
            

PAPER • OPEN ACCESS

Detours around basin stability in power networks
To cite this article: Paul Schultz et al 2014 New J. Phys. 16 125001

 

View the article online for updates and enhancements.

Related content
Deciphering the imprint of topology on
nonlinear dynamical network stability

-

Community consistency determines the
stability transition window of power-grid
nodes

-

Comparative analysis of existing models
for power-grid synchronization

-

Recent citations
Network-induced multistability through
lossy coupling and exotic solitary states
Frank Hellmann et al

-

Monte Carlo basin bifurcation analysis
Maximilian Gelbrecht et al

-

Impact of network topology on the stability
of DC microgrids
J. F. Wienand et al

-

This content was downloaded from IP address 194.95.157.34 on 31/07/2020 at 12:27

https://doi.org/10.1088/1367-2630/16/12/125001
/article/10.1088/1367-2630/aa6321
/article/10.1088/1367-2630/aa6321
/article/10.1088/1367-2630/17/11/113005
/article/10.1088/1367-2630/17/11/113005
/article/10.1088/1367-2630/17/11/113005
/article/10.1088/1367-2630/17/1/015012
/article/10.1088/1367-2630/17/1/015012
http://dx.doi.org/10.1038/s41467-020-14417-7
http://dx.doi.org/10.1038/s41467-020-14417-7
http://iopscience.iop.org/1367-2630/22/3/033032
http://dx.doi.org/10.1063/1.5110348
http://dx.doi.org/10.1063/1.5110348


Detours around basin stability in power networks

Paul Schultz1,2, Jobst Heitzig1 and Jürgen Kurths1,2,3,4
1 Potsdam Institute for Climate Impact Research, D-14412 Potsdam, Germany
2Department of Physics, Humboldt University Berlin, D-12489 Berlin, Germany
3 Institute for Complex Systems and Mathematical Biology, University of Aberdeen, AB24 3UE
Aberdeen, UK
4Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23,
606950 Nizhny Novgorod, Russia
E-mail: pschultz@pik-potsdam.de

Received 3 September 2014, revised 13 October 2014
Accepted for publication 27 October 2014
Published 2 December 2014

New Journal of Physics 16 (2014) 125001

doi:10.1088/1367-2630/16/12/125001

Abstract
To analyse the relationship between stability against large perturbations and
topological properties of a power transmission grid, we employ a statistical
analysis of a large ensemble of synthetic power grids, looking for significant
statistical relationships between the single-node basin stability measure and
classical as well as tailormade weighted network characteristics. This method
enables us to predict poor values of single-node basin stability for a large extent
of the nodes, offering a node-wise stability estimation at low computational cost.
Further, we analyse the particular function of certain network motifs to promote
or degrade the stability of the system. Here we uncover the impact of so-called
detour motifs on the appearance of nodes with a poor stability score and discuss
the implications for power grid design.
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1. Introduction

1.1. Motivation

Following a sequence of large-scale blackout events [2, 17, 21] within the last decades, it
became obvious that a deeper understanding of power grids from the complex system
perspective is necessary. Still, there are the achievements and the knowledge that has been
developed in about a century of power systems engineering, which is the main base of current
power grid research. We expect, however, that the perspective of complex systems science adds
important notions to help understanding power grids better, in particular their stability.

The physical grid itself—the transmission lines connecting various power stations,
substations, consumers, etc—constitutes a complex coupling structure of the dynamical system.
This can be well-described within the framework of complex networks theory. Our main
intention is to uncover links between the topology of such a network and the stability of the
dynamical systemʼs stationary state of operation.

It is important to note that the network topology itself undergoes steady changes, driven by
modernisation, grid expansion and climate change adaptation (including renewable energy
production and distributed generation). There are, however, two distinct time scales. On the one
hand, the real-time control of the system is affected by tripping of lines and the consecutive
rearrangement of the power flow after a failure. On the other hand, structural changes—e.g. due
to distributed generation of renewable energy—and their implications to the systemʼs stability
need to be considered for long-term planning.

We propose a strategy to directly estimate the power gridʼs stability, even on short time
scales, using statistical network characteristics to omit the need of costly simulations. The focus
lies on the identification of grid nodes that appear critical for stability.

A systematic analysis of the functional role network motifs play within complex dynamical
systems started in biological systems [13, 20]. The authors studied directed transcriptional
regulation networks and found reappearing small-sized structures, having a specific function,
e.g. serving as feedbacks.

