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Abstract
We derive quantitative error estimates for coupled reaction-diffusion systems,

whose coefficient functions are quasi-periodically oscillating modeling microstruc-
ture of the underlying macroscopic domain. The coupling arises via nonlinear reac-
tion terms and we allow for different diffusion length scales, i.e. whereas some species
have characteristic diffusion length of order 1, other species may diffuse much slower,
namely, with order of the characteristic microstructure-length scale. We consider
an effective system, which is rigorously obtained via two-scale convergence, and we
prove that the error of its solution to the original solution is of order ε1/2.

1 Introduction

Many mathematical models arising from biological, physical or engineering problems in-
volve effects on microscopic scales, e.g. spatial inhomogeneities of the underlying material.
In view of numerical simulations as well as more profound structural insight, we are in-
terested in finding effective, or homogenized, models. From the analytical perspective,
we ask for a rigorous justification of the effective model and, if available, error estimates
describing the difference to the original microscopic model.

We refer to the books [BLP78, JKO94, MaK06, Tar09] for a general survey of ho-
mogenization theory. An important step in the theory of periodic homogenization was
the introduction of two-scale convergence in [Ngu89, All92], which allows to rigorously
treat systems involving different diffusion length scales, see e.g. [HJM94, Pet07, MeM10].
So far, the notion of two-scale convergence is a weak convergence. The periodic unfold-
ing technique, introduced in [CDG02], allows for a natural definition of strong two-scale
convergence and, hence, the treatment of nonlinear problems, cf. [Vis04, Vis06, Vis08,
MiT07, NeJ07, PtR10, Han11]. Based on this strong notion of convergence, one can ask
for quantitative error estimates, see e.g. [Gri04, OnV07, FMP12, Muv13], as well as for
numerical simulations, see e.g. [MaS02, Eck05, CFM10, ChM12] .

The objective of this contribution are coupled reaction-diffusion systems of the follow-
ing type

uεt = div(D1(x, x
ε
)∇uε) + F1(x, x

ε
, uε, vε)

vεt = div(ε2D2(x, x
ε
)∇vε) + F2(x, x

ε
, uε, vε)

in Ω (1.1)

supplemented with homogeneous Neumann boundary conditions and initial conditions.
Here, (uε, vε) : [0, T ]×Ω→ Rm1+m2 denote the concentrations of m1 “classically” diffusing
species with characteristic diffusion length of order O(1) and m2 slowly diffusing species
of order O(ε). Moreover, Di : Ω × Y → R(mi×d)×(mi×d) denotes the diffusion coefficients
and Fi : Ω × Y × Rm1+m2 → Rmi the nonlinear reaction terms and both, Di and Fi, are
assumed to be periodic in y = x/ε w.r.t. a prescribed microstructure, cf. Section 2.1.

It was shown in [MRT14] that the solutions (uε, vε) converge for ε→ 0 to a limit (u, V )
that decomposes into a one-scale function u(t, x) and a two-scale function V (t, x, y), which
solve the effective system

ut = div(Deff(x)∇u) + −
∫
Y F1(x, y, u(x), V (x, y)) dy in Ω

Vt = divy(D2(x, y)∇yV ) + F2(x, y, u, V ) in Ω× Y (1.2)

In order to install the limit passage (1.1) → (1.2), we employ the technique of two-scale
convergence via periodic unfolding, cf. (2.7). This involves the periodic unfolding operator
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Tε : L1(Ω)→ L1(Ω× Y), the folding operator Fε : L1(Ω× Y)→ L1(Ω) and the gradient
folding operators G0

ε resp. G1
ε , cf. Section 2.2. With this method, the strong two-scale

convergence of the slowly diffusing species vε, i.e. max0≤t≤T ‖ Tε vε(t)−V (T )‖L2(Ω×Y) → 0,
was proved in [MRT14], cf. Section 3.1, whereas the strong convergence uε → u follows
immediately from the compact embedding H1(Ω) ⊂ L2(Ω). This result was obtained
under the assumption of L∞-regularity of the coefficients and global Lipschitz continuity
of the reaction terms, cf. (3.6.A1)–(3.6.A4). One major analytical difficulty to overcome
is the periodicity defect [Gri04] or Tε-property of recovered periodicity [MRT14], i.e.

for all uε ∈ H1(Ω) : Tε uε ∈ L2(Ω;H1(Y )) * L2(Ω;H1(Y)), but
w- limε→0 Tε uε ∈ L2(Ω;H1(Y)), if the limit exists.

(1.3.PD)

The aim of this paper is to derive in Theorem 3.2 the error estimate

max
0≤t≤T

{
‖ Tε vε(t)− V (t)‖L2(Ω×Y) + ‖uε(t)− u(t)‖L2(Ω)

}
≤ ε1/2C. (1.4)

Therefore, we assume additional spatial regularity w.r.t. the macroscopic scale x ∈ Ω of
the given data (3.6.A5), i.e. ∇xDi, ∇xFi ∈ L∞(Ω × Y), and the effective solution (u, V )
(3.6.A6), i.e. u ∈ H2(Ω), V ∈ H1(Ω;H1(Y)). Further, for the proof of Theorem 3.2,
the domain Ω is assumed to be of rectangular shape, cf. (2.1.ReSh), which significantly
simplifies the notations and definitions in Section 2. But, we assume neither additional
spatial regularity of the original solutions (uε, vε) nor of the corrector functions.

The same convergence rate (1.4) has been obtained in [Eck05] for phase transition
problems in binary mixtures. Therein, the method of asymptotic expansion is employed
and, for the derivation of error estimates, additional regularity and also continuity w.r.t.
the x and y variable is assumed for all involved coefficients and functions.

In [FMP12], a reaction-diffusion system predicting concrete corrosion is considered,
but the system does not include slowly diffusing species vε. Nevertheless, for the classically
diffusing species uε the convergence rate ε1/2 is rigorously proved by the method of periodic
unfolding. The result in [FMP12] is obtained under the same assumptions, cf. (2.1.ReSh)
and (3.6), but only accounts for exactly periodic coefficients, i.e. aε(x) = a(x/ε).

The distinctive feature of this contribution is the nonlinear coupling of the classically
and slowly diffusing species combined with the periodic unfolding method, which allows
to avoid any assumption of spatial continuity. Our proof to (1.4), in the first part, follows
along the lines of [MRT14] and we derive the Gronwall-type estimate

d
dt

(
‖| Tε vε − V ‖|2 + ‖uε − u‖2

)
≤ C

(
‖| Tε vε − V ‖|2 + ‖uε − u‖2

)
+ ∆vε

+ ∆uε

, (1.5)

where ‖| · ‖| := ‖ · ‖L2(Ω×Y) and ‖ · ‖ := ‖ · ‖L2(Ω) and ∆vε
,∆uε

comprise errors terms. In
[MRT14], it was shown that these errors vanish as ε→ 0. The novelty of the contribution,
the second part of the proof, is the quantification of their convergence, namely |∆uε

+
∆vε| ≤ εC. In order to quantify those error terms, we have to find, in particular, error
estimates for the folding and unfolding operators, see the lemmas 3.3, 3.4, and 3.5 in
Section 3.3, which heavily rely on the improved regularity w.r.t. x ∈ Ω and ideas from
[Gri04]. Moreover, we use a quantification result for the periodicity defect (1.3.PD) from
[Gri04], see Lemma 3.6.

