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1Abstra
t. We show that ellipti
 se
ond order operators A of divergen
e typeful�ll maximal paraboli
 regularity on distribution spa
es, even if the underlyingdomain is highly non-smooth and A is 
omplemented with mixed boundary 
on-ditions. Appli
ations to quasilinear paraboli
 equations with non-smooth data arepresented. 1. Introdu
tionIt is known that divergen
e operators ful�ll maximal paraboli
 regularity on Lpspa
es � even if the underlying domain is non-smooth, the 
oe�
ients are dis
on-tinuous and the boundary 
onditions are mixed, see [6℄ and also [59℄. This providesa powerful tool for the treatment of linear and nonlinear paraboli
 equations in Lpspa
es, see [77, 24, 71, 59℄. The only disadvantage of this 
on
ept is that the appear-ing Neumann 
onditions have to be homogeneous and that distributional right handsides (e.g. surfa
e densities) are not admissible. Confronted with these phenomena,it seems an adequate alternative to 
onsider the equations in distribution spa
es,what we will do in this paper. Pursuing this idea, one has, of 
ourse, to prove thatthe o

urring ellipti
 operators satisfy paraboli
 regularity on those spa
es in anappropriate sense.In fa
t, we show that, under very mild 
onditions on the domain Ω, the Diri
h-let boundary part ∂Ω \ Γ and the 
oe�
ient fun
tion, ellipti
 divergen
e operatorssatisfy maximal paraboli
 regularity on a huge variety of spa
es, among whi
h areSobolev, Besov and Lizorkin-Triebel spa
es, provided that the di�erentiability indexis between 0 and −1 (
f. Theorem 5.16). We 
onsider this as the �rst main result ofthis work, also interesting in itself. Up to now, the only existing results for mixedboundary 
onditions in distribution spa
es (apart from the Hilbert spa
e situation)are, to our knowledge, that of Gröger [55℄ and the re
ent one of Griepentrog [51℄.Con
erning the Diri
hlet 
ase, 
ompare [18℄ and referen
es therein.Having this �rst result at hand, the se
ond aim of this work is the treatment ofquasilinear paraboli
 equations of the formal type(1.1) { (
F(u)

)′ −∇ · G(u)µ∇u = R(t, u),

u(T0) = u0,
ombined with mixed, nonlinear boundary 
onditions:(1.2) ν · G(u)µ∇u+ b(u) = g on Γ and u = 0 on ∂Ω \ Γ.Let us point out some ideas, whi
h will give a 
ertain guideline for the paper: Ouranalysis is based on a regularity result for the square root (−∇ · µ∇)1/2 on Lpspa
es. It has already been remarked in the introdu
tion of [12℄ that estimatesbetween ‖(−∇·µ∇)1/2f‖p and ‖∇f‖p should provide powerful tools for the treatmentof ellipti
 and paraboli
 problems involving divergen
e form operators. It seems,however, that this idea has not yet been developed to its full strength, 
f. [35,Ch. 5℄.Originally, our strategy for proving maximal paraboli
 regularity for divergen
e op-erators on H−1,q
Γ was to show an analog of the 
entral result of [12℄, this time in 
ase



2of mixed boundary 
onditions, namely that(1.3) (
−∇ · µ∇ + 1

)−1/2
: Lq → H1,q

Γprovides a topologi
al isomorphism for suitable q. This would give the possibilityof 
arrying over the maximal paraboli
 regularity, known for Lq, to the dual of
H1,q′

Γ , be
ause, roughly spoken, (−∇·µ∇+1)−1/2 
ommutes with the 
orrespondingparaboli
 solution operator. Unfortunately, we were only able to prove the 
ontinuityof (1.3) within the range q ∈ [2,∞[, due to a result of Duong and McIntosh [32℄,but did not su

eed in proving the 
ontinuity of the inverse in general. Let usexpli
itely mention that the proof of the isomorphism property of (1.3) would bea great a
hievement. In parti
ular, this would allow here to avoid the lo
alizationpro
edure we had to introdu
e in Se
tion 5 in order to prove maximal paraboli
regularity, and to generalize our results to higher dimensions. The isomorphismproperty is known for the Hilbert spa
e 
ase L2 (see [13℄) in 
ase of mixed boundary
onditions and even 
omplex 
oe�
ients, but the proof fundamentally rests on theHilbert spa
e stru
ture, so that we do not see a possibility of dire
tly generalizingthis to the Lp 
ase.It turns out, however, that (1.3) provides a topologi
al isomorphism, if Ω∪ Γ is theimage under a volume-preserving and bi-Lips
hitz mapping of one of Gröger's modelsets [53℄, des
ribing the geometri
 
on�guration in neighborhoods of boundary pointsof Ω. Thus, in these 
ases one may 
arry over the maximal paraboli
 regularity from
Lq to H−1,q

Γ . Knowing this, we lo
alize the linear paraboli
 problem, use the 'lo
al'maximal paraboli
 information and interpret this again in the global 
ontext at theend. Interpolation with the Lp result then yields maximal paraboli
 regularity onthe 
orresponding interpolation spa
es.Let us expli
itely mention that the 
on
ept of Gröger's regular sets, where thedomain itself is a Lips
hitz domain, seems adequate to us, be
ause it 
overs manyrealisti
 geometries that fail to be domains with Lips
hitz boundary. The pri
e onehas to pay is that the problem of optimal ellipti
 regularity be
omes mu
h moredeli
ate and, additionally, tra
e theorems for this situation are s
ar
ely to be foundin the literature.The strategy for proving that (1.1), (1.2) admit a unique lo
al solution is as follows.We reformulate (1.1) into a usual quasilinear equation, where the time derivativedire
tly a�e
ts the unknown fun
tion. Assuming additionally that the ellipti
 oper-ator −∇ · µ∇ + 1 : H1,q
Γ → H−1,q

Γ provides a topologi
al isomorphism for a q largerthan the spa
e dimension d, the existen
e and uniqueness results for abstra
t quasi-linear equations of Prüss (see [77℄, see also [24℄) apply to the resulting quasilinearparaboli
 equation. The detailed dis
ussion how to assure all requirements of [77℄,in
luding the adequate 
hoi
e of the Bana
h spa
e, is presented in Se
tion 6. The
ru
ial point is that the linear ellipti
 operator whi
h 
orresponds to the initial valuesatis�es maximal paraboli
 regularity, whi
h has been proved before. Let us furtheremphasize that the presented setting allows for 
oe�
ient fun
tions that really jumpat hetero interfa
es of the material and permits mixed boundary 
onditions, as wellas domains whi
h do not possess a Lips
hitz boundary, see Se
tion 7. It is wellknown that this is required when modelling real world problems, see e.g. [83, 20℄



3for problems from thermodynami
s or [38, 16℄ 
on
erning biologi
al models. Lastbut not least, heterostru
tures are the determining features of many fundamentale�e
ts in semi
ondu
tors, see for instan
e [80, 14, 63℄.One further advantage is that nonlinear, nonlo
al boundary 
onditions are admis-sible in our 
on
ept, despite the fa
t that the data is highly non-smooth, 
ompare[2℄. The 
al
ulus of maximal paraboli
 Ls(]T0, T [ ;X) regularity is preferable tothe 
on
ept of Hölder 
ontinuity in time, be
ause it allows for rea
tion terms Rwhi
h dis
ontinously depend on time. This is important in many examples (see[88, 58, 65℄), in parti
ular in the 
ontrol theory of paraboli
 equations. Alterna-tively, the reader should think e.g. of a manufa
turing pro
ess for semi
ondu
tors,where light is swit
hed on/o� at a sharp time point and, of 
ourse, parameters inthe 
hemi
al pro
ess then 
hange abruptly. It is remarkable that, nevertheless, thesolution is Hölder 
ontinuous simultaneously in spa
e and time, see Corollary 6.16below.We �nish these 
onsiderations by looking at the spe
ial 
ase of semilinear prob-lems. It turns out that here satisfa
tory results may be a
hieved even without theadditional 
ontinuity 
ondition on −∇·µ∇+1 mentioned above, see Corollary 6.17.In Se
tion 7 we give examples for geometries, Diri
hlet boundary parts and 
oef-�
ients in three dimensions for whi
h our additional supposition, the isomorphy
−∇ · µ∇ + 1 : H1,q

Γ → H−1,q
Γ really holds for a q > d. In Subse
tion 7.3 we take a
loser look at the spe
ial geometry of two 
rossing beams, whi
h provides a geomet-ri
ally easy example of a domain Ω that does not have a Lips
hitz boundary andthus 
annot be treated by former theories, but whi
h is 
overed by our results.Finally, some 
on
luding remarks are given in Se
tion 8.2. Notation and general assumptionsThroughout this arti
le the following assumptions are valid.

• Ω ⊆ Rd is a bounded Lips
hitz domain and Γ is an open subset of ∂Ω.
• The 
oe�
ient fun
tion µ is a Lebesgue measurable, bounded fun
tion on Ωtaking its values in the set of real, symmetri
, positive de�nite d×d matri
es,satisfying the usual ellipti
ity 
ondition.Remark 2.1. Con
erning the notions 'Lips
hitz domain' and 'domain with Lips-
hitz boundary' (synonymous: strongly Lips
hitz domain) we follow the terminologyof Grisvard [52℄, see also [70℄.For ς ∈ ]0, 1] and 1 < q <∞ we de�ne H ς,q

Γ (Ω) as the 
losure of(2.1) C∞
Γ (Ω) := {ψ|Ω : ψ ∈ C∞(Rd), supp(ψ) ∩ (∂Ω \ Γ) = ∅}in the Sobolev spa
e H ς,q(Ω). Of 
ourse, if Γ = ∅, then H ς,q

Γ (Ω) = H ς,q
0 (Ω) andif Γ = ∂Ω, then H ς,q

Γ (Ω) = H ς,q(Ω). This last point follows from the fa
t that Ω,as a Lips
hitz domain, admits a 
ontinuous extension operator from H1,q(Ω) into
H1,q(Rd), see [45, Thm. 3.10℄. Thus, the set C∞(Ω) := {ψ|Ω : ψ ∈ C∞(Rd)} is densein H1,q(Ω). Con
erning the dual of H ς,q

Γ (Ω), we have to distinguish between the



4spa
e of linear and the spa
e of anti-linear forms on this spa
e. We de�ne H−ς,q
Γ (Ω)as the spa
e of 
ontinuous, linear forms on H ς,q′

Γ (Ω) and H̆−ς,q
Γ (Ω) as the spa
e ofanti-linear forms on H ς,q′

Γ (Ω) if 1/q + 1/q′ = 1. Note that Lp spa
es may be viewedas part of H̆−ς,q
Γ for suitable ς, q via the identi�
ation of an element f ∈ Lp with theanti-linear form H ς,q′

Γ ∋ ψ 7→
∫
Ω
fψ dx.If misunderstandings are not to be expe
ted, we drop the Ω in the notation of spa
es,i.e. fun
tion spa
es without an expli
itely given domain are to be understood asfun
tion spa
es on Ω.By K we denote the open unit 
ube in Rd, by K− the lower half 
ube K ∩{x : xd <

0}, by Σ = K ∩ {x : xd = 0} the upper plate of K− and by Σ0 the left half of Σ,i.e. Σ0 = Σ ∩ {x : xd−1 < 0}.As in the pre
eding paragraph, we will throughout the paper use x, y, . . . for ve
torsin Rd, whereas the 
omponents of x will be denoted by itali
s x1, x2, . . . , xd or inthree dimensions also by x, y, z.If B is a 
losed operator on a Bana
h spa
e X, then we denote by domX(B) thedomain of this operator. L(X, Y ) denotes the spa
e of linear, 
ontinuous operatorsfrom X into Y ; if X = Y , then we abbreviate L(X). Furthermore, we will write
〈·, ·〉X′ for the dual pairing of elements of X and the spa
e X ′ of anti-linear formson X.Finally, the letter c denotes a generi
 
onstant, not always of the same value.3. PreliminariesIn this se
tion we will properly de�ne the ellipti
 divergen
e operator and afterwards
olle
t properties of the Lp realizations of this operator whi
h will be needed in thesubsequent 
hapters. First of all we establish the following extension property forfun
tion spa
es on Lips
hitz domains, whi
h will be used in the sequel.Proposition 3.1. There is a 
ontinuous extension operator Ext : L1(Ω) → L1(Rd),whose restri
tion to any spa
e H1,q(Ω) (q ∈ ]1,∞[) maps this spa
e 
ontinuouslyinto H1,q(Rd). Moreover, Ext maps Lp(Ω) 
ontinuously into Lp(Rd) for p ∈ ]1,∞].Proof. The assertion is proved for the spa
es H1,q in [45, Thm. 3.10℄ see also [70,Ch. 1.1.16℄. Inspe
ting the 
orresponding proofs (whi
h are given via lo
alization,Lips
hitz di�eomorphism and symmetri
 re�e
tion) one easily re
ognizes that theextension mapping at the same time 
ontinuously extends the Lp spa
es. �Let us introdu
e an assumption on Ω and Γ whi
h will de�ne the geometri
al frame-work relevant for us in the sequel.Assumption 3.2. a) For any point x ∈ ∂Ω there is an open neighborhood Υx of

x and a bi-Lips
hitz mapping φx from Υx into Rd, su
h that φx

(
(Ω∪Γ)∩Υx

)
=

αK− or α(K− ∪ Σ) or α(K− ∪ Σ0) for some positive α = α(x).b) Ea
h mapping φx is, in addition, volume-preserving.



