst producers, we don’t model individual consumers. They
may be probably included in a more detailed model by following, e.g., [21].

2 We consider one specific time period day-ahead (a quarter of an hour), which is independent
of other time periods. Thus, the model would have to be considerably adapted to incorporate
other market participants, e.g., market speculators selling and purchasing contracts for different
periods in the day.

3 Transmission constraints are not taken into account; in other words model is formulated at a
single node of transmission network. Such constraints substantially complicate the analysis
of the problem, see, e.g. the discussion in [20] where radial transmission network with local
demand shocks is analysed, and existence and uniqueness of supply-function equilibrium in
two-node networks is shown.

4 The aggregated electricity demand is considered to be in-elastic. The model may be generalized
in this respect by following the direction of [3], thus modelling the linear elasticity of the demand.

5 We assume that the producers and the ISO are able to estimate the probability distribution of
the demand in each step of the modelling.

6 We model the production costs using convex quadratic functions which is quite common as a
reasonable simplification in the analysis of equilibria in electricity markets, see, e.g., [7, 17, 19,
21]. Such approximation captures well, at least qualitatively, the increasing marginal costs of
electricity production.

7 We limit producers to bid functions that are convex and quadratic, following again, e.g. [7, 17,
19, 21], thus obtaining approximation that is convenient for further mathematical analysis. In
real markets, however, producers typically bid piecewise-linear functions.

Some of the above limitations may possibly be overcome in the future, whereas other seem to be
inevitable to facilitate the analysis below (in particular, quadratic cost and bid functions, see the points
6 and 7 above, lead to the statement of Theorem 4.7).

The paper is organized as follows. In Section 2, the basic notation, assumptions and market settings
are introduced. Section 3 is focused on the optimal dispatch problem of the ISO. Section 4 deals with
the chance constrained profit maximization problem of a producer. Numerical study using the real data
from the French electricity market is proposed in Section 5. Section 6 concludes the paper.

2 Notation and problem setting

First we summarize the basic hypothesis that are considered in this work: we consider a pay-as-clear
electricity market with N > 1 producers; we only consider producers, that is the demand of consumers
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is aggregated. Finally, the transmission network is not taken into account, thus also thermal losses and
“local demand” are omitted.

By δ > 0 we denote the (aggregated) electricity demand, N = {1, . . . ,N} is the set of producers,
and qi ≥ 0 represents the non-negative production quantity of the i-th producer. Considering q ∈ RN

+

we use q−i ∈ RN−1
+ to denote the vector (q1, . . . ,qi−1,qi+1, . . . ,qN), and the same convention is

used also for other vectors hereinafter. For i ∈N we use ai,bi ≥ 0 to denote the coefficients of the
i-th producer’s bid aiqi+biq2

i and Ai ≥ 0,Bi > 0 to denote the coefficients of the true production cost
function Aiqi +Biq2

i . We use R++ = R+ \{0}.
For a one-dimensional random variable X on a probability space (Ω,F ,P), we denote its distribution
by µ which is defined as

µX(A) := P(ω ∈Ω|X(ω) ∈ A)

for all Borel measurable subsets A⊆ R. This distribution induces the distribution function

FX(x) := µX((−∞,x)), ∀ x ∈ R,

the inverse of which is the quantile function F−1
X defined by

F−1
X (t) := inf{x|FX(x)≥ t}.

We say that a measurable real function fX is a density of X , if

µX(A) =
∫

z∈A
fX(z)dz

for all Borel measurable subsets A⊆ R or, equivalently, if

FX(x) =
∫ x

−∞

fX(z)dz, ∀ x ∈ R.

3 Problem of the ISO

Each producer provides the ISO with a quadratic bid aiqi + biq2
i . The ISO thus have knowledge of

the bid vectors a = (a1, · · · ,aN) ∈ RN
+ and b = (b1, · · · ,bN) ∈ RN

++, however, the ISO is not aware
of the true production cost parameters Ai,Bi, i = 1, . . . ,N. Thus, knowing only the bid vectors, the
ISO computes the production quantity to be dispatched to the producers q = (q1, . . . ,qN) ∈ RN

+ to
maximize the so-called social welfare, see e.g. [9, 21]. Assuming, moreover, that also the aggregated
demand δ > 0 is given, the problem ISO(a,b,δ ) reads

ISO(a,b,δ ) min
q ∑

i∈N
aiqi +biq2

i

s.t.