Beside the functional role of network motifs, their implications for linear dynamical
stability have been analysed as well. In biological networks, a relatively high abundance of
certain motifs appears to be correlated with dynamical stability against small perturbations of
the system [18]. Further, motifs containing less edges are more likely to be linearly stable.
Especially in [8] investigated directed feedback loops and found that motifs containing fewer
nodes are more stable. Taken together, these findings indicate that small cycles in directed
networks can be regarded as more stable and less prone to oscillatory behaviour. In addition [6]
define the notion of reliability of information processing in close relation to stability. They find
that there are certain motifs suppressing fluctuations and tending to synchronize the dynamics
of single elements.

In the context of power grids, it has been shown by Menck et al [10] that there are network
motifs in power grid networks that degrade the overall dynamical stability of the system. These
are termed dead trees. Nodes adjacent to dead trees, referred to as dead tree gateways, show a
significantly reduced single-node basin stability. Witthaut and Timme [24] otherwise
highlighted the particular role of cycles in power grid networks. By the addition of a single
line, the whole grid might be destabilized due to geometric frustration. We will show later,
however, that a particular motif, namely a three-cycle, is helpful to stabilize the system.
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In the following, we investigate the question if—in contrast to destabilising dead trees—
there are also network motifs promoting the dynamical stability of a power grid. Further, we
propose a logistic regression model aiming to predict the individual single-node basin stability
using only a small set of network characteristics.

1.2. Ensemble of synthetic power grid networks

We make use of a random growth model for power grids and other spatially embedded
infrastructure networks, which we recently published in [19], to create an ensemble of randomly
generated synthetic power grid topologies as a basis for a statistical analysis. This allows us a
more general analysis of a wide range of network topologies, i.e. guarantees a significant
frequency of observed network motifs, and also avoids the unavailability problem with power
grid data. Note that basic network characteristics like the degree distribution, average shortest-
path length or global clustering coefficient, measured for synthetic network topologies,
reproduce values published for real-world power grids quite well. Thus we conjecture that our
results obtained with the model data can easily be translated to real-world power grids.

We use a large ensemble of 570 medium-sized network topologies with N = 100 nodes and
a mean degree of ≈k̄ 2.7 (see [16]). The model parameters are

=N p q r s{ , , , , } {1, 0.3, 0.1, 1, 0.2}0 , see [19] for details.
In this random growth model, spatially embedded sparse networks are generated. An initial

set of N0 nodes is connected by a minimum spanning tree and further subject to a growth
process. The network growth is given by a repeated connection of new nodes to the grid
according to an attachment rule which has four parameters p q r s, , , . The latter set of
parameters mainly determines the final network characteristics that we have chosen in a way to
yield topologies in accordance to common data sets.

The line reactance is chosen to be proportional to the spatial line length = ′X X dij ij, where
dij is the Euclidean distance between nodes i and j given by the link-length distribution. ′X is the
so-called specific reactance per length, a reasonable value for the transmission grid is

Ω′ = −X 0.265 km 1 [9]. The spatial embedding of the synthetic networks gives rise to a heavy-
tailed reactance distribution as observed for real data [22].

This setup serves as an input to the following swing equation in a co-rotating reference
frame [1, 3, 4]

∑ϕ α ϕ ϕ ϕ= − − −
=

( )P K¨ ˙ sin , (1)i i i i
j

N

ij i j
1

Pi is the net injected power at generator i and αi is a dissipation constant assigned to this
generator. Kij is determined by the voltage amplitudes, generator constants and depends on the
line length, i.e. ∝ −K Xij ij

1. Hence we treat power grid networks as weighted networks where the

link weights −Xij
1 are a function of the entries of the reactance matrix.

Hence, this model operates on an aggregated grid model (see [4]) and there are some
inherent simplifications. The networks, we consider, need to be thought of as reduced power
grids after a removal of passive nodes (transformers, substations, loads), containing only
generators busses with a net injected power that can also be negative (local demand is higher
than local supply). Here we choose a symmetric power dispatch distribution with = ±P 1i . We
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further restrict our analysis to the transmission part of the power grid, neglecting ohmic line
losses.

The system (1) for a single node, on the one hand, is bistable in the relevant parameter
regime with the coexistence of a stable focus and a stable limit cycle. The whole high-
dimensional dynamics, on the other hand, thus gives rise to a multitude of attractors of which
there is a dominant (concerning the basin size, see [10]) stationary state in which all generators
are synchronized, i.e. they uniformly rotate with the gridʼs rated frequency and constant phase
differences between the nodes. This state is a solution to the load-flow problem and referred to
as the stationary state in the following.

