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Abstra
tA model for the evolution of damage that allows for 
omplete disintegrationis addressed. Small strains and a linear response fun
tion are assumed. The��ow rule� for the damage parameter is rate-independent. The stored energyinvolves the gradient of the damage variable, whi
h determines an internallength-s
ale. Quasi-stati
 fully rate-independent evolution is 
onsidered aswell as rate-dependent evolution in
luding vis
ous/inertial e�e
ts. Illustrative2-dimensional 
omputer simulations are presented, too.1 Introdu
tionDamage, as a spe
ial sort of inelasti
 response of solid materials, results from mi-
rostru
tural 
hanges under me
hani
al load. Routine 
omputational simulationsbased on various models are widely performed in engineering, although mostly with-out being supported by rigorous mathemati
al and numeri
al analysis.We will 
onsider damage as a rate-independent pro
ess. This is often, althoughnot always, an appropriate 
on
ept and has appli
ations in a variety of industri-ally important materials, espe
ially to 
on
rete [Fre02, FrN95, Ort87℄, �lled poly-mers [DPO94℄, or �lled rubbers [GoS91, Mie95, MiK00℄. Being rate-independent,it is ne
essarily an a
tivated pro
ess, i.e. to trigger a damage the me
hani
al stressmust a
hieve a 
ertain a
tivation threshold. The mathemati
al di�
ulty is re�e
tedin the fa
t that only lo
al-in-time existen
e for a simpli�ed s
alar model or for arate-dependent 0- or 1-dimensional model has been obtained, see [BoS04, DMT01,FKNS98, FKS99℄. The 3-dimensional situation was investigated in [FrG06, MiR06,MiRo℄ with the fo
us to in
omplete damage. The main fo
us of this paper is on
omplete damage, i.e. the material 
an 
ompletely disintegrate and its displa
ement
ompletely loses any sense on su
h regions. We show how mathemati
al modeling
an be used to derive well-posed models by suppressing the use of the displa
ement
u and formulating everything in terms of stresses and energies. In Se
tions 2-3 wewill negle
t all rate dependent pro
esses like vis
osity and inertia so that the damagepro
ess is quasistati
 and fully rate-independent. Eventually, in Se
tions 4, we will
ombine a rate-independent damage pro
ess with vis
osity and inertia whi
h are, of
ourse, rate-dependent.We 
onsider an anisotropi
 material but 
on�ne ourselves to a materials with linearelasti
 response and an isotropi
 damage using only one s
alar damage parameter un-der small strains (as in [BBT01, BoS04, Fre02, FrN96℄). Moreover, we use gradient-of-damage theory [DBH96, Fre02, FrN95, FrN96, LoA99, Mau92, PMG04, StH03℄1



expressing a 
ertain nonlo
ality in the sense that damage of a parti
ular spot is tosome extent in�uen
ed by its surrounding, leading to possible hardening or softening-like e�e
ts, and introdu
ing a 
ertain internal length s
ale eventually preventingdamage mi
rostru
ture development. From the mathemati
al viewpoint, the dam-age gradient has a 
ompa
tifying 
hara
ter and opens possibilities for the su

essfulanalysis of the model. Anyhow, some investigations are still possible without gra-dient of damage, as shown in [FrG06℄ for in
omplete damage, leading to a possiblemi
rostru
ture in the damage pro�le.The goal of this arti
le is to survey and further develop basi
 mathemati
al toolsfo
used on 
omplete damage.2 Complete quasistati
 damage at small strainsWe will 
onsider spe
i�
 stored energy ϕ quadrati
 in terms of small-strain tensor e,linear in terms of s
alar damage parameter z, and 
onvex in terms of a gradient ofthe damage g:
ϕ(e, z, g) =

1

2
zCe : e +

κ

p
|g|p + δ[0,+∞)(z), (1)where C ∈ Rd×d×d×d is a positive-de�nite elasti
ity tensor satisfying Cijkl = Cjikl =

Cklij, d ∈ N denotes the 
onsidered spatial dimension, and κ > 0 is a so-
alledfa
tor of in�uen
e, and δ[0,+∞) is the indi
ator fun
tion of the interval [0, +∞),i.e. δ[0,+∞)(z) = 0 for z ≥ 0 while δ[0,+∞)(z) = +∞ otherwise. In this se
tion, we
onsider the �rst-order gradient of the damage pro�le ζ , hen
e we put ∇ζ(t, x) inpla
e of the variable g ∈ Rd. Another ingredient of the damage-evolution model isa spe
i�
 dissipated energy
̺(ż) =

{

−a ż if ż ≤ 0,
+∞ elsewhere. (2)where a > 0 determines the phenomenology how mu
h energy (per d-dimensional�volume�) is dissipated by a

omplishing the damage pro
ess, i.e. by de
reasing zfrom 1 to 0. The value +∞ re�e
ts that we 
onsider damage as a unidire
tionalpro
ess, i.e. damage 
an only develop, but the material 
an never heal. Note that ̺ isdegree-1 homogeneous, whi
h is related with the intended rate-independent evolutionof the damage pro
ess. Simultaneously, a is also a
tivation threshold determiningthe level of the �inelasti
� driving for
e σi := ϕ′

z(e, z, g) − divϕ′
g(e, z, g) (with thephysi
al dimension as stress) that triggers the damage pro
ess.As we want to fo
us on 
omplete damage where the material 
an 
ompletely disin-tegrate, in the quasi-stati
 
ase we 
annot have loading by dead load as e.g. grav-ity load. Thus we will 
onsider a �hard-devi
e� loading by time-varying Diri
hletboundary 
onditions but zero bulk for
es. Considering the �elasti
� stress tensor2



σe := ϕ′
e(e, z, g) that should be in quasistati
 equilibrium. Altogether formally we
onsider the problem

div
(

σe

)

= 0, σe := ϕ′
e(e(u), ζ,∇ζ) = ζCe(u), e(u) =

(∇u)⊤+∇u

2
, (3a)

∂̺
(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ),

σi := ϕ′
z(e(u), ζ,∇ζ)− divϕ′

g(e(u), ζ,∇ζ)

=
1

2
Ce(u) : e(u) − div(κ|∇ζ |p−2∇ζ), (3b)where ∂̺ denotes the subdi�erential of the 
onvex fun
tion ̺. We also denoted σr a�rea
tion for
e� to the 
onstraint 0 ≤ ζ , and N[0,+∞) = ∂δ[0,+∞) denotes the normal
one. In fa
t, as the evolution of ζ is unidire
tional (here non-in
reasing in time)and ζ will be pres
ribed at the beginning, see (9) below, it always holds 0 ≤ ζ(t, x) ≤

ζ0(x). Usually ζ0 = 1 is 
onsidered so even ζ ∈ [0, 1] a.e. on Q := (0, T ) × Ω.This is indeed to be understood only formally be
ause in the 
ompletely damagedpart ζ = 0 and displa
ements u as well as strain e(u) lose any sense.Therefore, we will also 
onsider the regularized stored energy
ϕε(e, z, g) =

1

2
(z+ε)Ce : e +

κ

p
|g|p + δ[0,+∞)(z), (4)and then the regularized problem

div
(

σe

)