{
0≤ qi, ∀i ∈N ,

∑i∈N qi = δ ,

Note that the market clearing price λ (a,b,δ ) corresponds to the Lagrange multiplier of the demand
satisfaction constraint in ISO(a,b,δ ). The following result is fundamental for this work.

Theorem 3.1. Let δ > 0. Then for any (a,b) ∈ RN
+×RN

++, the market clearing price λ (a,b,δ )
and optimal production quantities q(a,b,δ ) in problem ISO(a,b,δ ) are the solutions of the system of
equations

N

∑
k=1

(
λ −ak

2bk

)+
= δ , (1)
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and

qi =

(
λ −ai

2bi

)+
, i ∈N , (2)

in variables (λ ,q).

Proof. See a more general statement of [8, Theorem 2.1].

The fact that λ (a,b,δ ) is well defined by (1) may be seen from the following remark.

Remark 3.2. Consider the setting of Theorem 3.1. If we moreover assume, without loss of generality,
that ai ≤ a j for i < j, we may restate (1) equally as

λ (a,b,δ ) = min
k=1,..,N

1

∑
k
j=1

1
2b j

[
δ +

k

∑
j=1

a j

2b j

]
. (3)

For details see [8, Remark 3]. In this article, however, we will not assume any ordering of producers.

Now, we turn our attention to the ISO problem with demand given by a positive random variable DISO

on the probability space (Ω,F ,P). Since we deal with one particular part of the day (a quarter of
an hour), we are not using any time index. We assume that the main goal of the ISO is to establish
equilibrium between supply and demand with great reliability to avoid high costs associated with the
supply failure. Such a problem may be formulated as a chance constrained problem where a probability
p ∈]0,1[ is prescribed to satisfy the demand:

SD-ISO(a,b) min
q ∑

i∈N
aiqi +biq2

i

s.t.

{
0≤ qi, ∀i ∈N ,

P
[
∑i∈N qi ≥ DISO]≥ p.

(4)

As the individual chance constraint above has a structure of the so-called separable (random) right-
hand side, cf. [28], one can easily reformulate it using the quantile function of DISO, thus obtain-
ing a deterministic constraint. Consequentially, the explicit solution of ISO(a,b,δ ) stated in Theo-
rem 3.1 remains valid even for SD-ISO(a,b) provided δ is replaced by F−1

DISO(p), i.e. SD-ISO(a,b) =

ISO(a,b,F−1
DISO(p)).

4 Problem of producer

In this section, we illuminate the point of view of a particular producer i ∈N supposing that its true
production cost function is given by Aiqi+Biq2

i with known Ai ≥ 0 and Bi > 0. Producer i ∈N then
aims to maximize his profit function πi(a,b,δ )

πi(a,b,δ ) = (λ (a,b,δ )−Ai)qi(a,b,δ )−Bi qi(a,b,δ )2 (5)

with respect to his decision variables ai ≥ 0,bi > 0, with the remaining bid coefficients (a−i,b−i)
fixed. Furthermore, we assume that the electricity demand δ is not known when the producer’s bid
is submitted to the ISO. Instead, we consider stochastic demand given by a positive random variable
D on the probability space (Ω,F ,P) with a probability density function f (δ ) specified below. We
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stress that the producers and the ISO can represent demand with random variables having different
distributions since the ISO can use more recent information to predict the demand for the considered
time period in the next day.

Now, producer i can solve the following chance-constrained problem, where the profit mi that can be
reached with a probability pi ∈]0,1[ with respect to the random demand D is maximized:

Pi(a−i,b−i, pi) max
ai,bi,mi

mi

s.t.

{
P [πi(ai,a−i,bi,b−i,D)≥ mi]≥ pi,

ai,bi,mi ≥ 0.