The structure of the paper is the following: in Section 2, we introduce basic nota-
tions, definitions, and results concerning periodic unfolding (Sec. 2.1 & 2.2) and two-scale
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convergence (Sec. 2.3). In Section 3, we consider the coupled systems (1.1)–(1.2) and
derive the error estimate (1.4). Therefore, we list our assumptions and recall the existing
convergence result (Sec. 3.1), state our Main Theorem (Thm. 3.2), explain the structure
of its proof (Sec. 3.2), and we derive preparatory error estimates (Sec. 3.3). Finally, we
give the proof of Theorem 3.2 (Sec. 3.4).

2 Two-scale convergence

Here, and throughout this paper, x denotes the macroscopic variable and the microscopic
variable y captures periodic oscillations in x/ε. In order to describe the convergence
from (1.1) to (1.2), we introduce the concept of two-scale convergence, which is designed
for problems with underlying periodic microstructure, see Section 2.1 for the latter. The
definition of two-scale convergence (2.7), introduced in Section 2.3, is based on the periodic
unfolding technique, described in Section 2.2, and with this it reduces to the notion of
classical weak and strong convergence in the two-scale space L2(Ω× Y).

2.1 Microstructure and the periodicity cell

Following [CDG02, CDG08, MiT07], let Ω ⊂ Rd be a bounded domain and let Y =
[−1

2
, 1

2
)d denote the unit cell so that Rd is the disjoint union of translated cells λ + Y ,

where λ ∈ Zd. Identifying opposite faces of Y gives the periodicity cell Y , i.e. the torus

Y := Rd/Zd .

But, in notation, we will not distinguish between elements of the unit cell y ∈ Y and the
ones of the periodicity cell y ∈ Y . Using the mappings [·]Y : Rd → Zd and {·}Y : Rd → Y ,
we have the unique decomposition

for all x ∈ Rd : x = [x]Y + {x}Y , where [x]Y ∈ Zd and {x}Y ∈ Y.

A function f ∈ L1
loc(Rd) is called Y -periodic, if f(x) = f({x}Y ) for a.a. x ∈ Rd. Then,

we can identify every periodic function f with a function f̃ on Y . Introducing the small
length-scale parameter ε > 0, we define the sets

Λε :=
{
λ ∈ εZd | (λ+ εY ) ⊆ Ω

}
and Ω̂ε := int

(⋃
λi∈Λε

λi + εY
)
.

We assume throughout this paper that the domain Ω is of rectangular shape, i.e.

for all ε ∈ (0, 1] : Ω = Ω̂ε. (2.1.ReSh)

This assumption significantly simplifies the definitions of the unfolding and folding oper-
ators Tε and Fε, see (2.2) and (2.4), and of two-scale convergence, see (2.7). Hence, we
write the nodes of the microscopic cells as

Nε(x) := ε
[
x
ε

]
Y
∈ Λε for all x ∈ Ω,

which describe the macroscopic scale. The microscopic scale is given by y = {x/ε}Y ∈ Y
so that we obtain for all x ∈ Ω the decomposition x = Nε(x) + εy.

3



2.2 Periodic unfolding, folding, and gradient folding operators

The periodic unfolding operator Tε : L1(Ω)→ L1(Ω× Y) is defined via, cf. [CDG02],

(Tε u)(x, y) := u(Nε(x) + εy). (2.2)

Moreover, we have for all u, v ∈ L2(Ω) the crucial identities

Tε(uv) = (Tε u)(Tε v) ∈ L1(Ω× Y) and
∫

Ω
u dx =

∫
Ω×Y Tε u dx dy. (2.3)

For the reverse operation, we define the folding operator Fε : L1(Ω× Y)→ L1(Ω) via

(Fε U)(x) := −
∫
Nε(x)+εY

U(ξ, {x
ε
}Y ) dξ. (2.4)

Even for smooth functions U : Ω × Y → R the folded function Fε U is only piecewise
constant in x, hence ∇(Fε U) cannot be determined in the classical sense. Therefore we
now define a so-called gradient folding operator G0

ε , resp. G1
ε , which suitably regularizes the

folded function Fε U . The definition of the above mentioned gradient folding operator is
taken from [MRT14, Def. 3.7], cf. also [Han11, Prop. 2.11], [Vis04, Thm. 6.1], and [MiT07,
Prop. 2.10]. At first, we define the functions with zero average via

H1
av(Y) :=

{
u ∈ H1(Y) |

∫
Yu(y) dy = 0

}
.

Definition 2.1 (Gradient folding). γ = 0: The gradient folding operator G0
ε : H1(Ω) ×

L2(Ω;H1
av(Y)) → H1(Ω) maps a pair of functions (u, U) ∈ H1(Ω) × L2(Ω;H1

av(Y)) to
uε := G0

ε (u, U), where uε ∈ H1(Ω) is the unique weak solution of the elliptic problem∫
Ω

(uε − u) · ϕ+ (∇uε − {∇u+ Fε(∇yU)}) : ∇ϕ dx = 0 for all ϕ ∈ H1(Ω). (2.5)

γ = 1: The gradient folding operator G1
ε : L2(Ω;H1(Y)) → H1(Ω) maps a two-scale

function U ∈ L2(Ω;H1(Y)) to uε := G1
ε U , where uε ∈ H1(Ω) is the unique weak solution

of the elliptic problem∫
Ω

(uε −Fε U) · ϕ+ (ε∇uε −Fε(∇yU)) : ε∇ϕ dx = 0 for all ϕ ∈ H1(Ω). (2.6)

For ε > 0 fixed, the Lax-Milgram lemma yields the existence of a unique weak solution
uε ∈ H1(Ω), so that the gradient folding operators are indeed well-defined.

2.3 Weak and strong two-scale convergence

We are now in the position to give the definition of weak and strong two-scale convergence
following again [CDG02, CDG08, MiT07]. The notion of two-scale convergence was first
introduced in [Ngu89] and coincides for bounded sequences with Definition (2.7a), here
below; see [MiT07, Sec. 2.3] for a more detailed comparison of the different definitions.

