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Abstract: As urban areas continue to expand and play a critical role as both contributors to climate
change and hotspots of vulnerability to its effects, cities have become battlegrounds for climate change
adaptation and mitigation. Large amounts of earth observations from space have been collected over
the last five decades and while most of the measurements have not been designed specifically for
monitoring urban areas, an increasing number of these observations is being used for understanding
the growth rates of cities and their environmental impacts. Here we reviewed the existing tools
available from satellite remote sensing to study urban contribution to climate change, which could be
used for monitoring the progress of climate change mitigation strategies at the city level. We described
earth observations that are suitable for measuring and monitoring urban population, extent, and
structure; urban emissions of greenhouse gases and other air pollutants; urban energy consumption;
and extent, intensity, and effects on surrounding regions, including nearby water bodies, of urban heat
islands. We compared the observations available and obtainable from space with the measurements
desirable for monitoring. Despite considerable progress in monitoring urban extent, structure, heat
island intensity, and air pollution from space, many limitations and uncertainties still need to be
resolved. We emphasize that some important variables, such as population density and urban energy
consumption, cannot be suitably measured from space with available observations.

Keywords: climate change; urban extent; urban structure; urban population; greenhouse gas
emissions; urban air pollutants; surface urban heat islands and heat waves

1. Introduction

Emissions of greenhouse gases (GHG) as well as other short-lived atmospheric pollutants from
burning fossil fuels together with land use change are the major reasons behind climate change, and
fast-paced urbanization is increasingly being identified as the major culprit. Today, urban areas host
more than half of the global population and are responsible for over 70% of the global GHG emissions
from final energy use [1]. In addition to global warming trends, urban areas experience a local
urban heat island (UHI) effect resulting from the high density of impervious surfaces, modification
of air ventilation from built-up structures, as well as waste heat emissions from residential and
industrial sources [2]. Moreover, high air temperatures interact with urban air pollution in multiple
ways. For example, higher temperatures modify the distribution of pollutants in the air [3,4] and
influence intensity and frequency of rainfall over some cities [5]. A further increase in temperatures
can exacerbate these effects. Additionally, air pollutants such as particulate matter have an effect on
radiative forcing, modifying scattering and absorption of solar radiation. Rising temperatures also
increase biogenic emissions of volatile organic compounds and the speed of their reaction with nitrogen
oxides leading to enhanced ground level ozone production [6]. UHI, urban air pollution, and their
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interaction have local to regional effects on the surface energy balance (regional warming, accelerated
water cycle, modified rainfall patterns), while GHG emissions and changes in surface albedo resulting
from urban expansion have global impacts.

The population and extent of cities continue to grow. The area of global cities is projected to triple
globally from 2000 to 2030 [7]. Urban development increases demand for water, energy, construction
materials, and food. Quantitative analysis of the global resource requirements of cities indicated that
without a new approach to urbanization, material consumption by the world’s cities will grow from 40
billion tons in 2010 to about 90 billion tons by 2050 [8]. Cities use billions of tons of raw materials, from
fossil fuels, sand, gravel, and iron ore, to biotic resources such as wood and food. At the same time,
changes in climate such as in regional precipitation patterns, storm frequency and severity, snowmelt
timing, and heat waves have already started to affect or even disrupt the supply and storage of these
resources (e.g., [9]). In addition to increased burden on resources, urban growth consumes vast areas of
valuable agricultural land and threatens biological diversity through habitat fragmentation. Increased
demand for energy and loss of natural spaces will also likely exacerbate climate change. Many cities
are coastal and their dwellers are already facing the challenges of adaptation to sea level rise, increased
storm frequency, and enhanced flooding [10]. Cities located in floodplains are at increased risk of
flooding from the intensification of storm events [11].

Monitoring urban areas from space offers the advantage of broad coverage, synoptic, repeated
observations, and the ability to measure consistently important physical properties with well-validated
methods. Through long-term observations from space, relevant variables can be analyzed over time
and across scales, also making it possible to understand relationships between the changes brought by
urban expansion in terms of land cover, climate, and pollutant emissions and the surrounding regions
and improve the possibility of objective comparisons across time, geographies, and socio-economic
and policy settings [12].

Remote sensing capabilities are now available from a variety of sensors and at different temporal
and spatial resolutions to either measure directly physical variables with significance to the urban
issues linked to climate change or provide suitable proxies. Available remote sensing technologies
range from optical, thermal infrared, microwave (including radar, scatterometers, and altimeters), as
well as light detection and ranging (LiDAR). Variables that can be obtained from space observation
are needed for monitoring major issues that can be measured at city scales: Urban population, extent,
and structure, urban energy consumption, urban emissions of GHG and other air pollutants, extent
and intensity of surface UHI (SUHI) effect (Table 1). These issues are interrelated in complex ways
(Figure 1) and some of the remote sensing capabilities can be used to measure more than one variable
and address multiple issues. Most of the global populations now live in urban areas [13], drive the
demand for land (urban extent) and, with their densities, shape the urban structure [14,15]. Urban
population growth also drives the demand for energy and resources [16]. Urban extent and structure
are among the major determinants of land use change around cities. Urban-driven land use changes,
accompanied by many demographic and economic changes, strongly impact the regional physical and
biogeochemical properties of the earth, and have consequences on energy use (for cooling and heating
of buildings, lighting, appliance use, and transportation), the emissions of GHG (the majority of global
emissions are attributed to cities), and other air pollutants [17]. Urban structure and extent also impact
the strength of the UHI and excess urban heat in general, although in complex ways [18], which then
feeds back on additional energy use for cooling and additional GHG and air pollutants emissions [19].
Air pollutants, whose concentrations are largely related to energy use and urban size and structure,
can shape the climate of individual cities in complex ways [6] and adversely impact human health.
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Figure 1. Urban contributions to climate change and their potential interrelations. GHG indicates
greenhouse gasses.

Remote sensing technologies can contribute to monitoring, testing, and exploring solutions for
evolving urban development to adapt to and to mitigate the changing climate. Wentz et al. [20] reviewed
capabilities of remotely sensed earth observations for mapping and modelling global environmental
change research with a special focus on urbanization. Zhou et al. [21] focused their efforts on reviewing
the state of the art in SUHI research from space. Prakash et al. [22] discussed the opportunities offered
by open-source remote-sensing technologies for sustainable urban planning and decision making and
shed light on the challenges that have to be overcome for wider adoption of these observations by city
authorities. These challenges are not only technical skills needed for processing and interpretation of
remotely sensed data, or the large data volumes, but also the high costs of high-resolution satellite
images available from commercial sensors and LiDAR [23].