2. Stability analysis

As it has been pointed out in earlier studies, the assessment of dynamical stability in systems
like the power grid requires non-local and large perturbations to be taken into account.
Especially the analysis of a stationary stateʼs basin of attraction [11, 23] in multistable systems
gained recently importance. The numerical estimation of single-node basin stability using a
Monte-Carlo rejection method has been proposed in [10]. The value ∈S [0; 1]i of single-node
basin stability refers to the probability of the whole system to return to a specified stationary
state after a (large) perturbation at node i.

Integrating (1), we estimate the single-node basin stability of the stationary state using a
uniform distribution of initial conditions from the product set π π− × −[ , ] [ 100, 100] with 100
trials at each node. This yields an upper bound for the standard error e of the estimated single-
node basin stability of e = 0.05.

Note, that typical local deviations from the gridʼs rated frequency do not exceed 1Hz. Our
choice of initial conditions hence contains perturbations that are one order of magnitude larger,
which we refer to as large perturbations. We observed that choosing a larger interval of
frequency deviations does not alter the distribution of single node basin stability qualitatively.

From the resulting histogram (cf figure 1), we find that single-node basin stability is not
unimodially distributed within the ensemble but shows rather well-separated three classes of

Figure 1. Basin stability histogram: distribution of single-node basin stability scores
within the ensemble. The dashed lines delimit the classes of poor (14%), fair (79%) and
high (7%) basin stability, where the percentages give the share of realisations in each
class.
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‘poor’, ‘fair’ and ‘high’ values. The majority of the nodes (79%) have a fair single-node basin
stability, i.e. it is almost equally likely for the power grid to return to the stationary state or not
after a large perturbation. The other two groups stand out as they represent the opposite cases of
low (14%) and high (7%) probability of returning to a fixed point.

The observed single-node basin stability distribution coincides well with the distribution
reported in [12], although the authors used Gilbertʼs random graph model [5] and a uniform
coupling ≡K Kij . Hence we conjecture that the shape of the distribution is rather set up by the
parameters of the swing equation than by the network topology.

The statistical relation between single-node basin stability and network characteristics is
typically nonlinear with no trivial physical explanations; thus the discretisation of basin stability
to a categorical variable simplifies the analysis. We will especially focus on the critical class Cp

of nodes with poor single-node basin stability which are easily destabilising the power grid. The
class of non-poor nodes will be referred to as Cn.

2.1. Network motifs

Network motifs are isomorphism classes (‘types’) of small connected induced sub-graphs of a
network, inheriting all links from the network. The motifs V1–V6 (cf figure 2) are identified
using a simple brute-force algorithm that checks for each node the membership in one of the
motifs. A single node can be contained in several motifs but a set of four nodes can only belong
to one of them. In general, the function of the motifs also depends on the network context.
However, we focus on the question which motifs are suited to predict poor single-node basin
stability (Cp) for the comprised nodes, without analysing their particular function.

The motifs we consider are all four-sized motifs, dead tree gateways and detours.
Dead tree gateways are identified using a set of specific values of the shortest-path

betweenness that are typical for nodes adjacent to a dead tree ( −N 2, −N2 6, −N2 5, −N3 10,
...; see [10]). Nodes on detours are in turn characterized by a degree of two and a local
clustering coefficient value of one. Furthermore, as pointed out in [15], detour nodes are nodes
in triangles for which the shortest-path betweenness is very low because almost no shortest path
passes through. However if the network is a resistance network, then the node may still share a
significant amount of the power flow. This deviation is captured by a measure Newman termed
current flow betweenness.

Figure 2. Four-sized motifs: sketch of the six possible connected network motifs
containing four nodes. Further links, connecting the nodes within the motifs with the
remaining network are omitted.
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In analogy, we define an edge current flow betweenness ECFBij:

=

= − − −

≠ ∈

− ( ) ( )
I

I X R R I R R I

ECFB

, (2)

ij ij
st

s t s t V

ij
st

ij is js s it jt t

; ,

1

where R is the Moore–Penrose pseudo-inverse of the matrix containing the inverse reactances
−Xij

1. Note that, in contrast to the original definition by Newman, we do not a use uniform line

resistance but the heterogeneous link weights −Xij
1. Hence, the ECFB takes not only a nodes

position in the network into account but dynamical properties as well.
Especially, if one unit of in-feed and one unit of consumption are randomly distributed

over all nodes of the network, the expected flow on the link −i j is at most the value given by
ECFBij. Thus, instead of solving the load flow equations, it is more convenient and
computationally less expensive to use the ECFB as an indicator. Summing up ECFB over all
edges adjacent to a node i yields the node-wise characteristic vertex current flow betweenness
VCFBi which we make use of later on.