5Remark 3.3. Assumption 3.2 a) exa
tly 
hara
terizes Gröger's regular sets, in-trodu
ed in his pioneering paper [53℄. Note that the additional property 'volume-preserving' also has been required in several 
ontexts (see [48℄ and [55℄).It is not hard to see that every Lips
hitz domain and also its 
losure is regular in thesense of Gröger, the 
orresponding model sets are then K− or K− ∪Σ, respe
tively,see [52, Ch 1.2℄. A simplifying topologi
al 
hara
terization of Gröger's regular setsfor d = 2 and d = 3 will be given in Se
tion 8.In parti
ular, all domains with Lips
hitz boundary (strongly Lips
hitz domains)satisfy Assumption 3.2: if, after a shift and an orthogonal transformation, the do-main lies lo
ally beyond a graph of a Lips
hitz fun
tion ψ, then one 
an de�ne
φ(x1, . . . , xd) = (x1 − ψ(x2, . . . , xd), x2, . . . , xd). Obviously, the mapping φ is thenbi-Lips
hitz and the determinant of its Ja
obian is identi
ally 1. For further exam-ples see Se
tion 7.Next we have to introdu
e a boundary measure on ∂Ω. Sin
e in our 
ontext Ω is notne
essarily a domain with Lips
hitz boundary, this is not 
anoni
. Let, a

ording tothe de�nition of a Lips
hitz domain, for every point x ∈ ∂Ω an open neighborhood
Υx of x and a bi-Lips
hitz fun
tion φx : Υx → Rd be given, whi
h satisfy φx(Υx∩Ω) =
K−, φx(Υx ∩ ∂Ω) = Σ and φx(x) = 0. Let Υx1 , . . . ,Υxl

be a �nite sub
overing of
∂Ω. De�ne on ∂Ω∩Υxj

the measure σj as the φ−1
xj
-image of the (d− 1)-dimensionalLebesgue measure on Σ. Clearly, this measure is a positive, bounded Radon measure.Finally, de�ne the measure σ on ∂Ω by

∫

∂Ω

f dσ :=

l∑

j=1

∫

∂Ω∩Υxj

f dσj, f ∈ C(∂Ω).Clearly, σ also is a bounded, positive Radon measure. Furthermore, it is not hardto see that the measure σ � simultaneously viewed as a measure on Rd � satis�es
sup
x∈Rd

sup
r∈]0,1[

σ(B(x, r))r1−d <∞,where, here and in the sequel, B(x, r) denotes the ball 
entered at x with radius r,
ompare [61, Ch. II.1℄, in parti
ular Example 1 there.Later we will repeatedly need the following interpolation results from [48℄.Proposition 3.4. Let Ω and Γ satisfy Assumption 3.2 a) and let θ ∈ ]0, 1[.i) Then for q0, q1 ∈ ]1,∞[ and 1
q

= 1−θ
q0

+ θ
q1

one has
Hθ,q

Γ =
[
Lq0 , H1,q1

Γ

]
θ
, if θ 6= 1

q
,(3.1)

H−θ,q
Γ =

[
Lq0 , H−1,q1

Γ

]
θ

if θ 6= 1 − 1

q
(3.2) and

H±1,q
Γ =

[
H±1,q0

Γ , H±1,q1
Γ ]θ.(3.3)



6 ii) If additionally Assumption 3.2 b) is ful�lled and 1
q
6= θ 6= 1 − 1

q
, then(3.4) H±θ,q

Γ =
[
H−1,q

Γ , H1,q
Γ

]
1±θ
2

.Corollary 3.5. Under the same assumptions as for (3.3) one has(3.5) H̆−1,q
Γ =

[
H̆−1,q0

Γ , H̆−1,q1
Γ ]θ.Proof. (3.5) may be dedu
ed from (3.3) by means of the retra
tion/
oretra
tiontheorem (see [85, Ch. 1.2.4℄), where the 
oretra
tion is the mapping whi
h assignsto f ∈ H̆−1,r

Γ the linear form H1,r′

Γ ∋ ψ → 〈f, ψ〉H̆−1,r
Γ

. �Having this at hand, we 
an prove the following tra
e theorem.Theorem 3.6. Assume q ∈ ]1,∞[ and θ ∈ ]
1
q
, 1

[. Let Π be a Lips
hitz hypersurfa
ein Ω and let ̟ be any measure on Π whi
h satis�es
sup
x∈Rd

sup
r∈]0,1[

̟(B(x, r))r1−d <∞.Then the tra
e operator Tr from Hθ,q(Ω) to Lq(Π, ̟) is 
ontinuous.Proof. Sin
e Ω is an extension domain for H1,q and Lq simultaneously, one has theinequality(3.6)
‖u|Π‖Lq(Π,̟) = ‖u‖Lq(Ω,̟) ≤ c‖u‖1/q

H1,q(Ω)‖u‖
1−1/q
Lq(Ω) ≤ c‖u‖H1,q(Ω), u ∈ H1,q(Ω),for q ∈ ]1,∞[, see [70, Ch. 1.4.7℄. But due to a general interpolation prin
iple (see[15, Ch. 5, Prop. 2.10℄) this yields a 
ontinuous mapping(3.7) (

Lq(Ω), H1,q(Ω)
)

1
q
,1
∋ u 7→ u|Π ∈ Lq(Π, ̟).Sin
e Ω is a Lips
hitz domain, (3.1) in parti
ular yields the equality Hθ,q(Ω) =

[Lq(Ω), H1,q(Ω)]θ in view of θ > 1/q. Thus, we have the 
ontinuous embedding
Hθ,q(Ω) =

[
Lq(Ω), H1,q(Ω)

]
θ
→֒

(
Lq(Ω), H1,q(Ω)

)
1
q
,1
,see [85, Ch. 1.10.3, Thm. 1 and Ch. 1.3.3℄. This, together with (3.7), proves thetheorem. �We de�ne the operator A : H1,2

Γ → H̆−1,2
Γ by(3.8) 〈Aψ, ϕ〉H̆−1,2

Γ
:=

∫

Ω

µ∇ψ · ∇ϕ dx +

∫

Γ

κ ψ ϕ dσ, ψ, ϕ ∈ H1,2
Γ ,where κ ∈ L∞(Γ, dσ). Note that in view of (3.6) the form in (3.8) is well de�ned.In the spe
ial 
ase κ = 0, we write more suggestively −∇ · µ∇ instead of A.The L2 realization of A, i.e. the maximal restri
tion of A to the spa
e L2, we denoteby the same symbol A; 
learly this is identi
al with the operator whi
h is indu
edby the form on the right hand side of (3.8). If B is a selfadjoint operator on L2,then by the Lp realization of B we mean its restri
tion to Lp if p > 2 and the Lp
losure of B if p ∈ [1, 2[.



7We de
ided not to use di�erent symbols for all these (and lateron also other) real-izations of our operators in this paper, sin
e we think that the gain in exa
tenesswould be largely outweighed by the resulting 
omplexity of notation. Naturally, thismeans that we have to pay attention to domains even more thoroughly.Remark 3.7. Following [75, Ch. 1.4.2℄ (see also [17, Ch. 1℄), we did not de�ne Aas an operator with values in the spa
e of linear forms on H1,2
Γ , but in the spa
e ofanti-linear forms. This guarantees that the restri
tion of this operator to L2 equalsthe usual selfadjoint operator that is indu
ed by the sesquilinear form in (3.8), whi
his 
ru
ial for our analysis. In this spirit, the duality between H̆−1,q

Γ and H1,q′

Γ is to be
onsidered as the extended L2 duality L2 × L2 ∋ (ψ, ϕ) →
∫
Ω
ψϕ dx, where L2 a
tsas the set of anti-linear forms on itself. Espe
ially, all o

urring adjoint operatorsare to be understood with respe
t to this dual pairing.First, we 
olle
t some basi
 fa
ts on A.Proposition 3.8. i) ∇ · µ∇ generates an analyti
 semigroup on H̆−1,2

Γ .ii) −∇ · µ∇ is selfadjoint on L2 and bounded by 0 from below. The restri
tionof −A to L2 is densely de�ned and generates an analyti
 semigroup there.iii) If λ > 0 then the operator (−∇·µ∇+λ)1/2 : H1,2
Γ → L2 provides a topologi
alisomorphism; in other words: the domain of (−∇ · µ∇ + λ)1/2 on L2 is theform domain H1,2

Γ .iv) The form domain H1,2
Γ is invariant under multipli
ation with fun
tions from

H1,q, if q > d.v) Assume κ ≥ 0. Then, under Assumption 3.2 a), for all p ∈ ]1,∞[ theoperator −A generates a semigroup of 
ontra
tions on Lp. Additionally, itsatis�es
‖(A+ λ)−1‖L(Lp) ≤

c

|λ| , Reλ ≥ 0.vi) Under Assumption 3.2 a) domH̆−1,q
Γ

(−∇ · µ∇) embeds 
ompa
tly into H̆−1,q
Γfor every q ∈ [2,∞[, i.e. the resolvent of (−∇ · µ∇) is 
ompa
t on H̆−1,q

Γ .Proof. i) is proved in [75, Thm. 1.55℄, see also [54℄.ii) The �rst assertion follows from a 
lassi
al representation theorem for forms,see [64, Ch. VI.2.1℄. Se
ondly, one veri�es that the form H1,2
Γ ∋ ψ 7→∫

Γ
κ|ψ|2 dσ is form subordinated to the � positive � form H1,2

Γ ∋ ψ 7→∫
Ω
∇ψ · µ∇ψ + ψψ dx with arbitrarily small relative bound. In fa
t, thanksto (3.6),

∣∣∣∣
∫

Γ

κ|ψ|2dσ
∣∣∣∣ ≤ ‖κ‖L∞(Γ)‖ψ‖2

L2(∂Ω) ≤ ‖κ‖L∞(Γ)‖ψ‖H1,2
Γ (Ω)‖ψ‖L2(Ω)

≤ ε‖ψ‖2
H1,2

Γ (Ω)
+

1

ε
‖κ‖2

L∞(Γ)‖ψ‖2
L2(Ω).Thus, the form (3.8) is also 
losed on H1,2

Γ and se
torial. Moreover, theoperator −A generates an analyti
 semigroup by the representation theoremfor se
torial forms, see also [64, Ch. VI.2.1℄.