With the growth of urban areas and pronounced feedbacks between urbanization and global
warming, cities are becoming the battleground for climate change mitigation, increasing the need for
tools for the consistent monitoring of the implementation of mitigation measures. Here we review the
existing tools available from satellite remote sensing to study urban contributions to climate change
and that potentially could be used for monitoring the progress of climate change mitigation strategies
at the city level.
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Table 1. Urban climate change issues and major remote sensing tools available to address them, where AHI—Advanced Himawari Imager, ALOS—Advanced
Land Observing Satellite, ASTER—Advanced Spaceborne Thermal Emission and Reflection Radiometer, CALIPSO—Cloud-Aerosol LiDAR and Infrared Pathfinder
Satellite Observation, COSMO-SkyMed is Constellation of Small Satellites for Mediterranean basin Observation, DEM—digital elevation model, DMSP/OLS—Defense
Meteorological Satellite Program’s Operational Linescan System, EROS—Earth Resources Observation Satellite, GDEM—Global Digital Elevation, MODIS is Moderate
Resolution Imaging Spectroradiometer, OCO—Orbiting Carbon Observatory, OMI—Ozone Monitoring Instrument, SAR—Synthetic Aperture Radar, SRTM—Shuttle
Radar Topography Mission, TANSO-FTS—Thermal and Near infrared Sensor for Carbon Observation—Fourier Transform Spectrometer, TES—Technology Experiment
Satellite, VIIRS—Visible Infrared Imaging Radiometer Suite, VHR—Very High Resolution.

Urban Climate Change Issues

Remote Sensing Capabilities

. Quantity . .
Urbar'l Issue Linked Quantity Needed Obtainable or Sensor Spatial Resolution Temporal Resolution Coverage References
to Climate Change . [m]
Available
Various Commercial VHR 0.4-1 on-demand/irregular Iré?g,;:r Various vendors
Total population, Density, number, Sentinel-1 10 6-12 days Global https://scihub.copernicus.eu/
Urban population density, and their and type of Sentinel-2 10-20 5-10 days Global https://scihub.copernicus.eu/
change rates dwelling units https://www.dlr.de/eoc/en/
TerraSAi-X tGk.)bta 1 Urban 12 2011/2012 Global desktopdefault.aspx/tabid-9628/
ootprin 16557_read-40454/
Landsat 8 15-30 16-day Global https://glovis.usgs.gov/
Gaofen 1 and 6 16 2-4 days Global http://www.cnsageo.com/#/
Various Commercial VHR 0.4-1 On-demand/irregular ~ On demand/Irregular Various vendors
Sentinel-1 10 6-12 days Global https://scihub.copernicus.eu/
Urban area Sentinel-2 10-20 5-10 days Global h}t]tgs://;cihub.(cj(])p;rl/iicu;.m;/
Urban land s ps://www.dlr.de/eoc/en
rbanland uses  TerraSAR-X Global Urban 12 2011/2012 Global desktopdefault.aspx/tabid-9628/
Fractional Footprint
vegetation cover 16557 _read-40454/
Urban area and its Landsat 8 15-30 16-day Global https://glovis.usgs.gov/
Urbart1 ex:ent and composition Gaofen 1 and 6 16 24 days Global hf:ttpj// i/vgw.cns-ageo.coin/ﬁ/ﬂ
structure Building height MODIS Vegetation Indices 250-1000 16-days Global tpsi//lpdaac.usgs.gov/tools/
earthdata-search/
MODIS land cover 500 Yearly 2001-2017 Global https://lpdaac.usgs.gov/tools/
earthdata-search/
VIIRS 750 Monthly and yearly Global https://Ipdaac.usgs.gov/tools/

composites

earthdata-search/
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Urban Climate Change Issues

Remote Sensing Capabilities

. Quantity . .
Urbar.l Issue Linked Quantity Needed Obtainable or Sensor Spatial Resolution Temporal Resolution Coverage References
to Climate Change . [m]
Available
Various Commercial VHR,
KOMPSAT-3 and other 0.5-1 3 days Global on demand Various vendors
stereo images
Digital Urban COSMO SkyMed 1-100 4-16 days Global https/ eart oo ‘;m/ fmveb/g;e.s v
Canopy Helght COsSmo-s yme -eSsa-archive
Sentinel-1 10-100 6-12 days Global https://scihub.copernicus.eu/
https://www.eorc jaxa.jp/ALOS/en/
ALOS World 3D 5-30 2015 Global aw3d30/data/index htm
TanDEM-X DEM 12-30-90 11 days Global https://geoservice.dlr.de/web/
SRTM 30 2000 Global http://srtm.csi.cgiar.org/srtmdata/
ASTER GDEM V2 30 Yearly 2000-2009 Global https://lpdaac.usgs.gov/
International Space
RGB photography Station Astronaut 5-200 Irregular Irregular http://eol jsc.nasa.gov/
photography
. https://apollomapping.com/eros-b-
Multispectral EROS-B 0.7 On demand Tasked e
. . ) . satellite-imagery
Consumption of Nighttime Light https://www. cgsatelli‘;e com/
. energy emissions Jilin-1 (JL1-3B) 0.9 On demand Tasked . ! . .
Energy consumption . imagery/luminous-imagery/
Emissions of waste https://www.cgsatellite.com/
energy (heat) Jilin-1 (JL1-07/08) 0.9 On demand Tasked Lo Lo T
imagery/luminous-imagery/
Panchromatic LuoJial-01 130 15 days Global . g;i/é;% (1;?“1(2‘ 1h7t%m 1
nghtt'lm'e Light VIIRS 750 Daily Global https://search.earthdiatanasa.gov/
€MmIssIons DMSP/OLS 2700 Yearl posit Clobal https://ngdc.noaa.gov/eog/dmsp/
carly compostte oba downloadV4composites.html
Landsat 8 100 16 days Global https://glovis.usgs.gov/
16 days and on . . oo
Thermal sensors ASTER 90 demand Global https://glovis.usgs.gov/
VIIRS 750 Daily Clobal https://lpdaac.usgs.gov/tools/
earthdata-search/
. https:
MODIS 1000 Daily Global //search.earthdata.nasa.gov/search
Sentinel-3 1000 Daily Global https://scihub.copernicus.eu/
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Urban Climate Change Issues

