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ABSTRACT
The magnetic function of layered molybdenum disulfide (MoS2) has been investigated via simula-
tion, but few reliable experimental results have been explored. Herein, we developed edges-rich
structural MoS2 nanosheets via liquid phase exfoliation approach, triggering exceptional ferro-
magnetism. The magnetic measurements revealed the clear ferromagnetic property of layered
MoS2, compared to the pristine MoS2 in bulk exhibiting diamagnetism. The existence of ferromag-
netism mostly was attributed to the presence of grain boundaries with abundant irregular edges
confirmed by the transmission electron microscopy, magnetic force microscopy and X-ray photo-
electron spectroscopy, which experimentally provided reliable evidences on irregular edges-rich
states engineering ferromagnetism to clarify theoretical calculation.

IMPACT STATEMENT
• Edges-rich MoS2 layers are achieved via chemical liquid approach.
• The abundant edges MoS2 nanosheets demonstrate highly superior magnetic

property, which provides reliable evidences to identify irregular edge states
engineering ferromagnetism experimentally.
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Introduction

Intense interest has been paid on the atomically thin two-
dimensional transition metal dichalcogenides (TMDs),
triggering distinctive properties (electronics, optoelec-
tronics, and magnetism), which can dramatically differ
from those of the corresponding bulk crystals [1–8].
Representatively, the advances on the edge-dependent of
molybdenum disulfide (MoS2) have rendered in applica-
tions of electric devices, photovoltaic cell, photo-catalyst
and semiconductors [9–19]. Very recently, the strain
effects of low-dimensional materials were carried out
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dramatically to understand their electric/magnetic prop-
erties [20,21]. Particularly, the magnetic function of
MoS2 nanosheets was evaluated and tuned and by apply-
ing the strain effects via the first-principle simulations
[22,23].

According to the directions of termination, there
existed two kinds of edges: armchair and zigzag states.
Pan H. et al. proposed the essence of the ferromagnetism
in MoS2 with zigzag edges. It reported that the magnetic
properties of MoS2 nanosheets can be evaluated by sim-
ulating the energy difference between the nonmagnetic
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andmagnetic states [24,25]. The energies of nonmagnetic
states in armchair edges were equal to those of magnetic
states, exhibiting nonmagnetic activity. Comparably, the
energies of nonmagnetic states in zigzag edge structures
were higher than those of magnetic states, demonstrat-
ing the typical magnetic property [26–29]. The calcula-
tions illustrated that the MoS2 nanosheets with armchair
edges were nonmagnetic while these of zigzag edges were
magnetic.

Theoretically, it has been reported that zigzag-edged
graphene nanosheets have localized electrons at edge
carbon atoms [30–34]. And there was ongoing work
by Chen et al. presenting the distinctive magnetism of
graphenewith irregular zigzag edges experimentally [35].
Comparably, Magnetic MoS2 layers should be more suit-
able for spintronic potentials than graphene because fer-
romagnetic graphene can only be achieved by apply-
ing external electrical/magnetic field, thus the magnetic
moments/states of zigzagMoS2 would be higher/stronger
than those of graphene nanosheets. Terrones calculated
that the zigzag MoS2 nano-ribbons exhibited extraordi-
nary magnetic properties even if the ribbons were pas-
sivated with hydrogen atoms [25]. However, there have
not been a few works that supported experimentally,
but only Gao et al. mentioned the intrinsic ferromag-
netism of MoS2 nanosheets was related to the presence
of edge spins [36]. Han et al. employed proton irradia-
tion or annealing in the hydrogen condition to induce
the ferromagnetic order fromdiamagneticMoS2 crystals,
resulting in an promoted transport property [37].

