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Abstract

A model for the evolution of damage that allows for complete disintegration
is addressed. Small strains and a linear response function are assumed. The
“flow rule” for the damage parameter is rate-independent. The stored energy
involves the gradient of the damage variable, which determines an internal
length-scale. Quasi-static fully rate-independent evolution is considered as
well as rate-dependent evolution including viscous/inertial effects. Illustrative
2-dimensional computer simulations are presented, too.

1 Introduction

Damage, as a special sort of inelastic response of solid materials, results from mi-
crostructural changes under mechanical load. Routine computational simulations
based on various models are widely performed in engineering, although mostly with-
out being supported by rigorous mathematical and numerical analysis.

We will consider damage as a rate-independent process. This is often, although
not always, an appropriate concept and has applications in a variety of industri-
ally important materials, especially to concrete [Fre02, FrN95, Ort87|, filled poly-
mers [DPO94], or filled rubbers [GoS91, Mie95, MiK00]. Being rate-independent,
it is necessarily an activated process, i.e. to trigger a damage the mechanical stress
must achieve a certain activation threshold. The mathematical difficulty is reflected
in the fact that only local-in-time existence for a simplified scalar model or for a
rate-dependent 0- or 1-dimensional model has been obtained, see [BoS04, DMTO01,
FKNS98, FKS99|. The 3-dimensional situation was investigated in [FrG06, MiR06,
MiRo| with the focus to incomplete damage. The main focus of this paper is on
complete damage, i.e. the material can completely disintegrate and its displacement
completely loses any sense on such regions. We show how mathematical modeling
can be used to derive well-posed models by suppressing the use of the displacement
u and formulating everything in terms of stresses and energies. In Sections 2-3 we
will neglect all rate dependent processes like viscosity and inertia so that the damage
process is quasistatic and fully rate-independent. Eventually, in Sections 4, we will
combine a rate-independent damage process with viscosity and inertia which are, of
course, rate-dependent.

We consider an anisotropic material but confine ourselves to a materials with linear
elastic response and an isotropic damage using only one scalar damage parameter un-
der small strains (as in [BBT01, BoS04, Fre02, FrN96|). Moreover, we use gradient-
of-damage theory [DBH96, Fre02, FrN95, FrN96, LoA99, Mau92, PMG04, StHO03]
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expressing a certain nonlocality in the sense that damage of a particular spot is to
some extent influenced by its surrounding, leading to possible hardening or softening-
like effects, and introducing a certain internal length scale eventually preventing
damage microstructure development. From the mathematical viewpoint, the dam-
age gradient has a compactifying character and opens possibilities for the successful
analysis of the model. Anyhow, some investigations are still possible without gra-
dient of damage, as shown in [FrGO6] for incomplete damage, leading to a possible
microstructure in the damage profile.

The goal of this article is to survey and further develop basic mathematical tools
focused on complete damage.

2 Complete quasistatic damage at small strains

We will consider specific stored energy ¢ quadratic in terms of small-strain tensor e,
linear in terms of scalar damage parameter z, and convex in terms of a gradient of
the damage g:

1 K
ole,z,9) = QzCe : €+5\9|”+5[0,+oo>(2), (1)

where C € R¥*4xdxd ig 5 positive-definite elasticity tensor satisfying Cijri = Cjip =
Chiij, d € N denotes the considered spatial dimension, and £ > 0 is a so-called
factor of influence, and &)y 1) is the indicator function of the interval [0, 4-o00),
i.e. 0o 400)(2) = 0 for z > 0 while 6y 00)(2) = 400 otherwise. In this section, we
consider the first-order gradient of the damage profile ¢, hence we put V((¢, z) in
place of the variable ¢ € R%. Another ingredient of the damage-evolution model is
a specific dissipated energy

. —az if 2<0,
o(2) = { +00  elsewhere. (2)

where a > 0 determines the phenomenology how much energy (per d-dimensional
“volume”) is dissipated by accomplishing the damage process, i.e. by decreasing z
from 1 to 0. The value 400 reflects that we consider damage as a unidirectional
process, i.e. damage can only develop, but the material can never heal. Note that o is
degree-1 homogeneous, which is related with the intended rate-independent evolution
of the damage process. Simultaneously, a is also activation threshold determining
the level of the “inelastic” driving force o3 := ¢/ (e, 2, g) — divy] (e, z,g) (with the
physical dimension as stress) that triggers the damage process.

As we want to focus on complete damage where the material can completely disin-
tegrate, in the quasi-static case we cannot have loading by dead load as e.g. grav-
ity load. Thus we will consider a “hard-device” loading by time-varying Dirichlet
boundary conditions but zero bulk forces. Considering the “elastic” stress tensor



0. = ¢l(e, z,g) that should be in quasistatic equilibrium. Altogether formally we
consider the problem

div(e) =0, o= Glle() ¢ VC) = (Tew), efu) = LLIVE (50
89(%) +oi+op 2 07 oy € N[0,+oo)(<-)>
oi := ¢ (e(u), ¢, V() — divyy (e(u), ¢, V()
_ %Ce(u) + e(u) — div(s|VCP2V0), (3b)

where 0p denotes the subdifferential of the convex function o. We also denoted o, a
“reaction force” to the constraint 0 < ¢, and N o) = 9]0 +) denotes the normal
cone. In fact, as the evolution of { is unidirectional (here non-increasing in time)
and ¢ will be prescribed at the beginning, see (9) below, it always holds 0 < ((t,z) <
Co(z). Usually ¢y =1 is considered so even ¢ € [0,1] a.e. on @ := (0,T") x 2.