For (uε)ε ⊂ L2(Ω), we say uε weakly (2.7a), resp. strongly (2.7b), two-scale converges
to U in L2(Ω× Y), if

uε
2w−⇀U in L2(Ω× Y) :

Def.⇐⇒ Tε uε ⇀ U in L2(Ω× Y), (2.7a)

uε
2s−→U in L2(Ω× Y) :

Def.⇐⇒ Tε uε → U in L2(Ω× Y). (2.7b)
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The unfolding operator Tε is defined for the class of Lebesgue-integrable functions, where
boundary values play no role, so that in particular L2(Ω × Y) = L2(Ω × Y ). In view of
the periodicity defect (1.3.PD), we carefully distinguish the spaces H1(Y ) and H1(Y) =
H1

per(Y ), where the latter one is a closed subspace of H1(Y ). For brevity, we set

X = H1(Ω), H = L2(Ω), X = L2(Ω;H1(Y)),
Xav = L2(Ω;H1

av(Y)), and H = L2(Ω× Y).
(2.8)

We have sequential compactness w.r.t. the weak two-scale convergence and it is shown
in e.g. [Ngu89], [All92, Prop. 1.14], [Dam05, Thm. 5.2, Thm. 5.4], [PeB08, Thm. 3.4] that
bounded sequences of one-scale functions (uε)ε admit a weakly two-scale converging sub-
sequence, i.e.

(i) ‖uε‖H ≤ C ⇒ ∃U ∈ H : uε
′ 2w−⇀U in H,

(ii) ‖uε‖H + ε‖∇uε‖H ≤ C ⇒ ∃U ∈ X : uε
′ 2w−⇀U & ε′∇uε′ 2w−⇀∇yU in H,

(ii) ‖uε‖X ≤ C ⇒ ∃ (u, U) ∈ X × Xav : uε
′
⇀ u in X and ∇uε′ 2w−⇀∇u+∇yU in H.

Since (2.5) (with γ = 1) implies ‖ G1
ε U‖H + ε‖∇(G1

ε U)‖H ≤ C, (ii) implies the existence
of a weakly two-scale convergent subsequence. However, for given U ∈ X the gradient
folding operator guarantees even strong two-scale convergence. So, (G1

ε U)ε ⊂ X recovers
any function U ∈ X via strong two-scale convergence and it is shown in [Han11, Prop.
2.11] that

γ = 0 : for all (u, U) ∈ X × Xav : G0
ε (u, U)

2s−→u & ∇[G0
ε (u, U)]

2s−→∇u+∇yU in H,
γ = 1 : for all U ∈ X : G1

ε U
2s−→U & ε∇[G1

ε U ]
2s−→∇yU in H.

Convenient commutation relations, such as Fε(∇yU) = ε∇(Fε U) or G1
ε (∇yU) = ε∇(G1

ε U),
cannot be expected, since Fε U /∈ X and ∇yU /∈ X. Instead, we have that the different
folding operators are comparable in the sense that their difference vanishes, see [MRT14,
Prop. 3.9],

γ = 0 : for all (u, U) ∈ X × Xav :
‖u− G0

ε (u, U)‖H + ‖∇u+ Fε(∇yU)−∇[G0
ε (u, U)]‖H → 0,

γ = 1 : for all U ∈ X : ‖Fε U − G1
ε U‖H + ‖Fε(∇yU)− ε∇(G1

ε U)‖H → 0.
(2.9)

3 Error estimates for reaction-diffusion systems

We consider a system of two coupled reaction-diffusion systems, where the coupling arises
via the nonlinear reaction term (f ε1 , f

ε
2 ), whereas the diffusion has block structure.(

uεt
vεt

)
=

(
div(Dε

1∇uε)
div(ε2Dε

2∇vε)

)
+

(
f ε1 (uε, vε)
f ε2 (uε, vε)

)
in [0, T ]× Ω. (3.1.Pcp

ε )

We supplement (3.1.Pcp
ε ) with homogenous Neumann boundary conditions on ∂Ω and

prescribed initial values uε(0) = uε0, resp. vε(0) = vε0. In [MRT14] (see Theorem 3.1
below) we proved that (uε, vε) converges for ε→ 0 to a limit (u, V ) that decomposes into
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a one-scale function u(t, x) and a two-scale function V (t, x, y), which solve the effective
system (

ut
Vt

)
=

(
div(Deff∇u)

divy(D2∇yV )

)
+

(
feff(u, V )
F2(u, V )

)
in [0, T ]× Ω× Y . (3.2.Pcp

0 )

Here, the effective diffusion tensor Deff and the effective u-reaction feff only depend on the
macroscopic variable x ∈ Ω, while the diffusion tensor D2 and the V -reaction F2 depend
on the two-scale variables (x, y) ∈ Ω × Y , see (3.6.A1)–(3.6.A2) and (3.3)-(3.5), below.
The function-to-function map feff : Ω× Rm1 × L2(Y ; Rm2)→ Rm1 is defined as

feff(x, u, Z) :=

∫
Y
F1(x, y, u, Z(y)) dy. (3.3)

The effective diffusion tensor Deff : Ω → R(m1×d)×(m1×d) is given componentwise via the
classical homogenization formula, see e.g. [BLP78, All92, LNW02],

Deff(x)ijkl :=

∫
Y

D1(x, y)ijkl +
d∑
r=1

D1(x, y)ijkr · ∂yrz(y)kl dy, (3.4)

for i, k = 1, ...,m1, j, l = 1, ..., d, where the so-called correctors zij ∈ H1
av(Y) solve the

local problem in the weak sense:

divy

(
D1(x, y)ijkl +

d∑
r=1

D1(x, y)ijkr · ∂yrz(y)kl

)
= 0 in Y for a.a. x ∈ Ω. (3.5)

3.1 Assumptions and existing results

We recall (2.8) and we impose the following assumptions on the given data of (3.1.Pcp
ε )–

(3.2.Pcp
0 ), for i = 1, 2:

The diffusion tensor
Di : Ω× Y → R(mi×d)×(mi×d) is uniformly bounded and elliptic, i.e.
∃µ > 0 : Di(x, y)ξ : ξ ≥ µ|ξ|2 for all ξ ∈ Rmi×d, (x, y) ∈ Ω× Y .

(3.6.A1)

The reaction term
Fi : Ω× Y × Rm1+m2 → Rmi is uniformly bounded in Ω× Y
and differentiable and globally Lipschitz continuous in Rm1+m2 , i.e.
∃L > 0 : |Fi(x, y, A1, B1)− Fi(x, y, A2, B2)| ≤ L(|A1 − A2|+ |B1 −B2|)

for all (Ai, Bi) ∈ Rm1+m2 , (x, y) ∈ Ω× Y .

(3.6.A2)

The initial values
satisfy u0, div(Deff∇u0) ∈ H and V0, divy(D2∇yV0) ∈ H. (3.6.A3)

The dependence on ε
Dε
i := Fε Di and f εi (·, A,B) := Fε Fi(·, ·, A,B) for all (A,B) ∈ Rm1+m2 ,

uε0, div(Dε
1∇uε0) ∈ H with uε0 → u0 in H, and

vε0, div(ε2Dε
2∇vε0) ∈ H with vε0

2s−→V0 in H.