8 iii) This follows from the se
ond representation theorem of forms (see [64, Ch. VI.2.6℄),applied to the operator −∇ · µ∇ + λ.iv) First, for u ∈ C∞
Γ and v ∈ C∞ the produ
t uv is obviously in C∞

Γ ⊆ H1,2
Γ .But, by de�nition of H1,2

Γ , the set C∞
Γ (see (2.1)) is dense in H1,2

Γ and C∞is dense in H1,q. Thus, the assertion is implied by the 
ontinuity of themapping
H1,2

Γ ×H1,q ∋ (u, v) 7→ uv ∈ H1,2,be
ause H1,2
Γ is 
losed in H1,2.v) This is proved in [49, Thm. 4.11, Thm. 5.2℄.vi) The operator (−∇ · µ∇ + 1)−1 has the following � 
ontinuous � mappingproperties(3.9) (−∇ · µ∇ + 1)−1 : H̆−1,2

Γ → H1,2
Γ →֒ L2and(3.10) (−∇ · µ∇ + 1)−1 : H̆−1,q

Γ → L∞ →֒ Ld+1 for q ≥ d+ 1(see [50℄). This shows that the resolvent is 
ompa
t for q = 2 and for
q ≥ d + 1. If one takes in (3.10) q = d + 1 and interpolates between (3.9)and (3.10), one obtains a 
ontinuous mapping (−∇·µ∇+1)−1 : H̆−1,q

Γ → Lqfor every q ∈ ]2, d+ 1[, see Corollary 3.5. �One essential instrument for our subsequent 
onsiderations are (upper) Gaussianestimates.Theorem 3.9. The semigroup generated by ∇ · µ∇ in L2 satis�es upper Gaussianestimates, pre
isely:
(et∇·µ∇ f)(x) =

∫

Ω

Kt(x, y)f(y) dy, x ∈ Ω, f ∈ L2,for some measurable fun
tion Kt : Ω×Ω → R+ and for all ε > 0 there exist 
onstants
c, b > 0, su
h that(3.11) 0 ≤ Kt(x, y) ≤ c

td/2
e−b

|x−y|2

t eεt, t > 0, a.a. x, y ∈ Ω.This follows from the following simpli�ed version of Theorem 6.10 in [75℄ (see also[7℄).Proposition 3.10 (Ouhabaz). Assume that −∇ · ω∇, with ω ∈ L∞(Ω;L(Rd))uniformly ellipti
, is de�ned on the form domain V ⊆ H1,2 that satis�esa) V is 
losed in H1,2,b) H1,2
0 ⊆ V ,
) V has the L1-H1,2 extension property,d) u ∈ V implies sign(u) inf(1, |u|) ∈ V , where sign(u) = u/|u| if u 6= 0 and

sign(u) = 0 else.e) u ∈ V implies eψ u ∈ V for every ψ ∈ C∞(Rd), su
h that ψ and |∇ψ| arebounded in Rd.Then et∇·ω∇ satis�es an upper Gaussian estimate as in (3.11).



9Proof of Theorem 3.9. We have to verify 
onditions a) � e) from Proposition 3.10for V = H1,2
Γ . a) and b) are obvious. For 
) see Proposition 3.1 and d) is 
overedby [75, Proposition 4.11℄. Finally, e) follows from Proposition 3.8 iv). �Another notion in our 
onsiderations will be the bounded holomorphi
 fun
tional
al
ulus that we want to introdu
e brie�y. Let X be a Bana
h spa
e and −B thegenerator of a bounded analyti
 semigroup on X. Denoting, for κ ∈ ]0, π],

Σκ := {z ∈ C \ {0} : | arg(z)| < κ},we then have for some θ ∈ ]0, π/2[

σ(B) ⊆ Σθ ∪ {0} and ‖R(λ,B)‖L(X) ≤
M

|λ| , λ ∈ C \ Σθ.Following [73℄ (see also [27℄), for any angle κ ∈ ]0, π] we de�ne the fun
tion spa
es
H∞(Σκ) := {ψ : Σκ → C, holomorphi
 and bounded} and
H∞

0 (Σκ) :=
{
ψ ∈ H∞(Σκ) : there exist C, ε > 0 s.t. |ψ(z)| ≤ C

|z|ε
(1 + |z|)2ε

}
,both equipped with the norm ‖ψ‖H∞

κ
:= supz∈Σκ

|ψ(z)|. Then for ψ ∈ H∞
0 (Σκ) with

κ > θ, we may 
ompute ψ(B), using the Cau
hy integral formula
ψ(B) =

1

2πi

∫

∠

ψ(z)R(z, B) dz,where the path ∠ is given by the two rays t e±iϕ, t > 0, for some θ < ϕ < κ.Note that this integral is absolutely 
onvergent in L(X). We now say that B has abounded H∞-
al
ulus, if there is a 
onstant C ≥ 0, su
h that
‖ψ(B)‖L(X) ≤ C‖ψ‖H∞

κ
, ψ ∈ H∞

0 (Σκ),for some κ > θ. The in�mum of all angles κ, for whi
h this holds, is 
alled the
H∞-angle ϕ∞

B of B.If B admits a bounded H∞-
al
ulus for some κ > θ, then the mapping H∞
0 (Σκ) ∋

ψ 7→ ψ(B) ∈ L(X) 
an be extended uniquely to an algebra homomorphism between
H∞(Σκ) and L(X).Proposition 3.11. Let ∂Ω \Γ have nonzero boundary measure. Then the followingassertions hold for every p ∈ ]1,∞[.i) For su�
iently small γ > 0, the operator −∇ · µ∇− γ has a bounded H∞-
al
ulus on Lp with H∞-angle ϕ∞

−∇·µ∇−γ = 0.ii) The set {(−∇ · µ∇)is : s ∈ R} forms a strongly 
ontinuous group on Lpadmitting the estimate
‖(−∇ · µ∇)is‖L(Lp) ≤ cp e|s|ϑ, s ∈ R,with 0 ≤ ϑ < π/2.Proof. Sin
e the boundary measure of ∂Ω \ Γ is nonzero, the operator −∇ · µ∇ is
ontinuously invertible in L2, i.e. 0 does not belong to the spe
trum. Hen
e, forsu�
iently small γ > 0, −∇ · µ∇ − γ is still self-adjoint and bounded by 0 from



10below, 
f. Proposition 3.8 ii). Thus, for every δ ≥ 0 the operator −∇ · µ∇− γ + δhas a bounded H∞-
al
ulus on L2 with H∞-angle 0. Furthermore, taking δ > γ,the semigroup generated by ∇·µ∇+ γ− δ obeys the Gaussian estimate (3.11) with
ε = 0. Thus, −∇·µ∇−γ+ δ also has a bounded H∞-
al
ulus on Lp with H∞-angle
0 for all 1 < p <∞ by [33℄.In order to eliminate the ` + δ', we observe that the spe
trum of −∇ · µ∇ is p-independent, thanks to the Gaussian estimates, see [66℄. Thus, also in Lp the spe
-trum of −∇ · µ∇ − γ is 
ontained in the positive real axis. It was shown in [62,Prop. 6.10℄, that in su
h a 
ase, we may shift ba
k the operator without losing thebounded H∞-
al
ulus, as long as the spe
trum does not rea
h zero. This shows i).As the fun
tions z 7→ zis belong to H∞(Σφ) for every s ∈ R and every φ ∈ ]0, π[,part i) of this proof yields (−∇ · µ∇)is ∈ L(Lp) with ‖(−∇ · µ∇)is‖ ≤ c for all
−1 ≤ s ≤ 1. Thus, ii) follows by [4, Thm. III.4.7.1 and Cor. III.4.7.2℄. �4. Mapping properties for (−∇ · µ∇)1/2In this 
hapter we prove that, under 
ertain topologi
al 
onditions on Ω and Γ, themapping

(−∇ · µ∇)1/2 : H1,q
Γ → Lqis a topologi
al isomorphism for q ∈ ]1, 2[. We abbreviate −∇·µ∇ by A0 throughoutthis 
hapter. Let us introdu
e the followingAssumption 4.1. There is a bi-Lips
hitz, volume-preserving mapping φ from aneighborhood of Ω into Rd su
h that φ(Ω ∪ Γ) = αK− or α(K− ∪Σ) or α(K− ∪Σ0)for some α > 0.Remark 4.2. It is known that for a bi-Lips
hitz mapping the property of beingvolume-preserving is equivalent to the property that the absolute value of the de-terminant of the Ja
obian is one almost everywhere (see [36, Ch. 3℄).The main results of this se
tion are the following two theorems.Theorem 4.3. Under the general assumptions made in Se
tion 2 the following holdstrue: If ∂Ω\Γ has nonzero boundary measure, then, for every q ∈ ]1, 2], the operator

A
−1/2
0 is a 
ontinuous operator from Lq into H1,q

Γ . Hen
e, it 
ontinuously maps H̆−1,q
Γinto Lq for any q ∈ [2,∞[.Theorem 4.4. If in addition Assumption 4.1 is ful�lled and q ∈ ]1, 2], then A
1/2
0maps H1,q

Γ 
ontinuously into Lq. Hen
e, it 
ontinuously maps Lq into H̆−1,q
Γ for any

q ∈ [2,∞[.Remark 4.5. In both theorems the se
ond assertion follows from the �rst by theselfadjointness of A0 on L2 and duality (see Remark 3.7); thus we fo
us on the proofof the �rst assertions in the sequel.Let us �rst prove the 
ontinuity of the operator A−1/2
0 : Lq → H1,q

Γ . In order to doso, we observe that this follows, whenever



111. The Riesz transform ∇A−1/2
0 is a bounded operator on Lq, and, additionally,2. A−1/2

0 maps Lq into H1,q
Γ .The �rst item 
an be dedu
ed from the following result of Duong and McIntosh (see[32, Thm. 2℄) that is even true in a mu
h more general setting.Proposition 4.6. Let B be a positive, selfadjoint operator on L2, having the spa
e

W as its form domain and admitting the estimate ‖∇ψ‖L2 ≤ c‖B1/2ψ‖L2 for all
ψ ∈W . Assume that W is invariant under multipli
ation by bounded fun
tions withbounded, 
ontinuous �rst derivatives and that the kernel Kt of the semigroup e−tBsatis�es bounds(4.1) |Kt(x, y)| ≤ C

td/2

(
1 +

|x − y|2
t

)−βfor some β > d/2. Then the operator ∇B−1/2 is of weak type (1,1), and, thus 
anbe extended from L2 to a bounded operator on Lq for all q ∈ ]1, 2[.Proof of Theorem 4.3. A

ording to Theorem 3.9 the semigroup kernels 
orrespond-ing to the operator A0 satisfy the estimate (3.11). Thus, 
onsidering the operator
A0 + ε for some ε > 0, the 
orresponding kernels satisfy again (3.11), but withoutthe fa
tor eεt now. Next, we verify that B := A0 + ε and W := H1,2

Γ satisfy theassumptions of Proposition 4.6. By Proposition 3.8, W = H1,2
Γ is the domain for

(A0 + ε)1/2, thus ‖∇ψ‖L2 ≤ c‖(A0 + ε)1/2ψ‖L2 holds for all ψ ∈ W . The invarian
eproperty of W under multipli
ation is ensured by Proposition 3.8. Con
erning thebound (4.1), it is easy to see that the resulting Gaussian bounds from Theorem 3.9are even mu
h stronger, sin
e the fun
tion r 7→ (1 + r)β e−br, r ≥ 0, is bounded forevery β > 0. All this shows that (A0 +ε)−1/2 : Lq → H1,q is 
ontinuous for q ∈ ]1, 2].Writing
A

−1/2
0 = (A0 + ε)−1/2(A0 + ε)1/2A

−1/2
0 ,the assertion 1. follows, if we know that (A0 + ε)1/2A

−1/2
0 : Lq → Lq is 
ontinuous.In order to see this, 
hoose ε so small that Proposition 3.11 i) ensures a bounded

H∞-
al
ulus on Lq for A0−ε, and observe that the fun
tion z 7→ (z+2ε)1/2(z+ε)−1/2is in H∞(Σφ) for any φ ∈ ]0, π[.It remains to show 2. The �rst point makes 
lear that A−1/2
0 maps Lq 
ontinuouslyinto H1,q, thus one has only to verify the 
orre
t boundary behavior of the images.If f ∈ L2 →֒ Lq, then one has A−1/2

0 f ∈ H1,2
Γ →֒ H1,q

Γ . Thus, the assertion followsfrom 1. and the density of L2 in Lq. �Remark 4.7. Theorem 4.3 is not true for other values of q in general: If it were,then, due to the 
ase q ≤ 2 and duality, A−1/2
0 : H−1,q

Γ → Lq and A−1/2
0 : Lq → H1,q

Γwould be 
ontinuous for a q > 2. But for any q > 2 one 
an �nd a 
oe�
ientfun
tion µ su
h that the 
orresponding operator A−1
0 does not map H̆−1,q

Γ into H1,q
Γ ,see [74, 34, 35℄, see also [10℄ and the referen
es therein.