Remote Sensing Capabilities

. Quantity . .
Urbat.l Issue Linked Quantity Needed Obtainable or Sensor Spatial Resolution Temporal Resolution Coverage References
to Climate Change . [m]
Available
80 x 80 km area
0CO-3 3500 Irregular hotspots Snapshot https://search.earthdata.nasa.gov/
X search?q=0CO3_L2_Standard
Greenhouse gasses Emissions & Concentrations of Area Map (SAM)
X CO; and CHy in Sentinel 5P 7000 Daily Global https://scihub.copernicus.eu/
(CO,, CHy, N20) concentrations an air column http://gsics.nsmc.org.cn/portal/en/
TanSAT 1000 x 2000 16 days Global ’ - e
satellite/TanSat.html
TANSO-FTS 10500 3 days Global hitps://data2.gosat.nies.go p/
index_en.html
TES 5300 x 8500 2 days Global https://search.earthdata.nasa.gov/
Concentrations of Sentinel-5P 7000 Daily Global https://scihub.copernicus.eu/
- ozone, NO,, SO, TES 5300 x 8500 2 days Global https://search.earthdata.nasa.gov/
Emissions & X ir col 13000 x 24000
concentrations of nan air cotumn OMI Daily Global https://search.earthdata.nasa.gov/
. 13000 x 13,000 zoom
Other air pollutants aerosols, ground
level ozone, NOx, Sentinel-2 10 5,10 days Global https://scihub.copernicus.eu/
PM25... Aerosol Optical Landsat 8 30 16 day Global https://glovis.usgs.gov/ o
Depth VIIRS 750 Dail Global https://data.nodc.noaa.gov/cgi-bin/
6000 y iso?id=gov.noaa.ncdc:C01446
CALIPSO 5000 Daily Global https://www-calipso.larc.nasa.gov/
MODIS 500, 1000, 3000, 10000 1-2 days Global https://search.earthdata.nasa.gov/
Land Surface ASTER 90 16 Cllae};rslaaiccll on Global https://glovis.usgs.gov/
Air temperature Temperature . r :
Surface urban heat Land surface Water Surface Landsat 8 100 16 days Global https://glovis.usgs.gov/
. . https://Ipdaac.usgs.gov/tools/
island and heat waves temperature temperature VIIRS 750 Daily Global
earthdata-search/
Water temperature Sea Surface https:
Temperature (SST) MODIS 1000 4 times/day Global J/search.carthdata.nasa.gov/search
Sentinel-3 1000 ~14 days Global https://scihub.copernicus.eu/
https://coastwatch.noaa.gov/cw/
AHI (SST only) 2000 Sub-daily Global satellite-data-products/sea-

surface-temperature. html
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2. Urban Population and Health

In 2007, the urban population reached half of the world population. Ever since, most of the
population growth worldwide occurs in urban areas. It is estimated that about 55% of the world’s
population now lives in urban areas. By midcentury it will be around 70%, including a surge in the
number of megacities, which are agglomerations with populations of more than 10 million and largely
located in developing countries [13]. Because most of the world’s population will live in cities in the
decades ahead, estimating urban population and its dynamics are important for predicting demands
for energy, materials, food, and other resources.

Census data can provide detailed maps of population distribution when they are linked with
small-area administrative boundary data, such as zip-codes and census-blocks. However, the size of
these boundaries can vary greatly depending on the population counts within them, and population
may not be distributed homogeneously. As censuses are highly costly and, for various political and
socio-economic reasons, difficult to be conducted accurately, they often do not offer up-to-date or
reliable population counts, particularly where there are large informal settlements [24]. Population
cannot be directly observed with current remote sensing technology but can be estimated from density
of human settlement distribution and other covariates [24].

Historically, space remote sensing has been used to either directly estimate population size [25-27],
or to spatially disaggregate or refine census estimates of population through statistical modeling [28-30].
This presupposes that reliable census data are available. Under the assumption that human population
is associated with settlements, aggregated population counts can be spatially disaggregated with
dasymetric mapping techniques, producing gridded population maps. Very high-resolution maps
of built-up areas derived from Pleiades pansharpened data at 0.5 m for Dakar, Senegal, were shown
to significantly improve the accuracy of spatial disaggregation compared to built-up extents at 10-m
resolution from Landsat and Sentinel-2 data fusion [31].

With greater access to high-resolution satellite imagery and computing power, population maps
are produced using settlement extent maps derived from satellite data and other covariates to
train machine learning algorithms with population counts sampled from a range of socio-economic
conditions. High-resolution maps of settlements in conjunction with micro census surveys have been
shown to be effective at estimating population independently of the census in Nigeria, where existing
census data are outdated and unreliable [32].

In dense urban settings with high-rise buildings, tri-dimensional variations in urban structure can
complicate modeling population counts from simple masks of built-up extent; combining ortho-imagery
from very high-resolution imagery with building volumes from LiDAR data or dasymetric mapping
could help overcome this challenge [33,34]. However, these approaches have large uncertainties that
have not yet been quantified. Uncertainties are associated with the false identification of building
footprints and with the estimation of buildings’ occupancy rates.

To date, the Global Human Settlement Layer (GHSL) is the most accurate dataset for mapping the
distribution of human population globally [35]. It was created using global and continental satellite
image archives, fine-scale satellite imagery, census data, and volunteered geographic information.
The dataset is available for the reference periods 1975, 1990, 2000, and 2015, with the population
expressed as total number of people per 250-m grid cell (Figure 2). The major uncertainty in these
datasets is, again, the strong interdependence of population counts on the correct identification of
built-up structures.
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0 Population count 2000 1000 km L— 1

Figure 2. Subset from the Global Human Settlement Layer showing population distribution for the
year 2015 at a spatial resolution of 250 m.