(3.6.A4)
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Spatial Lipschitz continuity of the given data
For (A,B) ∈ Rm1+m2 fixed, it holds ∇xDi,∇xFi(A,B) ∈ L∞(Ω× Y)
and we write CF := sup(x,y)∈Ω×Y{|F (x, y, A,B)|+ |∇xF (x, y, A,B)|}.

(3.6.A5)

Improved spatial regularity of the effective solutions
∀ t ∈ [0, T ] : u(t) ∈ H2(Ω) and V (t) ∈ H1(Ω;H1(Y)), Vt(t) ∈ H1(Ω;L2(Y)).

(3.6.A6)

Convergence rates for the initial values
∃ c > 0 : ‖ Tε vε0 − V0‖H + ‖uε0 − u0‖H ≤ ε1/2c.

(3.6.A7)

We obtain the two evolution triples X ⊂ H ⊂ X∗ and X ⊂ H ⊂ X∗. The assumptions
(3.6.A1)–(3.6.A4) guarantee the existence of unique weak solutions (uε, vε) of (3.1.Pcp

ε ) and
(u, V ) of (3.2.Pcp

0 ). Further, the differentiability of the reaction terms and the additional
regularity of the initial values (3.6.A4) ensure improved time-regularity of the solutions
and the following a priori bounds: there exists Cb > 0 independent of ε so that, cf.
[MRT14, Thm. 2.1 & Prop. 2.2],

‖uε‖C1([0,T ];H) +‖∇uε‖C0([0,T ];H) +‖vε‖C1([0,T ];H) +ε‖∇vε‖C0([0,T ];H) ≤ Cb,
‖u‖C1([0,T ];H) +‖∇u‖C0([0,T ];H) +‖V ‖C1([0,T ];H) +‖∇yV ‖C0([0,T ];H) ≤ Cb.

(3.7)

Moreover, we have the following convergence result.

Theorem 3.1 ([MRT14, Thm. 5.1]). Let the assumptions (3.6.A1)–(3.6.A4) be satisfied.
The sequence of weak solutions (uε, vε) of (3.1.Pcp

ε ) converges to the weak solution (u, V )
of (3.2.Pcp

0 ) in the following sense:

max0≤t≤T ‖ Tε vε(t)− V (t)‖H → 0, ε∇vε 2s−→∇yV in L2(0, T ; H), and

vεt
2w−⇀Vt in L2(0, T ; H), moreover ∀ t ∈ [0, T ] : ε∇vε(t) 2s−→∇yV (t) in H;

(3.8a)

uε ⇀ u in L2(0, T ;X) and uεt ⇀ ut in H1(0, T ;X∗), moreover

∃U ∈ L2(0, T ; Xav) s.t. ∀ t ∈ [0, T ] : ∇uε(t) 2w−⇀∇u(t) +∇yU(t) in H.
(3.8b)

3.2 Main Theorem and outline of the proof

Under the assumption of additional spatial regularity (3.6.A5)–(3.6.A7), we derive the
following error estimates for the strong convergences in (3.8). We emphasize that we do
not assume improved spatial regularity for the microscopic solutions (uε, vε).

Theorem 3.2. Let (uε, vε), resp. (u, V ), denote the solutions of (3.1.Pcp
ε ), resp. (3.2.Pcp

0 ),
and let the assumptions (2.1.ReSh) and (3.6) hold true. Then there exists a constant
C > 0 independent of ε such that

max
0≤t≤T

{‖ Tε vε(t)− V (t)‖H + ‖uε(t)− u(t)‖H} ≤ ε1/2C, (3.9a)

‖ Tε(ε∇vε)−∇yV ‖L2(0,T ;H) + ‖ Tε(∇uε)− {∇u+∇yU}‖L2(0,T ;H) ≤ ε1/2C. (3.9b)

Thanks to (3.6.A5), we can equally choose Dε(x) = D(x, x/ε) or Dε = Fε D in (3.6.A4)
because we can identify W 1,∞(Ω) with C0,1(Ω).

For U ∈ L2(0, T ; Xav) in (3.8b) we have a.e. in [0, T ] the representation Ui(x, y) =
∇ui(x) · zi(y), where the correctors zi ∈ H1

av(Y) solve the local problem (3.5). Since
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u ∈ H2(Ω) by (3.6.A6), we obtain immediately U ∈ H1(Ω;H1
av(Y)) and in particular we

do not assume any improved regularity for the correctors zi.

Note, (3.9b) implies the strong two-scale convergence∇uε 2s−→∇u+∇yU in L2(0, T ; H),
which also holds in (3.8b) under the assumptions of Theorem 3.1. In the spirit of
(3.8a), we can as well prove pointwise in time estimates for the gradients, but then
we obtain the lower convergence rate ε1/4, see (3.52). Moreover, we point out that
the estimate ‖ Tε(∇uε) − {∇u +∇yU}‖L2(0,T ;H) ≤ ε1/2C is equivalent to ‖∇uε − {∇u +
Fε(∇yU)}‖L2(0,T ;H) ≤ ε1/2C as in [FMP12].

Outline of the proof: The essential idea is to derive the following Gronwall estimate

d
dt

(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H

)
≤ C

(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H + ε

)
. (3.10)

Then, Gronwall’s lemma yields for all t ∈ [0, T ]

‖ Tε vε(t)− V (t)‖2
H + ‖uε(t)− u(t)‖2

H ≤ C
(
‖ Tε vε0 − V0‖2

H + ‖uε0 − u0‖2
H + ε

)
and using assumption (3.6.A7) gives immediately (3.9a). We derive (3.10) in separate
steps, namely

d
dt
‖uε − u‖2

H ≤ C
(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H + ε

)
in Steps 1–2, and (3.11)

d
dt
‖ Tε vε − V ‖2

H ≤ C
(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H + ε

)
in Steps 3–4. (3.12)

1. d
dt
‖uε−u‖2

H-estimate: Following the argumentation in [MRT14, Sect. 4.2/Proof of
Thm. 4.1 (Step 2–5)], we derive the Gronwall-type estimate

d
dt
‖uε − u‖2

H ≤ C
(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H

)
+ ∆uε

, (3.13)

where ∆uε

= ∆uε

1 (folding mismatch between Fε and G0
ε resp. Fε and G1

ε )

+ ∆uε

2 (periodicity defect of Tε cf. (1.3.PD))

+ ∆uε

3 (approximation error Dε
1 ; Deff resp. Dε

2 ; D2)

+ ∆uε

4 (approximation error f ε1 ; feff resp. f ε2 ; F2)

+ ∆uε

5 (unfolding error ‖V − TεFε V ‖H resp. ‖ Tε u− u‖H).