= 0, σe = (ζ+ε)Ce(u), (5a)
∂̺

(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ),

σi =
1

2
Ce(u) : e(u) − div(κ|∇ζ |p−2∇ζ). (5b)As we have the displa
ement well de�ned if ε > 0, we 
an easily 
onsider the Diri
hletboundary 
onditions

u|Γ(t, x) = w(t, x) (6)where Γ ⊂ ∂Ω is a part of the boundary of Ω where the hard-devi
e loading isapplied. For simpli
ity, the remaining boundary 
onditions are 
onsidered as homo-geneous Neumann one:
Ce(u)ν = 0 on ∂Ω\Γ and κ|∇ζ |p−2 ∂ζ

∂ν
= 0 on ∂Ω, (7)where ν denotes the outer unit normal to the boundary ∂Ω of Ω. Then we de�nethe Gibbs' stored energy

Gε(t, u, ζ) :=











1

2
(ζ+ε)Ce(u) : e(u) +

κ

p
|∇ζ |p if u|Γ = w(t, ·) andif 0 ≤ ζ a.e. on Ω,

+∞ elsewhere, (8)3



We still pres
ribe an initial 
ondition ζ0 for the damage pro�le:
ζ(0) = ζ0. (9)By the de�nition of the subdi�erential ∂̺(ż) = {σ∈R; ∀z̃∈R : ̺(ż) + (z̃−ż)σ ≤

̺(z̃)}, the in
lusion (5b) 
an equivalently be written as a variational inequality
∀z̃ : ̺

(∂ζ

∂t

)

≤ ̺(z̃) +
(

z̃ − ∂ζ

∂t

)

(

σi + σr

) (10)for a.a. (t, x) ∈ Q := (0, T ) × Ω, where Ω ⊂ R
d is a 
onsidered domain o

upied bythe body and T > 0 a �xed time horizon. This 
ould be used for a de�nition of aweak solution.Here, however, we 
an use homogeneity of ̺ to formulate a more suitable 
on
eptof so-
alled energeti
 solution. By (2), we have

σi + σr ∈ ∂̺
(∂z

∂t

)

⊂ ∂̺(0) = [−a, +∞). (11)By the de�nition of the subdi�erential ∂̺(0) and properties of ̺, this means 0 =
̺(0) ≤ ̺(z̃) − (σi + σr)z̃ for any z̃ ∈ R. Written for z̃ − z instead of z̃, we have
0 ≤ ̺(z̃−z)+(σi+σr)(z̃−z). Further, by 
onvexity of ϕε(e, ·, ·), we have ϕε(e, z, g) ≤
ϕε(e, z̃, g̃)− ξ1(z̃−z) − ξ2 · (g̃−g) for any (ξ1, ξ2) ∈ ∂(z,g)ϕε(e, z, g). In parti
ular, wewill use it for ξ1 = 1

2
Ce : e + σr and ξ2 = (κ|∇ζ |p−2∇ζ). Altogether, substituting

e = e(u), g = ∇ζ(x) and z = ζ(x) we have
∫

Ω

ϕε

(

e(u(t)), ζ(t),∇ζ(t)
)

dx ≤
∫

Ω

ϕε

(

e(u(t)), ζ̃,∇ζ̃
)

− (σi+σr)
(

ζ̃−ζ(t)
)

dx

≤
∫

Ω

ϕε

(

e(u(t)), ζ̃,∇ζ̃
)

+ ̺
(

ζ̃−ζ(t)
)

dx

∀0 ≤ ζ̃∈W 1,p(Ω). (12)If ζ(t) satis�es (12), we say that ζ(t) is partially stable at t. Summing (5b) tested by
∂ζ
∂t

with (5a) tested by ∂(u−w)
∂t

, using −(σi+σr)
∂ζ
∂t

≥ ̺(∂ζ
∂t

) for any −(σi+σr) ∈ ∂̺(∂ζ
∂t

),integrating it over the time interval [0, T ], and applying by-part integration in time,we obtain formally the Gibbs-type energy balan
e
Gε

(

T, u(T ), ζ(T )
)

+ Var̺(ζ ; 0, T ) ≤ Gε

(

0, u(0), ζ(0)
)

+

∫ T

0

∫

Ω

σe :e
(∂w

∂t

)

dx dt (13)where w means an extension of w from (6) onto the whole Ω and the variation Var̺of ζ with respe
t to ̺ (i.e. total dissipation of energy within the damage pro
ess) is,in view of (2), given by a simple formula
Var̺(ζ ; t1, t2) =







a

∫

Ω

ζ(t1, x)−ζ(t2, x) dx if ζ(·, x) is nonde
reasingon [t1, t2] for a.a. x ∈ Ω,
+∞ otherwise.4



Let us denote by �B� and �BV� the Bana
h spa
e of everywhere de�ned boundedmeasurable and bounded-variation fun
tions, respe
tively. Moreover, let us abbre-viate I := (0, T ), Ī := [0, T ], Q := I × Ω, and Σ := I × Γ. It is important that, as
ϕ(e, ·, ·) is 
onvex, (13) together with the partial stability (12) allows us to deriveba
kwards (10). This authorizes us to introdu
e a de�nition of a solution:De�nition 2.1 (Weak/energeti
 solution.) We 
all (uε, ζε) with uε ∈
B(Ī; W 1,2(Ω; Rd)) and ζε ∈ B(Ī; W 1,p(Ω; Rd)) ∩ BV(Ī; L1(Ω)) a weak/energeti
 so-lution to the original problem (5) with the initial 
ondition (9) and the boundary
ondition (6)-(7) if(i) the partial stability (12) holds for all t ∈ [0, T ], i.e.

∫

Ω

ϕε

(

e(uε(t)), ζε(t),∇ζε(t)
)

dx ≤
∫

Ω

ϕε

(

e(uε(t)), ζ̃,∇ζ̃
)

+ ̺
(

ζ̃−ζε(t)
)

dx

∀0 ≤ ζ̃∈W 1,p(Ω). (14)(ii) the energy inequality (13) holds with (uε, ζε) in pla
e of (u, ζ),(iii) (5a) is satis�ed in the weak sense, i.e.
∫

Q

(ζε(t)+ε)Ce(uε(t)) : e(v) dx dt = 0 ∀t ∈ [0, T ], v ∈ W 1,2(Ω; Rd),

v|Σ = 0, (15)(iv) (6) and (9) hold with (uε, ζε) in pla
e of (u, ζ).As the for
e equilibrium (5a) is governed by minimization of the 
onvex fun
tional
Gε(t, ·, ζε) whi
h also governs the evolution of ζε, (5a) and the partial stability (12)is equivalent to the �full� stability

∫

Ω

ϕε(e(uε(t)), ζε(t),∇ζε(t)) dx ≤
∫

Ω

ϕε(e(ũ), ζ̃,∇ζ̃) + ̺(ζ̃−ζε(t)) dx

∀(ũ, ζ̃) ∈ W 1,2(Ω; Rd) × W 1,p(Ω),

ũ|Γ = w(t), ζ̃ ≥ 0. (16)The 
on�guration (uε(t), ζε(t)) is 
alled stable at t if it satis�es (16). In fa
t, under(16), the energy inequality (13) implies even energy equality at any time t, i.e.
Gε

(

t, uε(t), ζε(t)
)

+ Var̺(ζε; 0, t) = Gε

(

0, uε(0), ζ0

)