Here, we explored single, double and multi-layered
MoS2 via chemical liquid approach by means of inten-
sive sonication, harnessing to exfoliate or delaminate
atomic nanosheets (Figure 1 and experimental section in
details). Previously, we have demonstrated this approach
to exfoliate hexagonal boron nitrite (h-BN) and lay-
ered graphene (G), creating artificially building blocks as
stacked h-BN/G hybrids [38]. It allowed the confinement
of electrons upon exfoliation leading to unprecedented
magnetic and electrical properties. Particularly, the edge-
dependent magnetism was superior to exhibit with the
advances on the abundant edgesMoS2 nanosheets. Addi-
tionally, it can be scaled up the exfoliation process with
high yield, expecting to explore more potential applica-
tions in electromagnetism devices, and pave the way for
magnetic development of 2D MoS2.

Experimental

Preparation of single-, double- and multi-layered MoS2.
MoS2 powders were purchased from Sigma Aldrich; N-
methyl-pyrrolidone (NMP) and isopropanol (IPA) sol-
vents were purchased fromAldrich and used as supplied.

Figure 1. Schematic depiction of the exfoliated MoS2 with mag-
netismvia chemical liquid strategy. (a) BulkMoS2 powderwith size
around 1.0 μm. (b) A dispersion of exfoliatedMoS2 in IPA solution.
(c) Layered MoS2 nanosheets dispersed in water, demonstrating
the ferromagnetism clearly. (d) Atomic layer MoS2 arrangement
of S and Mo atoms model.

All other reagents and solvents were of analytical grade.
Pristine MoS2 powder dissolved in NMP solvent (initial
concentration of 0.5mg/ml) sonicating in a low power
sonic bath (Fisherbrand FB15061, 750W) for 4 h. Then
the above mixture was transferred to a higher power
sonicator (Coleparmer 1200W) and continually to be
sonicated for 6 h. Finally, the mixture was centrifuged
at 3000 rpm for 40min, the supernatant was collected
by pipette and filtered with filtration system. The above-
filtered flakes of MoS2 nanosheets were then dispersed
into IPA uniformly, then dried at 60°C, finally, the exfo-
liated MoS2 nano-layers containing single, double and
multi-layered (less than 10 layers) were stored in vacuum
to be investigated further characteristics. The obtained
MoS2 layers were dissolve into aqueous solution to eval-
uate their dispersity and magnetic separation by placing
a magnet aside (Figure 1(c)).

Instrumentation

Transmission electron microscopy (TEM), high-
resolution bright-field (HRTEM), high angle annular
dark-field (HAADF) images and energy-dispersive X-
ray spectroscopy (EDS) measurements were carried out
with the field emission FEI-F30, operated at 200 kV.
X-ray photoelectron spectroscopy spectra (XPS) data
were taken by Thermo ESCALAB 250XIMultifunctional
imaging electron spectrometer, which was equipped with
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a Al Kα source. XPS data was analyzed with the Mul-
tiPak software. Raman spectroscopy was used to char-
acterize the structure of the film at 514 nm laser exci-
tation. Optical absorptance measurements (Shimadzu
ultraviolet-3600) were performed using 1 cm quartz.
X-ray diffraction (XRD) with Rigaku D/Max Ultima
II Powder XRD configured with a vertical theta/theta
goniometer, Cu Ka radiation, graphite monoichrometer,
and scintillation counter. The hysteresis loop character
was measured using the DH4516N Dynamic hystere-
sis and analyzed with Magnetic Data Analysis Solution
(MDAS). The physical property measurement system
(PPMS) was carried with the model P525 vibrating sam-
ple magnetometer (VSM). All samples were loaded into
the typical nonmagnetic capsule supported by Quantum
Design Company to investigate the VSM (please see the

supporting information S1 for more detailed measure-
ment). Magnetic force microscope (MFM) and atomic
force microscope (AFM) measurements were conducted
by the Dimension 3100, Veeco. The UV-vis absorbance
spectrum was conducted with the PerkinElmer Lambda
750 absorption spectrophotometer. All above data was
plotted and analyzed by using Origin-Pro 8 software.

