Crystal structure of $bis(\eta^5$ -cyclopentadienyl)-pyrrolide-titanium(III), $Ti(C_{10}H_{15})_2(C_4H_4N)$

Anke Spannenberg*,^I, Vladimir V. Burlakov^{II}, Perdita Arndt^I, Marcus Klahn^I and Uwe Rosenthal^I

¹ Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

^{II} Russian Academy of Sciences, N. Nesmeyanov Institute of Organoelement Compounds, Vavilov St. 28, 117813 Moscow, Russia

Received March 1, 2007, accepted and available on-line August 29, 2007; CCDC no. 1267/1993

Abstract

C₂₄H₃₄NTi, orthorhombic, *Pbcm* (no. 57), *a* = 10.864(2) Å, *b* = 14.281(3) Å, *c* = 27.535(6) Å, *V* = 4272.0 Å³, *Z* = 8, $R_{gt}(F) = 0.043$, $wR_{ref}(F^2) = 0.111$, *T* = 200 K.

Source of material

Pyrrole (0.9 mL, 13.0 mmol) was added to $Cp_2Ti(\eta^2 - Me_3SiC_2SiMe_3)$ ($Cp^* = C_5Me_5$, 0.256 g, 0.52 mmol). The reaction mixture was stirred at 393 K for 12 days. After cooling the solution to room temperature dark green crystals had formed which were separated from the mother liquor by decanting, washed with *n*-hexane, and dried in vacuum (yield 0.110 g, 49.6 %).

Discussion

The activation of several bonds in reactions of different titanocene and zirconocene complexes of bis(trimethylsilyl)acetylene was described in several reviews [1-4]. For example, cleavage of C--H, C---C, Si---C, N---H, N---C, N---N, N---O, C---F and C-B bonds gave complexes of potential applicability in stoichiometric and catalytic reactions. Very recently Beckhaus and coworkers published a series of examples for reactions of titanocene bis(trimethylsilyl)acetylene complexes with different N-heterocyclic compounds. After dissociation of the alkyne the titanocene " Cp'_2Ti " (Cp' = substituted cyclopentadienyl) sources dimerize and trimerize the heterocycles to exciting compounds [5]. In the activation of pyrrole a typical different reaction behavior of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes is obtained giving for titanium a favored release of the alkyne with formation of Ti(III) complexes. For zirconium the formation of Zr(IV) complexes took place and the formed compound Cp*₂Zr(NC₄H₄)[C(SiMe₃)=CH(SiMe₃)] was confirmed by X-ray crystal structure analysis [6].

The molecular structure of the paramagnetic titanocene compound Cp*₂Ti(η^1 -NC₄H₄) shows behind the two bent cyclopentadienyl rings the pyrrolide ligand coordinated in an η^1 -manner to the central metal atom. Two molecules are in the asymmetric unit. The Ti—N distances are with 2.096(4) Å and 2.100(3) Å comparable with those in other complexes as the Cp₂Ti(η^1 -NC₄H₄) (d(Ti—N) = 2.090(1) Å [6]) and the Ti(IV) bispyrrolide Cp₂Ti(η^1 -NC₄H₄)₂ (d(Ti—N) = 2.070(5) Å, 2.100(4) Å) [7].

Table 1. Data collection and handling.

Crystal:	dark green prism,
	size $0.2 \times 0.3 \times 0.4$ mm
Wavelength:	Mo K_{α} radiation (0.71073 A)
μ:	4.08 cm^{-1}
Diffractometer, scan mode:	Stoe IPDS I, φ
$2\theta_{\max}$:	48.52°
N(hkl) _{measured} , N(hkl) _{unique} :	12090, 3458
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 1738$
N(param) _{refined} :	245
Programs:	SHELXS-97 [8], SHELXL-97 [9]

^{*} Correspondence author (e-mail: anke.spannenberg@catalysis.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Table 2. Continued.