Urban areas represent population hotspots with large consequences for increased public health
concerns related to climate change, including increases in frequency and intensity of heat waves and
other extreme events such as storms, floods, fires, and drought [36], and decreased food security [37,38].
Increases in temperature alone, which are more marked in urban areas because of the UHI effect, stress
the body physiology, causing urban dwellers to be more likely to suffer from digestive diseases, nervous
system issues, insomnia, depression, and mental illnesses (for example, [39,40]), with significant quality
of life implications. Scores from the general health questionnaire-28 [41], a simple but reliable
self-administered survey that is used to assess physical and mental health in the general population
and within communities, were associated with intensifications of the SUHI effect in the metropolitan
area of Isfahan, Iran, indicating that areas of the city that heated up more related to greater mental
distress of the inhabiting population [42]. Cardiovascular, respiratory, and kidney diseases are also
more common in hotter urban environments [43]. The incidence of numerous infectious diseases also
presents climate correlates, such as relationships with temperature, humidity, and radiation [44—46].
In Sao Paulo, Brazil, land surface temperature data from Landsat data were found to be associated
with increased breeding and blood feeding of Aedes aegypti mosquito, which transmits dengue fever
and favors warmer and drier environments [47]. Increased urban temperatures were also found to be
associated with greater West Nile infection rates in mosquitoes in the Chicago area, USA [48], and
with greater spread of mosquitoes that can potentially become infected with malaria in the UK [49].
Environmental changes brought by urban land cover changes combined with greater proximity of
people increases the spread of infectious diseases [50]. Accurate population density maps combined
with spatial maps of various parameters that have implications for climate change adaptation and
mitigation, such as high-resolution urban temperature maps, flood risk maps, and air pollution maps,
therefore also have important public health applications. The design of the urban structure, including
the siting of parks, green belts, community gardens, building alignment, but also medical facilities and
cooling centers, should be planned with attention also to population distribution.

3. Urban Extent and Structure

Urban extent and its change over time are important determinants of the impact of urbanization
on land and consequently on changes in climate. Urban extent not only increases because new urban
dwellers need new housing and other infrastructures, but also because cities are becoming less compact
over time. The long-term historic de-densification trend of two percent per year threatens to increase
global urban land use from just below 1 million km? to over 2.5 million km? in 2050 [8]. Cities
expand not only horizontally, but also in height. The number of supertall buildings (height > 200
m) increased by several orders of magnitude over the last century, from two in 1920 to almost 1600
in 2018 [51]. The conversion of land into paved urban areas dramatically changes the physical [52]
and biogeochemical properties of the Earth surface. One of these changes involves the water and
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energy exchanges between the land surface and the atmosphere, and are the main determinants of the
increases in surface temperatures of urbanized areas [53], responsible for the UHI and SUHI effects. A
modeling study of potential urban expansion in Europe suggested that a 40% increase in urban area
would double the region affected by thermal stress and significantly reduce summer precipitation [54].

Urban size also relates to resource consumption and economic activity [55], and alters the patterns
of carbon sequestration potential of the land [56]. Greater urban areas require a larger infrastructure
for roads and buildings and energy consumption. The greater the size, the greater the amount of
energy used for construction, functioning of the city, economic activities, and transportation, resulting
in greater carbon emissions. In addition to the horizontal extent, the vertical development of cities also
relates to embodied and operational energy consumption [57,58].

Historically, remote sensing has been widely used for mapping urban extent along with other
land cover types, from the use of aerial photography in the early days, to mapping based on Landsat
data, to wall to wall to maps of global land cover. As earth observations became available for global
urban mapping, such as from Moderate Resolution Imaging Spectroradiometer (MODIS), dedicated
efforts to mapping urban land cover, rather all the types of land covers, became more common. Urban
extent can now be derived from a number of satellites, with optical or synthetic aperture radar (SAR),
at finer spatial resolution, some publicly available and increasingly commercially operated (Table 1).

The first global urban maps were first made possible with data from MODIS [59] and nighttime light
emissions from the Defense Meteorological Program/Operational Line-Scan System (DMSP/OLS) [60].
As computational capacity and cloud computing platforms such as Google Earth Engine have become
available and the free availability of medium-resolution data increased, first with the opening of the
Landsat archive and later with the availability of Sentinel data, efforts at global urban mapping at
decametric resolution (20 to 30 m) have become more common (e.g., [61,62]). The Global Human
Settlement-BUILT dataset of global urban areas at 30 m was one of the first attempts at multitemporal
global urban mapping using Landsat data and provides layers for the years 1975, 1990, 2000 and 2014 [63].
The Global Human Settlement-BUILT is currently being updated and improved with Sentinel-1 data
and takes advantage of machine learning techniques training and classification techniques developed
for big data [63]. A global multitemporal urban land map at 30 m [62] was produced consistently for
multiple years from Landsat and DMSP/OLS data for the period 1990-2010 (at five years intervals).
Although many techniques for urban landcover classification have been developed that perform well
regionally, their global application is more uncertain [64]. The global multitemporal urban map applied
a multi-step approach based on the Normalized Urban Areas Composite Index, which combines a
binary mask obtained from the nighttime lights data from DMSP/OLS with the normalized difference
vegetation index, normalized difference water index and the normalized difference built-up index
calculated from Landsat data. Optical data still present many challenges in consistently distinguishing
built-up material from bare soil and other non-constructed impervious materials such as fallow fields
and bare rocks. Thus, new indices and classification algorithms are still being developed to address
these limitations for mapping urbanization in arid and semi-arid regions (e.g., [65]). Another challenge
of optical data for multi-temporal applications is the retrieval of suitable acquisitions over tropical
areas, which are often covered by clouds. Alternative efforts for automated high-resolution global
urban mapping are based on SAR data. To date, the highest spatial resolution urban extent map is from
the Global Urban Footprint for reference year 2011, which was based on TanDEM-X and TerraSAR-X
at 12-m resolution [23,66] (see an example in Figure 3). This dataset indicates that the total global
built-up area in 2011 amounted to 834,260 km?, or about 0.64% of the Earth’s land surface [23], but
is limited to a one-time assessment only. The public availability of SAR data from Sentinel-1, which
has shown good potential for distinguishing urban areas based on their characteristics of consistently
high backscatter, should provide the avenue for additional global multi-temporal urban datasets at
fine spatial resolution in the near future [61]. Multi-temporal global and continental or regional urban
extent products facilitate the consistent comparison across cities over space and over time, which often
lead to better understanding of the processes that drive urbanization [67] and their consequences in
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terms of emissions. Finer-scale maps better capture the large heterogeneity in urban forms. While
global studies mapping urban growth from space are still rare (e.g., [62]), satellite data are widely used
to estimate local or regional rates of urban expansion [14]. The Atlas of Urban Expansion [68] is a
publicly available collection of Landsat-derived data on quantity and quality of urban expansion (1990,
2000, and 2014) for 200 cities distributed worldwide that can be used to study the impacts of urban
growth on climate related-issues. For example, it has been used to ascribe the increased air pollution
(PM 2.5 and NO; emissions) of 10 Chinese cities between 2000 and 2013 to urban sprawl [69]. With
economic development, these Chinese cities have grown more fragmented and the dependency on car
transportation has increased, leading to worsening air pollution. An analysis of land cover metrics
on urban form calculated from the CORINE Land Cover data found that sprawl was responsible for
greater GHG emissions in Europe [70]. Multi-temporal urban extent maps derived from Landsat data
at five-year intervals for Chinese megacities also related expansion of urban land and the transportation
network added to connect the newly urbanized land to increased CO, emissions [71]. Eventually, an
improved understanding of how urban size and growth relate to climate change issues will require
also to develop geospatial methods for delineating the boundaries between urban and rural lands,
as administrative definitions and built-up density criteria are often insufficient to satisfy research
needs [72].