Above, u ∈ H is canonically understood as two-scale function u ∈ H. The last
error term ∆uε

5 (resp. ∆vε

5 ) does not occur in [MRT14], but is addressed as a one-
liner here. Since 1

2
d
dt
‖uε − u‖2

H =
∫

Ω
(uεt − ut) · (uε − u) dx, we ideally subtract the

weak formulations of (3.1.Pcp
ε )1 and (3.2.Pcp

0 )1 (resp. (3.1.Pcp
ε )2 and (3.2.Pcp

0 )2), test
with the difference uε − u (resp. Tε vε − V ) and we obtain (3.13). But, due to the
two-scale structure of (3.2.Pcp

0 ), analytical difficulties arise and we cannot proceed
straight forward. We modify this basic idea as follows:
In Step 1a, we test (3.1.Pcp

ε )1 (resp. (3.1.Pcp
ε )2) with uε−G0

ε (u, U) (resp. vε−G1
ε V )

and, then, we reformulate the ε-problem into a two-scale problem using the unfolding
operator Tε and the folding operators Fε, G0

ε (resp. G1
ε ). Due to regularity issues

between Fε and G0
ε , cf. (2.9), we create the error term ∆uε

1 (resp. ∆vε

1 ).
In Step 1b, due to the periodicity defect (1.3.PD), we test (3.2.Pcp

0 )1 (resp. (3.2.Pcp
0 )2)

only with (u, U) (resp. V ). Afterwards, we reformulate the limit problem and insert
the missing terms uε and Tε(∇uε) (resp. Tε vε and Tε(ε∇vε)) at the cost of creating
the error term ∆uε

2 (resp. ∆vε

2 ).
Finally, in Step 1c, we add both reformulations and make further rearrangements
in terms of the errors ∆uε

3 –∆uε

5 (resp. ∆vε

3 –∆vε

5 ) so that we end up with (3.13).
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2. Estimation of ∆uε
and (3.11): We show |∆vε| ≤ εC. In more detail, we apply

Lemma 3.5 (with γ = 0) to ∆uε

1 and we use Lemma 3.6 (with γ = 0) for ∆uε

2 . The
remaining error terms ∆uε

3 –∆uε

5 resolve easily with Lemma 3.3 and (3.15).
3. d

dt
‖ Tε vε − V ‖2

H-estimate: Recalling the arguments in [MRT14, Sect. 4.2/Proof of
Thm. 4.1 (Step 2–5)] or proceeding analogously to Step 1, we arrive at

d
dt
‖ Tε vε − V ‖2

H ≤ C
(
‖ Tε vε − V ‖2

H + ‖uε − u‖2
H

)
+ ∆vε

, (3.14)

where ∆vε
=
∑5

i=1 ∆vε

i .
4. Estimation of ∆vε

and (3.12): As in Step 2, we use Lemma 3.5 resp. Lemma 3.6
(with γ = 1) for ∆vε

1 resp. ∆vε

2 as well as Lemma 3.3 and (3.15) for ∆vε

3 –∆vε

5 .
5. Derivation of (3.9b): We derive error estimates for the gradient terms by following

the lines of [MRT14, Proof of Thm. 4.1 (Step 7)].

3.3 Preparatory error estimates

The most important observation in deriving the error estimates (3.9a)–(3.9b) is the
quantification of the well-known two-scale property, cf. [MiT07, Prop. 2.4(e)], for every

U ∈ L2(Ω × Y) exists a sequence (uε)ε ⊂ L2(Ω) such that uε
2s−→U in L2(Ω × Y). For

example, such a sequence is given by uε = Fε U . More precisely, based in the explicit
definitions of Tε and Fε, it holds:

Lemma 3.3. Let 1 ≤ p ≤ ∞. For all U ∈ W 1,p(Ω;Lp(Y)), there exists a constant C > 0,
only depending on Y , such that

‖U − TεFε U‖Lp(Ω×Y) ≤ εC‖U‖W 1,p(Ω;Lp(Y)).

Proof. Thanks to (2.1.ReSh), we have Ω =
⋃
λi∈Λe

(λi + εY ) and hence the Poincaré-
Wirtinger inequality applied on each cell λi + εY yields for 1 ≤ p <∞

‖U − TεFε U‖pLp(Ω×Y) =
∑
λi∈Λε

∫
λi+εY

∫
Y

(
U(x, y)−−

∫
Nε(x)+εY

U(ξ, y) dξ

)p
dx dy

≤
∑
λi∈Λε

C (diam(λi + εY ))p ‖∇xU‖pLp(λi+εY ) ≤ εpC‖U‖pW 1,p(Ω;Lp(Y)).

For p =∞, we can directly exploit the Lipschitz continuity.

Recall (2.8). As a direct consequence of Lemma 3.3, we have, e.g. [Gri04, Eq. (3.4)],

for u ∈ X : ‖ Tε u− u‖H ≤ εC‖u‖X . (3.15)

For possibly discontinuous functions U ∈ H1(Ω;L2(Y)), the “naive folding” x 7→ U(x, x/ε)
is not well-defined. But, in the proof of Lemma 3.5 below, exactly such a “naive folding” is
employed. Therefore, we need a suitable regularization Uε of U so that ϑε(x) = Uε(x, x/ε)
is well-defined and the differences ‖Fε U − ϑε‖H can be estimated by ε‖U‖H1(Ω;L2(Y)).
Therefore, we use in addition to G0

ε resp. G1
ε another regularization of the folding operator

Fε, namely, the so-called scale-splitting operator Qε, cf. [CDG02, CDG08, Gri04].

For u ∈ L1(Ω), the function Qε u is the Q1-Lagrangian interpolant of the
discrete function Fε u. Observe, Qε u ∈ W 1,∞(Ω) and Fε u ∈ L∞(Ω).

(3.16)

Note, for general functions u ∈ L∞(Ω) and z ∈ L2(Y), the composition x 7→ u(x)z(x/ε)
lies in L2(Ω), see e.g. [LNW02, Thm.4].
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Lemma 3.4. For w ∈ X and z ∈ L2(Y), there exists a constant C > 0, only depending
on the dimension d, such that

‖ (Fεw −Qεw) z( ·
ε
)‖H ≤ εC‖w‖X‖z‖L2(Y).

Proof. The proof is adjusted to [Gri04, Prop. 3.2]. Based on the equality

‖ (Fεw −Qεw) z( ·
ε
)‖2
H =

∑
λi∈Λε

∫
λi+εY

∣∣(Fεw(x)−Qεw(x)) z(x
ε
)
∣∣2 dx (3.17)

we consider in the following only one microscopic cell λi + εY , whereby w.l.o.g. λi = 0.
We denote with {i+n }dn=1 the canonical orthonormal basis in Rd and we set i−n = −i+n . The
cube Y has 2d sides and {i±n }dn=1 denote their normal vectors. Thus,

for x ∈ εY : Qεw(x) =
∑

i∈{i±n }dn=1

(Fεw(0)−Fεw(εi)) x
ε

+ Fεw(0).