+

∫ t

0

∫

Ω

σe :e
(∂w

∂t

)

dx dt (17)with σe = (ζε + ε)Ce(uε). Note that (16) at t = 0 in fa
t qualify through (9)also ζ0 to be stable. The 
onditions (16)�(17) leads to a 
on
ept introdu
ed in[MiT99, MiT04, MTL02℄ (see also [Mie05℄ for a survey)5



De�nition 2.2 (Energeti
 solution.) We 
all (uε, ζε) with uε ∈
B(Ī; W 1,2(Ω; Rd)) and ζε ∈ B(Ī; W 1,p(Ω; Rd)) ∩ BV(Ī; L1(Ω)) an energeti
 solutionto the original problem (5) with the initial 
ondition (9) and the boundary 
ondition(6)-(7) if(i) the stability (16) holds for all t ∈ [0, T ],(ii) the energy balan
e (17) holds with (uε, ζε) in pla
e of (u, ζ) for all t ∈ [0, T ],and(iii) (6) and (9) hold with (uε, ζε) in pla
e of (u, ζ).As already said, De�nitions 2.1 and 2.2 are equivalent to ea
h other. Under thehard-devi
e loading w ∈ W 1,1(I; W 1/2,2(Γ)) (and thus 
onsidering an extension from
W 1,1(I; W 1,2(Ω)) for (13) or (17)), assuming p > d and stability of ζ0, the existen
eof a (weak) energeti
 solution (uε, ζε) is guaranteed for any ε > 0, 
f. [MiR06℄. Theproof 
onsists in limit passage with τ → 0 for an approximate solution obtainedby the impli
it time-dis
retization with a time step τ , whi
h leads to a re
ursiveminimization problemMinimize ∫

Ω

ζk
τε+ε

2
Ce(∇uk

τε) : e(∇uk
τε) − aζk

τε +
κ

p

∣

∣∇ζk
τε

∣

∣

p
dxsubje
t to 0 ≤ ζk

τε ≤ ζk−1
τε , uk

τε|Γ = w(kτ),

uk
τε ∈ W 1,2(Ω; Rd) , ζk

τε ∈ W 1,p(Ω),















(18)for k = 1, ..., K := T/τ with ζ0
τε := ζ0. Having (some) solutions (uk

τε, ζ
k
τε) to (18), weassemble the pie
ewise 
onstant interpolation (uτε, ζτε) so that uτε|((k−1)τ,kτ ] = uk

τεfor k = 1, ..., T/τ . Likewise, we de�ne also ζτε. Also, wτ denotes the pie
ewise
onstant interpolation of w. For the right-hand side of (19) below, we assume theprolongation ζτε(t) = ζ0
τε = ζ0 for t < 0, and similarly wτ (t) = w(0) and uτε(t) = u0

τεfor t < 0, with u0
τε minimizing Gε(0, ·, ζ0). We have the two-sided dis
rete energyestimate:

∫ t

0

∫

Ω

(ζτε+ε)Ce(uτε+w−wτ ) : e
(∂w

∂θ

)

dx dθ

≤ Gε

(

t, uτε(t), ζτε(t)
)

+ Var̺(ζτε; 0, t) − Gε(0, uτε(0), ζ0)

≤
∫ t

0

∫

Ω

(ζR
τε+ε)Ce(uR

τε+w−wR
τ ) :e

(∂w

∂θ

)

dx dθ (19)holds with t = kτ for any k = 1, ..., T/τ , where (·)R
τ denotes fun
tions �retarded� by

τ , i.e. [uR
τε](t) := uτε(t − τ), and where w has the meaning of an extension of theboundary 
onditions into Ω; 
f. [MiR06, Lemma 3.3℄.We are now going to formulate a suitable solution to the 
omplete damage problem.The essential pe
uliarity is that displa
ement u and the strain e(u) are no longerwell de�ned on areas that are 
ompletely damaged, i.e. where ζ = 0.At ea
h time t, we have, however, estimates on the stress (ζε(t)+ε)Ce(uε(t)) in

L2(Ω; Rd×d
sym) uniform with respe
t to ε > 0, where Rd×d

sym is the set of symmetri
6



d×d-matri
es. Ea
h weak 
luster point s is 
alled a realizable stress. The set of allrealizable stresses is weakly 
ompa
t in L2(Ω; Rd×d
sym), 
f. [BMR07, Proposition 2.8℄.A realizable stress s that minimizes s 7→ 1

2

∫

Ω
s : e(w(t)) dx is 
alled an e�e
tivestress at a given t. Let us remark that one 
an also de�ne an e�e
tive strain e ∈

L2
loc({x∈Ω; ζ(t, x) > 0}; Rd×d

sym) by
e(t, x) = C

−1
(

s(t, x)

ζ(t, x)

) for all t and a.a. x∈Ω su
h that ζ(t, x) > 0 (20)where C
−1 means the inversion of the mapping C : R

d×d
sym → R

d×d
sym . It is importantthat e(t) is a 
orresponding limit of e(uε(t)) for ε → 0, 
f. [BMR07, Se
t. 2.3℄ fordetails. Let us de�ne, for a given damage pro�le ζ , the e�e
tive stored energy asthe so-
alled Γ-limit [Dal95℄ of the 
olle
tion {Gε(t, u, ζ̃)}ε>0:

ggg(t, ζ) := lim inf
0≤ζ̃∈W 1,p(Ω)

ε→0+, ζ̃ ⇀ ζ in W 1,p(Ω)
min

u∈W 1,2(Ω;Rd)
Gε(t, u, ζ̃). (21)The so-
alled re
overy sequen
e of damage pro�les that asymptoti
ally rea
hes thevalue ggg(t, ζ) involves ζ̃ = (ζ − δ)+ when δ → 0+ su�
iently slowly with respe
t to

ε → 0+. An important result of [BMR07℄ is that for ea
h t and ζ there is uniquee�e
tive equilibrium stress s(t, ζ) (i.e., div s = 0). Hen
e, we 
an write
ggg(t, ζ) =

∫

Ω

1

2
s(t, ζ) : e(w(t)) +

κ

p

∣

∣∇ζ
∣

∣

p
dx. (22)Also, we have an important formula for the power of external loading:

∂ggg

∂t
(t, ζ) =

∫

Ω

s(t, ζ) : e
(∂w

∂t

)

dx. (23)Our de�nition for the 
omplete damage is based on the energeti
-solution 
on
eptas in De�nition 2.2.De�nition 2.3 (Energeti
 solution for 
omplete damage.) The pro
ess ζ :
[0, T ] → W 1,p(Ω) is 
alled an energeti
 solution to the problem given by the data ϕ,
̺, w, and ζ0, if, beside (9), also(i) ζ ∈ BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,p(Ω)),(ii) it is stable for all t ∈ [0, T ] in the sense that

ggg
(

t, ζ(t)
)

≤ ggg(t, ζ̃) +

∫

Ω

̺
(

ζ̃−ζ(t)
)

dx ∀0 ≤ ζ̃∈W 1,p(Ω), (24)(iii) and, for any 0 ≤ t1 < t2 ≤ T , the energy equality holds:
ggg
(

t2, ζ(t2)
)