This is indeed to be understood only formally because in the completely damaged
part ¢ = 0 and displacements u as well as strain e(u) lose any sense.

Therefore, we will also consider the reqularized stored energy
1 K
pe(e,2,9) = S(z+e)Ce e+ 5|g\ + 0p0,+00)(2), (4)

and then the regularized problem

div(o,) =0, oo = (C+¢)Ce(u), (5a)
8@(%) +o0+0,30, 0r € Njo4+00)(€),
o = %Ce(u)  e(u) — div(s|VCP2V0).  (5b)

As we have the displacement well defined if € > 0, we can easily consider the Dirichlet
boundary conditions

ulp(t, x) = w(t, ) (6)

where I' C 02 is a part of the boundary of €2 where the hard-device loading is
applied. For simplicity, the remaining boundary conditions are considered as homo-
geneous Neumann one:

9%
ov
where v denotes the outer unit normal to the boundary 9 of ). Then we define
the Gibbs’ stored energy

Ce(u)y =0 on IO\ and k|V([P22 =0 on 09, (7)

%(g—i—a)Ce(u) ce(u)+ TIVCP i ulp = w(t, ) and
Ge(t,u, C) == p if 0 < ( a.e. on €, (8)

+00 elsewhere,



We still prescribe an initial condition ¢, for the damage profile:

¢(0) = G- (9)

0(2)}, the inclusion (5b) can equivalently be written as a variational inequality

By the definition of the subdifferential 0p(2) = {0€R; VZER : o(2) + (2—%)0 <

vz <g§> < o(2) + (5 — %) (01 + 0v) (10)

for a.a. (t,z) € Q := (0,T) x Q, where Q C R? is a considered domain occupied by
the body and T" > 0 a fixed time horizon. This could be used for a definition of a
weak solution.

Here, however, we can use homogeneity of o to formulate a more suitable concept
of so-called energetic solution. By (2), we have

o+ 0, € ag(gt) C 90(0) = [—a, +o0). (11)

By the definition of the subdifferential do(0) and properties of g, this means 0 =
0(0) < o(2) — (0y + 0y)Z for any Z € R. Written for Z — 2 instead of Z, we have
0 < o(2—2)+(0;+0,)(2—2). Further, by convexity of p.(e, -, -), we have ¢ (e, z,g) <
(,05(67 27@) o gl(g_z> - 52 ' (g_g) for any (517 52) S a(z,g)goe(ev Z?Q)' In particular, we
will use it for & = 1Ce : e 4 0, and & = (k|V(|P72V(). Altogether, substituting
e =e(u), g =V{(x) and z = ((z) we have

/Q%(e(U(t)),C(t%VC(t))dl’S/Q%(e(U(t)),& V() = (o1+0r) (C=¢(1)) da

< / oo (e(u(t)), &, V) + o(C—C(t)) de
VO < CeW'(Q). (12)

If ((¢) satisfies (12), we say that ((¢) is partially stable at t. Summing (5b) tested by
% with (5a) tested by 8(“ w) , using —(o+0,) % > o(%%) for any —(o5+0,) € do(%%),
integrating it over the tlme 1nterval 0,77, and applymg by-part integration in time,
we obtain formally the Gibbs-type energy balance

G (T, u(T), {(T)) + Vary(¢;0,T) < G (0, u(0 / /0’0 dxdt (13)

where w means an extension of w from (6) onto the whole © and the variation Var,
of ¢ with respect to o (i.e. total dissipation of energy within the damage process) is,
in view of (2), given by a simple formula

/C t1,2)—C(ty, x) dx  if (-, x) is nondecreasing
on [t1,ty] for a.a. x € Q,
otherwise.

VarQ(C tl, t2



Let us denote by “B” and “BV” the Banach space of everywhere defined bounded
measurable and bounded-variation functions, respectively. Moreover, let us abbre-
viate [ := (0,T), [ :=[0,T], Q := I x Q, and ¥ := [ x I'. It is important that, as
o(e,-,-) is convex, (13) together with the partial stability (12) allows us to derive
backwards (10). This authorizes us to introduce a definition of a solution:

Definition 2.1 (Weak/energetic solution.)  We call (u., () with u. €
B(I; WH2(Q; RY)) and . € B(I; WH(Q;RY) N BV(I; LY(Q)) a weak/energetic so-
lution to the original problem (5) with the initial condition (9) and the boundary
condition (6)-(7) if

(1) the partial stability (12) holds for all t € [0,T], i.e.

/Q e (e(ue(1)), (1), V(1)) dar < /Q e (e(ue(t)), ¢, V) + 0(C—C:(1)) da
Y0 < CeWlP(Q). (14)
(i) the energy inequality (13) holds with (ue, () in place of (u, (),
(iii) (ba) is satisfied in the weak sense, i.e.
/(Ca(t)—l—g)((:e(ua(t)) ce(v)dedt=0 Vt€0,T], ve W (QRY),
Q
U|2 = 07 (15)
(iv) (6) and (9) hold with (u., () in place of (u, ().
As the force equilibrium (5a) is governed by minimization of the convex functional

G-(t,-,(.) which also governs the evolution of (., (5a) and the partial stability (12)
is equivalent to the “full” stability

/Q oo (e(ua(1)), G (), VE() da < / e (e(@), 6, V) + o(C—Cu(1)) da
V(a,¢) € Wh2(Q:RY) x WHP(Q),
ilr =w(t), ¢>0. (16)

The configuration (u.(t),(.(t)) is called stable at t if it satisfies (16). In fact, under
(16), the energy inequality (13) implies even energy equality at any time , i.e.