12It follows the proof of Theorem 4.4. It will be dedu
ed from the subsequent deepresult on divergen
e operators with Diri
hlet boundary 
onditions and some perma-nen
e prin
iples.Proposition 4.8 (Aus
her/T
hamit
hian, [12℄). Let q ∈ ]1,∞[ and Ω be a stronglyLips
hitz domain. Then the root of the operator A0, 
ombined with a homogeneousDiri
hlet boundary 
ondition, maps H1,q
0 (Ω) 
ontinuously into Lq(Ω).For further referen
e we mention the following immediate 
onsequen
e of Theo-rem 4.3 and Proposition 4.8.Corollary 4.9. Under the hypotheses of Proposition 4.8 the operator A−1/2

0 providesa topologi
al isomorphism between Lq and H1,q
0 , if q ∈ ]1, 2].In view of Assumption 4.1 it is a natural idea to redu
e our 
onsiderations to thethree model 
onstellations mentioned there. In order to do so, we have to showthat the assertion of Theorem 4.4 is invariant under volume-preserving bi-Lips
hitztransformations of the domain.Proposition 4.10. Assume that φ is a mapping from a neighborhood of Ω into Rdthat is additionally bi-Lips
hitz. Let us denote φ(Ω) = Ω△ and φ(Γ) = Γ△. De�nefor any fun
tion f ∈ L1(Ω△)

(Φf)(x) = f(φ(x)) = (f ◦ φ)(x), x ∈ Ω.Theni) The restri
tion of Φ to any Lp(Ω△), 1 ≤ p <∞, provides a linear, topologi
alisomorphism between this spa
e and Lp(Ω).ii) For any p ∈ ]1,∞[, the mapping Φ indu
es a linear, topologi
al isomorphism
Φp : H1,p

Γ△
(Ω△) → H1,p

Γ (Ω).iii) Φ∗
p′ is a linear, topologi
al isomorphism between H̆−1,p

Γ (Ω) and H̆−1,p
Γ△

(Ω△) forany p ∈ ]1,∞[.iv) One has(4.2) Φ∗
p′A0Φp = −∇ · µ△∇with(4.3) µ△(y) =

1∣∣det(Dφ)(φ−1(y))
∣∣(Dφ)(φ−1(y)) µ(φ−1(y))

(
Dφ

)T
(φ−1(y))for almost all y ∈ Ω△. Here, Dφ denotes the Ja
obian of φ and det(Dφ) the
orresponding determinant.v) µ△ also is bounded, Lebesgue measurable, ellipti
 and takes real, symmetri
matri
es as values.vi) The restri
tion of Φ∗

2Φ to L2(Ω△) equals the multipli
ation operator whi
h isindu
ed by the fun
tion ∣∣ det(Dφ)(φ−1(·))
∣∣−1. Consequently, if | det(Dφ)| = 1a.e., then the restri
tion of Φ∗

2Φ to L2(Ω△) is the identity operator on L2(Ω△),or, equivalently, (Φ∗
2)

−1|L2(Ω△) = Φ|L2(Ω△).



13Proof. For i) see [70, Ch. 1.1.7℄. The proof of ii) is 
ontained in [48, Thm. 2.10)℄and iii) follows from ii) by duality (see Remark 3.7). Assertion iv) is well known,see [56℄ for an expli
it veri�
ation, while v) is implied by (4.3) and the fa
t that fora bi-Lips
hitz mapping φ the Ja
obian Dφ and its inverse (
Dφ)−1 are essentiallybounded (see [36, Ch. 3.1℄). We prove vi). For every f ∈ L2(Ω△) and g ∈ H1,2

Γ△
(Ω△)we 
al
ulate:

〈Φ∗
2Φf, g〉H̆−1,2

Γ△
(Ω△) = 〈Φf,Φg〉H̆−1,2

Γ (Ω) = 〈f ◦ φ, g ◦ φ〉H̆−1,2
Γ (Ω) =

∫

Ω

f(φ(x))g(φ(x)) dx

=

∫

Ω△

f(y)g(y)
1∣∣ det(Dφ)(φ−1(y))

∣∣ dy.Thus, the anti-linear formΦ∗
2Φf onH1,2

Γ△
(Ω△) is represented by ∣∣det(Dφ)(φ−1(·))

∣∣−1 ∈
L∞(Ω△). �Lemma 4.11. Let p ∈ ]1,∞[. Suppose further that ∂Ω \ Γ does not have boundarymeasure zero and that | det(Dφ)| = 1 almost everywhere in Ω. Then, in the notationof the pre
eding proposition, the operator (

−∇·µ△∇
)1/2 maps H1,p

Γ△
(Ω△) 
ontinuouslyinto Lp(Ω△) if and only if A1/2

0 maps H1,p
Γ (Ω) 
ontinuously into Lp(Ω).Proof. We will employ the formula(4.4) B−1/2 =

1

π

∫ ∞

0

t−1/2(B + t)−1 dt,

B being a positive operator on a Bana
h spa
e X, see [85, Ch. 1.14/1.15℄ or [76,Ch. 2.6℄. Obviously, the integral 
onverges in the L(X)-norm.It is 
lear that our hypotheses of ∂Ω \ Γ not having boundary measure zero impliesthat ∂Ω△\Γ△ also has positive boundary measure. Thus, both, A0 and −∇·µ△∇ donot have spe
trum in zero and are positive operators in the sense of [85, Ch. 1.14℄on any Lp (see Proposition 3.8). From (4.2) and vi) of the pre
eding propositionone dedu
es(4.5) Φ∗
2

(
A0 + t

)
Φ2 = −∇ · µ△∇ + tfor every t > 0. This leads to

Φ−1
2

(
A0 + t

)−1(
Φ∗

2

)−1
=

(
−∇ · µ△∇ + t

)−1
.Restri
ting this last equation to elements from L2(Ω△) and making on
e more useof vi) in Proposition 4.10, we get the following operator equation on L2(Ω△):

Φ−1
(
A0 + t

)−1
Φ|L2(Ω△) =

(
−∇ · µ△∇ + t

)−1
.Integrating this equation with weight t−1/2

π
, one obtains, a

ording to (4.4),(4.6) Φ−1A

−1/2
0 Φ|L2(Ω△) =

(
−∇ · µ△∇

)−1/2
,again as an operator equation on L2(Ω△). We re
all that the operators A−1/2

0 :
L2(Ω) → H1,2

Γ (Ω), (−∇ · µ△∇)−1/2 : L2(Ω△) → H1,2
Γ△

(Ω△), Φ2 : H1,2
Γ△

(Ω△) → H1,2
Γ (Ω)



14and Φ : L2(Ω△) → L2(Ω) all are topologi
al isomorphisms. In parti
ular, for any
f ∈ L2(Ω△) the element A−1/2

0 Φf is from H1,2
Γ (Ω). Thus, we may write (4.6) as(4.7) Φ−1

2 A
−1/2
0 Φ|L2(Ω△) =

(
−∇ · µ△∇

)−1/2and afterwards invert (4.7). We get the following operator equation on H1,2
Γ△

(Ω△):
Φ−1A

1/2
0 Φ2 =

(
−∇ · µ△∇

)1/2
.In the sequel we make use of the fa
t that Φp : H1,p

Γ△
(Ω△) → H1,p

Γ (Ω) and Φ :
Lp(Ω△) → Lp(Ω) are topologi
al isomorphisms for all p ∈ ]1,∞[. Thus, �rst 
on-sidering the 
ase p ∈ ]1, 2[ and assuming that A1/2

0 maps H1,p
Γ (Ω) 
ontinuously into

Lp(Ω), we may estimate for all ψ ∈ H1,2
Γ△

(Ω△)

‖
(
−∇ · µ△∇

)1/2
ψ‖Lp(Ω△) = ‖Φ−1A

1/2
0 Φ2ψ‖Lp(Ω△)

(4.8)
≤ ‖Φ−1

p ‖L(Lp(Ω);Lp(Ω△))‖A1/2
0 ‖L(H1,p

Γ (Ω);Lp(Ω))‖Φ2ψ‖H1,p
Γ (Ω).Observing that Φ2 is only the restri
tion of Φp, one may estimate the last fa
tor in(4.8):(4.9) ‖Φ2ψ‖H1,p

Γ (Ω) ≤ ‖Φp‖L(H1,p
Γ△

(Ω△);H1,p
Γ (Ω))‖ψ‖H1,p

Γ△
(Ω△).This means that (−∇·µ△∇)1/2 mapsH1,2

Γ△
(Ω△), equipped with the indu
edH1,p

Γ△
(Ω△)-norm, 
ontinuously into Lp(Ω△) and, 
onsequently, extends to a 
ontinuous mappingfrom the whole H1,p

Γ△
(Ω△) into Lp(Ω△) by density.If p ∈ ]2,∞[, one has the same estimates (4.8) and (4.9), in this 
ase only forelements ψ ∈ H1,p

Γ△
(Ω△) ⊆ H1,2

Γ△
(Ω△).Finally, the equivalen
e stated in the assertion follows by simply inter
hanging theroles of µ and µ△. �Remark 4.12. It is the property of 'volume-preserving' whi
h leads, due to vi) ofProposition 4.10, to (4.5) and then to (4.6) and thus allows to hide the 
ompli
atedgeometry of the boundary in Φ and µ△.It turns out that 'bi-Lips
hitz' together with 'volume-preserving' is not a too re-stri
tive 
ondition. In parti
ular, there are su
h mappings � although not easy to
onstru
t � whi
h map the ball onto the 
ylinder, the ball onto the 
ube and theball onto the half ball, see [47℄, see also [37℄. The general message is that this 
lasshas enough �exibility to map 'non-smooth obje
ts' onto smooth ones.Lemma 4.11 allows to redu
e the proof of Theorem 4.4 to Ω = αK− and the three
ases Γ = ∅, Γ = αΣ or Γ = αΣ0. The �rst 
ase, Γ = ∅, is already 
ontained inProposition 4.8. In order to treat the se
ond one, we will use a re�e
tion argument.To this end we de�ne for any x = (x1, . . . , xd) ∈ Rd the symbol x− := (x1, . . . , xd−1,−xd)and for a d× d matrix ω, the matrix ω− by

ω−
j,k :=





ωj,k, if j, k < d,

−ωj,k, if j = d and k 6= d or k = d and j 6= d,

ωj,k, if j = k = d.