∑=
≠ ∈

IVCFB
1
2

(3)i

j
ij
st

s t s t V; , .

As shown by [10], the shortest-path betweenness of a node can be used to detect dead tree
gateways with a clear tendency towards poor single-node basin stability. Using instead VCFBi,
there are downward and upward peaks, relating to betweenness values with significantly lower
or higher stability (cf figure 3). Firstly, we reproduce the results from the analysis using
shortest-path betweenness, namely the four downward peaks at 98, 194, 195 and 290 (dashed
vertical lines) that are present in the weighted analysis as well. Secondly, as a new feature, we

Figure 3. Detection of detours using VCFBi: plotted is the single-node basin stability S
against the vertex current flow betweenness VCFB. The red vertical dotted lines with a
vertex current flow betweenness of 98, 194, 195 and 290 refer to dead tree gateways.
The shading of the line refers to the share of nodes in detours with the respective
betweenness value, light colour indicates a higher number. The grey-shaded region
marks one standard deviation. The inset contains a sketch of the detour motif, where
detour node is marked in blue.
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also identify pronounced upward peaks for low values of VCFBi. The colour indication
visualizes that this is the particular betweenness range found for the nodes in detour motifs, i.e.
we uncover that these detour nodes in all cases fall into Cn.

We perform a two-by-two test, yielding the ratios of nodes falling into the four possible
combinations of Cp/Cn and motif/not-motif.

As expected, dead tree gateways are a very good indicator of Cp as 90% have a poor
single-node basin stability. Detour nodes, however, seem to be better suited to predict non-poor
single-node basin stability, i.e., not a single detour node has a poor stability score. This is
remarkable as this simple network motif of three nodes in a triangle seems to be sufficient to
prevent the appearance of poor single-node basin stability in a power grid.

In case of a failure hitting a detour node, a stable power flow can still be maintained via the
shorter opposite network path, i.e. we locally observe redundant routes for the power flow.
Hence it is unlikely for a perturbation at a detour node to destabilize the whole system.

The role the four-sized motifs V1–V6 play for power grid stability is less pronounced. As a
general feature we observe that the ratio of nodes with poor single-node basin stability
decreases with the link density within a motif. This again supports the importance of local
redundancy for the stability of the system.

3. Prediction of instability

In the previous section we investigated network motifs and found that two types of them—the
detour nodes and dead end gateways—play a particular role to set up the overall systemʼs
stability. Hence, they are candidates to predict the single-node basin stability of the respective
nodes.

Now we derive a general model to predict whether a node belongs to Cp or Cn, using only
a small set of network measures that require much less computationally effort than simulation-
based estimators for basin stability. As we argued above, the predicted variable is binary,
namely either 1 for ∈S Ci p or 0 for ∈S Ci n. Here, Si is the single-node basin stability at node i.
The aim is to derive a statistical model that predicts a probability pi for each node to have a poor
single-node basin stability.

Some of our explanatory variables are continuous, others are binary, namely the
information whether a node is a detour node or a dead tree gateway. As we have seen the strong
indication of the basin stability class given by these motifs in the last section, we employ the
following modelling strategy. First we perform a pre-classification of the nodes in three subsets.
These are

(0) detour nodes,

(i) nodes being neither detours nor dead tree gateways,

(ii) dead tree gateways,

keeping in mind that a detour node cannot be a dead tree gateway. From the previous analysis
we know that pi = 0 for nodes in set (0). For the remaining two sets (i) and (ii) we perform a
logistic regression to estimate pi. Consequently, the complete model comprises two logistic
regressions with potentially different regression coefficients and thresholds.

To assess the predictive power, we use the cross-validated area-under-curve criterion AUC
[7] applied to the receiver operating characteristic (ROC) curve of the individual regression
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models. Reported values for the sensitivity or specificity of a certain model are always related to
the prediction using the threshold closest to the point of perfect prediction.