Figure 3. Example of global urban footprint for Berlin, Germany derived from TerraSAR-X for the year
2011 (Credit: DLR).

In addition to binary masks of urban extent (built-up vs. non built-up), recent efforts are geared
towards a more complex understanding of the urban structure, which is related to the arrangement
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of the land use in urbanized areas, and which can be loosely defined as the combination of types of
buildings (including height), road density, green and open spaces, and water bodies within urban
areas [15,73]. The Local Climate Zones (LCZ) framework provides a protocol for the classification of
these different types of structures that can be used to facilitate comparisons across different sites [18].
LCZs allow one to classify different types of urban and rural environments based on their effects on
temperatures as they relate to their surface conditions. For example, rather than referring to an area
as simply urban or rural, it assigns it to different built types (e.g., compact or open high-, mid- or
low-rise, etc.) and different land cover types (e.g., dense or scattered trees, bare soil, or bare rock
or paved, etc.). Such information on urban structure supports a better understanding of population
distribution [74], GHG and other pollutants emissions [75,76], energy consumption [77], and the UHI
and SUHI effects [78-80].

Thus far, studies of urban structure have been limited in scope, mostly focusing on the analysis
of individual cities, mainly large metropolitan areas, and few have done multi-city comparisons
(e.g., [81,82]). Larger comparisons are still missing, and a suitable framework needs to be defined
to make them possible. This limitation is being addressed by the WUDAPT (World Urban Database
and Access Portal Tool) project [83-85], a community effort that aims at providing urban scientists
(and more particularly urban climatologists) with relevant information on urban forms and functions
that are linked to LCZs. It also defends a global standardization of urban classification in the form of
LCZs for comparing urban climate case studies between them. Finally, the parameters can be fed to
urban climate models. Such tools can facilitate the generation of transferable solutions that can serve
urban planning purposes. For instance, urban green spaces contribute to climate change mitigation
both by taking up and storing carbon and by decreasing UHI effects. Location of urban vegetation, its
structure, and carbon storage can be detected from space [86,87] and its other benefits estimated with
additional numerical models [88].

Studies of the urban structure rely on resolving individual buildings and their heights. This
is best done with very high-resolution commercial sensors and LiDAR data, which are still too
expensive to be used at large scales [15]. The three-dimensional built-up infrastructure has been
studied at coarse resolution at the global scale using backscatters from QuikSCAT SeaWinds microwave
Scatterometer [89,90]. Li et al. [91] have developed a first model for large-scale mapping of urban
heights using Sentinel-1 data and have tested the approach on large cities of the continental US.
Because of the global availability of Sentinel-1 data, this approach has the potential to be adapted
globally. The results are not as accurate as the ones that can be obtained from aerial LIDAR data or very
high-resolution optical stereo images or TerraSAR-X data, which can separate individual buildings (for
example, see [92,93]).

Information on urban extent and particularly structure are also required to assess the vulnerability
of cities to natural hazards and manage the risks and adapt to changes, such as floods, which are
expected to become more extreme [10,11]. Urban areas are vulnerable to flooding when they do not
include enough pervious surfaces or are not equipped with an adequate storm drainage system [94].
With climate change, precipitation patterns can also change with more extreme downpours becoming
more frequent [95]. The effects of extreme downpours can compound with increases in impervious
areas. Remote sensing has been used to help assess flood risk, flood forecasting, and post-flood
assessments. For example, remotely sensed impervious surface areas assessments can be used as
input to hydrologic models [96]. While most of this work requires very accurate 3D modeling of
terrain and building elevations, which relies on terrestrial or aerial LIDAR, space remote sensing has
demonstrated some utility for managing flood risk. Although cloud-free optical data are usually not
available immediately after a flood and there are challenges related to the complexity of SAR signals in
urban settings, SAR data combined with Interferometric SAR (InSAR) coherence or with LiDAR data
can be used to provide accurate high-resolution flood maps [97,98].
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4. Energy Consumption

Heating and cooling of buildings, transportation, lighting, and various electrical appliances used
by urban dwellers require energy. Global cities consume between 67 and 76% of global energy [1]
and this consumption has been increasing over time. The energy consumption per capita increases
with the rising affluence of urban dwellers [99]. Office buildings mainly use electricity for lights,
equipment, heating, and cooling. Residential energy use is likely to vary considerably by climate. In
temperate climates, most of the energy is used for indoor space and water heating, which currently
depend more on fossil fuels [100]. Zoning of urban areas is needed for distinguishing residential from
commercial use, since they have different patterns of energy use and different energy sources. If energy
is generated from burning fossil fuels in the city, then energy use is correlated with CO, emission
levels. If renewable energy sources—e.g., hydro, solar, or wind—are used to generate energy, then
CO; emissions can be low even with high energy use per capita [101]. The implications of energy
consumption for the global climate are highly dependent on the energy source.

Outdoor light emissions can be mapped with nighttime spectroradiometers. DMSP/OLS has
been providing nighttime global light emission data in digital form from 1992 to 2013 at 1-km spatial
resolution. With the launch of Suomi National Polar Partnership/Visible Infrared Imaging Radiometer
Suite (VIIRS), global light emissions have been sensed with greater spatial detail (750 m) and radiometric
resolution (14 bit). These data have been shown to correlate with electric power consumption at
the national level [60] and at the subnational level, demonstrating that they can be used to predict
interannual [102,103] and monthly [104] variations in electricity use in lower- and middle-income
countries. To ascribe power use to individual cities or even metropolitan areas still presents challenges,
especially because of the difficulty in delineating the boundaries of individual built-up areas [105].