15Corresponding to the 
oe�
ient fun
tion µ on K−, we then de�ne the 
oe�
ientfun
tion µ̂ on K by
µ̂(x) :=





µ(x), if x ∈ K−,(
µ(x−)

)−
, if x− ∈ K−,

0, if x ∈ Σ.Finally, we de�ne for ϕ ∈ L1(K) the re�e
ted fun
tion ϕ− by ϕ−(x) = ϕ(x−) and,using this, the extension and restri
tion operators
E : L1(K−) → L1(K), (Ef)(x) =

{
f(x), if x ∈ K−,

f(x−), if x− ∈ K−,

S : H̆−1,2
Σ (K−) → H̆−1,2(K), 〈Sf, ϕ〉H̆−1,2(K) =

〈
f, ϕ|K− + ϕ−|K−

〉
H̆−1,2

Σ (K−)
,

R : L1(K) → L1(K−), Rf = f |K−.Proposition 4.13. i) If ψ ∈ H1,2
Σ (K−) satis�es A0ψ = f ∈ H̆−1,2

Σ (K−), then
−∇ · µ̂∇Eψ = Sf ∈ H̆−1,2(K).ii) The operator S : H̆−1,2
Σ (K−) → H̆−1,2(K) is 
ontinuous.Proof. i) It is known that Eψ belongs to H1,2

0 (K), see [45, Lemma 3.4℄. Thus,the assertion is obtained by the de�nitions of Eψ, Sf , A0, −∇ · µ̂∇ andstraightforward 
al
ulations, based on Proposition 4.10 when applied to thetransformation x 7→ x−.ii) The operator under 
onsideration is the adjoint of H1,2
0 (K) ∋ ϕ 7→ (ϕ|K− +

ϕ−|K−) ∈ H1,2
Σ (K−). �We are now in the position to prove Theorem 4.4 for the 
ase Γ = αΣ. Up to ahomothety we may fo
us on the 
ase α = 1. First, we note that for any fun
tion

ϕ ∈ L2(K−) one �nds Eϕ = Sϕ, where we identi�ed the fun
tions ϕ and Eϕ withthe 
orresponding regular distributions. Thus, one obtains from Proposition 4.13 i)that (
A0 + t

)
ψ = f ∈ H̆−1,2

Σ (K−) implies
(
−∇ · µ̂∇ + t

)
Eψ = Sf,or, equivalently,

Eψ =
(
−∇ · µ̂∇ + t

)−1
Sffor every t ∈ [0,∞[. Expressing ψ =

(
A0 + t

)−1
f , this yields

E
(
A0 + t

)−1
f =

(
−∇ · µ̂∇ + t

)−1
Sf.Multiplying this by t−1/2

π
and integrating over t, one obtains in a

ordan
e with (4.4)(4.10) EA

−1/2
0 f =

(
−∇ · µ̂∇

)−1/2
Sf, f ∈ H̆−1,2

Σ (K−).Applying the restri
tion operator R to both sides of (4.10), we get(4.11) A
−1/2
0 f = R

(
−∇ · µ̂∇

)−1/2
Sf, f ∈ H̆−1,2

Σ (K−).



16Considering in parti
ular elements f ∈ L2(K−) and taking for these into a

ount
Ef = Sf , (4.11) implies(4.12) A

−1/2
0 f = R

(
−∇ · µ̂∇

)−1/2
Ef, f ∈ L2(K−).Sin
e both operators −A0 and ∇ · µ̂∇ generate 
ontra
tion semigroups on any Lp,and 0 does not belong to the spe
trum for both of them, the operators A−1/2

0 and(
−∇ · µ̂∇

)−1/2 are bounded also on Lp(K−) and Lp(K), respe
tively. Hen
e, (4.12)remains true for any f ∈ Lp(K−) with p ∈ ]1, 2[. Now, on one hand it is 
learthat E(Lp(K−)) equals the symmetri
 part of Lp(K), i.e. the set of fun
tions whi
hsatisfy ϕ = ϕ−. Using the de�nition of the 
oe�
ient fun
tion µ̂ and formula (4.2),one re
ognizes that the resolvent of −∇ · µ̂∇ 
ommutes with the mapping ϕ 7→ ϕ−.Again exploiting formula (4.4), this shows that (−∇ · µ̂∇)−1/2 also 
ommutes withthe mapping ϕ 7→ ϕ−. Thus, (
−∇ · µ̂∇

)−1/2 maps the set of symmetri
 fun
tions,satisfying ϕ = ϕ−, into itself and also the set of antisymmetri
 fun
tions, satisfying
ϕ = −ϕ−. Consequently, (

−∇·µ̂∇
)−1/2

E(Lp(K−)) must equal the symmetri
 part of
H1,p

0 (K) be
ause (
−∇· µ̂∇

)−1/2 is a surje
tion onto the whole H1,p
0 (K) by Corollary4.9. But, it is known (see [45, Thm. 3.10℄) that for any given fun
tion h ∈ H1,p

Σ (K−)the symmetri
 extension belongs to H1,p
0 (K). Thus R

(
−∇ · µ̂∇

)−1/2
E = A

−1/2
0 isa surje
tion onto H1,p

Σ (K−). Sin
e, by Theorem 4.3 A−1/2
0 : Lp(K−) → H1,p

Σ (K−) is
ontinuous, the 
ontinuity of the inverse is implied by the open mapping theorem.In order to prove the same for the third model 
onstellation, i.e. Γ = Σ0, we showLemma 4.14. For every α > 0 there is a volume-preserving, bi-Lips
hitz mapping
φ : Rd → Rd that maps α(K− ∪ Σ0) onto α(K− ∪ Σ).Proof. Up to a homothety we may fo
us on the 
ase α = 1. Let us �rst 
onsider the
ase d = 2. We de�ne on the lower halfspa
e {(x, y) ∈ R2 : y ≤ 0}

ρ1(x, y) :=





(x− y/2, y/2), if x ≤ 0, y ≥ x,

(x/2,−x/2 + y), if x ≤ 0, y < x,

(x/2, x/2 + y), if x > 0, y < −x,
(x+ y/2, y/2), if x > 0, y ≥ −x.Observing that ρ1 a
ts as the identity on the x-axis, we may de�ne ρ1 on the upperhalf spa
e {(x, y) ∈ R2 : y > 0} by ρ1(x, y) = (x0,−y0) with (x0, y0) = ρ1(x,−y).In this way we obtain a globally bi-Lips
hitz transformation ρ1 from R2 onto itselfthat transforms K− ∪ Σ0 onto the triangle shown in Figure 1.Next we de�ne the bi-Lips
hitz mapping ρ2 : R2 → R2 by

ρ2(x, y) :=

{
(x, x+ 2y + 1), if x ≤ 0,

(x,−x+ 2y + 1), if x > 0,in order to get the geometri
 
onstellation in Figure 2.
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Figure 1. K− ∪ Σ0 and ρ1(K− ∪ Σ0)
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y

1−1

−1

1

Figure 2. ρ2(ρ1(K− ∪ Σ0))If ρ3 is the (
lo
kwise) rotation of π/4, we thus a
hieved that ρ := ρ3ρ2ρ1 : R2 → R2is bi-Lips
hitzian and satis�es
ρ(K− ∪ Σ0) =

{
(x, y) ∈ R2 : − 1√

2
< x <

1√
2
, − 1√

2
< y ≤ 1√

2

}
.Let ρ4 : R2 → R2 be the a�ne mapping (x, y) 7→ (

√
2x, 1√

2
y−1

2
). Then φ = φ2 := ρ4ρmaps K− ∪ Σ0 bi-Lips
hitzian onto K− ∪ Σ in the 2-d 
ase. As is easy to 
he
k,the modulus of the determinant of the Ja
obian is identi
ally one a.e. Hen
e, φ2 isvolume-preserving.If d ≥ 3, one simply puts φ(x1, . . . , xd) := (x1, . . . , xd−2, φ2(xd−1, xd)). �Thus, the proof of Theorem 4.4 in the 
ase Γ = αΣ0 results from the 
ase Γ = αΣ,Lemma 4.11 and Lemma 4.14.Remark 4.15. Let us mention that Lemma 4.11, only applied to Ω = K and Γ = ∅(the pure Diri
hlet 
ase) already provides a zoo of geometries whi
h is not 
overed



18by [12℄. Noti
e in this 
ontext that the image of a strongly Lips
hitz domain undera bi-Lips
hitz transformation needs not to be a strongly Lips
hitz domain at all, 
f.Subse
tion 7.3, see also [52, Ch. 1.2℄.5. Maximal paraboli
 regularity for AIn this se
tion we intend to prove the �rst main result of this work announ
ed inthe introdu
tion. Let us �rst re
all the notion of maximal paraboli
 Ls regularity.De�nition 5.1. Let 1 < s <∞, let X be a Bana
h spa
e and let J := ]T0, T [ ⊆ Rbe a bounded interval. Assume that B is a 
losed operator in X with dense domain
D (in the sequel always equipped with the graph norm). We say that B satis�esmaximal paraboli
 Ls(J ;X) regularity, if for any f ∈ Ls(J ;X) there exists a uniquefun
tion u ∈W 1,s(J ;X) ∩ Ls(J ;D) satisfying

u′ +Bu = f, u(T0) = 0,where the time derivative is taken in the sense of X-valued distributions on J (see[4, Ch III.1℄).Remark 5.2. i) It is well known that the property of maximal paraboli
 reg-ularity of an operator B is independent of s ∈ ]1,∞[ and the spe
i�
 
hoi
eof the interval J (
f. [31℄). Thus, in the following we will say for short that
B admits maximal paraboli
 regularity on X.ii) If an operator satis�es maximal paraboli
 regularity on a Bana
h spa
e X,then its negative generates an analyti
 semigroup on X (
f. [31℄). In parti
-ular, a suitable left half plane belongs to its resolvent set.iii) If X is a Hilbert spa
e, the 
onverse is also true: The negative of every gen-erator of an analyti
 semigroup on X satis�es maximal paraboli
 regularity,
f. [28℄ or [31℄.iv) If −B is a generator of an analyti
 semigroup on a Bana
h spa
e X, wede�ne

B
( ∂
∂t

+B
)−1

: C(J ; domX(B)) → Ls(J ;X)by (
B

( ∂
∂t

+B
)−1

f
)
(t) := B

∫ t

T0

e(s−t)B f(s) ds.Then, by de�nition of the distributional time derivative, it is easy to seethat B has maximal paraboli
 regularity on X if and only if the operator
B

(
∂
∂t

+B
)−1 
ontinuously extends to an operator from Ls(J ;X) into itself.v) Observe that(5.1) W 1,s(J ;X) ∩ Ls(J ;D) →֒ C(J ; (X,D)1− 1

s
,s).Let us �rst formulate the following lemma, needed in the sequel.Lemma 5.3. Suppose that X, Y are Bana
h spa
es, whi
h are 
ontained in a thirdBana
h spa
e Z with 
ontinuous inje
tions. Let B be a linear operator on Z whoserestri
tion to ea
h of the spa
es X, Y indu
e 
losed, densely de�ned operators there.Assume that the indu
ed operators ful�ll maximal paraboli
 regularity on X and Y ,



19respe
tively. Then B satis�es maximal paraboli
 regularity on ea
h of the interpola-tion spa
es [X, Y ]θ and (X, Y )θ,s with θ ∈ ]0, 1[, s ∈ ]1,∞[.Proof. By supposition, (X, Y ) forms an interpolation 
ouple. In this 
ase it is known(see [85, Ch. 1.18.4℄) that one has for any θ ∈ ]0, 1[ and any s ∈ ]1,∞[ the interpo-lation identities
[
Ls(J ;X), Ls(J ;Y )

]
θ

= Ls(J ; [X, Y ]θ)(5.2)and
(
Ls(J ;X), Ls(J ;Y )

)
θ,s

= Ls(J ; (X, Y )θ,s).(5.3)Due to Remark 5.2 ii), −B generates an analyti
 semigroup on X and Y , respe
-tively. Obviously, the 
orresponding resolvent estimates are maintained under realand 
omplex interpolation, so −B also generates an analyti
 semigroup on the 
or-responding interpolation spa
es. Taking into a

ount (5.2) or (5.3) and invokingRemark 5.2 iv), the operators
B

( ∂
∂t

+B
)−1

: Ls(J ;X) → Ls(J ;X)and
B

( ∂
∂t

+B
)−1

: Ls(J ;Y ) → Ls(J ;Y )are 
ontinuous, if s ∈ ]1,∞[. Thus, interpolation together with (5.2) ((5.3), re-spe
tively) tells us that B(
∂
∂t

+ B
)−1 also maps Ls(J ; [X, Y ]θ) and Ls(J ; (X, Y )θ,s)
ontinuously into itself. So the assertion follows again by Remark 5.2 iv). �This lemma will lead to the main result of this se
tion, maximal regularity of A invarious distribution spa
es, as soon as we 
an show this in the spa
e H̆−1,q