(6)

Note that this formulation is related to the value at risk (VaR), where analogous chance constraint is
imposed on random losses resulting from investments on financial markets, cf. [15, 30]. Alternatively,
one may consider losses above the quantile leading to the measure known as conditional value at risk
(CVaR), see [26, 27].

Next we show that problem Pi(a−i,b−i, pi) is well-posed.

Theorem 4.1. For any i ∈N , a−i ∈ RN−1
+ , b−i ∈ RN−1

++ and pi ∈]0,1[ there exists a solution to
Pi(a−i,b−i, pi).

Before proving the above theorem we show several auxiliary lemmas. First, we continuously extend
the profit function πi(a,b,δ ) to b ∈ RN

+ such that bi = 0 and b−i ∈ RN−1
++ .

Lemma 4.2. Let δ > 0, a−i ∈ RN−1
+ , b−i ∈ RN−1

++ and ai ∈ R+. Denote Ñ = {k ∈N : ak < ai},
and (ã, b̃) bid coefficients of producers in Ñ . Moreover, let

q̃i = δ − ∑
j∈Ñ

ai−a j

2b j

and λ̃ = λ (ã, b̃,δ ). Then it holds

lim
bi→0+

πi(ai,a−i,bi,b−i,δ ) =

{
0 if ai ≥ λ̃ ,

(ai−Ai)q̃i−Biq̃i
2 if ai < λ̃ .

(7)

Proof. For the sake of this proof we order producers as in Remark 3.2. We show that

lim
bi→0+

λ (ai,a−i,bi,b−i,δ ) = min{ai, λ̃}. (8)

This follows directly from (3) since for any k ≥ i it holds

lim
bi→0+

δ +∑
k
j=1

a j
2b j

∑
k
j=1

1
2b j

= ai.

Further we prove that limbi→0+ qi(ai,a−i,bi,b−i,δ ) = max{q̃i,0}. Indeed, for any bi > 0 we have
qi(ai,a−i,bi,b−i,δ ) = δ−∑ j 6=i q j(ai,a−i,bi,b−i,δ ) with production quantities q j given by (2), then
it suffices to calculate the limit using (8). The assertion of the lemma then follows directly from (5) using
both established limits and observing that q̃i ≤ 0 if and only if ai ≥ λ̃ .
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Remark 4.3. Note that for ai = λ̃ we have q̃i = 0 due to (1), thus the function given by (7) is continuous
in ai. Extending the definition of πi(a,b,δ ) by the above calculated limits we obtain a function that is
continuous in (ai,bi) on a closed set R2

+. However, one has to remember the special role of bi = 0.
Should the optimal bid function of producer i be such that bi = 0, it has to be interpreted as “limiting”
bid function, cf. remarks following equation (15) in [8], since such bi is not feasible in the problem of
the ISO(a,b,δ ).

Let us henceforth denote by µi(a−i,b−i, pi) the supremum of the objective function in Pi(a−i,b−i, pi).
One may immediately establish a lower bound on µi(a−i,b−i, pi).

Lemma 4.4. For any i ∈N , (a−i,b−i) ∈ R2N−2
+ , and pi ∈]0,1[ there exists ai,bi ≥ 0 such that

P [πi(a,b,D)≥ 0]≥ pi, thus µi(a−i,b−i, pi)≥ 0.

Proof. For any bi > 0 we observe that λ (a,b,δ )≤ ai implies πi(a,b,δ )= 0 using (2). It thus suffices
to find ai high enough such that P [λ (a,b,D)≤ ai] = pi. To this end observe that for ai high enough,
λ (a,b,δ ) does not depend on ai, see equation (3).

Thus we may further assume µi(a−i,b−i, pi)> 0 and focus only on feasible points of Pi(a−i,b−i, pi)
such that πi(a,b,D)> 0 for almost all realizations of the random demand. To this end we define the
probability function as follows

ρi(a,b,mi) =

 P [πi(a,b,D)≥ mi] if mi > 0,

lim
m̃i→0+

P [πi(a,b,D)≥ m̃i] if mi = 0, (9)

Note that for mi = 0 condition πi(a,b,δ )≥mi allows for qi(a,b,δ ) = 0, and so bid vectors a,b such
that λ (a,b,δ ) ≤ ai should also be taken into account. As we are interested only in positive profits,
cf. Lemma 4.4, we may treat the case of mi = 0 separately thus simplifying the statement of Theorem
4.7. Using the probability function, we define a set-valued mapping which corresponds to the set of
feasible solutions as

Xi(a−i,b−i, pi) =
{
(ai,bi,mi) ∈ R3

+ : ρi(a,b,mi)≥ pi
}
. (10)

Further we show that the feasible set of problem Pi(a−i,b−i, pi) may be restricted to Xi(a−i,b−i, pi).