Distinguishing different light sources, such as incandescent, fluorescent, or LED, which is not
possible with DMSP/OLS and VIIRS and most nighttime sensors, as they are limited to panchromatic
or visible multispectral bands, could more precisely indicate energy consumption [106]. Radiometric
and spectral requirements that a nighttime sensor would need to distinguish lighting types have been
assessed by de Meester and Storch [107]. The first source of visible multispectral nighttime space
images have been provided by the International Space Station Astronaut photography program, which
has been acquiring digital photography of the Earth’s night surface since 2001 [108] showing the
different colors of outdoor artificial lights in different cities, and how they have changed as light energy
saving and climate adaptation programs are being implemented. Sub-meter nighttime acquisitions are
now possible with commercial satellites such as Jilin-1 and EROS-B (Table 1).

5. Emissions of GHG

Three-quarters of global GHG emissions are attributed to urban areas [1]. If the top 50 emitting
cities were counted as one country, that ‘nation” would rank third in emissions behind China and
the United States [109]. Many cities are taking steps to combat climate change and set up targets for
reducing their emissions of CO,. A 2014 survey lists 228 global cities—representing nearly half a billion
people—that have pledged reductions equivalent to 454 megatons of CO, [110]. There are similar
pledges for other air pollutants. Cities have two types of emissions: Direct emissions from urban energy
consumption activities and upstream emissions, i.e., emissions that occur along the global production
chain of the goods and services purchased by urban dwellers. Although upstream emissions from
urban households are in the same order of magnitude as cities” overall direct emissions [111], we focus
here on the direct emissions only. Can remotely sensed data collected from space provide capability to
monitor the progress that cities make in reducing their emissions of GHG?

There are currently a few satellite instruments that are able to detect the number of molecules
of a particular gas between the instrument and the Earth’s surface—a vertical column density in
units of molecules per unit area of the Earth’s surface (Table 1). If gas transport, deposition, and
chemical conversion are minimal or are accounted for, then the observation can reflect the emission
rate of that gas. Satellite sensors that detect CO; dry air mole fraction (Xco2) in an air column
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are useful for monitoring direct emissions of CO, and other GHG from cities [112,113]. The first
space measurements that focused on Xcp; were from Scanning Imaging Absorption Spectrometer for
Atmospheric Cartography (SCIAMACHY) on ENVISAT, which was active over the period 2002-2012.
With data from SCIAMACHY, regional Xcop enhancements related to yearly changes in anthropogenic
CO; emissions were detected from industrial areas in Germany, the East Coast of the United States,
and the Yangtze River Delta [114]. SCTAMACHY had coarse spatial resolution (~ 60 km x 30 km) and
low sensitivity (~4-8 ppm). It was used only to detect large emissions enhancements from bigger
industrialized regions.

The Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer
(TANSO-FTS) instrument on Japan’s Greenhouse Gases Observing SATellite (GOSAT) was used to
constrain carbon sources to megacities [113]. However, TANSO-FTS is limited by its low sampling
density (three to five observations with a footprint of 10.5-km? are available every 150 to 250
km) [115], insufficient to accurately characterize fossil fuel emissions with the required spatial and
temporal resolution.

NASA’s Orbiting Carbon Observatory 2 (OCO-2) provides measures of the total column dry-air
CO; (Xcop) with a much higher spatial resolution (~1.29 km X 2.25 km), temporal frequency (16-day),
and sensitivity of 0.5~1 ppm [116] than previous sensors. Ye et al. [117] used OCO-2 to quantify
total emissions for three large cities (Riyadh, Cairo, and Los Angeles) using multiple tracks from
multiple revisits. Wu et al. [118] estimated per capita emissions for 20 midlatitude cities distributed
across continents by sampling the Xcop of air upwind of the urban area. By doing so, they were
able to overcome the limitations of OCO-2, which was not optimized to monitor CO, from urban
areas. In addition, they employed satellite measurements acquired during the non-growing season for
cities with low vegetation coverage. These measures allowed detection and analysis of the emissions
predominantly from non-vegetated sources. Biogenic sources of CO; from soil respiration of urban
forests, parks, and residential and commercial landscapes can represent a significant source of urban
CO; emissions [119]. OCO-3, the follow-up mission to OCO-2, mounted on the International Space
Station, can yield more frequent observations for a greater number of cities with the Snapshot Area
Mapping mode, which allows sampling of areas 100 km x 100 km over emissions hotspots with
standard ground footprints of 3.5 km? spatial resolution [120]. Similar monitoring capabilities are also
possible with the Chinese TanSAT since 2016 [121].

Future planned missions will increase the frequency of acquisitions, as multiple revisits are
required to constrain emissions estimates to urban areas [117]. GeoCARB, planned for launch in
2022, will be the first geostationary satellite to monitor daily Xcop, in addition to CH and CO [122].
Its frequency of acquisition could increase the accuracy of column-averaged concentrations over
highly polluted cities, where clouds and aerosol limit observation opportunities. European Space
Agency’s Sentinel-7, planned for 2025, will increase global revisit time to 2-3 days by deploying
three spacecrafts [123]. These satellites should greatly improve the ability to monitor CO, emissions
from cities.

While bottom up approaches allow allocating the emissions to different sectors, current satellite
measurements only provide estimates of CO; emissions aggregated over a given area [117]. Calculating
per capita emissions provides some insights on the provenance of the emissions. For example, American
cities tend to have higher per capita emissions linked to greater reliance on driving and energy use.
Satellite observations of CO, combined with numerical models can provide detailed information about
urban emissions. Wu et al. [124] constrained emissions from some cities in the Middle East using Xcop
retrievals together with a Lagrangian model. Nassar et al. [123] quantified fossil fuel CO, emissions
from individual power plants by utilizing a Gaussian plume model. Currently, these measurements
are still considered experimental and are not used operationally to monitor emissions. With further
research, longer time series of satellite observations, and improved spatial and temporal resolution,
these measurements could be used for monitoring from space the compliance of cities to their pledges
to reduce GHG.
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6. Other Air Pollutants