With |x| ≤ ε
√
d, we obtain∫
εY

∣∣(Fεw(0)−Qεw(x)) z(x
ε
)
∣∣2 dx

≤ 2d
∑

i∈{i±n }dn=1

sup
x∈εY

{∣∣x
ε

∣∣2} |(Fεw(0)−Fε u(εi))|2
∫
εY

∣∣z(x
ε
)
∣∣2 dx

≤ 2d2
∑

i∈{i±n }dn=1

|Fεw(0)−Fεw(εi)|2 εd‖z‖2
L2(Y). (3.18)

Using the fundamental relation (for arbitrary ξ ∈ εY )

w(ξ)− w(εi+ ξ) = ±
∫ ξ

εi+ξ

∂xi
w(τ) dτ = ±ε

∫ 1

0

∂xi
w(ξt+ (εi+ ξ)(1− t)) dt

we can continue to estimate the difference

|Fεw(0)−Fεw(εi)|2 =

∣∣∣∣−∫
εY

w(ξ)− w(εi+ ξ) dξ

∣∣∣∣2
≤ ε2−

∫
εY

∫ 1

0

|∂xi
w(ξt+ (εi+ ξ)(1− t))|2 dt dξ =

ε2

εd

∫
εY

|∂xi
w(s)|2 ds, (3.19)

where | ds/ dξ| = 1. Then, inserting (3.19) into (3.18) and summing up over all λi ∈ Λε,
gives the desired result in (3.17).

The next Lemma is applied to the estimation of the folding mismatch ∆uε

1 resp. ∆vε

1 .

Lemma 3.5 (Quantify (2.9)). For all (u, U) ∈ H1(Ω) × H1(Ω;H1
av(Y)), resp. U ∈

H1(Ω;H1(Y)), there exists a constant C ≥ 0 such that

γ = 0 : ‖ G0
ε (u, U)− u‖H + ‖∇[G0

ε (u, U)]− {∇u+ Fε[∇yU ]}‖H ≤ εC, (3.20a)

γ = 1 : ‖ G1
ε U −Fε U‖H + ‖ε∇[G1

ε U ]−Fε[∇yU ]‖H ≤ εC. (3.20b)
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Proof. The proof is adjusted to the estimate (3.20b) and it utilizes the gradient folding
operator G1

ε in the case γ = 1. In the case γ = 0, i.e. (3.20a), we resort to G0
ε and we only

point out the differences afterwards, cf. [Han11, Prop. 2.1].
The case γ = 1 : By a density argument, we may assume w.l.o.g. that

U(x, y) = w(x)z(y) with w ∈ X and z ∈ H1(Y).

Recalling (2.6) and (3.16), we decompose uε := G1
ε U ∈ X as follows

uε(x) = ϑε(x) + gε(x) with ϑε(x) = Qεw(x)z(x
ε
). (3.21)

By construction, ϑε ∈ X and gε ∈ X is defined for each ε > 0 as the solution of the
elliptic problem ∫

Ω

gε · ϕ+ ε∇gε : ε∇ϕ dx = `ε(ϕ) for all ϕ ∈ X, where (3.22)

`ε(ϕ) =

∫
Ω

(Fε U − ϑε) · ϕ+ (Fε(∇yU)− ε∇ϑε) : ε∇ϕ dx.

The function gε can be estimated as follows

1
2

(‖gε‖H + ‖ε∇gε‖H)2 ≤ ‖gε‖2
H + ‖ε∇gε‖2

H = `ε(gε)

≤ (‖Fε U − ϑε‖H + ‖Fε(∇yU)− ε∇ϑε‖H) (‖gε‖H + ‖ε∇gε‖H) , (3.23)

which yields ‖gε‖H + ‖ε∇gε‖H ≤ 2 (‖Fε U − ϑε‖H + ‖Fε(∇yU)− ε∇ϑε‖H). Now, we
estimate the difference between uε and Fε U by adding and subtracting ϑε. Recalling
gε = uε − ϑε and computing ε∇ϑε = ε∇xϑε +∇yϑε, we arrive at

‖uε −Fε U‖H + ‖ε∇uε −Fε(∇yU)‖H
≤ (‖ϑε −Fε U‖H + ‖gε‖H + ‖ε∇ϑε −Fε(∇yU)‖H + ‖ε∇gε‖H)

≤ 2 (‖ϑε −Fε U‖H + ‖ε∇ϑε −Fε(∇yU)‖H)

≤ 2 (‖ϑε −Fε U‖H + ‖∇yϑε −Fε(∇yU)‖H + ε‖∇xϑε‖H) . (3.24)

According to [CDG08, Prop. 4.5] it holds ‖Qεw‖X ≤ C‖w‖X and hence ‖∇xϑε‖H ≤
C‖∇xU‖H. We proceed by estimating the remaining terms in (3.24) with the help of
Lemma 3.4

‖ϑε −Fε U‖H + ‖∇yϑε −Fε(∇yU)‖H
= ‖(Qεw −Fεw)z(·/ε)‖H + ‖(Qεw −Fεw)∇yz(·/ε)‖H ≤ εC‖w‖X‖z‖H1(Y)

and thus (3.20b) is proved.
The case γ = 0: In (3.21), we set uε := G0

ε (u, U) and decompose uε = ηε + gε, where
ηε = u+ εϑε and ϑε(x) = Qε(∇u)(x)z(x/ε).

In (3.22), we use (gε, ϕ)X = `ε(ϕ) for all ϕ ∈ X with `ε(ϕ) =
∫

Ω
(u− ηε) · ϕ+ ([∇u+

Fε(∇yU)]−∇ηε) : ∇ϕ dx.
As in (3.23), we have ‖gε‖H + ‖∇gε‖H ≤ 2 (‖u− ηε‖H + ‖[∇u+ Fε(∇yU)]−∇ηε‖H).
In (3.24), we have ∇ηε = ∇u+ ε∇xϑε +∇yϑε and hence ‖uε − u‖H + ‖∇uε − [∇u+

Fε(∇yU)]‖H ≤ 2(ε‖ϑε‖H + ‖∇yϑε −Fε(∇yU)‖H + ε‖∇xϑε‖H). Again, the application of
Lemma 3.4 and the improved regularity (u, U) ∈ H2(Ω)×H1(Ω;H1

av(Y)) give (3.20a).
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Furthermore, we use the following result for the periodicity defect in ∆uε

2 resp. ∆vε

2 .

