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Magnetic Field Effects of Double-Walled Carbon Nanotubes
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A theoretical discussion of electronic and transport properties of a particular family of double-wall carbon
nanotubes, named commensurate structures of the armchair type (n,n)@(2n,2n) is addressed. A single 7-band
tight binding hamiltonian is considered and the magnetic field is theoretically described by following the Peierls
approximation into the hopping energies. Our emphasis is put on investigating the main effects of the geometri-
cal aspects and relative positions of the tubes on the local density of states and on the conductance of the system.
By considering intershell interactions between a set of neighboring atoms on the walls of the inner and outer
tubes, we study the possibility of founding Aharonov-Bohm effects in the DWCNs when a magnetic field is

applied along the axial direction.
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I. INTRODUCTION

Double-wall carbon nanotubes (DWCNs) are coaxial two
tube-systems which have attracted a great deal of interest be-
cause of their promising mechanical and electronic proper-
ties as well as potential applications. They may be achieved,
for instance, by peapod -derived methods[1] or synthesized
by pulsed arc discharge processes and low pressure catalytic
chemical vapor deposition[2], among others. The distance
between both the cylinders are quite the same as found be-
tween carbon planes in graphite structures, and therefore the
correspondent intertube electronic interactions have a van-
der-Waals like energy scale which is much inferior than the
intra-atomic correlation within each single tube. X-ray dif-
fraction analysis of the structural transformation from single-
wall carbon nanotubes to DWNTs via C-60 peapods[3] de-
termined the intertube spacing between inner and outer tubes
as 0.36 + 0.01 nm, and that the tubes are loosely coupled to
each other. Interlayer potential energies for different chirality
pairs of tubes composing the double-walled system have been
calculated[4—6] adopting the van-der-Waals potential.

If the ratio between the two unit cell lengths along the com-
mon tube axis is a rational number the DWCN is called a com-
mensurate tube system [examples are the (n,n)@(2n,2n),and
(m,0)@(2m,0)]. Previous theoretical works on DWCNs|[7, 8]
have discussed the stability of the electronic structure of the
coupled system based on symmetry arguments and the neces-
sity of introducing relative positions between the inner and
outer tubes to induce opening of an energy gap. This is in con-
trast to the electronic structure of identical metallic nanotubes
arranged close packed in bundles which exhibit a pseudogap
at the Fermi level[9]. Aperture of energy gaps in CNs may be
achieved via the application of a magnetic field, too, leading
also to the well known Aharonov-Bohm phenomena.

Considering that single-walled CNs have been proven to be
essentially ballistic[10] it should be interesting to investigate
the conductance of DWCNs. By submerging DWCNs into
liquid mercury, Kajiura et al.[11] were able to measure the
conductance dependence on the length of the structures. They

concluded that the electronic transport in the double-walled
systems is quasi-ballistic like at room temperature, and that
the mean free path is of the order of the length of the tubes.
Here we investigate how the conductance of a commensurate
DWCN is affected by the existence of the interactions between
the double walls and how it depends on the relative position
of the atoms in the two tubes. Finally we calculate also the
conductance in the presence of a magnetic flux and discuss its
consequence on the quantum interference phenomena.

II. THEORY AND RESULTS

A single m-band tight binding hamiltonian is used to de-
scribe the structure composed of two single nanotubes which
is schematically displayed in Figure 1, a short cut of a
(5,5)@(10,10) DWCN. It is written as

H="Y (cfciiteicin) + Y nrj)eficja+chein),

i,jit i,j

ey
where the indices i and j define the atomic positions, r;; =
|F; — 7;| the atomic distance and t= 1, 2 labels the two tubes.
The intrawall hopping energy between first neighbors v, is
considered of the order of —2.7¢V, while v, (r) is used for
the intershell coupling which in principle depends on the dis-
tance between the two carbon atoms displayed on the inner
and outer tube walls. As mentioned before the interlayer in-
teraction between adjacent layers is sufficiently small com-
pared to the intralayers C-C bonding. Different calculations
for the potential barrier between the two shells of DWCNTs
have been presented, most of them using local density approx-
imation. Here we consider v;(7) as a parameter of our tight
binding approximation and use, in a first approach, a cut off
scheme to determine the number of atomic interactions to be
included. In that direction, a unit cell of four times the achi-
ral nanotube unit cell, as shown in Figure 1, is sufficient to
include all interactions within a range varying typically 10%
the value of ¥}/ (maximum intershell hopping energy value,
used for a distant pair corresponding to the minimum distance
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between the inner and outer atoms in the DWCN). We con-
sider that the energy intensity reduces accordingly to a poten-
tial law.