+ Var̺(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω

s(t, ζ(t)) :e
(∂w

∂t

)

dx dt, (25)in parti
ular, the fun
tion t 7→
∫

Ω
s(t, ζ(t)) : e(∂w

∂t
(t)) dx belongs to L1(0, T ).7



Existen
e of an energeti
 solution has been proved in [BMR07℄ by 
onvergen
e ofthe above introdu
ed regularization for ε → 0.Proposition 2.4 (Existen
e of energeti
 solutions, 
onvergen
e of (uε, ζε).)Let p > d and w ∈ C1([0, T ]; W 1/2,2(Γ; Rd)), Then, there exist a subsequen
e {εn}n∈N
onverging to 0 and a pro
ess ζ : [0, T ] → W 1,p(Ω) being an energeti
 solutiona

ording to De�nition 2.3 su
h that the following holds for all t ∈ [0, T ]:(i) Gεn
(t, uεn

(t), ζεn
(t)) → ggg(t, ζ(t)),(ii) Var̺(ζεn

; 0, t) → Var̺(ζ ; 0, t),(iii) ζεn
(t) → ζ(t) strongly in W 1,p(Ω),(iv) (ζεn
(t) + ε)C(e(uεn

(t))) ⇀ s(t, ζ(t)) weakly in L2(Ω; Rd×d
sym).Remark 2.5 (Quasi-stress.) In fa
t, we have bounded in B(Ī; L2(Ω; Rd×d

sym)) notonly the stress (ζε+ε)Ce(uε) but even √
ζε+εCe(uε), whi
h thus 
onverges (as asubsequen
e) weakly* in L∞(I; L2(Ω; Rd×d

sym)) to some χ. Let us 
all it quasi-stress.We have s =
√

ζχ for the 
orresponding e�e
tive stress s and, by (20), χ =
√

ζCewith the e�e
tive strain on the part with ζ > 0. Contrary to the stress itself whi
h
onverges even L2-strongly to zero on the 
ompletely damaged part, 
f. [BMR07,Proposition 2.5℄, √ζε+εCe(uε) need not 
onverge to zero on this part.Remark 2.6 (Large strains.) Generalization for stored energies that are non-quadrati
 in terms of strain seems di�
ult, however. For in
omplete damage (or,in other words, ε > 0 �xed) we refer to [MiR06℄ where su
h a model was analyzedeven at large strains and a unilateral 
onta
t.3 Numeri
al implementation, 2D 
omputational sim-ulationsIn order to arrive at an implementable numeri
al algorithm, we perform a spatialdis
retization of the time-in
remental minimization problem (18). To that end,we introdu
e �nite-dimensional spa
es Uh ⊂ W 1,2(Ω; R2) and Zh ⊂ W 1,p(Ω) and
onsider the following minimization problem:Minimize ∫

Ω

ζk
τhε+ε

2
Ce(∇uk

τhε) : e(∇uk
τhε) − aζk

τhε +
κ

p

∣

∣∇ζk
τhε

∣

∣

p
dxsubje
t to 0 ≤ ζk

τhε ≤ ζk−1
τhε , uk

τhε|Γ = w(kτ),

uk
τhε ∈ Uh , ζk

τhε ∈ Zh















(26)for k = 1, ..., K := T/τ with (u0
τhε, ζ

0
τhε) := (u0, ζ0), i.e. the dis
retized in
rementalproblem leads to a non-
onvex, box-
onstrained optimization program. Note thatthe 
onvergen
e of the fully dis
rete solution to the solution of the spa
e-time 
on-tinuous problem is guaranteed thanks to abstra
t approximation results availablein [MiRo℄. 8



In the a
tual numeri
al implementation, the spatial dis
retization is performed usingthe linear 
onforming �nite elements, e.g. [BiS96, Bra07℄. Moreover, for 
omputa-tional e�
ien
y, we restri
t our attention to d = 2 and dare to 
hoose p = 2 (whi
h�ts with the theory presented in Se
tion 2 only �up to epsilon� as we have required
p > d).For a given regularization parameter ε and the time level k, we express the dis
rete�elds in the form

uk
τhε(x) = Nu

h(x)uk
h, ζk

τhε(x) = N
ζ
h(x)ζk

h, (27)where uk
h and ζk

h denote ve
tors of the nodal values of displa
ement and damageparameter �elds, respe
tively (indi
es τε are omitted in the sequel for the sake ofbrevity) and Nu
h and N

ζ
h denote the operators of pie
ewise linear basis fun
tions.The dis
rete problem (26) 
an now be re-written in a fully algebrai
 formatMinimize 1

2
ukT

h Ku
h

(

ζk
h

)

uk
h +

1

2
ζkT

h K
ζ
hζ

k
h + f

ζT

h ζk
hsubje
t to 0 ≤ ζk

h ≤ ζk−1
h , uk

h,D = wD(kτ)







(28)with 
omponents of wD storing the nodal displa
ements on the Diri
hlet part of theboundary. The individual matri
es are provided by:
Ku

h (ζh) =

∫

Ωh

BuT

h (x)
((

ε + N
ζ
h(x)ζh

)

C(x)
)

Bu
h(x) dx, (29)

K
ζ
h =

∫

Ωh

B
ζT

h κ(x)Bζ
h(x) dx, (30)

f
ζ
h = −

∫

Ωh

a(x)N ζT

h (x) dx, (31)where the B operators 
ontain derivatives of the shape fun
tions and C is the Voigtrepresentation of the material sti�ness tensor C; see e.g. [BiS96℄.The dis
rete formulation (28) leads to a (usually large-s
ale) non-
onvex program.Nevertheless, re
ognizing that the obje
tive fun
tion is quadrati
 separately in uk
hand ζk

h and exploiting the formal similarity between the ε-regularized damage modeland the Fran
fort-Marigo variational approa
h to fra
ture [BFM00℄, the problem (28)
an be e�
iently solved employing a variant of the alternate minimization algorithmproposed re
ently by Bourdin in [Bou07, Bou℄. In the 
urrent 
ontext, the in
remen-tal version of algorithm is brie�y summarized in Table 1. In ea
h internal iteration,the minimization problem with respe
t to u (Step 4) redu
es to the solution ofa sparse system of linear equations, while the subsequent sparse box-
onstrainedproblem is solved using a re�e
tive Newton method introdu
ed in [CoL96℄.The 
onvergen
e of the alternate minimization was studied by Bourdin in [Bou07℄,where it was shown that the algorithm 
onverges to a 
riti
al point of the dis-
retized problem in a �nite number of iterations. Of 
ourse, there is no guaran-tee that the 
riti
al point is a global minimizer of the non-
onvex obje
tive fun
-tion, whi
h is a 
ru
ial assumption of the theoreti
al framework. This obsta
le9



Table 1: Con
eptual implementation of the optimization algorithm for time level kand an initial value of interval variable ζ(0).1: Set j = 02: repeat3: Set j = j + 14: Solve u(j) = arg min
uD=wD(kτ)

1

2
uTKu

h

(

ζ(j−1)
)

u5: Solve ζ(j) = arg min
0≤ζ≤ζ

k−1

h

1

2
uT(j)