ga(t,ua(t),g}(t))+Varg(§€;0,t):ga(O,ua(O),Co)+/0/Qae:e<%—qf) dedt  (17)

with 0, = (¢. + ¢)Ce(u.). Note that (16) at ¢ = 0 in fact qualify through (9)
also (y to be stable. The conditions (16) (17) leads to a concept introduced in
IMiT99, MiT04, MTLO02| (see also |[Mie05| for a survey)



Definition 2.2 (Energetic solution.) We call (ue,(.) with u. €

B(L; WE2(Q; RY)) and (. € B(I; WH(Q; RY)) N BV(I; LY(Q)) an energetic solution

to the original problem (5) with the initial condition (9) and the boundary condition

(6)-(7) if

(i) the stability (16) holds for all t € [0,T],

(i) the energy balance (17) holds with (u.,(.) in place of (u,() for all t € [0,T],
and

(iii) (6) and (9) hold with (u., () in place of (u,().

As already said, Definitions 2.1 and 2.2 are equivalent to each other. Under the
hard-device loading w € W (I; W/22(T")) (and thus considering an extension from
WE(I; Wh2(Q)) for (13) or (17)), assuming p > d and stability of (y, the existence
of a (weak) energetic solution (uc, (.) is guaranteed for any € > 0, cf. [MiR06]. The
proof consists in limit passage with 7 — 0 for an approximate solution obtained
by the implicit time-discretization with a time step 7, which leads to a recursive
minimization problem

k
Minimize / CTa_l_E Ce(VuF) : e(Vur) —ac + E}VCfe}p dx
p
subject to 0 < Ck < ¢kt uf_|p = w(kT), (18)
ub € WRORY |k e WhH(Q),

for k=1,..., K := T /7 with % := (. Having (some) solutions (u*_, ¢¥) to (18), w
assemble the piecewise constant interpolation (u,c, (o) so that w.c|(k—1)rkr = Usre
for k = 1,...,T/7. Likewise, we define also (;.. Also, w, denotes the piecewise
constant interpolation of w. For the right-hand side of (19) below, we assume the
prolongation (.. (t) = ¢°. = (o for t < 0, and similarly w, (t) = w(0) and u,.(t) = u2,
for ¢ < 0, with uY. minimizing G.(0,-,(s). We have the two-sided discrete energy
estimate:

/t/(CT€+E)Ce(uT€+w—wT) : (ge) dx dé
< G (t e (), Gre(t)) + Vary(Gre; 0,) — G (0, u(0), Go)

// R 4 o) Ce(ul +w—wh): <(?99> dz dd (19)

holds with ¢ = k7 for any k = 1,..., T /7, where ()} denotes functions “retarded” by
7, ie. [ul](t) := u,.(t — 7), and where w has the meaning of an extension of the

TE

boundary conditions into Q; cf. [MiR06, Lemma 3.3].

We are now going to formulate a suitable solution to the complete damage problem.
The essential peculiarity is that displacement u and the strain e(u) are no longer
well defined on areas that are completely damaged, i.e. where ¢ = 0.

At each time ¢, we have, however, estimates on the stress ((.(¢)+¢)Ce(u(t)) in

2 dxd dxd -
LA REsS) uniform with respect to e > 0, where RE5T is the set of symmetric
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dxd-matrices. Each weak cluster point s is called a realizable stress. The set of all
realizable stresses is weakly compact in L*(Q; RZ%:Y), cf. [BMRO7, Proposition 2.8].
A realizable stress s that minimizes s — £ [,s : e(w(t)) dz is called an effective
stress at a given t. Let us remark that one can also define an effective strain ¢ €
L2 ({r€®; ((t,x) > 0};REY) by

sym
s(t, )
¢(t,x)
where C™! means the inversion of the mapping C : ]ngxnff — ]ngxn‘f. It is important
that e(t) is a corresponding limit of e(u.(t)) for ¢ — 0, c¢f. |[BMRO7, Sect. 2.3| for

details. Let us define, for a given damage profile ¢, the effective stored energy as
the so-called T-limit [Dal95| of the collection {G.(t, u, () }.~0:

9(t:Q):=_ oJapne, o min et Q). (21)

u€W1L,2(Q;RY

e(t,z) = (C_1< ) for all £ and a.a. €Q such that ((t,z) >0 (20)

The so-called recovery sequence of damage profiles that asymptotically reaches the
value g(t,¢) involves ¢ = (¢ — 8)* when § — 0+ sufficiently slowly with respect to
e — 0+4. An important result of [BMRO07| is that for each ¢ and ( there is unique
effective equilibrium stress s(t, () (i.e., divs = 0). Hence, we can write

1 K p
9(0.0) = [ 3a(t.0): ew(t) + Z[V¢[” d (22)

Also, we have an important formula for the power of external loading:

%(t,g) - /Qs(t, () : e(%—?) dz. (23)

Our definition for the complete damage is based on the energetic-solution concept
as in Definition 2.2.

Definition 2.3 (Energetic solution for complete damage.) The process ( :
[0, T] — WP(Q) is called an energetic solution to the problem given by the data ¢,
0, w, and (o, if, beside (9), also

(i) ¢ eBV([0,7]: L) N B([0, T|; W' (Q)),

(ii) it is stable for all t € [0,T] in the sense that

9(t.¢0) <060+ [ ofC-c) a0 lew @), 4
(iii) and, for any 0 <ty <ty <T, the energy equality holds:
9(ta, C(t2)) + Var,(C t, t2) = g(tr, C(11)) + /t 2/95(75, ¢(t)) ;e(%—f) drdt,  (25)

in particular, the function t — [, s(t,((t)) : e(22(t)) dz belongs to L'(0,T).