Lemma 4.5. Let i∈N , a−i ∈RN−1
+ , b−i ∈RN−1

++ and pi ∈]0,1[, and let Y ⊂R3
+ be the set of feasi-

ble points of Pi(a−i,b−i, pi). Then, Xi(a−i,b−i, pi) is a closed subset of Y , and for any (ai,bi,mi)∈Y
such that mi > 0 it holds that (ai,bi,mi) ∈ Xi(a−i,b−i, pi).

Proof. Set Xi(a−i,b−i, pi) is closed due to continuity of ρi(a,b,mi). Further, consider (ai,bi,mi) ∈
R3
+. If mi > 0, directly from the definition we have

(ai,bi,mi) ∈ Xi(a−i,b−i, pi)

if and only if (ai,bi,mi) ∈ Y . To complete the proof for the case of mi = 0, it suffices to observe
ρi(a,b,0)≤ P [πi(a,b,D)≥ 0] due to continuity of the profit function πi.

The last auxiliary lemma follows.
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Lemma 4.6. Let i ∈N , a−i ∈ RN−1
+ , b−i ∈ RN−1

++ and pi ∈]0,1[. Denote

S(mi) = {(ai,bi) ∈ R2
+ : (ai,bi,mi) ∈ Xi(a−i,b−i, pi)}.

Then, for any mi > 0 set S(mi) is compact. Further, S(y)⊃ S(x) for x > y.

Proof. From the definition of Xi(a−i,b−i, pi) we have

S(mi) = {(ai,bi) ∈ R2
+ : ρi(a,b,mi)≥ pi}.

Thus the monotonicity of S(mi) is directly due to monotonicity of ρi(a,b,mi) in mi, see (9).

Next, consider a realization δ > 0 of random demand D and observe that πi(a,b,δ ) ≥ mi implies
qi(a,b,δ )> 0 due to (2), and so λ (a,b,δ )> ai. Using moreover (5), we have also

λ (a,b,δ )2

2bi
≥ λ (a,b,δ )qi(a,b,δ )≥ πi(a,b,δ ).

Thus, denoting ξ (ai,bi) = max
{

ai,
√

2mibi
}

, we have

S(mi)⊂
{
(ai,bi) ∈ R2

+ : P [λ (a,b,D)≥ ξ (ai,bi)]≥ pi
}
.

Then, considering the cumulative distribution function F of D, we may write

S(mi)⊂
{
(ai,bi) ∈ R2

+ : λ
(
a,b,F−1

D (1− pi)
)
≥ ξ (ai,bi)

}
,

where F−1
D denotes the quantile function of D. Now, we observe that for any δ > 0 it holds, due to

(3), λ (a−i,b−i,δ )≥ λ (a,b,δ ). Then, defining

λM = λ
(
a−i,b−i,F−1

D (1− pi)
)
,

we conclude S(mi)⊂ [0,λM]× [0,λ 2
M/(2mi)] with regards to definition of ξ (ai,bi).

Proof. of Theorem 4.1. If µi(a−i,b−i, pi) = 0 then a maximizer of Pi(a−i,b−i, pi) exists due to
Lemma 4.4. Thus we may further assume µi(a−i,b−i, pi) > 0 and, consequently, restrict our at-
tention to subset Xi(a−i,b−i, pi) of the feasible points of Pi(a−i,b−i, pi) due to Lemma 4.5. Further,
since super-level sets of criterion function mi are compact, see Lemma 4.6, and the criterion function
is continuous, see Lemma 4.2 and Remark 4.3, the maximum of Pi(a−i,b−i, pi) is attained.