Γ , whatwe will do now. Pre
isely, we will show the following result.Theorem 5.4. Let Ω, Γ ful�ll Assumption 3.2 and set qiso := supMiso, where
Miso := {q ∈ [2,∞[ : −∇ · µ∇ + 1 : H1,q

Γ → H̆−1,q
Γ is a topologi
al isomorphism}.Then −∇ · µ∇ satis�es maximal paraboli
 regularity on H̆−1,q

Γ for all q ∈ [2, q∗iso[,where by r∗ we denote the Sobolev 
onjugated index of r, i.e.
r∗ =

{
∞, if r ≥ d,(

1
r
− 1

d

)−1
, if r ∈ [1, d[ .Remark 5.5. i) If Ω, Γ ful�ll Assumption 3.2 a), then qiso > 2, see [54℄ andalso [53℄.ii) It is 
lear by Lax-Milgram and interpolation (see Proposition 3.4 and Corol-lary 3.5) that Miso is the interval [2, qiso[ or [2, qiso]. Moreover, it 
an be
on
luded from a deep theorem of Sneiberg [82℄ (see also [10, Lemma 4.16℄)that the se
ond 
ase 
annot o

ur.In a �rst step we show



20Theorem 5.6. Let Ω,Γ ful�ll Assumption 4.1. Then −∇ · µ∇ satis�es maximalparaboli
 regularity on H̆−1,q
Γ for all q ∈ [2,∞[.This will be a 
onsequen
e of the following lemma.Lemma 5.7. Let Ω,Γ satisfy Assumption 4.1. Then for all q ∈ [2,∞[ the set

{(−∇ · µ∇)is : s ∈ R} forms a strongly 
ontinuous group on H̆−1,q
Γ , satisfying theestimate(5.4) ‖(−∇ · µ∇)is‖L(H̆−1,q

Γ ) ≤ c e|s|ϑ, s ∈ R,for some ϑ ∈ [0, π
2
[.Moreover, we have the following resolvent estimate(5.5) ‖(−∇ · µ∇ + λ)−1‖L(H̆−1,q

Γ ) ≤
c

1 + |λ| , Reλ ≥ 0.Proof. We �rst note that Assumption 4.1 in parti
ular implies that the Diri
hletboundary part ∂Ω\Γ has non-zero boundary measure. Thus, by Proposition 3.11 i),we may �x some ε > 0, su
h that −∇ · µ∇− ε has a bounded H∞-
al
ulus on Lq.Sin
e the fun
tions z 7→ (z + ε)is = (z + ε)1/2(z + ε)is(z + ε)−1/2, s ∈ R, and
z 7→ (z + ε+ λ)−1 = (z + ε)1/2(λ+ z + ε)−1(z + ε)−1/2, Reλ ≥ 0, are in H∞(Σφ) forall φ ∈ ]0, π[, one has the operator identities

(
−∇ · µ∇

)is
=

(
−∇ · µ∇

)1/2(−∇ · µ∇
)is(−∇ · µ∇

)−1/2
, s ∈ R,(5.6)and

(
−∇ · µ∇ + λ

)−1
=

(
−∇ · µ∇

)1/2(−∇ · µ∇ + λ
)−1(−∇ · µ∇

)−1/2
, Reλ ≥ 0,

(5.7)on Lq. Under Assumption 4.1 (−∇ · µ∇)1/2 is a topologi
al isomorphism between
Lq and H̆−1,q

Γ for every q ∈ [2,∞[, thanks to Theorem 4.3 and Theorem 4.4. Thus,one 
an estimate for every f ∈ Lq

‖(−∇ · µ∇)isf‖H̆−1,q
Γ

≤ ‖(−∇ · µ∇)1/2‖L(Lq,H̆−1,q
Γ )‖(−∇ · µ∇)is‖L(Lq)‖(−∇ · µ∇)−1/2‖L(H̆−1,q

Γ ,Lq)‖f‖H̆−1,q
Γ

.Sin
e Lq is dense in H̆−1,q
Γ , this inequality extends to all of H̆−1,q

Γ . Together withProposition 3.11 ii) this yields the estimate (5.4), whi
h also implies the groupproperty, see [4, Thm. III.4.7.1 and Cor. III.4.7.2℄.(5.5) is proved analogously to (5.4), only using (5.7) instead of (5.6) and the 
orre-sponding resolvent estimate in Lq, 
f. Proposition 3.8 v) (note that here −∇ · µ∇is 
ontinuously invertible). �It follows the proof of Theorem 5.6: By Theorems 4.3 and 4.4, H̆−1,q
Γ is an isomorphi
image of the UMD spa
e Lq and, hen
e, a UMD spa
e itself. Sin
e by Lemma 5.7the operator −∇ · µ∇ generates an analyti
 semigroup and has bounded imaginarypowers with the right bound, maximal paraboli
 regularity follows by the Dore-Venniresult [30℄.



21Now we intend to 'globalize' Theorem 5.6, in other words: We prove that −∇ · µ∇satis�es maximal paraboli
 regularity on H̆−1,q
Γ for suitable q if Ω, Γ satisfy onlyAssumption 3.2, i.e. if αK−, α(K− ∪ Σ) and α(K− ∪ Σ0) need only to be modelsets for the 
onstellation around boundary points. Obviously, then the variety ofadmissible Ω's and Γ's in
reases 
onsiderably, in parti
ular, Γ may have more thanone 
onne
ted 
omponent.5.1. Auxiliaries. We 
ontinue with some results whi
h in essen
e allow to restri
tdistributions to subdomains and, on the other hand, to extend them to a largerdomain � in
luding the adequate boundary behavior.Lemma 5.8. Let Ω,Γ satisfy Assumption 3.2 and let Υ ⊆ Rd be open, su
h that

Ω• := Ω ∩ Υ is also a Lips
hitz domain. Furthermore, we put Γ• := Γ ∩ Υ and �xan arbitrary fun
tion η ∈ C∞
0 (Rd) with supp(η) ⊆ Υ. Then for any q ∈ ]1,∞[ wehave the following assertions.i) If v ∈ H1,q

Γ (Ω), then ηv|Ω• ∈ H1,q
Γ•

(Ω•) and the mapping
H1,q

Γ (Ω) ∋ v 7→ ηv|Ω• ∈ H1,q
Γ•

(Ω•)is 
ontinuous.ii) Let for any v ∈ L1(Ω•) the symbol ṽ indi
ate the extension of v to Ω by zero.Then the mapping
H1,q

Γ•
(Ω•) ∋ v 7→ η̃vhas its image in H1,q

Γ (Ω) and is 
ontinuous.Proof. For the proof of both items we will employ the following well known setin
lusion (
f. [29, Ch. 3.8℄)(5.8) (∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ) ⊆ ∂Ω• ⊆ (∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ).i) First one observes that the multipli
ation with η 
ombined with the restri
-tion is a 
ontinuous mapping fromH1,q
Γ (Ω) intoH1,q(Ω•). Thus, we only haveto show that the image is 
ontained in H1,q

Γ•
(Ω•), whi
h, in turn, is su�
ientto show for elements of the dense subset

{
v|Ω : v ∈ C∞(Rd), supp(v) ∩ (∂Ω \ Γ) = ∅

}only. By (5.8) we get for su
h fun
tions
supp(ηv) ∩ (∂Ω• \ Γ•) ⊆ supp(η) ∩ supp(v) ∩

[(
(∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ)

)
\

(
Γ ∩ Υ

)]
.Sin
e (Ω ∩ ∂Υ) ∩ (Γ ∩ Υ) = ∅, we see

(
(∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ)

)
\

(
Γ ∩ Υ

)
=

(
(∂Ω ∩ Υ) \ (Γ ∩ Υ)

)
∪

(
(Ω ∩ ∂Υ) \ (Γ ∩ Υ)

)

=
(
(∂Ω \ Γ) ∩ Υ

)
∪ (Ω ∩ ∂Υ).This, together with supp(η) ⊆ Υ, yields

supp(ηv) ∩ (∂Ω• \ Γ•) ⊆ supp(η) ∩ supp(v) ∩
(
(∂Ω \ Γ) ∩ Υ

)
= ∅.



22 ii) Let v ∈ C∞(Rd) with supp(v) ∩ (∂Ω• \ Γ•) = ∅. Sin
e by the left hand sideof (5.8) we have
∂Ω• \ Γ• ⊇ (∂Ω ∩ Υ) \ Γ• = Υ ∩ (∂Ω \ Γ),it follows supp(v) ∩

(
Υ ∩ (∂Ω \ Γ)

)
= ∅. Combining this with supp(η) ⊆ Υ,we obtain

supp(ηv) ∩ (∂Ω \ Γ) = supp(ηv) ∩
(
Υ ∩ (∂Ω \ Γ

)
= ∅,so ηv|Ω ∈ H1,q

Γ (Ω). Furthermore, it is not hard to see that ‖ηv‖H1,q(Ω) ≤
cη‖v‖H1,q(Ω•), where the 
onstant cη is independent from v. Thus, the asser-tion follows, sin
e {v|Ω• : v ∈ C∞(Rd), supp(v) ∩ (∂Ω• \ Γ•) = ∅} is densein H1,q

Γ•
(Ω•) and H1,q

Γ (Ω) is 
losed in H1,q(Ω). �Lemma 5.9. Let Ω, Γ, Υ, η, Ω• and Γ• be as in the pre
eding lemma, but assume
η to be real valued. Denote by µ• the restri
tion of the 
oe�
ient fun
tion µ to Ω•and assume v ∈ H1,2

Γ (Ω) to be the solution of
−∇ · µ∇v = f ∈ H̆−1,2

Γ (Ω).Then the following holds true:i) For all q ∈ ]1,∞[ the anti-linear form
f• : w 7→ 〈f, η̃w〉H̆−1,2

Γ(where η̃w again means the extension of ηw by zero to the whole Ω) is wellde�ned and 
ontinuous on H1,q′

Γ•
(Ω•), whenever f is an anti-linear form from

H̆−1,q
Γ (Ω). The mapping H̆−1,q

Γ (Ω) ∋ f 7→ f• ∈ H̆−1,q
Γ•

(Ω•) is 
ontinuous.ii) If we denote the anti-linear form
H1,2

Γ•
(Ω•) ∋ w 7→

∫

Ω•

vµ•∇η · ∇w dxby Iv, then u := ηv|Ω• satis�es
−∇ · µ•∇u = −µ•∇v|Ω• · ∇η|Ω• + Iv + f•.iii) For every q ≥ 2 and all r ∈ [2, q∗[ (q∗ denoting again the Sobolev 
onjugatedindex of q) the mapping(5.9) H1,q

Γ (Ω) ∋ v 7→ −µ•∇v|Ω• · ∇η|Ω• + Iv ∈ H̆−1,r
Γ•

(Ω•)is well de�ned and 
ontinuous.Proof. i) The mapping f 7→ f• is the adjoint to v 7→ η̃v whi
h maps by thepre
eding lemma H1,q′

Γ•
(Ω•) 
ontinuously into H1,q′

Γ (Ω).ii) For every w ∈ H1,2
Γ•

(Ω•) we have
〈−∇ · µ•∇u, w〉H̆−1,2

Γ•
(Ω•) =

∫

Ω•

µ•∇(ηv) · ∇w dx

= −
∫

Ω•

w µ•∇v · ∇η dx +

∫

Ω•

vµ•∇η · ∇w dx +

∫

Ω

µ∇v · ∇(̃ηw) dx.(5.10) An appli
ation of the de�nitions of Iv and f• yields the assertion.