Atom	Site	Occ.	x	у	z	$U_{ m iso}$	Atom	Site	Occ.	x	у	z	$U_{\rm iso}$
H(6A)	8e		0.3701	0.0370	0.5552	0.080	H(19C)	8e		0.1455	0.4882	0.2001	0.06
H(6B)	8e		0.2477	-0.0052	0.5790	0.080	H(20A)	8e		0.3584	0.6063	0.1347	0.09
H(6C)	8e		0.2906	0.0990	0.5921	0.080	H(20B)	8e		0.4915	0.5708	0.1514	0.09
H(7A)	8e		-0.0760	0.1361	0.5614	0.101	H(20C)	8e		0.4625	0.6806	0.1490	0.09
H(7B)	8e		0.0407	0.1479	0.5963	0.101	H(21A)	8e	0.5	0.6263	0.6487	0.2168	0.09
H(7C)	8e		-0.0020	0.0457	0.5795	0.101	H(21B)	8e	0.5	0.6320	0.5795	0.2625	0.09
H(8A)	8e		-0.1324	0.1643	0.4877	0.097	H(21C)	8e	0.5	0.6229	0.6902	0.2707	0.09
H(8B)	8e		-0.1030	0.1025	0.4406	0.097	H(22A)	8e		0.5346	0.8533	0.3418	0.08
H(8C)	8e		-0.0799	0.2132	0.4397	0.097	H(22B)	8e		0.6181	0.9024	0.3012	0.08
H(9A)	8e		0.2394	0.1260	0.3801	0.080	H(22C)	8e		0.6016	0.7910	0.3014	0.08
H(9B)	8e		0.1339	0.2038	0.3841	0.080	H(23A)	8e		0.3626	0.8813	0.3646	0.14
H(9C)	8e		0.0976	0.0959	0.3779	0.080	H(23B)	8e		0.2212	0.8660	0.3504	0.14
H(10A)	8e		0.3807	0.0655	0.4229	0.060	H(23C)	8e		0.2794	0.9689	0.3493	0.14
H(10B)	8e		0.3792	-0.0121	0.4648	0.060	H(24A)	8e	0.5	0.1075	0.9636	0.2835	0.16
H(10C)	8e		0.4411	0.0879	0.4746	0.060	H(24B)	8e	0.5	0.0780	0.9192	0.2314	0.16
H(11)	8e		0.4541	0.2216	0.5710	0.044	H(24C)	8e	0.5	0.1443	1.0189	0.2351	0.16
H(12)	8e		0.6726	0.2318	0.5450	0.060	H(25)	8e		0.0571	0.7557	0.3222	0.04
H(19A)	8e		0.1855	0.5613	0.1589	0.063	H(26)	8e		-0.1598	0.7756	0.2956	0.06
H(19B)	8e		0.0894	0.5918	0.2000	0.063	. ,						

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Z	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
C(1)	8e	0.2120(3)	0.0891(3)	0.5244(1)	0.034(2)	0.025(2)	0.030(2)	-0.009(2)	-0.005(2)	0.003(2)
C(2)	8e	0.0890(3)	0.1181(3)	0.5256(1)	0.034(2)	0.024(2)	0.041(2)	-0.014(2)	0.011(2)	-0.007(2)
C(3)	8e	0.0527(3)	0.1417(3)	0.4778(1)	0.019(2)	0.019(2)	0.060(3)	-0.002(2)	-0.005(2)	-0.012(2)
C(4)	8e	0.1556(3)	0.1280(2)	0.4468(1)	0.034(2)	0.020(2)	0.026(2)	0.004(2)	-0.014(2)	-0.006(1)
C(5)	8e	0.2529(3)	0.0921(2)	0.4757(1)	0.026(2)	0.018(2)	0.027(2)	-0.001(2)	-0.005(2)	-0.003(2)
C(6)	8e	0.2867(4)	0.0517(3)	0.5664(1)	0.068(3)	0.049(3)	0.043(2)	-0.020(2)	-0.019(2)	0.025(2)
C(7)	8e	0.0056(4)	0.1114(3)	0.5696(2)	0.077(3)	0.043(3)	0.081(3)	-0.023(2)	0.049(3)	-0.012(2)
C(8)	8e	-0.0770(3)	0.1567(3)	0.4599(2)	0.024(2)	0.040(3)	0.130(4)	0.003(2)	-0.021(2)	-0.029(3)
C(9)	8e	0.1567(4)	0.1394(3)	0.3925(1)	0.080(3)	0.042(3)	0.037(2)	0.005(2)	-0.019(2)	-0.010(2)
C(10)	8e	0.3739(3)	0.0551(3)	0.4580(1)	0.036(2)	0.030(2)	0.054(2)	0.010(2)	0.003(2)	-0.007(2)
C(11)	8e	0.4812(3)	0.2344(3)	0.5389(1)	0.029(2)	0.041(3)	0.039(2)	-0.004(2)	-0.005(2)	0.004(2)
C(12)	8e	0.6024(3)	0.2400(3)	0.5248(1)	0.018(2)	0.063(3)	0.068(3)	-0.001(2)	-0.012(2)	0.015(3)
C(13)	8e	0.2669(3)	0.5869(2)	0.2245(1)	0.023(2)	0.017(2)	0.029(2)	-0.004(2)	-0.001(1)	-0.006(2)
C(14)	8e	0.3848(3)	0.6164(2)	0.2087(1)	0.036(2)	0.017(2)	0.036(2)	-0.003(2)	0.013(2)	-0.007(2)
C(15)	4d	0.4587(4)	0.6315(3)	1⁄4	0.016(2)	0.017(3)	0.055(3)	0.001(2)	0	0
C(16)	8e	0.4496(3)	0.8603(3)	0.2752(1)	0.022(2)	0.020(2)	0.047(2)	-0.004(2)	-0.003(2)	-0.005(2)
C(17)	8e	0.3318(3)	0.8884(3)	0.2912(1)	0.031(2)	0.028(2)	0.063(3)	-0.012(2)	0.017(2)	-0.023(2)
C(18)	4d	0.2605(4)	0.9093(4)	1⁄4	0.015(2)	0.017(3)	0.092(5)	0.004(2)	0	0
C(19)	8e	0.1628(3)	0.5542(3)	0.1932(1)	0.052(2)	0.032(3)	0.042(2)	-0.012(2)	-0.010(2)	-0.006(2)
C(20)	8e	0.4281(4)	0.6188(3)	0.1563(1)	0.085(3)	0.047(3)	0.054(3)	-0.027(2)	0.041(2)	-0.025(2)
C(21)	4d	0.5970(4)	0.6381(4)	1⁄4	0.021(3)	0.033(4)	0.128(6)	0.007(3)	0	0
C(22)	8e	0.5607(3)	0.8509(3)	0.3077(2)	0.047(2)	0.048(3)	0.079(3)	-0.012(2)	-0.030(2)	-0.002(2)
C(23)	8e	0.2956(5)	0.9024(4)	0.3434(2)	0.101(4)	0.093(5)	0.088(4)	-0.036(3)	0.041(3)	-0.070(3)
C(24)	4d	0.1368(5)	0.9569(5)	1⁄4	0.020(3)	0.023(4)	0.28(1)	0.010(3)	0	0
C(25)	8e	0.0302(3)	0.7577(3)	0.2894(1)	0.027(2)	0.049(3)	0.045(2)	-0.000(2)	0.011(2)	0.008(2)
C(26)	8e	-0.0902(3)	0.7690(3)	0.2750(1)	0.018(2)	0.061(3)	0.075(3)	0.002(2)	0.014(2)	0.006(2)
N(1)	4c	0.4048(3)	1/4	1/2	0.021(2)	0.030(3)	0.037(2)	0	0	-0.005(2)
N(2)	4d	0.1055(3)	0.7500(3)	1/4	0.016(2)	0.025(3)	0.045(3)	-0.002(2)	0	0
Ti(1)	4c	0.21184(7)	1/4	1/2	0.0153(4)	0.0205(6)	0.0236(5)	0	0	-0.0032(4)
Ti(2)	4 <i>d</i>	0.29880(6)	0.74603(6)	1⁄4	0.0135(4)	0.0171(6)	0.0195(4)	-0.0006(4)	0	0