FIG. 1: Schematic view of a (5,5)@(10,10)DWCN, showing the rel-
ative displacement between the intertube atomic positions along the
axial direction(Az) and in the azimuthal angle (A¢).

A standard real-space renormalization technique is adopted
to calculate the system’s Green functions[12]. A realistic in-
gredient to take into account is the orientational disorder be-
tween the tubes forming the DWCN structure. Therefore,
a relative displacement between inner and outer tubes is al-
lowed, Az, as well as an azimuthal rotation, A¢, as indicated in
Fig. 1. Both are given in units of percentages of a hexagon. To
study the transport properties we use the Landauer formula for
the conductance following a Green function formalism[13].

A typical result for the conductance of a DWCN using y’l"’
=240 meV is presented in Fig. 2(a). Values around 300 meV
have been used by Saito et al.[7]. A graphitic like stacking
is employed where an inner tube atom lies in the center of
a hexagon of the outer tube (Az = A¢ = 50%). For energies
away from the Fermi level, there is a clear dependence of the
conductance results on the intensity of the intertube interac-
tion although the conductance suppressions are mainly strong
at the band edges. Interesting tight oscillations on the con-
ductance around the Fermi level may also be observed. The
influence of the potential depth on the mentioned oscillations
near the Fermi level is shown in Fig. 2(b)&(c) for ﬂ” =5,20
and 75meV. A pseudogap in the LDOS in Fig. 2(c) opens re-
flecting the reduction of two transport channels to only one
in the conductance results in Fig. 2(b). Beside the spikes su-
perposing the constant metallic LDOS plateau, we found a
constant spectral weight (constant integral) of the LDOS for
all the € values used in the calculation. Augmenting the po-
tential strength, the gaps also increase in size, are dislocated
to higher energies and present more complex oscillation pat-
terns, as shown by the multiple oscillations for ¥}! = 75meV
in Fig. 2. One should mention that although the conductance
suppressions exhibit a significant dependence on the intensity
of the interlayer energies, the gaps are extremely narrow for
low values of y}!.
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FIG. 2: (a) Conductance of a (5,5)@(10,10) DWCN with graphitic
like stacking Az = 50%,A¢ = 50% and y; = 240meV. Dependence
of the conductance (b) and LDOS (c) of the same DWCN (Az =
50%, Ad = 10%) with the intrashell interaction. Dashed red curve
corresponds to ﬁ” = SmeV, solid blue to Yzlu = 20meV, and dotted
green to YIIVI =T75meV.
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FIG. 3: Conductance of a (5,5)@(10,10) DW with varying inner tube
shift Az and rotation A¢. The Fermi level is shown by the vertical
dotted line.

Simulations indicate, that the energy barriers for disloca-
tions and rotations of the inner tube are relatively low, al-
lowing a quite easy gliding of the two tubes respective to
each other[14, 15]. Therefore, allowing the inner tube to
slide and rotate relatively to the outer tube, a reduction of
the transport channels or not at the Fermi level occur. In
Fig. 3 some conduction calculation results for different values
of the inner tube positions are presented for a (5,5)@(10,10)
DW. For a better visualization, the Fermi level is indicated by
the vertical dotted line and a quite high potential strength of
Y} =240meV is used. For Az = 0%, A¢ = 50% the two trans-
port channels of a pristine tube are obtained, interrupted by
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only two very sharp dips, away from the Fermi level. Slightly
shifting the inner tube leads to a completely different pat-
tern; for Az = 30%,A¢ = 50% a square saw pattern can be
observed and one of the saw is situated at the Fermi level,
causing a transport reduction to one channel. A small rotation
around the inner tube axis leads to a broad conduction reduc-
tion around the Fermi level, with only few peaks superposed
preserving the two channels, clearly visible for A = 20%
in Fig. 3. This indicates unambiguously the important role
played by the small variations of the assembly of the two tubes
on the transport properties of the system, resulting in symme-
try changes and broad transport reduction regions, even in the
presence of merely weak intertube atomic interactions like the
one used in the present calculations.