Existence of an energetic solution has been proved in [BMRO7| by convergence of
the above introduced regularization for ¢ — 0.

Proposition 2.4 (Existence of energetic solutions, convergence of (u.,(.).)
Let p > d and w € C*([0,T]; WY22(I'; RY)), Then, there exist a subsequence {&, }nen
converging to 0 and a process ¢ : [0,T] — W'P(Q) being an energetic solution
according to Definition 2.3 such that the following holds for all t € [0,T]:

() Ge(t ue, (1), G, (1) — g(t, C(2)),

(ii) Var,((.,;0,t) — Var,(¢;0,1),

(i) C..(t) — C(¢) strongly in WP(Q),

(iv) (G (t) +2)Cle(u, (1)) — s(t, C(t) weakly in L*(Q; RE).

Remark 2.5 (Quasi-stress.) In fact, we have bounded in B(I; L?(;R%X?)) not
only the stress ((.+¢)Ce(u.) but even /(.+ecCe(u.), which thus converges (as a
subsequence) weakly* in L*(I; L*(Q; R%X?)) to some y. Let us call it quasi-stress.
We have s = /Cy for the corresponding effective stress s and, by (20), x = /(Ce
with the effective strain on the part with ( > 0. Contrary to the stress itself which
converges even L?-strongly to zero on the completely damaged part, cf. [BMRO7,

Proposition 2.5|, v/(-+cCe(u.) need not converge to zero on this part.

Remark 2.6 (Large strains.) Generalization for stored energies that are non-
quadratic in terms of strain seems difficult, however. For incomplete damage (or,
in other words, ¢ > 0 fixed) we refer to [MiR06] where such a model was analyzed
even at large strains and a unilateral contact.

3 Numerical implementation, 2D computational sim-
ulations

In order to arrive at an implementable numerical algorithm, we perform a spatial
discretization of the time-incremental minimization problem (18). To that end,
we introduce finite-dimensional spaces U, C W'?(Q;R?) and Z, C W'P(Q) and
consider the following minimization problem:

th€+€ p
Minimize e Ce (VuThE) ce(VuF, ) —ack,. —‘VQThE} dz
2
subject to 0 < Ckh€ < ¢kt ke = wkT), (26)
hs € Uh ) CT]’LE € Zh
for k=1,.. = T/7 with (u2,_,¢%.) := (ug, o), i.e. the discretized incremental

problem leads to a non-convex, box-constrained optimization program. Note that
the convergence of the fully discrete solution to the solution of the space-time con-
tinuous problem is guaranteed thanks to abstract approximation results available
in [MiRo].



In the actual numerical implementation, the spatial discretization is performed using
the linear conforming finite elements, e.g. [BiS96, Bra07|. Moreover, for computa-
tional efficiency, we restrict our attention to d = 2 and dare to choose p = 2 (which
fits with the theory presented in Section 2 only “up to epsilon” as we have required
p>d).

For a given regularization parameter € and the time level k, we express the discrete
fields in the form
k u k k k
Urpe(2) = N (2)uy, (x) = N} (2)¢}, (27)

The

where uf and CfL denote vectors of the nodal values of displacement and damage
parameter fields, respectively (indices 7e are omitted in the sequel for the sake of
brevity) and N} and Nfl denote the operators of piecewise linear basis functions.
The discrete problem (26) can now be re-written in a fully algebraic format

L 1 1
Minimize iuﬁTKﬁ (¢F) up + 5(?1(2(2 + e (28)
subject to 0 < ¢f < ¢FY uy = wp(kr)

with components of wp storing the nodal displacements on the Dirichlet part of the
boundary. The individual matrices are provided by:

Ki(G) = | BiTw) ((e+ Ni@)6) Cw) Biwar,  (29)
KS = BSTk(z)BS (z) dz, (30)
fi = = a@Ni@ s (31)

where the B operators contain derivatives of the shape functions and C'is the Voigt
representation of the material stiffness tensor C; see e.g. [BiS96].

The discrete formulation (28) leads to a (usually large-scale) non-convex program.
Nevertheless, recognizing that the objective function is quadratic separately in w}
and CfL and exploiting the formal similarity between the e-regularized damage model
and the Francfort-Marigo variational approach to fracture [BEMO0O]|, the problem (28)
can be efficiently solved employing a variant of the alternate minimization algorithm
proposed recently by Bourdin in [Bou07, Bou|. In the current context, the incremen-
tal version of algorithm is briefly summarized in Table 1. In each internal iteration,
the minimization problem with respect to w (Step 4) reduces to the solution of
a sparse system of linear equations, while the subsequent sparse box-constrained
problem is solved using a reflective Newton method introduced in |[CoL96].

The convergence of the alternate minimization was studied by Bourdin in [Bou07|,
where it was shown that the algorithm converges to a critical point of the dis-
cretized problem in a finite number of iterations. Of course, there is no guaran-
tee that the critical point is a global minimizer of the non-convex objective func-
tion, which is a crucial assumption of the theoretical framework. This obstacle

9



Table 1: Conceptual implementation of the optimization algorithm for time level k
and an initial value of interval variable ¢(©
1: Set 5 =0
2: repeat
3: Set j=j+1
4

. 1 .
Sol ) — i “uTKY (¢l
olve u arg uDi%%(kT) 2u h(C )’u,

. 1 ; - 1
5: Solve C(J) =arg min ) —uT(])K}f (C)u(]) + —CTK;CLC + f%TC
0<c<c: 12 2
6: until ||C(] C(J Yoo
7: Set uf = ul) ¢ C(J

can be, for example, resolved by resorting to the global stochastic optimization ap-
proaches [HJIK00, IKLKO04, MLZS00|. Such techniques, however, require very large
number of iterations and as such are applicable only to very inexpensive objective
functions. Fortunately, it is possible to construct a feasible numerical approach
exploiting the two-sided energetic estimates (19).