Results and discussion

Individual and multi-layered MoS2 nanosheets were
observed via TEM and HRTEM as shown in Figure
2(a) and (b). The insight of edges-rich structural MoS2
layers was obtained with scanning transmission elec-
tron microscopy (STEM) image (Figure 2(c)), indicating
the hexagonal atomic arrangement, the insert in Figure

Figure 2. Morphology and lattice structure of edges-rich MoS2 layers. (a) and (b) TEM images of the exfoliated MoS2 layers. (c) HAADF
imageof single layerMoS2 nanosheet. (d) EDS imageof exfoliatedMoS2 layers, and insertwas theSAEDpattern. (e) and (f )High-resolution
bright-field TEM imagesof single anddouble layersMoS2. The region indicatedby squarewas enlarged to show theedges andbasal plane
hexagonal structures.
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Figure 3. Evidence for exfoliated edges-rich MoS2 structure. (a) XRD pattern taken on the exfoliated MoS2 nanosheets and bulk MoS2.
(b) Raman spectra captured on the exfoliatedMoS2 and pristineMoS2 in bulk. (c) UV-vis absorption spectrum of exfoliatedMoS2. (d) XPS
spectrum of the exfoliated MoS2 nanosheets and bulk MoS2 for full scanning.
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2(d) was selected area electron diffraction (SAED) pat-
tern corresponding with the STEM measurement. It was
essential to point out that there were single, double and
multi-layered (less than 10 layers) existed in this typical
exfoliation systemvia chemical liquid approach. The EDS
provided more evidence on elements analysis of atomic
MoS2.

The number of MoS2 layers can be identified from
the edge state as shown in Figure 2(e), there were two
layers of exfoliated MoS2 with the thickness of 1.34 nm.
The interplanar spacing of 0.27 nm can be directly mea-
sured from the high-resolution TEM image (Figure
2(f)), which was consistent with d spacing of hexago-
nal MoS2 (100) planes. Moreover, the grain boundaries
appeared obviously on the basal surface of exfoliated
MoS2, enlarged by square in red line. It was fundamental
to achieve the understanding of edges-dependent mag-
netic property; there were more high-resolution TEM
images of layered MoS2 in the supporting information
S2, expecting to provide a feedback on the morphology
of exfoliated MoS2 layers for the correlated activity.

XRD was carried out as shown in Figure 3(a); the
strong diffraction peak (002) revealed the higher crys-
tallinity of exfoliated MoS2 compared to that of the

pristine MoS2 in bulk. Other minor diffractions, such as
(004), (103), (006), (105), (110) and (008) existed obvi-
ously, implying the nanoscaled crystallites in different
orientations. Furthermore, the full width at half maxi-
mum (FWHM) value of the (002) diffraction peak was
calculated by using the Scherrer Equation, and we esti-
mated the thickness of MoS2 planes along the c axis
around 2.1 nm, which was approximately equal to three
layers according to the interlayer spacing of 0.63 nm,
corresponding to the result of HRTEMmeasurement.

Further structural characterizations were obtained by
Raman spectroscopy with a 532 nm laser excitation.
Figure 3(b) demonstrated Raman spectra of exfoliated
MoS2 nanosheets (blank line), the peaks located at 389.4
and 405.9 cm−1 were identified as E12g and A1g modes,
which were associated with vibrations of Mo and S atoms
in the basal plane and out-of-plane respectively. The fre-
quency of the E12g vibration exhibited red shift, while A1g
mode appeared blue shift compared to these of MoS2 in
bulks (E12g at 385.1 eV and A1g at 411.3 eV in red line).
It indicated that the rate of frequencies for both two
modes demonstrated a slight variation with the thick-
ness decreasing of exfoliated MoS2. For films of more
than five layers, the frequencies of bothmodes converged