Lemma 3.6 ([Gri04, Prop. 3.3 &Ṫhm. 3.4]). For every u ∈ X with ‖u‖X ≤ c (γ = 0)
resp. ‖u‖H + ε‖∇u‖H ≤ c (γ = 1), there exists a function Ψε ∈ X resp. Ψε ∈ Xav and a
constant C > 0, only depending on Ω, Y , such that

γ = 0 : ‖Ψε‖X ≤ C‖u‖X and ‖ Tε(∇u)− {∇u+∇yΨε}‖H−1(Ω;L2(Y )) ≤ εC‖u‖X ,
γ = 1 : ‖Ψε‖X ≤ C (‖u‖H + ε‖∇u‖H) and

‖ Tε u−Ψε‖H−1(Ω;H1(Y )) ≤ εC (‖u‖H + ε‖∇u‖H) .

3.4 Proof of Theorem 3.2

Proof of Theorem 3.2. By the uniform bounds (3.7), all functions are continuous in
time and thus we can restore to work with estimates pointwise for all t ∈ [0, T ].

Step 1: d
dt
‖uε−u‖2

H-estimate. For simplicity in notation we suppress the index i = 1.
Step 1a: Reformulation of (3.1.Pcp

ε )1. We test the ε-problem∫
Ω

uεt · ϕ dx =

∫
Ω

−Dε∇uε : ∇ϕ+ f ε(uε, vε) · ϕ dx for all ϕ ∈ X

with ϕ = uε−G0
ε (u, U), where (u, U) ∈ X×Xav solves (3.2.Pcp

0 ) uniquely for all t ∈ [0, T ],
cf. (3.27). Moreover, applying (2.3), inserting the terms ±u and ±[∇u + ∇yU ], and
rearranging gives∫

Ω

uεt · (uε − u) dx =

∫
Rd×Y

−Tε Dε Tε(∇uε) : [Tε(∇uε)− {∇u−∇yU}] dx dy

+

∫
Ω

f ε(uε, vε) · (uε − u) dx+ ∆uε

1 , (3.25)

where ∆uε

1 :=

∫
Ω

(f ε(uε, vε)− uεt) · (u− G0
ε (u, U)) dx

−
∫

Ω×Y
Tε Dε Tε(∇uε) : ({∇u+∇yU} − Tε[∇G0

ε (u, U)]) dx dy. (3.26)

Step 1b: Reformulation of (3.2.Pcp
0 )1. We reformulate (3.2.Pcp

0 )1 with (3.4)–(3.5) and
U(x, y) = ∇u(x) · z(y) into∫

Ω

ut · ψ dx =

∫
Ω×Y
−D[∇u+∇yU ] : [∇ψ +∇yΨ] dx dy +

∫
Ω

feff(u, V ) · ψ dx

for all (ψ,Ψ) ∈ X × Xav (3.27)

and we test (3.27) with the solution, i.e. (ψ,Ψ) = (u, U). Introducing the terms ±uε and
±Tε(∇uε) and rearranging gives∫

Ω

ut · (u− uε) dx =

∫
Ω×Y
−D[∇u+∇yU ] : [{∇u+∇yU} − Tε(∇uε)] dx dy

+

∫
Ω

feff(u, V ) · (u− uε) dx+ ∆uε

2 , (3.28)

where ∆uε

2 :=

∫
Ω

(feff(u, V )− ut) · uε dx−
∫

Ω×Y
D[∇u+∇yU ] : Tε(∇uε) dx dy. (3.29)
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Step 1c: Derivation of (3.13). Adding (3.25) + (3.28) yields

1

2

d

dt
‖uε − u‖2

H =

∫
Ω

(uε − u)t · (uε − u) dx

=

∫
Ω×Y
−Tε Dε[Tε(∇uε)− {∇u+∇yU}] : [Tε(∇uε)− {∇u+∇yU}] dx dy

+

∫
Ω

[f ε(uε, vε)− f ε(u,Fε V )] · (uε − u) dx+ ∆uε

∗ , (3.30)

where ∆uε

∗ =
∑4

i=1 ∆uε

i with

∆uε

3 :=

∫
Ω×Y

(D− Tε Dε)[∇u+∇yU ] : [Tε(∇uε)− {∇u+∇yU}] dx dy, (3.31)

∆uε

4 :=

∫
Ω

[f ε(u,Fε V )− feff(u, V )] · (uε − u) dx. (3.32)

Exploiting the ellipticity of Tε Dε, the Lipschitz continuity of f ε in (3.30) as well as Hölder’s
and Young’s inequality give

1
2

d
dt
‖uε − u‖2

H ≤ −µ‖ Tε(∇uε)− {∇u+∇yU}‖2
H

+ L (‖uε − u‖H + ‖vε −Fε V ‖H) ‖uε − u‖H + ∆uε

∗

≤ 2L
(
‖uε − u‖2

H + ‖ Tε vε − V ‖2
H
)

+ ∆uε

, (3.33)

where ∆uε
= ∆uε

∗ + ∆uε

5 with ∆uε

5 = 2L‖V − TεFε V ‖2
H and hence (3.13).

Step 2: Estimation of ∆uε
and (3.11). We derive quantitative estimates of the errors

∆uε

1 , . . . ,∆
uε

5 . We estimate the error ∆uε

1 (3.25) with Lemma 3.5 and Lemma 3.3, viz.

|∆uε

1 | =
∣∣∣∣∫

Ω

(f ε(uε, vε)− uεt) · (u− G0
ε (u, U)) dx

−
∫

Ω×Y
Dε Tε(∇uε) : [∇u+∇yU − Tε[∇G0

ε (u, U)]] dx dy

∣∣∣∣
≤ C(Cb)

(
‖u− G0

ε (u, U)‖H + ‖∇u+∇yU − Tε[∇G0
ε (u, U)]‖H

)
≤ εC, (3.34)

where C = C(Cb, , ‖U‖H1(Ω;H1(Y)), ‖u‖H2(Ω)) and we used (3.6.A2) and (3.7) to estimate
the first integral. In more detail, we split the last term in (3.34) as follows

‖∇u+∇yU − Tε[∇G0
ε (u, U)]‖H

≤ ‖Tε(∇u) + TεFε(∇yU)− Tε[∇G0
ε (u, U)]‖H

+ ‖∇u− Tε(∇u)‖H + ‖∇yU − TεFε(∇yU)‖H

≤ εC(‖U‖H1(Ω;H1(Y)), ‖u‖H2(Ω)),

where we have applied (2.3) and Lemma 3.5 to the term involving G0
ε (u, U) and Lemma

3.3 resp. (3.15) to the remaining two terms.
We treat the second term ∆uε

2 (3.28) with Lemma 3.6. Recalling (3.27), we find a
two-scale function Ψε so that (uε,Ψε) ∈ X ×Xav is an admissible test function and hence

0 ≡
∫

Ω

(feff(u, V )− ut) · uε dx−
∫

Ω×Y
D[∇u+∇yU ] : [∇uε +∇yΨε] dx dy. (3.35)
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Subtracting (3.35) from (3.28) yields with Hölder’s inequality and (3.6.A5)–(3.6.A6)

|∆uε

2 | =
∣∣∣∣∫

Ω×Y
D[∇u+∇yU ] : [Tε(∇uε)− {∇uε +∇yΨε}] dx dy

∣∣∣∣
≤ ‖D[∇u+∇yU ]‖H1(Ω;L2(Y ))‖ Tε(∇uε)− {∇uε +∇yΨε}‖H−1(Ω;L2(Y ))