4.1 Problem reformulation

In this subsection, we reformulate problem Pi(a−i,b−i, pi) to facilitate the numerical experiment in
Section 5. First, we analyse what values δ > 0 of the demand yield πi(a,b,δ )≥ mi. To this end we
define functions λ1(ai,bi,mi),λ2(ai,bi,mi) for all possible values of (ai,bi,mi)∈R3

+ in the following
way:

1 if 2bi > Bi then λ2(ai,bi,mi) = +∞,

λ1(ai,bi,mi) = ai +
bi

Bi−2bi

(
ai−Ai−

√
(ai−Ai)2−4mi(Bi−2bi)

)
,

DOI 10.20347/WIAS.PREPRINT.2831 Berlin 2021



Value at Risk approach to producer’s best response in electricity market with uncertainty 9

2 if 2bi = Bi and ai > Ai then λ1(ai,bi,mi) = ai +
Bimi

ai−Ai
, λ2(ai,bi,mi) = +∞,

3 if 2bi < Bi and ai ≥ Ai +2
√

mi(Bi−2bi) then λ1(ai,bi,mi) is as in the case (a) and

λ2(ai,bi,mi) = ai +
bi

Bi−2bi

(
ai−Ai +

√
(ai−Ai)2−4mi(Bi−2bi)

)
,

4 otherwise λ1(ai,bi,mi) = +∞ and λ2(ai,bi,mi) =−∞.

Then we may reformulate the probability function ρi.

Theorem 4.7. Let i ∈N , a−i ∈ RN−1
+ , b−i ∈ RN−1

++ , and (ai,bi,mi) ∈ R3
+ it holds

ρi(a,b,mi) = P [λ (a,b,D) ∈ [λ1(ai,bi,mi),λ2(ai,bi,mi)]] . (11)

Proof. For any (ai,bi,mi) such that bi > 0, realization δ > 0 of demand D and

πi(a,b,δ )≥ mi > 0 (12)

we necessarily have qi(a,b,δ )> 0 and so using (2) also

qi(a,b,δ ) =
λ (a,b,δ )−ai

2bi
(13)

and λ (a,b,δ )> ai. Then, denoting α = ai−Ai, β = 2bi−Bi, and

Λ(ai,bi,mi) =
{

l ∈ R : l > ai, β l2−2l(aiβ −αbi)+ai(Aiβ −αBi)−4b2
i mi ≥ 0

}
, (14)

and substituting (13) into (5), we may reformulate inequality (12) equivalently as λ (a,b,δ )∈Λ(ai,bi,mi).
Evaluating functions inf{Λ(ai,bi,mi)} and sup{Λ(ai,bi,mi)}, with the discriminant of the left-hand
side of the inequality in (14) being

4b2
i (α

2 +4miβ ),

one may establish that
λ1(ai,bi,mi) = inf{Λ(ai,bi,mi)}

and
λ2(ai,bi,mi) = sup{Λ(ai,bi,mi)},

thus showing (11). Further, observe that all arguments above are valid also for bi = 0 due to continuity
of profit πi with respect to bi→ 0+, see Lemma 4.2. Finally, one can continuously extend the previous
results to the case of mi = 0. Indeed, the above consideration are valid provided mi > 0, then we may
restrict the feasible set of problem P(a−i,b−i, pi) to Xi(a−i,b−i, pi) as discussed in Lemma 4.5, and
eventually use the fact that ρi(a,b,mi) is defined by limit for mi = 0, see equation (9).

Inspired by equation (1) we define

δ1,2(a,b,mi) =
N

∑
k=1

(
λ1,2(ai,bi,mi)−ak

2bk

)+
, (15)

and conclude this section with a corollary playing a key role in the numerical experiment.
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Corollary 4.8. Let i ∈N , a−i ∈ RN−1
+ , b−i ∈ RN−1

++ , and (ai,bi,mi) ∈ R3
+ and denote by FD the

distribution function of the demand D . Then either the optimal profit in Pi(a−i,b−i, pi) is zero, or
Pi(a−i,b−i, pi) may be equivalently formulated as

max
ai,bi,mi

mi

s.t.