Figure 4. Magnetic evidence for pristine bulk MoS2 and exfoliated edges-rich structural MoS2. Magnetization (M) vs. applied field (H)
data takenatdifferent temperatureswithfieldparallel for (a) purebulkMoS2 and (b) layeredMoS2 basal planes. (c)Magnetic susceptibility
of pristine MoS2. (d) Magnetic susceptibility of exfoliated MoS2 nanosheets.
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to the bulk values. We evaluated that the numbers of
layeredMoS2 were less than three layers according to pre-
vious report [39]. In addition, the absorption spectrum
of monolayer MoS2 was plotted to investigate the opti-
cal property compared to the pristine bulkMoS2 without
UV-vis absorption. The two principal absorption features
at 615 and 678 nmwere associated with the A and B exci-
tations ofMoS2 (Figure 3(c)). XPS illustrated characteris-
tic Mo and S peaks respectively, revealing the high purity
of ultrathinMoS2 without any othermagnetic impurity as
shown in Figure 3(d). In comparison, there was not obvi-
ous difference from XPS survey between the exfoliated
MoS2 and bulk MoS2 except for rather stronger peaks of
O and C in pristine MoS2, which indicated some interac-
tion with air and carbon contamination on the surface of
measured sample.

The magnetization (M) vs. temperature (T) mea-
surements were conducted to prove the magnetism of
obtained MoS2 layers in detail. There was an obvi-
ous diamagnetic signal shown in Figure 4(a), indicating
that the diamagnetism was dominated in bulk MoS2.
However, the clear ferromagnetic parts in exfoliated
MoS2 nanosheets were observed in Figure 4(b), which

demonstrated the ferromagnetic function in edges-rich
structuralMoS2 nanosheets even though the diamagnetic
and paramagnetic background superimposing in some
extend. The magnetic susceptibility of pristine MoS2 and
exfoliated MoS2 nanosheets was plotted respectively as
shown in Figure 4(c) and (d). The susceptibilities were
determined from the slope of M(H) curves taken at the
particular temperatures. There was no long-range mag-
netic ordering existed in the bulk sample, which illus-
trated the diamagnetic property. However, the magnetic
susceptibility of layeredMoS2 demonstrated typical long-
range magnetism, and obviously the magnetization of
exfoliated MoS2 nanosheets was over 10–40 times supe-
rior to the bulkMoS2 comparing with the value of curves.

M(H) curves were magnified magnetization at low
field to observe the coercivity dependency in temperature
at 10, 100 and 300K shown in the Figure 5(a)–(c). And it
exhibited that the coercive fields were clearly observed in
different temperatures, up to 261, 85, 68Oe respectively,
and the coercive field was in decline trend with the tem-
perature increasing, which supplied a strong evidence for
the ferromagnetic signal existed in the layered MoS2. In
addition, the zero field cooling (ZFC)/field cooling (FC)

Figure 5. Magnetic evidence for exfoliated edges-rich structural MoS2. Curves are magnified magnetization at low field to observe the
coercivity dependency in temperature at 10, 100 and 300 K of exfoliated MoS2 nanosheets (a)–(c). (d) The ZFC/FC curves of the layered
MoS2 measured at 5000 Oe.
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curves of the layered MoS2 were measured at 5000Oe
as shown in Figure 5(d). The bifurcation phenomenon
between ZFC and FC curves was quite obvious, illustrat-
ing the ferromagnetism of layeredMoS2 nanosheets. This
particular magnetism phenomenon was possibly trig-
gered due to the exfoliation of MoS2 with edges structure
via chemical liquid. Mostly, this ferromagnetic property
was controlled by their inter-atomic distances, and edges
structure, furthermore considerable zigzag edge struc-
tures located in the grain boundary [35], where the mag-
netic property was induced. Particularly, the creation of
MoS2 triple vacancy resulted in a significantly magnetic
moment in this system [18]. This clearly indicated edge
structures or basal plane dislocation during exfoliation
using chemical liquid, exhibiting ferromagnetic property
in the exfoliated MoS2 nanosheets, which was consistent
with the TEMmeasurements.