In addition to GHG, urban air contains other gases (e.g., NO, NO,, SO;) and particles, which
in high concentrations are harmful to the health of urban dwellers. Many of these pollutants are
a byproduct of fossil fuel burning. Pollutants like black carbon, ground-level ozone, and sulfate
aerosols directly affect climate with either cooling or warming effects. NOy includes NO and NO,,
which are precursors of ozone and nitrate aerosols, originating largely from vehicle exhaust but also
power plants and other sources. Their indoor sources include kerosene plants and burning stoves.
Anthropogenic sources of SO, comprise the burning of fossil fuels containing sulfur for domestic
heating and power generation for industrial activities. SO, and NO; lead to the production of sulfate
and nitrate aerosols, and tropospheric ozone [125]. Volatile organic compounds (VOCs) oxidize in
the presence of NOy and sunlight to form ozone (O3). NO, can oxidize to form nitric acid (HNO3),
which reacts with ammonia (NHj3) to form ammonium nitrate aerosols. SO, is oxidized in gas-phase
reactions with the hydroxyl radical (OH) or in aqueous-phase reactions with O3 or hydrogen peroxide
(H,0,) to form sulfate aerosols. Sulfate and nitrate aerosols contribute to fine particulate matter (PM)
pollution with aerodynamic diameters less than 2.5 um (PM 2.5) [126]. Particulate matter includes
all aerosol sources (organic aerosol, black carbon, and SO,) and forms a suspension of solid and
liquid particles in the air. Particulate matter, in addition to direct human health consequences, has
profound implications for the global climate by altering the amount of solar radiation, either directly
by scattering or absorbing it, or, indirectly, acting as condensation nuclei for cloud droplets, and,
through them, affects radiation forcing and weather patterns [6]. High-resolution monitoring of urban
concentrations of NOx, VOCs, ozone, aerosols, as well as their responses to various city efforts to
adapt to and to mitigate climate change could be invaluable for city authorities as well as for local and
international organizations monitoring compliance of cities to air quality regulations. While several
satellite missions can monitor air pollutants, the solutions are yet to be ideal for urban air quality
monitoring applications (Table 1) and even the most recent assessments of air quality responses to
COVID-19-related lockdowns relied on ground-based air quality measurements for cities and remote
observations for continental scale analysis [127]. Here we present a synthesis of current capabilities of
existing sensors and their limitations.

Since 2004, Ozone Monitoring Instrument (OMI) onboard NASA’s Aura satellite has provided
measurements of tropospheric column NO;, a proxy for the surface level NO, and SO, following
GOME and SCIAMACHY measurements [126]. The instrument has a hyperspectral imaging sensor
that provides daily observations at a nominal 13 X 24 km spatial resolution and can be zoomed to
13 km for detecting and tracking metropolitan-scale pollution sources. It provides measurements of
the ozone profile at 36 X 48 km as well as air quality components such as NO,, SO,, BrO, OCIO, and
aerosol characteristics. It also allows characterizing aerosol types, such as smoke, dust, and sulfates.
Instantaneous NO, and SO, data from Level 2 OMI products can be used to match the surface site
hourly observations [128] and then spatially extrapolate diurnal variations of the gasses. The Level 3
product is a gridded dataset with a 0.25° x 0.25° spatial resolution and daily time resolution, which
can be used to analyze long-term changes in air quality [128].

Because NO, is short lived, higher-resolution observations of this gas could greatly enhance
the ability to monitor urban pollution from space but are expected to still work better over large
metropolitan regions than for smaller urban areas. The successor of OMI, Sentinel-5P, a low-orbit
missions from ESA’s Copernicus program launched in 2017, preparatory of Sentinel-5, measures
atmospheric composition products including tropospheric NO; columns at a spatial resolution of 7 km
and with an improved signal to noise ratio as compared to predecessors [129]. Sentinel-4, a planned
geostationary satellite for monitoring air quality, will provide hourly tropospheric measurements at
8-km spatial resolution.

Remote sensing has also been widely used to provide estimates of aerosol optical depth (AOD),
the amount of radiation that is scattered by aerosols at a certain wavelength [130], which can be used as
a proxy for PM 2.5 [131,132]. There are many satellite products providing AOD, including MODIS at
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10 km, 3 km, and 1 km [133] and VIIRS at 6 km [134], but the resolution is often too coarse to resolve the
variability within urban areas, especially in heavily polluted regions. AOD data can be derived with
good accuracy also from higher spatial resolution optical data such as Landsat 8 and Sentinel-2 [135],
however the gain in spatial resolution comes at the cost of low temporal resolution.

7. Urban Heat Islands

The UHI effect refers to the warmer temperatures usually experienced in urban areas compared to
their surroundings, although it is often invoked to refer to the heat discomfort felt in urban areas in
summers, especially at mid and low latitudes [2,80]. Differences in temperatures between a city and its
surroundings and their dynamics depend on the medium where the temperature is measured (e.g., air,
land surface, soil, water) and the climate zone [2,136]. UHI defined at 2-m air temperature is larger at
nighttime, whereas surface skin temperature-defined UHI (SUHI) is generally larger at daytime [137].
Temperate and tropical climates cities tend to have higher temperatures than their surrounding regions,
while in desert regions, urban areas may be cooler than their surroundings and create a surface urban
cool island [2,138]. The subsurface UHI, observed in groundwater temperatures, is larger than the air
UHI [139] although with lower daily and seasonal variabilities.

The underlying causes of the UHI effect include high density of impervious surfaces in urban areas,
three-dimensional alignment of buildings, high heat storage capacity of the construction materials,
emissions of waste heat from buildings, vehicles, and industrial processes above and belowground,
as well as a disrupted water cycle [2]. This phenomenon, highly dependent on the materials used
for the built-up materials and the land cover outside of the city, has a direct impact on regional and
continental climate. UHI was shown to be responsible for the North Hemisphere winter warming [140]
and changes in the climate of Europe [141]. UHI has been shown to be responsible for the warming of
urban streams, rivers, ground water, and soils, and coastal waters at marine outfalls [139,142-145]. The
higher temperatures of urban soils may increase respiration and other processes affecting gas exchanges
between the soil and atmosphere, e.g., emissions of CO; [146]. Similarly, warmer temperatures of
groundwater, rivers, and coastal oceans alter both the rate of chemical reactions and of microbiological
activity compromising water quality, e.g., [147]. Heat stored in a water body does not disappear but
can be slowly released into the atmosphere. Depending on the size of the aquifer, the released heat can
warm up the atmosphere for weeks to decades after it has been absorbed.

As our planet warms with increasing concentrations of GHG, UHIs are expected to intensify;,
generally increasing the demand for cooling, which further amplifies waste heat and GHG emissions
from cities. This can cause a reinforcement feedback that can lead to further warming of cities [148].
Monitoring the extent and intensity of UHI as well as their responses to various city efforts to adapt to
and to mitigate climate change could be invaluable for urban planners to understand which measures
improve the city livability, especially in hotter climates [149].