{
FD(δ2(a,b,mi))−FD(δ1(a,b,mi))≥ pi,

ai,bi,mi ≥ 0.

(16)

Proof. Using Theorem 4.7, it suffices to observe that the probability function can be expressed as

ρi(a,b,mi) =

δ2(a,b,mi)∫
δ1(a,b,mi)

f (δ )dδ .

5 Numerical study

In the numerical study, we apply the above derived results to real data from the French electricity
market. We derive the optimal bidding curves for five artificial producers and report the corresponding
optimal dispatch quantities which are provided by the ISO. We employ the real data to estimate the
distribution of the random demand. Note that these estimates are different for the producers and the
ISO as discussed below. Our goal is also to illustrate that the reformulations obtained in the previous
section lead to problems which can be solved by standard software tool such as Matlab.

Producer 5 (A5,B5)

Producer 2 (A2,B2)

Producer 1 (A1,B1)

...

ISO

(q̂i, λ̂ )(a5,b5)

(a2,b2)

(a1,b1)

Consumers

D DISO DISO = δ

Day-ahead Intraday

Figure 1: Day-ahead electricity market schema

The sequence of steps from the perspective of producer i ∈N : estimate the future demand distri-
bution D; use it to solve producer’s optimization problem, thus obtaining bidding parameters ai,bi to
be submitted to the ISO; after the clearing process of the ISO using DISO, the producer obtains the
dispatch order and the payment. The sequence of steps from the perspective of the ISO: generate
a forecast of the demand distribution DISO; obtain the bids a,b from the producers; use these data
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Table 1: Input data 2: point estimates of the demand at various stages (D̂t used by producers, D̂ISO
t

used by ISO), observed consumptions DISO
t and clearing prices

Day (2017) Demand Demand Observed Clearing
from 10:00 am estimate (GW) estimate (GW) consumption (GW) price

to 10:15 am D̂t D̂ISO
t DISO

t (EUR/MWh)

3-Jan 87.8 84.7 84.323 74.65
4-Jan 86.5 86.5 86.270 72.85
5-Jan 86.8 84.6 84.406 73.03

10-Jan 81.5 80.8 80.521 84.59
11-Jan 80.6 79.0 79.443 82.57
12-Jan 78.1 76.6 77.020 86.71
17-Jan 88.1 87.6 88.211 129.33
18-Jan 91.7 92.2 92.751 111.75
19-Jan 93.8 92.8 93.120 94.00
24-Jan 90.2 90.5 90.544 151.07
25-Jan 91.5 90.9 90.821 151.29
26-Jan 90.9 92.6 93.100 126.09
31-Jan 74.5 73.1 72.964 89.80
1-Feb 72.1 71.6 71.780 79.11
2-Feb 70.3 70.3 70.746 58.55
7-Feb 74.6 75.0 75.081 NA
8-Feb 75.9 76.2 76.322 73.02
9-Feb 79.1 79.7 79.522 70.97

14-Feb 73.2 73.5 73.618 64.67
15-Feb 71.4 69.9 70.256 58.80
16-Feb 71.0 70.0 74.800 61.90
21-Feb 68.6 67.9 68.023 54.59
22-Feb 67.3 67.0 67.627 53.00
23-Feb 67.1 67.8 68.586 43.36
28-Feb 69.8 72.2 72.433 49.61

to clear the market day-ahead; announce the dispatch and pay the producers according to the clear-
ing price. In the case that the demand realization DISO = δ doesn’t match the planned supply, the
difference is then compensated in the intraday market. The situation is outlined in Figure 1.