Ku
h

(

ζ
)

u(j) +
1

2
ζTK

ζ
hζ + f

ζ
h

T

ζ6: until ‖ζ(j) − ζ(j−1)‖∞ ≤ δ7: Set uk
h = u(j), ζk

h = ζ(j)
an be, for example, resolved by resorting to the global sto
hasti
 optimization ap-proa
hes [HJK00, IKLK04, MLZS00℄. Su
h te
hniques, however, require very largenumber of iterations and as su
h are appli
able only to very inexpensive obje
tivefun
tions. Fortunately, it is possible to 
onstru
t a feasible numeri
al approa
hexploiting the two-sided energeti
 estimates (19).To that end, 
onsider the dis
retized version of (19)
− η +

k
∑

j=1

∫ jτ

(j−1)τ

∫

Ωh

(ζj
τhε+ε)Ce(uj

τhε+w−wτ ) : e
(∂w

∂θ

)

dx dθ

≤ Gε

(

kτ, uk
τhε, ζ

k
τhε

)

+ Var̺(ζτhε; 0, kτ) − Gε(0, u
0
τhε, ζ

0
hε)

≤ η +

k
∑

j=1

∫ jτ

(j−1)τ

∫

Ωh

(ζj−1
τhε +ε)Ce(uj−1

τhε+w−wR
τ ) :e

(∂w

∂θ

)

dx dθ (32)where η is an energy toleran
e parameter introdu
ed for the numeri
al implemen-tation. The previous 
ondition is used to dete
t lo
al minimizers: if the result ofthe alternate minimization algorithm ζk
h fails to verify the inequality (32), the al-gorithm is restarted from the previous time level with ζk

h used as an initial valuefor the minimization algorithm instead of ζk−1
h . This pro
edure is repeated until anadmissible solution is found, see Table 2 for additional details. It is worth notingthat the resulting algorithm shares similar features with the ba
ktra
king s
hemeintrodu
ed by Bourdin [Bou07℄ in the framework of variational fra
ture theories.Performan
e of the proposed algorithm will be illustrated on two ben
hmark prob-lems inspired by [SAS04℄: an inhomogeneous and a pre-not
hed spe
imen, see Fig-ure 1. The 
orresponding geometri
 and material data together with the algorithmparameters are gathered in Figure 1 and Table 3, respe
tively. Both stru
tures areassumed to be in the plane stress state and are subje
t to a proportional-in-timeaxially symmetri
 hard-devi
e loading. In both 
ases, the spatial dis
retization wasperformed using the unstru
tured mesh generator T3D [Ryp98℄ and the problem sizewas redu
ed using symmetries of the spe
imens. The analyzed time interval [0, 1] wasde
omposed into 100 identi
al time steps (a physi
al dimension of time is omitted in10



Table 2: Con
eptual implementation of the time stepping pro
edure.1 : Set k = 1, ζ−1
h = 0, ζ0

h = 0, ζ(0) = 02 : repeat3 : Determine ζk
h using the alternate minimization algorithmfor time tk and initial value ζ(0).4 : Set ζ(0) = ζk

h5 : if two-sided inequality (32) is satis�ed6 : Set k = k + 17 : else8 : Set k = k − 19 : end10 : until k ≤ K

(a) 4 m

1 m

0.2 m

0.2 mu(t) u(t)

x

y
Inhomogeneity
Threshold a/2

(b)
2 m

1 m

0.5 m

v(t)

v(t)

Notch

Figure 1: S
heme of simulated experiments; (a) inhomogeneous spe
imen, (b) pre-not
hed spe
imenthe sequel be
ause of rate-independen
e). Finally, for the inhomogeneous spe
imen,the damage lo
alization is triggered by pre-existing imperfe
tions introdu
ed by aredu
ed a
tivation threshold in the shaded area on the axis of symmetry.The resulting energeti
s for the inhomogeneous spe
imen is displayed in Figure 2 fora representative 
hoi
e of the ε and h parameters. Clearly, in its basi
 version, thedis
rete solution obtained by the alternate minimization algorithm fails to provide anappropriate energeti
 solution to the problem. The two-sided inequality is satis�edonly in the initial stage, where the spe
imen stays mainly elasti
. At time t ≈ 0.61,the damage propagates simultaneously through the spe
imen, as manifested by thedrop of the sum of the globally dissipated and the Gibbs energy, see Figure 2(a).Even after this instant, however, this quantity in
reases, whi
h is the 
onsequen
eof the non-zero value of regularization parameter ε. Moreover, the damage pro�lestill evolves in the subsequent time levels, leading to the in
rease in the dissipatedenergy balan
ed by the 
ontribution of the Gibbs energy.With the ba
ktra
king option a
tive, however, the algorithm dete
ts the lo
al min-imizer at t ≈ 0.61 and, following the dotted line in Figure 2(a), returns to the timelevel where the in
remental two-sided inequality is satis�ed. After the ba
ktra
k-11
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(a) (b)Figure 2: Global energeti
s of the inhomogeneous spe
imen (ε = 5 · 10−2, h =
0.03 m); (a) Without ba
ktra
king (energy balan
e fails), (b) with ba
ktra
king (anapproximate energeti
 solution)ing stage is 
ompleted, the alternate minimization algorithm is 
apable of �ndingan approximate energeti
 solution, 
f. Fig. 2(b). As further illustrated by Fig. 3,evolution of the damage pro�le for the algorithm with ba
ktra
king is more gradualwhen 
ompared with the basi
 variant.Additional numeri
al tests summarized in Figures 4 demonstrate the �mesh-independent�behavior of the method, i.e. the fa
t that the global energeti
 response is almostindependent of the dis
retization parameter h. The in�uen
e of the energy regular-ization parameter ε, however, is mu
h stronger, 
f. Figure 4(b). As ε → 0, the algo-rithms tries to reprodu
e the one-dimensional optimal damage pro�le ζ(x, y) ≈ |x|α,derived in [BMR07℄.The same set of numeri
al experiments was exe
uted for the pre-not
hed spe
imenleading to the results appearing in Figures 5, 6 and 7. When 
ompared to theinhomogeneous spe
imen, the global response shows similar trends for algorithmswith and without ba
ktra
king.It is further 
on�rmed by Figure 8 that the numeri
al results are almost independentTable 3: Parameter of the damage model and in
remental algorithmYoung's modulus, E 27 GPaPossion's ratio, ν 0.2Fa
tor of in�uen
e, κ 10 Jm−2A
tivation threshold, a (see [FrN96℄) 500 Jm−3Maximal pres
ribed displa
ement for the inhomogeneous spe
imen 5 · 10−4 mMaximal pres
ribed displa
ement for the pre-not
hed spe
imen 2.25 · 10−4 mTime step, τ 0.01Damage pro�le toleran
e, δ 10−6Two-sided energy inequality toleran
e, η 10−312
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t = 0.80Figure 3: Time evolution of ζ �eld for the inhomogeneous spe
imen h = 0.03 m,
ε = 5 · 10−2, displa
ements are s
aled by a fa
tor 100 and only a quarter of thespe
imen is shown.of the spatial dis
retization parameter h, whi
h is 
onsidered to be an essentialrequirement for any damage model in the engineering literature. The extent ofdamage zone depends on the value of the regularization parameter ε (related to a�residual� energy after the 
omplete damage). As ε → 0, however, the width of thelo
alized damage zone, displayed in Figure 9, remains still �nite and insensitive tospatial dis
retization.Remark 3.1 (Clapeyron prin
iple.) Similarly to [KMR06℄, it 
an be observed thatthe work of external load is approximately equally distributed to the dissipatedenergy Varρ and the stored energy Gε after the damage initiation; the e�e
t known asthe Clapeyron prin
iple for slowly loaded bodies with vis
ous damping, 
f. [FoT03℄.The deviation from the ideal 1 : 1 ratio depends mainly on the energy regularizationparameters ε, see Figures 4 and 7, whi
h makes a 
ertain portion of the stored energy�unavailable� to the damage pro
ess. In addition, due to the lo
alized 
hara
ter ofdamage, only a part of the work of the external load 
an 
ontribute to the dissipativepro
esses (analogously to the beginning of the loading program where no damageo