There has been great interest in understanding and characterizing both the UHI effect using air
temperatures measured at the weather stations and the SUHI observed with thermal channels of
aerial and satellite sensors. The number of research articles accessing SUHI from space increased by
fivefold over the last 10 years [21]. A systematic comparison of the UHI and SUHI indicated that they
are not simply correlated, but the relationship between them depends on the land cover type [150].
Compared to UHI observations, which rely on the irregular and at times far from ideal distribution of
weather stations, the SUHI data provide homogeneous coverage of urban areas with regular revisit
times. However, SUHI can be observed from space only when the sky is clear of clouds. This is a
limitation for SUHI studies of tropical cities, many of which are hotspots of population growth but
have persistent cloud cover, providing very limited surface observation opportunities (e.g., [151]).
Accurate monitoring of the temporal evolution of SUHI also needs to ensure that consecutive images
have the same viewing angle (i.e., that the same surface is observed), that images are atmospherically
corrected and that the ground surface moisture are constant, because they can have a strong effect on
the land surface temperature [137]. Most of the recent SUHI studies have been conducted with MODIS
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land surface temperatures, which are available four times daily from MODIS on both Terra (10:30 am
and 10:30 pm overpass) and Aqua (1:30 pm and 1:30 am overpass) at a spatial resolution of 1 km since
the early 2000s [21]. Land surface temperatures at similar spatial resolution are also available from
Suomi/NPP VIIRS and Sentinel-3, but these datasets have yet to be used extensively for urban studies,
perhaps because of the shorter time records for which they are available. SUHI studies conducted
with Landsat data have less frequent revisit time (16 days) but, at 100 m spatial resolution, resolve
neighborhood features much better (for example, see Figure 4).Care should be taken when deriving
land surface temperature from Landsat 8 to ensure that a stray light correction is applied to the thermal
bands to correct for the calibration issues that have arisen since the launch of the satellite [152,153].

Cool C Hi

Figure 4. Land surface temperature and its profiles in Ningbo City, China, extracted from Landsat 8
data: (a) Summer; (b) winter. The spatial resolution is 100 m. (Reproduced from [154]).

To increase the resilience of cities under a warming climate, urban planners need information
to mitigate the UHI and the SUHI and overall urban heat emissions. Mitigating UHI and SUHI
effects requires reducing two components of the urban energy budget: (1) Turbulent sensible heat (i.e.,
reduce the warming of surfaces) and (2) emissions of anthropogenic heat from heating and cooling
of buildings, industrial processes, and vehicles. For this purpose, we need to identify the spatial
distribution of individual components of the surface energy budget. Chrysoulakis et al. [155] showed
how urban energy budget components can be mapped at the neighborhood scale (100 m x 100 m)
based on Sentinel-2, Landsat, very high-resolution (SPOT—Satellite Pour 1’Observation de la Terre,
WorldView-2, RapidEye, TerraSAR-X and TanDEM-X) satellite data and meteorological observations.
Using land surface temperatures and land cover information from various satellites, they were able
to map high-resolution net all wave radiation and turbulent heat fluxes, from which they derived
anthropogenic heat fluxes.

8. Conclusions

In this paper, we reviewed advances in measurements from spaceborne sensors relevant for
measuring and monitoring major climate change issues related to urbanization. We focused on space
observations as they provide broad coverage, repeatability and are relatively low cost. There has been a
considerable progress in monitoring urban physical properties and air pollutant emissions from space,
even when the sensors taking the measurement were not designed specifically for resolving urban
areas. Not all urbanization issues that are important in the context of climate change mitigation can be
monitored from space. Monitoring urban extent and structure, heat islands, and air pollution show the
most promise, while assessments of urban population dynamics and energy consumption heavily rely
on census or inventory data collected on the ground with only some inputs from remote observations.
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Arguably, the most progress has been done in mapping urban extent, especially with the
wider availability of SAR data, which allowed overcoming the limitation of optical instruments in
distinguishing spectral information of urban landscapes from natural impervious and non-vegetated
surfaces. However, consistent efforts to operationally update maps of urban extent at a resolution that
can resolve growth over time, capturing both peripheral growth and changes in the urban structure,
are still being developed. More complex representations of urban areas through maps of urban
structure are still not widely available as common standards and nomenclatures still need to be defined.
Managing and mitigating heat islands remains a pressing issue, as they have direct and acute impact
on the health and well-being of the urban dwellers. There are many remote sensing tools available for
the monitoring of SUHIs and using them should be promoted among urban planners. Air pollution
satellite sensors also show promise in monitoring changes in air quality of urban agglomerations
through downscaling, although reliance on ground networks is still unavoidable.

Little progress has been made in assessing subsurface UHI, e.g., soils. We were not able to find
remote-sensing-based studies investigating propagation of the UHI effect into water bodies bordering
many cities, even though the population within 100 km of a shoreline was estimated as 1.2 billion
people with average densities nearly three times higher than the global average density [156]. We know
very little about the contribution of the urban waste heat to the rise in heat content of various water
bodies. The heat accumulating in water does not disappear but can be released in the atmosphere
and further contribute to warming. A recent study documented a downwind footprint of the UHI of
Chicago, USA, not only on air but also on lake temperatures. Over Lake Michigan, the magnitude of
the heat plume was reduced by half, suggesting that the lake was acting as a sink for the exported
urban heat [157]. Tools for spatially explicit comprehensive energy use assessments are still being
developed. Bottom-up approaches that integrate built-up area with building 3D shape derived from
very high-resolution satellite data has been suggested to generate building typology databases that
can be used to model residential energy consumption on a district scale [158]. Despite considerable
progress in spatial and temporal resolution for sensors that monitor emissions of GHG, constraining
them to individual urban areas remains a challenge. Moreover, remote observations will never be able
to provide assessments of upstream or indirect GHG emissions of cities such as embodied carbon in
construction materials for example.

High-resolution spaceborne sensors can now distinguish individual dwellings and even their
sub-units, but do not provide means to monitor urban population counts and their dynamics. Remote
observations can provide only proxies for urban population and support estimates of urban population
(e.g., dasymetric and bottom up approaches), which most accurate estimates will continue to rely on
census and survey counts. Full energy consumption assessments of cities also rely on numerical models
with inputs from ground-based inventories, as no measures are available to relate to energy use within
buildings. Space observations are also not available to determine building composition material.

Overall, a growing number and variety of space measurements have made significant progress
possible and increased data computation capabilities promise that continued improvements and
advances will be realized in the current decade. Additional climate-related space measurements, such
as precipitation, albedo, and radiation, could also be routinely monitored at the city scale to understand
how to better constrain the impacts of urbanization on climate. The launch of new geostationary
sensors will also greatly increase the ability to observe how the physical environments of and around
cities evolve with unprecedented detail.
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