We will now introduce a naive approach to estimating parameters of D and DISO. Table 1 contains the
point estimates and the real data observed between January 3 and February 28, 2017. These days
correspond to Tuesdays, Wednesdays, and Thursdays; we wanted to avoid Mondays and Fridays when
the demand can differ considerably. The table contains the point estimates D̂t of the demand used by
producers, the point estimates D̂ISO

t used by the ISO, the real consumptions on the day DISO
t , and the

clearing prices. We assume that the point estimates are i.i.d. realizations of the demand forecasts for
the next day. We are aware that this is a highly simplifying assumption and in practice we would need
more sophisticated approach as we have discussed in Introduction. Based on the observations, we
have estimated the parameters of the lognormal distribution, cf. Table 2. Note that our approach is not

2Data has been taken from http://www.rte-france.com/fr/eco2mix/eco2mix-consommation.
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Table 2: Parameters estimates of the lognormal distribution

Parameters µ̂ σ̂2 exp. value MSPE

Producer(s) 4.3623 0.0123 78.92 77.01
ISO 4.3672 0.0119 79.29 75.01

limited to this particular probability distribution but we can use any distribution with positive support,
e.g. Gamma or inverse-Gaussian.

As already discussed in the Introduction, we further construct the producers’ estimate of D based
on point estimates D̂t that are published by the ISO. Such naive method is necessary to illustrate
our approach since one may not use private data and/or models of producers. For a producer, the
parameters of the lognormal distribution of D are estimated using the pairs D̂t , D̂ISO

t . The expected
value corresponds to the sample mean of the producer demand estimate D̂, i.e.

Ê[D̂] =
1
T

T

∑
t=1

D̂t ,

whereas the variance represents the Mean Square Prediction Error (MSPE) which is estimated as a
sum of the sample variance of D̂

V̂ar(D̂) =
1

T −1

T

∑
t=1

(
D̂t− Ê[D̂]

)2
,

and the mean square error

MSE(D̂ISO, D̂) =
1
T

T

∑
t=1

(
D̂ISO

t − D̂t

)2
,

i.e.
MSPE(D̂ISO, D̂) = V̂ar(D̂)+MSE(D̂ISO, D̂).

The values of the parameters µ̂, σ̂2 for a producer are then obtained by the following arithmetic oper-
ations valid for the lognormal distribution using the desirable expected value and variance

µ̂ = ln

 (Ê[D̂])2√
MSPE(D̂ISO, D̂)+(Ê[D̂])2

 , (17)

σ̂
2 = ln

(
1+

MSPE(D̂ISO, D̂)

(Ê[D̂])2

)
. (18)

Analogous approach is used to estimate the parameters of DISO with the pairs of observations D̂ISO
t ,

DISO
t in the place of D̂t , D̂ISO

t , see Table 2.

Considering five producers, we will solve problem (6) for each producer given the initial values of the
bidding coefficients ai,bi and the production cost coefficients Ai,Bi, see Table 3. Note that producer 1
is considered as a largest one with the smallest linear cost coefficient and the highest quadratic one,
whereas producer 5 is the smallest with corresponding cost curve. We will employ the reformulated
form of the problem of producer, see (16), assuming pi = 0.9 for all i. The problems are solved by
fmincon procedure by the sequential quadratic programming algorithm available in Matlab. As the
starting point for the algorithm, the bidding coefficients ai,bi are selected. We consider the following
approaches:
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1 compute âi, b̂i given (a−i,b−i) for all i = 1, ..,N, i.e. all producers perform optimization inde-
pendently,

2 compute only â3, b̂3 given (a−3,b−3), i.e. only one producer optimizes its profit,

3 compute âi, b̂i given â1, ...âi−1,ai+1, ...,aN , b̂1, ...b̂i−1,bi+1, ...,bN for all i = 1, ..,N, i.e. pro-
ducer i is given the optimal bids of producers 1, ..., i−1.

Table 3: Starting values of the coefficients (ai,bi) and results of the producer (âi, b̂i, m̂i) and the ISO
problems (q̂i, λ̂ )

Approach Producer 1 2 3 4 5

Ai 23.20 34.10 36.00 34.50 51.30
Bi 0.69 0.62 0.51 0.72 0.35
ai 24.20 35.10 37.00 35.50 52.30
bi 0.79 0.72 0.61 0.82 0.45

1. âi 24.40 34.92 37.44 35.80 53.45
b̂i 0.82 0.63 0.63 0.83 0.38
m̂i 446.28 274.76 242.58 198.07 34.79
q̂i 21.36 19.47 17.28 14.20 7.71