≤ εC(Cb, ‖D‖W 1,∞(Ω;L∞(Y)), ‖U‖H1(Ω;H1(Y))). (3.36)

The third term ∆uε

3 (3.30) is treated with Hölder’s inequality and Lemma 3.3:

|∆uε

3 | =
∣∣∣∣∫

Ω×Y
(D− Tε Dε)[∇u+∇yU ] : [∇u+∇yU − Tε(∇uε)] dx dy

∣∣∣∣
≤ C(Cb)‖(D− TεFε D)‖L∞(Ω×Y) ≤ εC(Cb, ‖D‖W 1,∞(Ω;L∞(Y))). (3.37)

The estimation of ∆uε

4 (3.32) is a little more involved. Applying (2.3) only to the first
term in (3.32) yields

∆uε

4 =

∫
Ω×Y
Tε f ε(Tε u, TεFε V ) · Tε(uε − u)− F (u, V ) · (uε − u) dx dy.

Introducing the terms ±F (Tε u, TεFε V ) · Tε(uε − u) & ±F (u, v) · Tε(uε − u), applying
Hölder’s inequality, and recalling (3.7) & (3.6.A2) gives

|∆uε

4 | ≤ ‖ Tε f ε(Tε u, TεFε V )− F (Tε u, TεFε V )‖H‖ Tε(uε − u)‖H

+ ‖F (Tε u, TεFε V )− F (u, V )‖H‖ Tε(uε − u)‖H

+ ‖F (u, V )‖H‖ Tε(uε − u)− (uε − u)‖H

≤ C(L,CF , Cb) (‖ TεFε F (Tε u, TεFε V )− F (Tε u, TεFε V )‖H (3.38)

+‖ Tε u− u‖H + ‖ TεFε V − V ‖H + ‖ Tε(uε − u)− (uε − u)‖H) . (3.39)

We exploit the Lipschitz continuity of F (3.6.A5) in (3.38) and we apply Lemma 3.3 resp.
(3.15) in (3.39) so that we arrive at

|∆uε

4 | ≤ εC(L,Cb, CF , ‖V ‖H1(Ω;L2(Y))). (3.40)

For the last error term we have immediately

|∆uε

5 | = 2L‖V − TεFε V ‖2
H ≤ ε2C(L, ‖V ‖H1(Ω;L2(Y)). (3.41)

Recalling (3.13), we combine the estimates (3.34), (3.36)–(3.37), (3.40)–(3.41), and hence
we obtain (3.11).

Step 3: d
dt
‖ Tε vε − V ‖2

H-estimate. For brevity we skip the index i = 2 in this step
and the following. Proceeding as in Step 1, we arrive at (3.14) with

∆vε

1 :=

∫
Ω

(f ε(uε, vε)− vεt ) · (Fε V−G1
ε V )− εDε∇vε :

[
Fε(∇yV )−ε∇(G1

ε V )
]

dx, (3.42)

∆vε

2 :=

∫
Ω×Y

[F (u, V )− Vt] · Tε vε − D∇yV : ∇y(Tε vε) dx dy, (3.43)

∆vε

3 :=

∫
Ω×Y

(D− Tε Dε)∇yV : ∇y(Tε vε − V ) dx dy, (3.44)

∆vε

4 :=

∫
Ω×Y

[Tε f ε(Tε u, V )− F (u, V )] · (Tε vε − V ) dx dy, (3.45)

∆vε

5 := 2L‖ Tε u− u‖2
H (3.46)
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Step 4: Estimation of ∆vε
and (3.12). Applying Lemma 3.5 to the first error term

∆vε

1 (3.42) yields

|∆vε

1 | ≤ C(Cb)
(
‖Fε V − G1

ε V ‖H + ‖Fε(∇yV )− ε∇(G1
ε V )‖H

)
≤ εC, (3.47)

where C = C(Cb, ‖V ‖H1(Ω;H1(Y))).
For the estimation of ∆vε

2 (3.43), let Ψε ∈ X be as in Lemma 3.6. Then, in particular,
Ψε is an admissible test function for (3.2.Pcp

0 )2 and hence the application of Hölder’s
inequality and Lemma 3.6 gives

|∆vε

2 | ≤ ‖|D∇yV |+ |F (u, V )|+ |Vt|‖H1(Ω;L2(Y))‖ Tε vε −Ψε‖H−1(Ω;H1(Y))

≤ ‖|D∇yV |+ |F (u, V )|+ |Vt|‖H1(Ω;L2(Y))εC(Ω) (‖vε‖H + ε‖∇vε‖H) ≤ εC, (3.48)

where C = C(Cb, CF , ‖D‖W 1,∞(Ω;L∞(Y)), ‖V ‖H1(Ω;L2(Y)), ‖Vt‖H1(Ω;L2(Y))).
Recalling Dε = Fε D and f ε = Fε F , the error terms ∆vε

3 (3.44)–∆vε

5 (3.46) are esti-
mated easily by using Lemma 3.3:

|∆vε

3 | ≤ 2Cb‖(D− Tε Dε)‖L∞(Ω×Y) ≤ εC(Cb,Ω, ‖D‖W 1,∞(L∞(Y))), (3.49)

|∆vε

4 | ≤ 2Cb‖ Tε f ε(Tε u, V )− F (u, V )‖H ≤ εC(Cb, CF ), (3.50)

|∆vε

5 | = 2L‖ Tε u− u‖2
H ≤ ε2C(L, ‖u‖X). (3.51)

Overall (3.14) and (3.47)–(3.51) give (3.12) and hence we finish the proof of (3.9a).
Step 5: Derivation of (3.9b). Integrating (3.33) over [0, T ] and exploiting (3.9a) as

well as the ∆uε
-estimations in Step 2 yields

µ‖∇u+∇yU − Tε(∇uε)‖2
L2(0,T ;H)

≤
∫ T

0

−1
2

d
dt
‖uε − u‖2

H + 2L
(
‖uε − u‖2

H + ‖ Tε vε − V ‖2
H
)

+ |∆uε| dt ≤ TεC,

which finishes the proof, since the estimation is analogous for the slowly diffusing species.
Moreover, we obtain with∣∣1

2
d
dt
‖uε − u‖2

H

∣∣ =
∣∣∫

Ω
(uε − u)t · (uε − u) dx

∣∣ ≤ Cb‖uε − u‖H ≤ ε1/2C

the pointwise in [0, T ] estimate of lower convergence rate

µ‖∇u+∇yU − Tε(∇uε)‖2
H ≤ ε1/4C. (3.52)
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