23iii) We regard the terms on the right hand side of (5.9) from left to right:
|∇η| ∈ L∞(Ω•) and |µ•∇v|Ω•| ∈ Lq(Ω•), 
onsequently µ•∇v|Ω• · ∇η|Ω• ∈
Lq(Ω•). This gives by Sobolev embedding and duality µ•∇v|Ω• · ∇η|Ω• ∈
(H1,r′(Ω•))

′ →֒ H̆−1,r
Γ•

(Ω•). On the other hand, we have v ∈ H1,q
Γ (Ω) →֒

Lr(Ω). Thus, 
on
erning Iv, we 
an estimate
|〈Iv, w〉H̆−1,r

Γ•
(Ω•)| ≤ ‖v‖Lr(Ω•) ‖µ‖L∞(Ω;L(Cd)) ‖∇η‖L∞(Ω•) ‖w‖H1,r′

Γ•
(Ω•)

,what implies the assertion. �Remark 5.10. It is the la
k of integrability for the gradient of v (see the 
ounterex-ample in [35, Ch. 4℄) together with the quality of the needed Sobolev embeddingswhi
h limits the quality of the 
orre
tion terms. In the end it is this e�e
t whi
hprevents the appli
ability of the lo
alization pro
edure in Subse
tion 5.2 in higherdimensions � at least when one aims at a q > d.Remark 5.11. If v ∈ L2(Ω) is a regular distribution, then v• is the regular distri-bution (ηv)|Ω• .Lemma 5.12. Let in the terminology of Lemma 5.9 χ ∈ C∞(Rd) be a fun
tion with
supp(χ) ⊆ Υ and χ ≡ 1 in a neighborhood of supp(η). Furthermore, for q ∈ ]1,∞[,we de�ne for every f ∈ H̆−1,q

Γ•
(Ω•) the element f • ∈ H̆−1,q

Γ (Ω) by 〈f •, ψ〉H̆−1,q
Γ (Ω) :=

〈f, (χψ)|Ω•〉H̆−1,q
Γ•

(Ω•), ψ ∈ H1,q′

Γ (Ω). (The de�nition is justi�ed by Lemma 5.8.) Theni) For every f ∈ H̆−1,q
Γ•

(Ω•) one has f • ∈ H̆−1,q
Γ (Ω), and the mapping

H̆−1,q
Γ•

(Ω•) ∋ f 7→ f • ∈ H̆−1,q
Γ (Ω)is 
ontinuous.ii) For any f ∈ H̆−1,q

Γ (Ω) one has the identity (
f•

)•
= ηf ∈ H̆−1,q

Γ (Ω).iii) If v ∈ H1,2
Γ (Ω) and −∇ · µ•∇(ηv|Ω•) ∈ H̆−1,q

Γ•
(Ω•), then

(
−∇ · µ•∇(ηv|Ω•)

)•
= −∇ · µ∇(ηv) ∈ H̆−1,q

Γ (Ω).Proof. i) The mapping f 7→ f • is the adjoint to H1,q′

Γ (Ω) ∋ v 7→ (χv)|Ω• whi
ha
ts 
ontinuously into H1,q′

Γ•
(Ω•), see Lemma 5.8.ii) We only need to prove the assertion for elements f ∈ Lq(Ω), be
ause Lq(Ω)is dense in H̆−1,q

Γ (Ω) and the mappings H̆−1,q
Γ (Ω) ∋ f 7→

(
f•

)• ∈ H̆−1,q
Γ (Ω)and H̆−1,q

Γ (Ω) ∋ f 7→ ηf ∈ H̆−1,q
Γ (Ω) are both 
ontinuous. For f ∈ Lq(Ω) theassertion follows dire
tly from the de�nitions of f• and f •.iii) For any ψ ∈ H1,q′

Γ (Ω) we have
〈(
−∇ · µ•∇(ηv|Ω•)

)•
, ψ

〉
H̆−1,q

Γ (Ω)
=

〈
−∇ · µ•∇(ηv|Ω•), (χψ)|Ω•

〉
H̆−1,q

Γ•
(Ω•)

=

∫

Ω•

µ•∇(ηv) · ∇(χψ) dx =

∫

Ω

µ∇(ηv) · ∇(χψ) dx

=

∫

Ω

µ∇(ηv) · ∇ψ dx = 〈−∇ · µ∇(ηv), ψ〉H̆−1,q
Γ (Ω),be
ause η ≡ 0 on Ω \ Υ and χ ≡ 1 on supp(η). �



245.2. Core of the proof of Theorem 5.4. We are now in the position to start theproof of Theorem 5.4. We �rst note that in any 
ase the operator −∇ · µ∇ admitsmaximal paraboli
 regularity on the Hilbert spa
e H̆−1,2
Γ , sin
e its negative generatesan analyti
 semigroup on this spa
e by Proposition 3.8, 
f. Remark 5.2 iii). Thus,de�ning

MMR := {q ≥ 2 : −∇ · µ∇ admits maximal regularity on H̆−1,q
Γ }and qMR := supMMR, yields qMR ≥ 2. In the same way as for qiso and usingLemma 5.3, we see by interpolation thatMMR is {2} or an interval with left endpoint

2.Our aim is to show that in fa
t qMR ≥ q∗iso, so we assume that qMR < q∗iso. The mainstep towards a 
ontradi
tion is 
ontained in the following lemma.Lemma 5.13. Let Ω, Γ, Υ, η, Ω•, Γ•, µ• be as before. Assume that −∇ · µ•∇satis�es maximal paraboli
 regularity on H̆−1,q
Γ•

(Ω•) for all q ∈ [2,∞[ and that −∇ ·
µ∇ satis�es maximal paraboli
 regularity on H̆−1,q

Γ (Ω) for some q ∈ [2, qiso[. If
r ∈ [q, q∗[ and G ∈ Ls(J ; H̆−1,r

Γ (Ω)) →֒ Ls(J ; H̆−1,q
Γ (Ω)), then the unique solution

V ∈W 1,s(J ; H̆−1,q
Γ (Ω)) ∩ Ls(J ; domH̆−1,q

Γ (Ω)(−∇ · µ∇)) of(5.11) V ′ −∇ · µ∇V = G, V (T0) = 0,even satis�es
ηV ∈W 1,s(J ; H̆−1,r

Γ (Ω)) ∩ Ls(J ; domH̆−1,r
Γ (Ω)(−∇ · µ∇)).Proof. V ∈ Ls(J ; domH̆−1,q

Γ (Ω)(−∇ · µ∇)) implies, due to our supposition q ∈ [2, qiso[and Remark 5.5 ii), V ∈ Ls(J ;H1,q
Γ (Ω)). Of 
ourse, equation (5.11) is to be read asfollows: For almost all t ∈ J it holds −∇·µ∇

(
V (t)

)
= G(t)−V ′(t), where V ′ is thederivative in the sense of H̆−1,q

Γ -valued distributions. Hen
e, Lemma 5.9 ii) impliesfor almost all t ∈ J(5.12) (V ′(t))• −∇ · µ•∇
(
(ηV (t))|Ω•

)
= −µ•∇V (t)|Ω• · ∇η|Ω• + IV (t) + (G(t))•.Sin
e by Lemma 5.9 i) the mapping H̆−1,r

Γ (Ω) ∋ f 7→ f• ∈ H̆−1,r
Γ•

(Ω•) is 
ontinuous,we have (
G(·)

)
• ∈ Ls(J ; H̆−1,r

Γ•
(Ω•)). Moreover, the property V ∈ Ls(J ;H1,q

Γ (Ω))and iii) of Lemma 5.9 assure −µ•∇V (·)|Ω• · ∇η|Ω• + IV (·) ∈ Ls(J ; H̆−1,r
Γ•

(Ω•)). Thus,the right hand side of (5.12) is 
ontained in Ls(J ; H̆−1,r
Γ•

(Ω•)) →֒ Ls(J ; H̆−1,q
Γ•

(Ω•)).Let us next inspe
t the term (V ′(t))•: Sin
e H̆−1,q
Γ (Ω) ∋ w 7→ w• ∈ H̆−1,q

Γ•
(Ω•) islinear and 
ontinuous, it equals (V•)

′(t). But by Remark 5.11 the fun
tion t 7→ V•(t)is identi
al to the fun
tion t 7→ (
ηV (t)

)
|Ω• . Hen
e, (

ηV (·)
)
|Ω• satis�es the followingequation in H̆−1,q

Γ•
(Ω•):(5.13) (

(ηV )|Ω•

)′
(t)−∇·µ•∇

(
(ηV (t))|Ω•

)
= −µ•∇V (t)|Ω• ·∇η|Ω• +IV (t) +(G(t))•.By supposition, −∇·µ•∇ ful�lls maximal paraboli
 regularity in H̆−1,r

Γ•
(Ω•). As theright hand side of (5.13) is in fa
t from Ls(J ; H̆−1,r

Γ•
(Ω•)), this implies that there is



25a unique fun
tion U ∈ W 1,s(J ; H̆−1,r
Γ•

(Ω•)) ∩ Ls(J ; domH̆−1,r
Γ•

(Ω•)(−∇ · µ•∇)) whi
hsatis�es U(T0) = 0 and(5.14) U ′(t) −∇ · µ•∇
(
U(t)

)
= −µ•∇V (t)|Ω• · ∇η|Ω• + IV (t) + (G(t))•as an equation in Ls(J ; H̆−1,r

Γ•
(Ω•)). However, this last equation 
an (by the em-bedding H̆−1,r

Γ•
(Ω•) →֒ H̆−1,q

Γ•
(Ω•)) also be read as an equation in Ls(J ; H̆−1,q

Γ•
(Ω•)).Sin
e the solution is unique in Ls(J ; H̆−1,q

Γ•
(Ω•)), (5.13) and (5.14) together imply

U =
(
ηV (·)

)
|Ω• and, 
onsequently,(5.15) (

V (·)
)
• =

(
ηV (·)

)
|Ω• ∈W 1,s(J ; H̆−1,r

Γ•
(Ω•))∩Ls(J ; domH̆−1,r

Γ•
(Ω•)(−∇·µ•∇)),see Remark 5.11.We now aim at a re-interpretation of this regularity in terms of the spa
eW 1,s(J ; H̆−1,r

Γ (Ω))∩
Ls(J ; domH̆−1,r

Γ (Ω)(−∇ · µ∇)). Observe that (5.15) implies −∇ · µ•∇
((
ηV (·)

)
|Ω•

)
∈

Ls(J ; H̆−1,r
Γ•

(Ω•)). Applying Lemma 5.12 iii), this gives(5.16) −∇ · µ∇
(
ηV (·)

)
∈ Ls(J ; H̆−1,r

Γ (Ω)).Obviously, V ∈ Ls(J ;H1,q
Γ ) yields ηV ∈ Ls(J ;H1,q

Γ ), while r ∈ ]q, q∗[ implies theembedding H1,q
Γ →֒ Lr →֒ H̆−1,r

Γ . Hen
e, one obtains(5.17) ηV ∈ Ls(J ;H1,q
Γ ) →֒ Ls(J ; H̆−1,r

Γ ).Combining this with (5.16), we �nd
ηV (·) ∈ Ls(J ; domH̆−1,r

Γ (Ω)(−∇ · µ∇)).On the other hand, (5.15) implies
((
V (·)

)
•
)′ ∈ Ls(J ; H̆−1,r

Γ•
(Ω•)).By Lemma 5.12 i), we have ((

(V (·))•
)′)• ∈ Ls(J ; H̆−1,r

Γ (Ω)). But as before ((
(V (·))•

)′)•equals ((
(V (·))•

)•)′, whi
h, by Lemma 5.12 ii), is (
ηV (·)

)′. Summing up, we get
(
ηV (·)

)′ ∈ Ls(J ; H̆−1,r
Γ (Ω)).Taking into a

ount (5.17) again, this gives

ηV (·) ∈W 1,s(J ; H̆−1,r
Γ (Ω)),what proves the lemma. �Proof of Theorem 5.4. For every x ∈ Ω let Ξx ⊆ Ω be an open 
ube, 
ontaining x.Furthermore, let for any point x ∈ ∂Ω an open neighborhood be given a

ordingto the supposition of the theorem (see Assumption 3.2). Possibly shrinking thisneighborhood to a smaller one, one obtains a new neighborhood Υx, and a bi-Lips
hitz, volume-preserving mapping φx from a neighborhood of Υx into Rd su
hthat φx(Υx ∩ (Ω ∪ Γ)) = βK−, β(K− ∪ Σ) or β(K− ∪ Σ0) for some β = β(x) > 0.Obviously, the Ξx andΥx together form an open 
overing ofΩ. Let Ξx1 , . . . ,Ξxk