λ̂ 59.27

2. âi 24.20 35.10 37.44 35.50 52.30
b̂i 0.79 0.72 0.63 0.82 0.45
m̂i 242.58
q̂i 22.45 17.06 17.59 14.74 8.19

λ̂ 59.67

3. âi 24.40 35.75 40.99 35.83 54.04
b̂i 0.82 0.73 0.53 0.82 0.35
m̂i 446.28 240.74 250.72 208.76 42.01
q̂i 21.87 16.74 17.99 14.75 8.69

λ̂ 60.09

The optimal bids âi, b̂i are then reported to the ISO, which produces the dispatch orders q̂i and the
clearing price λ̂ by solving SD-ISO(a,b) problem (4), see Table 3. Although the delivered bids are all
different in all cases, the clearing price is stable.

We also investigated the development of optimal values of parameters for producer 3 with respect to
the changes of the probabilistic level pi ∈ [0.5,0.99], see Figure 2. Note that a−3 and b−3 are hold
fixed and that the optimal values from the previous iteration are used as the starting points for the
update. We can observe that the behaviour is quite stable for b3, whereas a3, m3 rapidly change for
high probabilistic level p3.

Sensitivity analysis of optimal value m3 was performed also with respect to the its production cost
parameters A3, B3, see Figure 3. The development of the profit m3 with respect to the producer’s
bid coefficients a2, b2 can be found in Figure 4. In both cases, the profit is stable, it increases with
increasing b2 and decreases with increasing B3.
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Figure 2: Optimal solutions of problem (6) for producer 3 for different levels pi ∈ [0.5,0.99]

Figure 3: Optimal solutions of problem (6) for producer 3 – sensitivity with respect to the production
cost parameters A3, B3
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Figure 4: Optimal solutions of problem (6) for producer 3 – sensitivity with respect to the producer’s
bid coefficients a2, b2

6 Conclusions

In this paper, we have investigated two closely connected problems appearing on deregulated electric-
ity markets which are subject to uncertainty. We have focused on the stochastic demand and employed
the chance constrained formulations for the problems of the ISO and producers. We have shown that
due to the structure of the ISO problem, it is possible to use an earlier result and derive an explicit
solution for the production quantities. For each producer, we have formulated a value at risk problem
with the maximization of profit which can be reached with certain level of probability. Then, we have
derived an explicit reformulation of the probability function which enables to solve the problem using
a non-linear programming solver. In the numerical study, we have illustrated our approach using real
data from the French market.
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[28] Shapiro, A., Dentcheva, D. and Ruszczyński, A. Lectures on Stochastic Programming. MOS-SIAM Series
on Optimization. SIAM–Society for Industrial and Applied Mathematics, Philadelphia, (2009)

[29] Willems, B., Rumiansteva, I. and Weigt, H., Cournot versus supply functions. What does the data tell us?
Energy Economics 31 (2009), 38–47.

[30] Wozabal, D., Hochreiter, R. and Pflug, G. C., A difference of convex formulation of value-at-risk constrained
optimization. Optimization 59(3) (2010), 377–400

[31] Xie, W. and Ahmed, S., On quantile cuts and their closure for chance constrained optimization problems.
Mathematical Programming 172(1-2) (2018), 621–646

[32] Zakeri, G., Pritchard, G., Bjorndal, M. and Bjorndal, E., Pricing wind: a revenue adequate, cost recovering
uniform price auction for electricity markets with intermittent generation. INFORMS Journal on Optimization,
published online (2018) DOI: 10.1287/ijoo.2018.0002

[33] Zavala, V.M., Kim, K., Anitescu, M., and Birge, J., A stochastic electricity market clearing formulation with
consistent pricing properties. Operations Research 65(3) (2017), 557–576.

[34] van Ackooij, W., I. Aleksovska, I., and Munoz-Zuniga, M., (Sub-)Differentiability of probability functions with
elliptical distributions. Set-Valued and Variational Analysis 26(4) (2018), 887–910.

DOI 10.20347/WIAS.PREPRINT.2831 Berlin 2021


	Introduction
	Notation and problem setting
	Problem of the ISO
	Problem of producer
	Problem reformulation

	Numerical study
	Conclusions