Alternatively, a simpler intra-tube interaction picture was
adopted in which each atom laying in the inner tube interacts
with three first neighbors on the outer tube, with y; =1, /8 for
the closer two atoms and 7, /10 for the other two next intertube
neighbors. The results of the local density of states (LDOS)
for the studied DWCNs, using such a naive calculation, have
provided to be similar to the sum of the two individual tube
LDOS. For the conductance, however, we found changes on
the conductance as compared to the isolated SWCNs case,
mainly at those energies at which new quasi 1-dimensional
bands appear, corresponding to the positions of new steps in
the conductance.
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FIG. 4: DWCN (5,5)@(10,10): (a) LDOS and (b) Conductance at
a magnetic flux (relative to the outer tube) equal to ¢/0, = 0.5; (c)
Conductance for different values of magnetic flux.

To consider the effects of a magnetic field threading the
DWCN along the axial direction we adopted the Peierls
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approximation[17]. In this theoretical picture, phase factors
AGR r are added to the hopping energies, depending on the
local atomic neighborhood determined by the vector R and R’
and the intensity of the magnetic flux ¢, which is written in
terms of the quantum flux ¢, = h/e = 4.13X 10~'3Tm?. The
matrix elements of the hamiltonian may be written as

Hi’j — ’Yeie/hAGR’R/ . (2)

One should notice that the flux within each one of the
tubes composing the DWCN is not the same: in the stud-
ied commensurate system, the internal flux is one fourth the
external one. Results for the LDOS and conductance of a
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FIG. 5: Gap size dependence on the magnetic flux (outer tube) for
the (5,5)@(10,10) DWCN.

(5,5)@(10,10) DWCN are shown in Figure 4(a) and (b), re-
spectively, using the simple electronic model and considering
a magnetic flux of 0.5. When the magnetic field is turned on,
the number of electronic channels next to the (zero) Fermi
energy is reduced at particular energy windows, eventually
even leading to the suppression of the conductance. This is
accompanied by the energy gap aperture in the LDOS, as it is
illustrated for the special case of half a magnetic flux quan-
tum ¢/¢, = 0.5 in Fig. 4(b) and for different flux values in
Fig. 4(c). To highlight the effect of the magnetic field on the
conductance of the system, we show in Fig. 5 the dependence
of the gap size on the intensity of the flux going through the
external tube. For a pristine SWCN the gap size oscillates
(Aharonov Bohm manifestation) with a period equal to one
quantum flux. In the present results one clearly notices that
the periodicity on the magnetic flux, is not fully achieved for
the studied DWCN: the gap retains null up to a magnetic flux
(external tube) of the order of 0.35 ¢, and as the magnetic
field increases it oscillates with the ¢, periodicity but does not
attains the same values. This may be interpreted as being a
consequence of the competition between the intertube inter-
action energies and the confinement induced by the magnetic
field. More work in this direction is needed to understand the
gap size evolution with the external field.
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III. CONCLUSIONS

We have presented a theoretical discussion of physical
properties of double walled carbon nanotubes. Emphasis was
put on the analysis of the effects of geometrical arrangements
and the relative position between outer and inner atoms on the
electronic transport. Our results clearly indicate the aperture
of pseudogaps in the LDOS followed by conductance reduc-
tions next to the band center (Fermi level) due to small con-
figurational changes. Similar results in the density of states
near the Fermi level of (5,5)@(10,10) DWCNs have been pre-
viously reported [8] using parametrized tight-binding tech-
niques with parameter determined by ab initio calculations.
The different atomic positions of the two tubes eventually re-
duces the symmetries of the system, raising some degeneracy
and leading to important electronic-like transitions. These ef-
fects are equivalent to the ones achieved when the DWCN is
considered under the action of magnetic fields, as described
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above. One should mention, however, that the quantum phe-
nomena described in the manuscript, like gap opening and
conductance reduction may be viewed only qualitatively since
the details of the results, such as the energy positions of the
conductance changes and gap sizes, do depend on the inten-
sity of the hopping energy parameters. More elaborate theo-
ries, based on first principles, are necessary to provide them
in different geometrical configurations.
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