To that end, consider the discretized version of (19)

- 7]+Z/ N /{;h Th5+€C€ Th€+w wT)‘ <880>d do

< Gq. (]{ZT uTha, gThE) Varg(CTh€7 0, kT) gs(ou u?—hsv C}?e)

ow
< 77—|—Z/ /QCThajLz—: )Ce(u Th€+w —wi): <89>d$d9 (32)
1) h

where 7 is an energy tolerance parameter introduced for the numerical implemen-
tation. The previous condition is used to detect local minimizers: if the result of
the alternate minimization algorithm ¢ fails to verify the inequality (32), the al-
gorithm is restarted from the previous time level with Cfl used as an initial value
for the minimization algorithm instead of C]fl_l. This procedure is repeated until an
admissible solution is found, see Table 2 for additional details. It is worth noting
that the resulting algorithm shares similar features with the backtracking scheme
introduced by Bourdin [Bou07] in the framework of variational fracture theories.

Performance of the proposed algorithm will be illustrated on two benchmark prob-
lems inspired by [SAS04|: an inhomogeneous and a pre-notched specimen, see Fig-
ure 1. The corresponding geometric and material data together with the algorithm
parameters are gathered in Figure 1 and Table 3, respectively. Both structures are
assumed to be in the plane stress state and are subject to a proportional-in-time
axially symmetric hard-device loading. In both cases, the spatial discretization was
performed using the unstructured mesh generator T3D [Ryp98| and the problem size
was reduced using symmetries of the specimens. The analyzed time interval [0, 1] was
decomposed into 100 identical time steps (a physical dimension of time is omitted in

10



Table 2: Conceptual implementation of the time stepping procedure.

1 Setk=1¢"=0¢=0¢9=0
2 : repeat
3 Determine Ci using the alternate minimization algorithm

for time t;, and initial value ¢©.

4 Set ¢ = ¢*

5 if two-sided inequality (32) is satisfied
6 Set k=k+1

7T else

8 Set k=k—1

9 end

10 : until s < K

=
-=0.2 m
u(t) Inhomogeneity @%*0.2 m u(t) 40_5»{1?(1 9
< Threshold a/2 - = 1 m [Y m
\7 Notch
(a) | 4 m | e
§ o
(b) < 1m

Figure 1: Scheme of simulated experiments; (a) inhomogeneous specimen, (b) pre-
notched specimen

the sequel because of rate-independence). Finally, for the inhomogeneous specimen,
the damage localization is triggered by pre-existing imperfections introduced by a
reduced activation threshold in the shaded area on the axis of symmetry.

The resulting energetics for the inhomogeneous specimen is displayed in Figure 2 for
a representative choice of the ¢ and h parameters. Clearly, in its basic version, the
discrete solution obtained by the alternate minimization algorithm fails to provide an
appropriate energetic solution to the problem. The two-sided inequality is satisfied
only in the initial stage, where the specimen stays mainly elastic. At time ¢ ~ 0.61,
the damage propagates simultaneously through the specimen, as manifested by the
drop of the sum of the globally dissipated and the Gibbs energy, see Figure 2(a).
Even after this instant, however, this quantity increases, which is the consequence
of the non-zero value of regularization parameter €. Moreover, the damage profile
still evolves in the subsequent time levels, leading to the increase in the dissipated
energy balanced by the contribution of the Gibbs energy.

With the backtracking option active, however, the algorithm detects the local min-
imizer at t ~ 0.61 and, following the dotted line in Figure 2(a), returns to the time
level where the incremental two-sided inequality is satisfied. After the backtrack-
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Figure 2: Global energetics of the inhomogeneous specimen (¢ = 51072 h =
0.03 m); (a) Without backtracking (energy balance fails), (b) with backtracking (an
approximate energetic solution)

ing stage is completed, the alternate minimization algorithm is capable of finding
an approximate energetic solution, cf. Fig. 2(b). As further illustrated by Fig. 3,
evolution of the damage profile for the algorithm with backtracking is more gradual
when compared with the basic variant.

Additional numerical tests summarized in Figures 4 demonstrate the “mesh-independent”
behavior of the method, i.e. the fact that the global energetic response is almost
independent of the discretization parameter h. The influence of the energy regular-
ization parameter &, however, is much stronger, cf. Figure 4(b). As ¢ — 0, the algo-
rithms tries to reproduce the one-dimensional optimal damage profile {(z,y) ~ |z|*,
derived in [BMRO7].

The same set of numerical experiments was executed for the pre-notched specimen
leading to the results appearing in Figures 5, 6 and 7. When compared to the
inhomogeneous specimen, the global response shows similar trends for algorithms
with and without backtracking.