We start with set (i) containing 91% of the nodes (cf table 1). In model A, using VCFBi as
an explanatory variable (cf the discussion above), the corresponding ROC curve (cf figure 4)
yields (figure 4 A, AUC = 0.717, std.err. = 0.003). The whole curve lies above the diagonal,
thus any prediction is better than a random guess. The point closest to a perfect prediction
corresponds to a sensitivity and specificity of 71% and 61%. Further improving this result, we
enlarge our set of explanatory variables.

A common and simple characteristic for weighted networks is the strength k̃i alias a
weighted generalisation of the degree.

∑=
∈

−


k X˜ , (4)i

j i
ij

( )

1

where  i( ) denotes the set of nodes adjacent to node i. The rationale behind this definition is
that a high line reactance (lowered line capacity) acts as a bottleneck for the power flow in the
system, effectively reducing the strength of a node. Note, however, that a large strength on the
one hand promotes the dispersion of a perturbation at this node but, on the other hand,

Figure 4. Receiver operating characteristic for set (i): ROC of predictions based on the
five different logistic regression models A (dashed green), B (solid black), C (dots
black), D (solid orange) to E (solid blue) applied to set (i) with an increasing number of
explanatory variables. The models are described en detail in section 3.

Table 1. Stability of network motifs: frequency νm of a node comprised in one of the
motifs (cf figure 2), share of these nodes that belong into Cp.

Motif νm Motif nodes in Cp

Dead tree gw. 5% 90%
Detour node 4% 0%
V1 82% 15%
V2 47% 16%
V3 20% 12%
V4 14% 11%
V5 3% 10%
V6 0.1% 13%
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facilitates the spreading of perturbations on the network as well. Adding strength to the set of
predictory variables (figure 4 B, AUC = 0.784, std.err. = 0.002) consequently improves the
predictor because of the added information that is not contained in the flow-based betweenness,
still the sensitivity and specificity do not go beyond 84% and 66%. Using the average
neighbourʼs strength

∑= −

∈
k k k˜ ˜ ˜ , (5)i

N
i

j i

j
1

( )

we also add the average neighbourhood line capacity to the local information contained in the
strength, yielding only a small improvement of the model (figure 4 C, AUC = 0.790, std.
err. = 0.002). Still we keep it, as it improves the final predictor by more than this intermediate
improvement.

Adding the strength as an explanatory variable mainly improved the sensitivity whereas
the specificity remained smaller. To get an increased specificity, we need a further predictor
exposing truly non-poor nodes. Among the yet unused weighted characteristics, a candidate for
this is the weighted local clustering coefficient. We define it as

=
∑

∑
≠

− − − −

≠
− −

( ) ( )
C

X X X X

X X
˜

min , min ,
, (6)i

j k j k ij jk ik jk

j k j k ij ik

, ,
1 1 1 1

, ,
1 1

so that ∈C̃ [0; 1]i just as the unweighted local clustering coefficient. The addition of this
explanatory variable further improves our model (figure 4 D, AUC = 0.839, std.err. = 0.002).
High values of C̃i close to 1 correspond to a high number of cycles in the proximity of a node i
where the lines have a low reactance. Hence, we conjecture that such setup promotes the quick
annihilation of perturbations spreading on the network. Indeed we mainly improve the
specificity of the model to 73%, while the sensitivity remains at 84%.

Furthermore, we anticipate that the addition of a centrality measure improves our
predictor. In analogy to a piano string, nodes being more central are less likely to excite many
perturbational modes than nodes with a low centrality. In other words, if the string is plucked
close to one of the endpoints, more modes (overtones) are being excited than when the hammer
acted in the centre of the string. Following this intuition, we expect perturbations hitting nodes
with a high centrality to be less likely to destabilize the network.

A natural choice of a centrality measure for power grid networks is the effective resistance
closeness centrality ERCCi, where the length of a network path between to nodes i and j in the
standard unweighted closeness centrality is replaced by the effective resistance between the two
nodes. The effective resistance ERij is defined as the resistance a single edge that replaces all
lines between two nodes i and j in an equivalent circuit would have. We define ERCCi as

=

= − − +R R R R

ERCC 1 ER

ER . (7)

i ij
j

ij ii ij ji jj

We finally have a model (figure 4 E, AUC = 0.915, std.err. = 0.002) for set (i) using the
explanatory variables k̃i, k̃i

N
, C̃i and ERCCi where the best prediction reaches a sensitivity and

specificity of 84% and 77%. In other words we are able to predict the single-node basin stability
to be poor or non-poor correctly in about 80% of the cases using only (weighted) network
information without any need of costly numerical simulations.
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Note that we indeed find that the weighted explanatory variables contain different
information compared to the equivalent unweighted characteristics improving the prediction.
This can be seen, using for instance shortest-path betweenness instead of VCFBi (E’,
AUC = 0.876, std.err. = 0.002) or the standard closeness centrality instead of ERCCi (E”,
AUC = 0.839, std.err. = 0.002) in the final predictor, showing no improvement of the predictor
compared to the previous step and less predictive performance than the predictor using the
weighted measures.