Magnetic forcemicroscopy (MFM)was a typicalmode
of the noncontact scanning force microscopy, which was
an important analytical technique for the near-surface
stray-field variation of magnetic materials. It was rec-
ognized that the detection of magnetostatic interactions
at a local scale was possible by equipping the force
microscope with a ferromagnetic probe [40,41]. Firstly,

we captured the surface morphology of layered MoS2
by atomic microscopy force (AMF) as shown in Figure
6(a), the thickness of exfoliated MoS2 was estimated to
about 2.1 nm averagely, three layers of MoS2 nanosheets
approximately (Figure 6(b)). Then MFM image showed
that the exfoliatedMoS2 demonstrated a strongmagnetic
activity (Figure 6(c)).

The absorption force as well as repulsive force
appeared during the interaction coupling of the ferro-
magnetic probe and the stray-field produced by exfoli-
ated MoS2. As the magnetization directions of probe and
sample domain structure were opposite, then the inter-
action force exhibited attractable which was an absorp-
tion force presenting dark contrast in MFM image. On
the contrary, Figure 6(c) demonstrated bright contrast,
which illustrated the repulsive interaction between the
probe and exfoliated MoS2 sample domain structure.
Figure 6(d) showed three-dimensional image of mag-
netic layered MoS2; the bright contrast can be observed
clearly. However, the magnetic domain structure (espe-
cially the edges) could not be captured obviously in
the MFM image; it might be caused by factors such as
the magneto-crystalline anisotropy and magnetostric-
tion energies. Additionally, lattice defects, stresses and

Figure 6. (a) AFM image taken on layered MoS2 nanosheets tracks of 1.0 μm periodicity. (b) Thickness of the layered MoS2 nanosheets
with red line in image (a). (c) MFM image taken on layered MoS2 nanosheets tracks of 1.0 μm periodicity, with the lifting the cantilever
probe up to 30 nm from the sample surface to measure a long-range interaction. (d) The 3D image of (b).
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the surface topology exhibited an additional influence on
the domain structure. It was necessary to explore mag-
netic domain structure in exfoliated MoS2 nanosheets.
Interestingly, there were vacancies exposed crossing the
full-scale film in MFM images, the possible reason was
that we captured several layered MoS2 nanosheets in a
large scale parallel length of 1μm, so that the presence
of defects including atomic vacancies, displacement can
be demonstrated in the MFM condition due to the color
variation with the depth of tested film.

Herein, we found that the ferromagnetic performance
of exfoliated MoS2 nanosheets was dependent on the
amount of edge sites and size, which played a signifi-
cant role on triggering typical magnetism. There were
plenty of edge sites observed which could provide more
localized defects or vacancies promption. Then the spins
of the localized defects aligned these of the nearby elec-
tron carriers, which produced an effective magnetic field
and activated the ferromagnetic performance. Therefore,
we addressed the chemical liquid assisted with robust
sonication to endow more edge sites or smaller size of
exfoliated MoS2 nanosheets, expecting to be generalized
to tune themagnetic properties of other two-dimensional
nanosheets.

Conclusion

In summary, a comprehensive analysis focused on the
exfoliated edges-rich MoS2 layers via chemical liquid
strategy revealed their intrinsic ferromagnetism. The
magnetic measurements illustrated the clear ferromag-
netic property of exfoliated MoS2, in contrast to the
pristine MoS2 in bulks showing diamagnetism. This was
attributed to the presence of edges-rich structure on
grain boundaries, which was confirmed by the TEM,
XPS and MFM investigations. However, the results of
MFM images could not capture a strong direct proof
on the edges state magnetism due to the resolution of
MFM facility; we expected to explore further analysis
and to provide reliable evidences which would identify
the irregular edge states engineering ferromagnetism.
Additionally, the coupling of spin and dislocations might
exist during exfoliation with intense sonication, trig-
gering the magnetic property, and it was essential to
explore further simulation for ferromagnetic mecha-
nism of exfoliated MoS2 with zigzag edges structure
theoretically.
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