It is further confirmed by Figure 8 that the numerical results are almost independent

Table 3: Parameter of the damage model and incremental algorithm

Young’s modulus, E 27 GPa
Possion’s ratio, v 0.2

Factor of influence, x 10 Jm™2
Activation threshold, a (see [FrN96|) 500 Jm™3
Maximal prescribed displacement for the inhomogeneous specimen 5 -107% m
Maximal prescribed displacement for the pre-notched specimen 2.25-107* m
Time step, 7 0.01

Damage profile tolerance, ¢§ 107¢
Two-sided energy inequality tolerance, n 1073

12
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Figure 3: Time evolution of ¢ field for the inhomogeneous specimen h = 0.03 m,
e = 5-1072, displacements are scaled by a factor 100 and only a quarter of the

specimen is shown.

of the spatial discretization parameter h, which is considered to be an essential

requirement for any damage model in the engineering literature.

The extent of

damage zone depends on the value of the regularization parameter ¢ (related to a
“residual” energy after the complete damage). As ¢ — 0, however, the width of the
localized damage zone, displayed in Figure 9, remains still finite and insensitive to

spatial discretization.

Remark 3.1 (Clapeyron principle.) Similarly to [KMRO6], it can be observed that
the work of external load is approximately equally distributed to the dissipated
energy Var, and the stored energy G, after the damage initiation; the effect known as
the Clapeyron principle for slowly loaded bodies with viscous damping, cf. [FoT03|.
The deviation from the ideal 1 : 1 ratio depends mainly on the energy regularization
parameters ¢, see Figures 4 and 7, which makes a certain portion of the stored energy
“unavailable” to the damage process. In addition, due to the localized character of
damage, only a part of the work of the external load can contribute to the dissipative
processes (analogously to the beginning of the loading program where no damage

occurs).
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contains 493 triangular elements, h = 0.03 m corresponds to 1,193 elements and
h =0.02 m to 1,549 elements.
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Figure 5: Global energetics for the pre-notched specimen (¢ = 1072, h = 0.03 m);
(a) Without backtracking (energy balance fails), (b) with backtracking (an approx-
imate energetic solution)

4 Damage in viscoelastic media with inertia

Finally we include also some rate-dependent phenomena, in particular viscosity and
inertia. Combination with viscosity has been addressed in Maxwellian rheology
(even with plasticity) in |[FeS03| and in the Kelvin-Voigt rheology in [HSS01, PPS07,

SHS06, CFKSV06].

We will consider linear viscosity in the Kelvin-Voigt rheology, i.e. the total stress o
is composed from the elastic contribution o, := (Ce(u) as before and now also the
viscous contribution o := (De(2%) where C is a positive-definite elasticity tensor
as before and D is a positive-definite viscosity tensor satisfying D;jx = Djin = Dyysj.
Note that, like the elastic response, it is natural to assume that also the viscous
response depends on the damage ¢ and vanishes in the completely damaged. This
substantially differs from previous studies [FeS03, HSS01, PPS07, SHS06| which con-
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Figure 7: Convergence study for the pre-notched specimen; (a) h — 0 m, ¢ = 1072,
(b) e — 0,h = 0.02 m; mesh with A = 0.05 m contains 377 triangular elements,
h = 0.03 m corresponds to 1,229 elements and h = 0.02 m to 1,773 elements.

sidered viscosity unchanged even in damaged material. Like in |[PPS07, SHS06|, we
also consider inertia related to the mass density p. Naturally, contrary to the visco-
elastic response, the inertial effects are independent of damage because the mass is
not destroyed by damaging inter-atomic links. Thus the rate-independent evolution
of the damage is now coupled with rate-dependent evolution of the displacement.
Due to the inertial effects, we can now impose dead loading by a bulk force f. For
simplicity, we then do not consider any hard-device loading, i.e. we impose only the
boundary conditions (7) with T' = (). Altogether, formally, we consider

O%u
P oe
¢

8@(—) 4+ 0+ 0,20,

ot

— div(oV + ae) = f,

0
oy = C]De(a—?)

oy € N[O,+oo) (C)

oo = (Ce(u), (33a)

o = %Ce(u):e(u) _ div(k|VFP2V0). (33D)

Of course, now we must prescribe also the initial condition on the displacement and

15



o o
2 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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Figure 9: Examples of the ( field distribution for ¢ = 1 (h = 0.02 m, ¢ — 0);
displacements are scaled by a factor 100 and only a half of the specimen is displayed.

the velocity, so altogether we have

w(0,) = wg e WO Y, T(0,) =iy € PO,

C(0,) = ¢ € WH(9). (34)

We assume naturally 0 < (5 < 1.

Similarly as before, let us take € > 0 and consider the regularized problem:

p% - div((gﬁ)me(g—?) + (C—i—&t)@e(u)) ~f. (35a)
8@(%) + %Ce(u) e(u) — div(s|V2[P2VC) + Nig 4o (€) 3 0. (35h)

Its weak solution, let us denote it by (u.,(.), can be obtained by rather standard
methods. The force equilibrium (35a) in the weak form looks as

/OT <<p%,v> + /Q(Caﬂ%) <D€(a(f;f) + (CC(U&)) e(v) — f - de) dt=0 (36)
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forallv € L2(I; W12(Q; R?)) with (-, -) standing for the duality between W12(Q; R?)*
and W12(Q;R?). Like (14) and (13), we have now the “partial stability”

C(t +€

Celu(t)) : e(u(t)) + g|VCE(t)|” da

C—l—a

[ S Celun(t)  e(u(t) + EIVEP + o(C-G(1) da W0 < CeWH(@) (37)

for any t € [0, T] with a from (2), and an energy inequality

/ ’aus ‘ + G (T, u(T),((T)) dz + Var,(¢; 0,7T)

Ou, Ou,
—|—/Q(C€—|—8)]D)6( ; ) e 811 ) dadt

/ = lio]* + Ge(0, o, Go) +

(38)

here we used {p = 1 from (34) and, for coming from (13) to (38), we relied on (36)
for all v := 2= € L*(I;Wh?(Q;RY)). Note that e(u.(T)) is well defined because
ue € L2(I; WH2(Q; RY)) just due to the regularization by & > 0.