Repeating the same procedure, adding explanatory variables step by step, for set (ii) we
find model (figure 5 A , AUC = 0.959, std.err. = 0.005) with a sensitivity and specificity of 94%
and 99% to have the best ROC (cf figure 5). This is a surprising result, as the addition of further
explanatory variables to VCFBi actually decreases the AUC and hence the predictory
performance. This can typically happen in the case of over-fitting. Note that among all
individual candidates for explanatory variables, a model using only VCFBi for set (ii) still has
the best characteristic. It also improves on the result from the motif analysis where we find dead
tree gateways to have a 90% probability of falling into Cp.

The regression coefficients of the final subset models are listed in table 2, each coefficient
is highly significant with a p-value less than 1‰. Taken that the logistic function is
monotonically increasing with its argument we see that the negative sign of a regression
coefficient relates to the corresponding variable decreasing the probability of a poor single-node
basin stability.

From the coefficient of ERCCi we see that a high centrality indeed corresponds to a low
probability of a node having poor single-node basin stability, supporting our reasoning based on
the piano metaphor from above.

4. Discussion

In conclusion, the two main results of our analysis are the identification of the detour motif
being important for enhancing power grid stability and a statistical model to predict poor single-
node basin stability using only a small set of standard and novel network characteristics as
explanatory variables.

Figure 5. Receiver operating characteristic for set (ii): ROC of predictions based on the
five different logistic regression models A to E applied to set (ii). The colours and line
types are identical to figure 4.
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Specifically, we find that the appearance of a detour in the network seems to prevent the
detour node from having a poor stability in contrast to dead trees which are known to have the
opposite effect. Using these two motifs that have a pronounced effect on the single-node basin
stability of the comprised nodes for a primary node classification into three subsets, we are able
to predict the stability class of about 80% of the nodes being neither dead tree gateways nor
detour nodes.

There are at least two applications of our results, related to the two time scales of network
topology evolution that were mentioned in the beginning.

Firstly, from the study of network motifs, general design principles for the long-term
planning might be derived. Especially detours seem to be suited to promote stability, whereas
dead tree gateways are possible weak points. It has been shown by [10] that reconnecting dead
trees to the remaining networks, thus creating a new cycle, drastically improves the distribution
of single-node basin stability. From our new findings we can interpret that in most of the cases,
however, the authors transformed dead ends into detours.

Secondly, with a fast predictor based on information about the network structure and the
line parameters, we developed a very fast tool to predict the appearance of nodes with poor
single-node basin stability during live operation. This particular feature might prove useful to
system operators, who usually have very limited computational resources that are already
occupied by simulations of so-called ‘N-1’-cases.

The novel weighted local clustering coefficient and the ERCC have been developed within
the context of this work and we will give further details in a forthcoming publication.

We have chosen a small set of explanatory variables based on assumptions how these
measures relate to the spreading of perturbations on the network. There is already literature on
this field [14], however actual dynamics of this process in the power grid network is yet not
fully understood. This would be an important point for consecutive research, building a theory
to justify or falsify our assumptions on the physical meanings of the characteristics.

Table 2. Coefficients of the logistic regression models: coefficients of the logistic
regressions for poor single-node basin stability after the primary classification, the
explanatory variables are strength k̃i, average neighbourʼs strength k̃i

N
, weighted local

clustering coefficient C̃i, vertex current flow betweenness VCFBi and effective resis-
tance closeness centrality ERCCi. Values are given for both sets (i) no detour/no dead
tree gateway and (ii) no detour/dead tree gateway. Further we state the best values of the
sensitivity and specificity at thresholds (i) pi = 0.125 and (ii) pi = 0.913.

Coefficient Value (i) Value (ii)

Intercept 3.766625 5.6446
VCFBi −0.098590 −2.5557
k̃i 0.074374 —

k̃i
N −0.395878 —

C̃i −7.588657 —

ERCCi −1.512116 —

sensitivity 84% 94%
specificity 77% 99%
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