urs).
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(a) (b)Figure 5: Global energeti
s for the pre-not
hed spe
imen (ε = 10−2, h = 0.03 m);(a) Without ba
ktra
king (energy balan
e fails), (b) with ba
ktra
king (an approx-imate energeti
 solution)4 Damage in vis
oelasti
 media with inertiaFinally we in
lude also some rate-dependent phenomena, in parti
ular vis
osity andinertia. Combination with vis
osity has been addressed in Maxwellian rheology(even with plasti
ity) in [FeS03℄ and in the Kelvin-Voigt rheology in [HSS01, PPS07,SHS06, CFKSV06℄.We will 
onsider linear vis
osity in the Kelvin-Voigt rheology, i.e. the total stress σis 
omposed from the elasti
 
ontribution σe := ζCe(u) as before and now also thevis
ous 
ontribution σv := ζDe(∂u
∂t

) where C is a positive-de�nite elasti
ity tensoras before and D is a positive-de�nite vis
osity tensor satisfying Dijkl = Djikl = Dklij.Note that, like the elasti
 response, it is natural to assume that also the vis
ousresponse depends on the damage ζ and vanishes in the 
ompletely damaged. Thissubstantially di�ers from previous studies [FeS03, HSS01, PPS07, SHS06℄ whi
h 
on-14
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e study for the pre-not
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ontains 377 triangular elements,
h = 0.03 m 
orresponds to 1, 229 elements and h = 0.02 m to 1, 773 elements.sidered vis
osity un
hanged even in damaged material. Like in [PPS07, SHS06℄, wealso 
onsider inertia related to the mass density ρ. Naturally, 
ontrary to the vis
o-elasti
 response, the inertial e�e
ts are independent of damage be
ause the mass isnot destroyed by damaging inter-atomi
 links. Thus the rate-independent evolutionof the damage is now 
oupled with rate-dependent evolution of the displa
ement.Due to the inertial e�e
ts, we 
an now impose dead loading by a bulk for
e f . Forsimpli
ity, we then do not 
onsider any hard-devi
e loading, i.e. we impose only theboundary 
onditions (7) with Γ = ∅. Altogether, formally, we 
onsider

ρ
∂2u

∂t2
− div

(

σv + σe

)

= f, σv = ζDe
(∂u

∂t

)

, σe = ζCe(u), (33a)
∂̺

(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ)

σi :=
1

2
Ce(u):e(u) − div(κ|∇kz|p−2∇ζ). (33b)Of 
ourse, now we must pres
ribe also the initial 
ondition on the displa
ement and15
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ε = 5 · 10−2 ε = 10−2 ε = 10−4Figure 9: Examples of the ζ �eld distribution for t = 1 (h = 0.02 m, ε → 0);displa
ements are s
aled by a fa
tor 100 and only a half of the spe
imen is displayed.the velo
ity, so altogether we have
u(0, ·) = u0 ∈ W 1,2(Ω; Rd),

∂u

∂t
(0, ·) = u̇0 ∈ L2(Ω; Rd),

ζ(0, ·) = ζ0 ∈ W 1,p(Ω). (34)We assume naturally 0 ≤ ζ0 ≤ 1.Similarly as before, let us take ε > 0 and 
onsider the regularized problem:
ρ
∂2u

∂t2
− div

(

(ζ+ε)De
(∂u

∂t

)

+ (ζ+ε)Ce(u)
)

= f, (35a)
∂̺

(∂ζ

∂t

)

+
1

2
Ce(u) : e(u) − div(κ|∇z|p−2∇ζ) + N[0,+∞)(ζ) ∋ 0. (35b)Its weak solution, let us denote it by (uε, ζε), 
an be obtained by rather standardmethods. The for
e equilibrium (35a) in the weak form looks as

∫ T

0

(

〈

ρ
∂2uε

∂t2
, v

〉

+

∫

Ω

(ζε+ε)
(

De
(∂uε

∂t

)

+ Ce(uε)
)

: e(v) − f · v dx

)

dt = 0 (36)16



for all v ∈ L2(I; W 1,2(Ω; Rd)) with 〈·, ·〉 standing for the duality between W 1,2(Ω; Rd)∗and W 1,2(Ω; Rd). Like (14) and (13), we have now the �partial stability�
∫

Ω

ζε(t)+ε

2
Ce(uε(t)) : e(uε(t)) +

κ

p
|∇ζε(t)|p dx

≤
∫

Ω

ζ̃+ε

2
Ce(uε(t)) : e(uε(t)) +

κ

p
|∇ζ̃|p + ̺

(

ζ̃−ζε(t)
)

dx ∀0 ≤ ζ̃ ∈ W 1,p(Ω) (37)for any t ∈ [0, T ] with a from (2), and an energy inequality
∫

Ω

ρ

2

∣

∣

∣

∂uε

∂t
(T )

∣

∣

∣

2

+ Gε(T, uε(T ), ζε(T )) dx + Var̺(ζε; 0, T )

+

∫

Q

(ζε+ε)De
(∂uε

∂t

)

: e
(∂uε

∂t

)

dx dt

≤
∫

Ω

̺

2
|u̇0|2 + Gε(0, u0, ζ0) +

∫

Q

f ·∂uε

∂t
dx dt; (38)here we used ζ0 = 1 from (34) and, for 
oming from (13) to (38), we relied on (36)for all v := ∂uε

∂t
∈ L2(I; W 1,2(Ω; Rd)). Note that e(uε(T )) is well de�ned be
ause

∂uε

∂t
∈ L2(I; W 1,2(Ω; Rd)) just due to the regularization by ε > 0.Now, as no minimization of stored energy applies, we unfortunately do not have atour disposal the formula like 1

2

∫

Ω
σe : e(w) dx for the stored energy, 
f. (22). To avoidusage of e(u) on the fully damaged parts, the stored energy ∫

Ω
1
2
ζCe(u) : e(u) dx 
analternatively be written as ∫

Ω
1
2
χe:C

−1χe dx where we have denoted χe :=
√

ζCe(u)and, as above, C
−1 means the inversion of the mapping C : R

d×d
sym → R

d×d
sym . As inRemark 2.5, let us 
all χe an elasti
 quasi-stress; its physi
al dimension is againPa=J/m3 as a standard stress. Similarly, to avoid usage of e(∂u

∂t
), we introdu
e thevis
ous quasi-stress χv :=

√
ζDe(∂u

∂t
).Also, let us denote the 
orresponding quasi-stresses for (35), i.e.