Now, as no minimization of stored energy applies, we unfortunately do not have at
our disposal the formula like 1 [, o, : e(w) dz for the stored energy, cf. (22). To avoid
usage of e(u) on the fully damaged parts, the stored energy [, 1(Ce(u) : e(u) dz can
alternatively be written as fQ %Xe:C_IXe dz where we have denoted Y, := v/(Ce(u)
and, as above, C™' means the inversion of the mapping C : R&: — R‘siyxnﬁl As in
Remark 2.5, let us call x, an elastic quasi-stress; its physmal dimension is again
Pa—J/m?® as a standard stress. Similarly, to avoid usage of e(%%), we introduce the

VISCOUS qUAsi-Stress Yy \/_]De( ).

Also, let us denote the corresponding quasi-stresses for (35), i.e

Xe,e = \/@Ce(us) and  xye = \/@De(ﬁgj

Then, in terms of these quasi-stresses, (36) rewrites to

T 2
/0< 88;5, / CAe(Xv,e D7 'e(v) + xee:CTH (v))—f~vdx)dt:0.
(40)

). (39)

Moreover, (37) and (38) can be written as

1 K 1 C+e _
A ea:C_l ea‘l'_vapdxdtg/_— e ! e,c
j22x, Xe, pl Cel (22Q+€X Xe,
+ Ve - o(E—¢.) dadt V0 < C e Wh(Q) (41)
p
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to be satisfied for all ¢ € I and

p|oO “( 1 _
/ 5 ) )|+ Xee(T):C 1xe,a(T)+g|V<a(T)I”+5[o,+oo)(<e(T)) de

+ Var,(¢;;0,7) + / XW:D_IXV,€ dx dt

Q

8u5

We derive a-priory estimates that are independent of ¢ > 0 by testing (35a) by %

64;5 < 0 and symmetry and positive definiteness of C to obtaln

It is essential to use

%%((Cﬁ&?)@e(ue) : e(ue)) = (C4¢)Ce(ue) : 6(88115) + %88% Ce(ue) : e(ue)
< (C+e)Celu) : 6(88“;). (43)
Thus

(e
2

" /Q (Ca+€)De(agi€)i Seyars 1% (44)

Assuming f € L*(I; L*(€;RY)), by Gronwall’s inequality we obtain the bounds

ou,
<C 45
Ot llLer2ray = (452)

| V/C+e Ce(u HL°° rraeriy) S Ce (45b)

Verepe(e)

H@HB\/(i;Ll( Q))NLo (I;W12(

‘8% Ce(u,) : e(u.) dx

sty S O (45¢)
L RE)

)< C, (45d)

with some constants C', C,, and C,. In other words, ||XV7€||L2(Q;ngX,,‘,1) < C,, and

Xe.ell oo (1, 22 (umexa)) < Ce- From this, for 0 < e < 1, we also obtain

|5
ot?

= sup /\/C€+6 Xve D7 e(v) + XeiCle(v)) — fu dudt

l[olly <1

L2(I;W 2 (QR4)* )+ L1 (I;L2 (Q;R4))

< sup 2/ XveDe(v) + Xeo:Cle(v) — fru dudt
lvily<1t Ja
< 2[D7HCy + 2|C7YCe + 2| f1l 1 (1:22 (R4 - (46)

where [[ully = [Jull 2w 2@ray + [l oo (1522 @ray) -
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Unfortunately, it does not seem that any estimate for ’é;s is available, which brings

troubles by defining values of x.. at particular times in the limit. In the spirit of
Definitions 2.1 and 2.3 but balancing Helmholtz stored energy (since the by-part
integration in time of the outer loading is no longer necessary and advantageous)
and in view of the estimates (45), we can exploit the above relations (36), (39), (41),
and (42) when putting ¢ = 0 for a definition of a weak/energetic solution to the
complete-damage problem in the following way:

Definition 4.1 (Weak/energetic solution.) We call (u, Xe, Xv, ¢, €) with

w € Wh(I; L*(Q; RY)), (47a)
e € L™(I; (4 RE), (47h)
Xv € L(Q: R, (47¢)
¢ € BV(I; LY(Q)) N B(I; WhP(Q)), (47d)
¢ € BV(I) (47e)
such that
o) € L ({(t2) € Q; Clt.) > O} L), (480)
T LA WO RYY) + L (1: L ) (481

a weak/energetic solution to the problem (33) with the initial conditions (34) and
the homogeneous Neumann boundary condition, i.e. (7) with T =0, if

T
/ ( t2’ /va v) + Xe:C™ 16(21))—f-vda7)dt:0 (49)
0
for all v e L*(I; WH2(Q; RY)), if the “partial stability”

1
/ —xe:C e + E\VCV’ drdt < C
A2 p A C

+g|vap+g<§—<> dedt Vo< ({eIP(L;WY(Q)  (50)

> Xe:C X

and
ou
= /CCe(u) and x, = \/Z]D)e(§> on any open A C Q
on which {(t,x) > 0, (51)

and if the energy inequality holds, i.e.