Acknowledgments. This work was supported by the Deutsche Forschungsgemeinschaft (grant no. GRK 1213), the Land Mecklenburg-Vorpommern and the Russian Foundation for Basic Research (project no. 05-03-32515). Funding and facilities provided by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock are gratefully acknowledged.

References

- Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke, N.; Arndt, P.; Burlakov, V. V.; Rosenthal, U.: Unusual Reactions of Titanocene- and Zirconocene Generating Complexes. Synlett (1996) 111-118.
- Rosenthal, U.; Pellny, P.-M.; Kirchbauer, F. G.; Burlakov, V. V.: What do Titano- and Zirconocenes do with Diynes and Polyynes? Acc. Chem. Res. 33 (2000) 119-129.

- Rosenthal, U.; Burlakov, V. V.: Organometallic Chemistry of Titanocene and Zirconocene Complexes with Bis(trimethylsilyl)acetylene as the Basis for Applications in Organic Synthesis. In: *Titanium and Zirconium in Organic Synthesis* (Ed. I. Marek), p. 355-389. Wiley-VCH, New York 2002.
- Rosenthal, U.: Transition Metal Acetylides. In: Acetylene Chemistry II. Chemistry, Biology, and Material Science (Eds. F. Diederich, P. J. Stang, R. R. Tykwinski), p. 139-171. Wiley-VCH, New York 2004.
- Piglosiewicz, I. M.; Beckhaus, R.; Saak, W.; Haase, D.: Dehydroaromatization of Quinoxalines: One-Step Syntheses of Trinuclear 1,6,7,12,13,18-Hexaazatrinaphthylene Titanium Complexes. J. Am. Chem. Soc. 127 (2005) 14190-14191.
- Arndt, P.; Burlakov, V. V.; Jäger-Fiedler, U.; Klahn, M.; Spannenberg, A.; Baumann, W.; Rosenthal, U.: Reactions of Titanocene and Zirconocene Bis(trimethylsilyl)acetylene Complexes with selected Heterocyclic and Aromatic NH and OH acidic Compounds. Collect. Czech. Chem. Commun. **72** (2007) 475-491.
- 7. Vann Bynum, R.; Hunter, W. E.; Roger, R. D.; Atwood, J. L.: Pyrrolyl Complexes of the Early Transition Metals. 1. Synthesis and Crystal Structure of $(\eta^5-\text{CsH}_5)_2\text{Ti}(\eta^1-\text{NC}_4\text{H}_4)_2$, $(\eta^5-\text{CsH}_5)_2\text{Zr}(\eta^1-\text{NC}_4\text{H}_4)_2$ and [Na(THF)₆]₂[Zr($\eta^1-\text{NC}_4\text{H}_4)_6$]. Inorg. Chem. **19** (1980) 2368-2374.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.