χe,ε =
√

ζε+ε Ce(uε) and χv,ε =
√

ζε+ε De
(∂uε

∂t

)

. (39)Then, in terms of these quasi-stresses, (36) rewrites to
∫ T

0

(

〈

ρ
∂2uε

∂t2
, v

〉

+

∫

Ω

√

ζε+ε
(

χv,ε:D
−1e(v) + χe,ε:C

−1e(v)
)

− f · v dx

)

dt = 0.(40)Moreover, (37) and (38) 
an be written as
∫

Q

1

2
χe,ε:C

−1χe,ε +
κ

p
|∇ζε|p dx dt ≤

∫

Q

1

2

ζ̃+ε

ζε+ε
χe,ε:C

−1χe,ε

+
κ

p
|∇ζ̃|p − ̺

(

ζ̃−ζε

)

dx dt ∀0 ≤ ζ̃ ∈ W 1,p(Ω) (41)17



to be satis�ed for all t ∈ I and
∫

Ω

ρ

2

∣

∣

∣

∂uε

∂t
(T )

∣

∣

∣

2

+
1

2
χe,ε(T ):C−1χe,ε(T ) +

κ

p
|∇ζε(T )|p + δ[0,+∞)(ζε(T )) dx

+ Var̺(ζε; 0, T ) +

∫

Q

χv,ε:D
−1χv,ε dx dt

≤
∫

Ω

̺

2
|u̇0|2 +

1+ε

2
Ce(u0):e(u0) +

κ

p
|∇ζ0|p dx +

∫

Q

f ·∂uε

∂t
dx dt. (42)We derive a-priory estimates that are independent of ε > 0 by testing (35a) by ∂uε

∂t
.It is essential to use ∂ζε

∂t
≤ 0 and symmetry and positive de�niteness of C to obtain

1

2

∂

∂t

(

(ζε+ε)Ce(uε) : e(uε)
)

= (ζε+ε)Ce(uε) : e
(∂uε

∂t

)

+
1

2

∂ζε

∂t
Ce(uε) : e(uε)

≤ (ζε+ε)Ce(uε) : e
(∂uε

∂t

)

. (43)Thus
d

dt

∫

Ω

̺

2

∣

∣

∣

∂uε

∂t

∣

∣

∣

2

+
ζε+ε

2
Ce(uε) : e(uε) dx

+

∫

Ω

(ζε+ε)De(
∂uε

∂t
) : e(

∂uε

∂t
) dx ≤

∫

Ω

f · ∂uε

∂t
dx. (44)Assuming f ∈ L1(I; L2(Ω; Rd)), by Gronwall's inequality we obtain the bounds

∥

∥

∥

∂uε

∂t

∥

∥

∥

L∞(I;L2(Ω;Rd))
≤ C, (45a)

∥

∥

√

ζε+ε Ce(uε)
∥

∥

L∞(I;L2(Ω;Rd×d
sym ))

≤ Ce, (45b)
∥

∥

∥

√

ζε+ε De
(∂uε

∂t

)

∥

∥

∥

L2(Q;Rd×d
sym )

≤ Cv. (45
)
∥

∥ζε

∥

∥

BV(Ī;L1(Ω))∩L∞(I;W 1,p(Ω))
≤ C, (45d)with some 
onstants C, Ce, and Cv. In other words, ‖χv,ε‖L2(Q;Rd×d

sym ) ≤ Cv, and
‖χe,ε‖L∞(I;L2(Ω;Rd×d

sym )) ≤ Ce. From this, for 0 < ε ≤ 1, we also obtain
∥

∥

∥

∂2uε

∂t2

∥

∥

∥

L2(I;W 1,2(Ω;Rd)∗)+L1(I;L2(Ω;Rd))

= sup
‖v‖Y≤1

∫

Q

√

ζε+ε
(

χv,ε:D
−1e(v) + χe,ε:C

−1e(v)
)

− f ·v dx dt

≤ sup
‖v‖Y≤1

2

∫

Q

χv,ε:D
−1e(v) + χe,ε:C

−1e(v) − f ·v dx dt

≤ 2|D−1|Cv + 2|C−1|Ce + 2‖f‖L1(I;L2(Ω;Rd)). (46)where ‖u‖Y = ‖u‖L2(I;W 1,2(Ω;Rd)) + ‖u‖L∞(I;L2(Ω;Rd)).18



Unfortunately, it does not seem that any estimate for ∂χe,ε

∂t
is available, whi
h bringstroubles by de�ning values of χe,ε at parti
ular times in the limit. In the spirit ofDe�nitions 2.1 and 2.3 but balan
ing Helmholtz stored energy (sin
e the by-partintegration in time of the outer loading is no longer ne
essary and advantageous)and in view of the estimates (45), we 
an exploit the above relations (36), (39), (41),and (42) when putting ε = 0 for a de�nition of a weak/energeti
 solution to the
omplete-damage problem in the following way:De�nition 4.1 (Weak/energeti
 solution.) We 
all (u, χe, χv, ζ, E) with

u ∈ W 1,∞(I; L2(Ω; Rd)), (47a)
χe ∈ L∞(I; L2(Ω; Rd×d

sym)), (47b)
χv ∈ L2(Q; Rd×d

sym), (47
)
ζ ∈ BV(Ī; L1(Ω)) ∩ B(Ī; W 1,p(Ω)), (47d)
E ∈ BV(Ī) (47e)su
h that

e
(∂u

∂t

)

∈ L2
loc

(

{(t, x) ∈ Q; ζ(t, x) > 0}; Rd×d
sym

)

, (48a)
∂2u

∂t2
∈ L2(I; W 1,2(Ω; Rd)∗) + L1(I; L2(Ω; Rd)) (48b)a weak/energeti
 solution to the problem (33) with the initial 
onditions (34) andthe homogeneous Neumann boundary 
ondition, i.e. (7) with Γ = ∅, if

∫ T

0

(

〈

ρ
∂2u

∂t2
, v

〉

+

∫

Ω

√

ζ
(

χv:D
−1e(v) + χe:C

−1e(v)
)

− f · v dx

)

dt = 0 (49)for all v ∈ L2(I; W 1,2(Ω; Rd)), if the �partial stability�
∫

A

1

2
χe:C

−1χe +
κ

p
|∇ζ |p dx dt ≤

∫

A

1

2

ζ̃

ζ
χe:C

−1χe

+
κ

p
|∇ζ̃|p + ̺(ζ̃ − ζ) dx dt ∀0 ≤ ζ̃ ∈ Lp(I; W 1,p(Ω)) (50)and

χe =
√

ζ Ce(u) and χv :=
√

ζ De
(∂u

∂t

) on any open A ⊂ Qon whi
h ζ(t, x) > 0, (51)and if the energy inequality holds, i.e.
E(T ) +

∫

Ω

ρ

2

∣

∣

∣

∂u

∂t
(T )

∣

∣

∣

2

+ δ[0,+∞)(ζ(T )) dx + Var̺(ζ ; 0, T ) +

∫

Q

χv:D
−1χv dx dt

≤ E(0) +

∫

Ω

̺

2
|u̇0|2 dx +

∫

Q

f ·∂u

∂t
dx dt. (52)19



with E(0) =
∫

Ω
1
2
Ce(u0) : e(u0) + κ

p
|∇ζ0|p dx and, for all t1 ∈ I,

∫ t1

0

E(t) dt ≥
∫ t1

0

∫

Ω

1

2
χe:C

−1χe +
κ

p
|∇ζ |p dx dt. (53)Remark 4.2 Let us 
omment this de�nition espe
ially at the point that we 
laimmu
h less information on the 
ompletely damaged part than we did in the quasistati
evolution in Se
tion 2, whi
h is related with what we are able to prove. As a
onsequen
e, we also 
annot prove full energy balan
e as an equality. Anyhow,the granted a-priory estimates (45) and (46) give 
ertain solid base for engineering
al
ulations and De�nition 4.1 then indi
ates what information we 
an surely readfor the limit when ε approa
hes zero. In fa
t, we have bounds also on some otherderived quantities, e.g. (ζε+ε) ∂