0 2
&)+ [ BZHD] + G0 (C(D)) do + Var(G0.T) + [ Dy dadt
Q Q

< €&(0) —i—/ Q\uoﬁ dx + /f% dz dt. (52)
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with €(0) = [, 2Ce(uo) : e(uo) + 2Vl dz and, for all ty € 1,

t1 t1
/ &(t) dtz/ /lxe:C_1Xe+E|V§|pdxdt. (53)
0 0o Ja?2 p

Remark 4.2 Let us comment this definition especially at the point that we claim
much less information on the completely damaged part than we did in the quasistatic
evolution in Section 2, which is related with what we are able to prove. As a
consequence, we also cannot prove full energy balance as an equality. Anyhow,
the granted a-priory estimates (45) and (46) give certain solid base for engineering
calculations and Definition 4.1 then indicates what information we can surely read
for the limit when e approaches zero. In fact, we have bounds also on some other
derived quantities, e.g. (C€+5)%(Ce(u5):e(ua)) which equals to XDy, which is
bounded due to (45b,c) in L*(I; L'(Q)).

Proposition 4.3 Let p > d and f € L*(I; L*(Q;RY)), ug € WH2(Q;RY), 1y €
L RY), and (o € WHP(Q), 0 < (o < 1. Then there exists a weak/energetic
solution in accord to Definition 4.1.

Proof. By (45b,c), we can choose a subsequence such that y.. = x. in L>(I; L*(Q; R%*4))

Sym

and xve — xv in L*(Q;RE:Y). Though the obtained x. need not be well defined
at particular time levels, the stored energy €. : t — [ 2x.(t):C7 xo(t) dz itself is
well defined and measurable because its sum with the kinetic energy has a bounded
variation which is seen from (44) and (45c). By Helly’s principle, we choose a sub-

sequence so that also €.(t) — &(t) for all ¢t € [0, 7.

The limit passage in (40) uses (¢ — (¢ in L9(Q) with any 1 < ¢ < 400, which
follows by a generalized Aubin-Lions’ theorem [Rou05, Cor.7.9] from the estimate .
in L®(I; WhP(Q)) NBV(I; L'(Q2)), and also it uses xee = Xe in L>(I; L*(Q; RE))
and xv. — xv in L(Q; REL)).

sym

The limit passage in (39) uses also the bounds of e(u.) and e(2%) in L?(K;RE<)
on any compact cylinder K of the form [0,¢]x Ky on which ( > 0. Here we use a
very special structure of the problem that Ky C  such that ((¢) > 0 on K implies
that, for any § > 0, there is g¢ such that for any 0 < ¢ < gy we have (. (t) +& > §
for all # € Ko; here we used that W1P(Q) is embedded into C(Q) because p > d.
Thus also (. + ¢ > 6 for all (t,x) € K = [0,t]x K, because (.(-,z) is nonincreasing.
Then we can pass to the limit in (39) and cover A in (51) by cylinders of the form

K above.

The limit passage in the “partial” stability condition (41) in the term

1¢ 1 -
| s eedrat = [ SCreCeue s etue) drar

is more difficult than in the usual “full” stability (16) in the rate-independent case.
We must do it simultaneously with the left-hand-side term

/ %(C5+5)C6(u5) ce(u.) du.
Q
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Let us take 0 < ¢ < ¢ and, following [BMRO7, Proposition 2.10], put ¢ := (¢ —0)*.
Then, for any fixed 6 > 0, we have (5(¢) < (.(t) if € > 0 is small enough (depending
on t, however); recall that p > d so that W'?(Q) C C(Q) compactly. Simultaneously
Cs(t) — C(t) in W2(Q). Indeed, let us consider an open e- neighbourhood O(t) of
a compact set N(t) := {xeQ; C(t x) = 0}. Then, for § > 0 small enough, C5 >0 on
O\O,(t). For a.a. z € O.(t)\N(t), we have either (s(x) = 0or G(t,z) = C(t,z) — 0
and also V(s(t, z) = 0 or V((t,2) = {(t,x). Hence, for § > 0 small enough,

JIvaw-viwla= [ |9G0 - Vol

< / IV¢@)|P da. (54)
O(H\N(®)

Yet, the last expression can be pushed to zero with e — 0 because |V (2)[P € LY(Q) is
absolutely continuous for a.a. t € [0,7]. Then also fOT Jo ’VC(;(t) —V((t) ’p dzdt — 0
by the Lebesgue dominated-convergence theorem; the common integrable majorant

is t = [[VC(OI700ra)-
Then, by the “partial” stability for (., we have

/g@—@hﬂﬁ
Q

> /Q (C€+5 _ §5+5)Ce(ua) : e(ua) + g|V<E|P _ %|vc~6|p dz dt

= 5 5
1 (s+e . K k-
= —(1 - e oc _ Ep_ _ D ]
/QQ< g5+5>><ev Cxe, +p|VC| prQ;| dz dt (55)

Now we use that ((s+¢)/(C4€) = (5/C converges strongly in any LY(K), ¢ < 400,
and weakly™ in L*>°(K) on every compact cylinder K of the form [0,¢] x K, where
¢ > 0, as already used above. Then, by the weak lower semicontinuity, we obtain

¢ 1 5‘5 - C- i p_ Figi e
/KQ(Q—Q;) dxdtZ/K§<1_Z>XC(C IXC—F;‘VC‘ —E‘VC5| dx dt. (56)

Then we pass § — 0 and use (s — ¢ weakly* in L*>(Q) because we proved already
strong convergence in LP(I; WP(Q)) and bounds in L°°(Q). When covering A
involved in (50) by cylinders of the form K, we obtain just (50).

Limit passage in (42) is then by weak lower-semicontinuity. Here we use also that
that €.(t) — €(¢) and the weak lower semicontinuity, hence we get also (53). O
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