∂t
(Ce(uε):e(uε)) whi
h equals to χe,ε:D

−1χv,ε whi
h isbounded due to (45b,
) in L2(I; L1(Ω)).Proposition 4.3 Let p > d and f ∈ L1(I; L2(Ω; Rd)), u0 ∈ W 1,2(Ω; Rd), u̇0 ∈
L2(Ω; Rd), and ζ0 ∈ W 1,p(Ω), 0 ≤ ζ0 ≤ 1. Then there exists a weak/energeti
solution in a

ord to De�nition 4.1.Proof. By (45b,
), we 
an 
hoose a subsequen
e su
h that χe,ε

∗⇀ χe in L∞(I; L2(Ω; Rd×d
sym))and χv,ε ⇀ χv in L2(Q; Rd×d

sym). Though the obtained χe need not be well de�nedat parti
ular time levels, the stored energy Eε : t 7→
∫

Ω
1
2
χe(t):C

−1χe(t) dx itself iswell de�ned and measurable be
ause its sum with the kineti
 energy has a boundedvariation whi
h is seen from (44) and (45
). By Helly's prin
iple, we 
hoose a sub-sequen
e so that also Eε(t) → E(t) for all t ∈ [0, T ].The limit passage in (40) uses ζε → ζ in Lq(Q) with any 1 ≤ q < +∞, whi
hfollows by a generalized Aubin-Lions' theorem [Rou05, Cor.7.9℄ from the estimate ζεin L∞(I; W 1,p(Ω)) ∩BV(Ī; L1(Ω)), and also it uses χe,ε
∗⇀ χe in L∞(I; L2(Ω; Rd×d

sym))and χv,ε ⇀ χv in L2(Q; Rd×d
sym)).The limit passage in (39) uses also the bounds of e(uε) and e(∂uε

∂t
) in L2(K; Rd×d

sym)on any 
ompa
t 
ylinder K of the form [0, t]×K0 on whi
h ζ > 0. Here we use avery spe
ial stru
ture of the problem that K0 ⊂ Ω su
h that ζ(t) > 0 on K0 impliesthat, for any δ > 0, there is ε0 su
h that for any 0 < ε ≤ ε0 we have ζε(t) + ε ≥ δfor all x ∈ K0; here we used that W 1,p(Ω) is embedded into C(Ω̄) be
ause p > d.Thus also ζε + ε ≥ δ for all (t, x) ∈ K = [0, t]×K0 be
ause ζε(·, x) is nonin
reasing.Then we 
an pass to the limit in (39) and 
over A in (51) by 
ylinders of the form
K above.The limit passage in the �partial� stability 
ondition (41) in the term

∫

Q

1

2

ζ̃+ε

ζε+ε
χe,ε:C

−1χe,ε dx dt =

∫

Q

1

2
(ζ̃+ε)Ce(uε) : e(uε) dx dtis more di�
ult than in the usual �full� stability (16) in the rate-independent 
ase.We must do it simultaneously with the left-hand-side term

∫

Q

1

2
(ζε+ε)Ce(uε) : e(uε) dx.20



Let us take 0 ≤ ζ̃ ≤ ζ and, following [BMR07, Proposition 2.10℄, put ζ̃δ := (ζ̃ − δ)+.Then, for any �xed δ > 0, we have ζ̃δ(t) ≤ ζε(t) if ε > 0 is small enough (dependingon t, however); re
all that p > d so that W 1,p(Ω) ⊂ C(Ω̄) 
ompa
tly. Simultaneously
ζ̃δ(t) → ζ̃(t) in W 1,p(Ω̄). Indeed, let us 
onsider an open ǫ-neighbourhood Oǫ(t) ofa 
ompa
t set N(t) := {x∈Ω̄; ζ̃(t, x) = 0}. Then, for δ > 0 small enough, ζ̃δ > 0 on
Ω̄\Oǫ(t). For a.a. x ∈ Oǫ(t)\N(t), we have either ζ̃δ(x) = 0 or ζ̃δ(t, x) = ζ̃(t, x) − δand also ∇ζ̃δ(t, x) = 0 or ∇ζ̃δ(t, x) = ζ̃(t, x). Hen
e, for δ > 0 small enough,

∫

Ω

∣

∣∇ζ̃δ(t) −∇ζ̃(t)
∣

∣

p
dx =

∫

Oǫ(t)\N(t)

∣

∣∇ζ̃δ(t) −∇ζ̃(t)
∣

∣

p
dx

≤
∫

Oǫ(t)\N(t)

∣

∣∇ζ̃(t)
∣

∣

p
dx. (54)Yet, the last expression 
an be pushed to zero with ǫ → 0 be
ause |∇ζ̃(t)|p ∈ L1(Ω) isabsolutely 
ontinuous for a.a. t ∈ [0, T ]. Then also ∫ T

0

∫

Ω

∣

∣∇ζ̃δ(t)−∇ζ̃(t)
∣

∣

p
dx dt → 0by the Lebesgue dominated-
onvergen
e theorem; the 
ommon integrable majorantis t 7→ ‖∇ζ̃(t)‖p

Lp(Ω;Rd)
.Then, by the �partial� stability for ζε, we have

∫

Q

̺(ζε − ζ̃δ) dx dt

≥
∫

Q

(ζε+ε

2
− ζ̃δ+ε

2

)

Ce(uε) : e(uε) +
κ

p
|∇ζε|p −

κ

p
|∇ζ̃δ|p dx dt

=

∫

Q

1

2

(

1 − ζ̃δ+ε

ζε+ε

)

χe,ε : C
−1χe,ε +

κ

p
|∇ζε|p −

κ

p
|∇ζ̃δ|p dx dt. (55)Now we use that (ζ̃δ+ε)/(ζε+ε) = ζ̃δ/ζ 
onverges strongly in any Lq(K), q < +∞,and weakly* in L∞(K) on every 
ompa
t 
ylinder K of the form [0, t] × K0 where

ζ > 0, as already used above. Then, by the weak lower semi
ontinuity, we obtain
∫

K

̺(ζ − ζ̃δ) dx dt ≥
∫

K

1

2

(

1 − ζ̃δ

ζ

)

χe : C
−1χe +

κ

p
|∇ζ |p − κ

p
|∇ζ̃δ|p dx dt. (56)Then we pass δ → 0 and use ζ̃δ → ζ̃ weakly* in L∞(Q) be
ause we proved alreadystrong 
onvergen
e in Lp(I; W 1,p(Ω)) and bounds in L∞(Q). When 
overing Ainvolved in (50) by 
ylinders of the form K, we obtain just (50).Limit passage in (42) is then by weak lower-semi
ontinuity. Here we use also thatthat Eε(t) → E(t) and the weak lower semi
ontinuity, hen
e we get also (53). 2Referen
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