,Υxk+1
, . . . ,Υxlbe a �nite sub
overing and η1, . . . , ηl a C∞ partition of unity, subordinate to thissub
overing. Set Ωj := Ξxj

= Ξxj
∩ Ω for j ∈ {1, . . . , k} and Ωj := Υxj

∩ Ω for
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j ∈ {k + 1, . . . , l}. Moreover, set Γj := ∅ for j ∈ {1, . . . , k} and Γj := Υxj

∩ Γ for
j ∈ {k + 1, . . . , l}.Denoting the restri
tion of µ to Ωj by µj, ea
h operator −∇ · µj∇ satis�es max-imal paraboli
 regularity in H̆−1,q

Γj
(Ωj) for all q ∈ [2,∞[ and all j, a

ording toTheorem 5.6.Assuming now qMR < q∗iso, we may 
hoose some q ∈ [2, qiso[ with qMR < q∗. In orderto see this, we �rst observe that(5.18) p ≤ q ⇐⇒ p∗ ≤ q∗holds, whenever p∗ <∞. Setting q = max{2, dq̃/(d+q̃)} for some q̃ ∈ ]qMR, q

∗
iso[, this,together with (dq̃/(d+q̃))∗ = q̃, yields immediately that q∗ = max{2∗, q̃} ≥ q̃ > qMR.Furthermore, again by (5.18), we have q < qiso, sin
e q∗ < q∗iso and �nally q ≥ 2is guaranteed by the 
hoi
e of q. Having the so 
hosen q at hand, we take some

r ∈ ]max{q, qMR}, q∗[, whi
h is possible due to q < q∗. Now, let G ∈ Ls(J ; H̆−1,r
Γ ) begiven. Then by Lemma 5.13 the unique solution V ∈ W 1,s(J ; H̆−1,q

Γ ) ∩ Ls(J ;H1,q
Γ )of (5.11) satis�es ηjV ∈W 1,s(J ; H̆−1,r

Γ (Ω)) ∩ Ls(J ; domH̆−1,r
Γ (Ω)(−∇ · µ∇)) for every

j. This implies maximal paraboli
 regularity for −∇·µ∇ on H̆−1,r
Γ , in 
ontradi
tionto r > qMR. Thus we have qMR ≥ q∗iso and the proof is �nished. �Remark 5.14. Note that Theorem 5.4 already yields maximal regularity of −∇·µ∇on H̆−1,q

Γ for all q ∈ [2, 2∗[ without any additional information on domH̆−1,q
Γ

(−∇·µ∇)nor on domH̆−1,q
Γj

(Ωj)
(−∇ · µj∇).In the 2-d 
ase this already implies maximal regularity for every q ∈ [2,∞[. Takinginto a

ount Remark 5.5 i), without further knowledge on the domains we get in the3-d 
ase every q ∈ [2, 6 + ε[ and in the 4-d 
ase every q ∈ [2, 4 + ε[, where ε dependson Ω,Γ, µ.5.3. The operator A. Next we 
arry over the maximal paraboli
 regularity result,up to now proved for −∇·µ∇ on the spa
es H̆−1,q

Γ , to the operator A and to a mu
hbroader 
lass of distribution spa
es. For this we need the following perturbationresult.Lemma 5.15. Suppose q ≥ 2, ς ∈ ]
1− 1

q
, 1

] and κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfyAssumption 3.2. If we de�ne the mapping Q : domH̆−ς,q
Γ

(−∇ · µ∇) → H̆−ς,q
Γ by

〈Qψ, ϕ〉H−ς,q
Γ

:=

∫

Γ

κ ψ ϕdσ, ϕ ∈ H ς,q′

Γ ,then Q is well de�ned and 
ontinuous. Moreover, it is relatively bounded with respe
tto −∇·µ∇, when 
onsidered on the spa
e H̆−ς,q
Γ , and the relative bound may be takenarbitrarily small.



27Proof. One has for every ψ ∈ domH̆−ς,q
Γ

(−∇ · µ∇) →֒ domH̆−1,q
Γ

(−∇ · µ∇) →֒ H1,2
Γ

‖Qψ‖H̆−ς,q
Γ

= sup
‖ϕ‖

H
ς,q′

Γ

=1

|〈Qψ, ϕ〉H̆−ς,q
Γ

| = sup
‖ϕ‖

H
ς,q′

Γ

=1

∣∣∣∣
∫

Γ

κψϕ dσ

∣∣∣∣

≤ ‖κ‖L∞(Γ,dσ)‖ψ‖Lq(∂Ω,dσ) sup
‖ϕ‖

H
ς,q′

Γ

=1

‖ϕ‖Lq′(∂Ω,dσ),(5.19)where the last fa
tor is �nite a

ording to Theorem 3.6. Let us �rst 
onsider the
ase q = 2. Then (5.19) 
an be further estimated (see (3.6))
≤ c‖ψ‖L2(∂Ω,dσ) ≤ c‖ψ‖1/2

H1,2
Γ

‖ψ‖1/2
L2 ≤ c‖ψ‖3/4

H1,2
Γ

‖ψ‖1/4

H̆−1,2
Γ

≤ ε‖ψ‖H1,2
Γ

+
c

ε3
‖ψ‖H̆−1,2

Γby Young's inequality. Taking into a

ount domH̆−1,2
Γ

(−∇ · µ∇) = H1,2
Γ , this provesthe 
ase q = 2. Con
erning the 
ase q > 2, we make use of the embedding(5.20)

domH̆−ς,q
Γ

(
−∇ · µ∇

)
→֒ domH̆−1,q

Γ

(
−∇ · µ∇

)
→֒ Cα(Ω) for some α = α(q) > 0,if q > d (see [50℄). Thus, for q > d + 1

2
the term ‖ψ‖Lq(∂Ω,dσ) in (5.19) 
an beestimated by (σ(∂Ω))

1
q ‖ψ‖C(Ω), what shows, due to (5.20), the asserted 
ontinuityof Q, if q > d + 1

2
. Sin
e domH̆−ς,q

Γ

(
−∇ · µ∇

)
→֒ Cα(Ω) →֒ C(Ω) is 
ompa
t and

C(Ω) →֒ H̆−ς,q
Γ is 
ontinuous and inje
tive, we may apply Ehrling's lemma (see [89,Ch. I, Prop. 7.3℄) and estimate

‖ψ‖C(Ω) ≤ ε‖ψ‖dom
H̆

−ς,q
Γ

(−∇·µ∇) + β(ε)‖ψ‖H̆−ς,q
Γ

, ψ ∈ domH̆−ς,q
Γ

(−∇ · µ∇),for arbitrary ε > 0. Together with (5.19) this yields the se
ond assertion for q > d+1
2
.Con
erning the remaining 
ase q ∈ ]

2, d+ 1
2

], we employ the representation(5.21) H̆−1,q
Γ = [H̆−1,2d

Γ , H̆−1,2
Γ ]θ with θ =

1

q
· 2d− q

d− 1(see Corollary 3.5) and will invest the knowledge domH̆−1,2d
Γ

(−∇ · µ∇) →֒ L∞ and
domH̆−1,2

Γ
(−∇ · µ∇) = H1,2

Γ . Clearly, (5.21) implies(5.22) domH̆−1,q
Γ

(−∇ · µ∇) = [domH̆−1,2d
Γ

(−∇ · µ∇), domH̆−1,2
Γ

(−∇ · µ∇)]θ.Taking q = 2d in (5.20) and 
ombining this with the embedding Cα →֒ Lr for any�nite r, (5.22) yields
domH̆−1,q

Γ
(−∇ · µ∇) →֒ [Lr, H1,2

Γ ]θ = H
θ, 2

θ
−δ(r,θ)

Γ ,where δ(r, θ) ց 0 for r → ∞, see Proposition 3.4. If q ∈ ]
2, d+ 1

2

], then it is 
learfrom the de�nition of θ that θ ≥ 1
q
· d−

1
2

d−1
> 1

q
. On the other hand, one easily veri�es

2
θ
∈

]
q, q 2(d−1)

d− 1
2

]. Thus, 
hoosing r large enough, one gets for every q ∈
]
2, d + 1

2

] a
ontinuous embedding
domH̆−1,q

Γ
(−∇ · µ∇) →֒ H

1
q

d− 1
2

d−1
,q

Γ ,



28what gives a 
ompa
t embedding(5.23) domH̆−ς,q
Γ

(−∇ · µ∇) →֒ domH̆−1,q
Γ

(−∇ · µ∇) →֒ H
1
q

d− 3
4

d−1
,q

Γ .Due to Theorem 3.6, the term ‖ψ‖Lq(∂Ω,dσ) in (5.19) may be estimated by c‖ψ‖
H

1
q

d− 3
4

d−1
,q

Γ

.But, in view of the 
ompa
tness of the mapping (5.23) and the 
ontinuity of theinje
tion H 1
q

d− 3
4

d−1
,q

Γ →֒ H̆−ς,q
Γ one may also here apply Ehrling's lemma and estimate

‖ψ‖
H

1
q

d− 3
4

d−1
,q

Γ

≤ ε‖ψ‖dom
H̆

−ς,q
Γ

(−∇·µ∇) + β(ε)‖ψ‖H̆−ς,q
Γfor ε arbitrarily small. Together with (5.19) this shows the assertion in the last
ase. �Theorem 5.16. Suppose q ≥ 2, κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfy Assumption 3.2.i) If ς ∈ ]

1 − 1
q
, 1

], then domH̆−ς,q
Γ

(−∇ · µ∇) = domH̆−ς,q
Γ

(A).ii) If ς ∈ ]
1− 1

q
, 1

] and −∇·µ∇ satis�es maximal paraboli
 regularity on H̆−ς,q
Γ ,then A also does.iii) The operator A satis�es maximal paraboli
 regularity on L2. If κ ≥ 0, then

A satis�es maximal paraboli
 regularity on Lp for all p ∈ ]1,∞[.iv) Suppose that −∇ · µ∇ satis�es maximal paraboli
 regularity on H̆−1,q
Γ . Then

A satis�es maximal paraboli
 regularity on any of the interpolation spa
es
[L2, H̆−1,q

Γ ]θ, θ ∈ [0, 1],or
(L2, H̆−1,q

Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ .Let κ ≥ 0 and p ∈ ]1,∞[ in 
ase of d = 2 or p ∈ [
(

1
2

+ 1
d

)−1
,∞[ if d ≥ 3.Then A also satis�es maximal paraboli
 regularity on any of the interpolationspa
es(5.24) [Lp, H̆−1,q

Γ ]θ, θ ∈ [0, 1],or(5.25) (Lp, H̆−1,q
Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ .Proof. i) By Lemma 5.15, if ψ ∈ domH̆−ς,q(−∇ · µ∇), then Qψ is well de�nedand one has the equality Aψ = −∇·µ∇ψ+Qψ by de�nition of A. Thus, theassertion follows from the relative boundedness with relative bound smallerthan 1, shown in Lemma 5.15, and a 
lassi
al perturbation theorem, see [64,Ch. IV.1℄.ii) The assertion is also proved by means of a � highly nontrivial � pertur-bation theorem (see [67℄), whi
h states that, if X is a UMD spa
e and adensely de�ned, 
losed operator B satis�es maximal paraboli
 regularity on

X, then B + B0 also satis�es maximal paraboli
 regularity on X, provided
domX(B0) ⊇ domX(B) and B0 is relatively bounded with respe
t to B witharbitrarily small relative bound. In our 
ase, H−1,q

Γ is � as the dual of the
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losed subspa
e H1,q′

Γ of the UMD spa
e H1,q′ � itself a UMD spa
e, see [4,Ch. III.4.5℄ and [8, Ch. 6.1℄. H−1,q
Γ is the isometri
 image of H̆−1,q

Γ under themapping whi
h assigns to f ∈ H̆−1,q
Γ the linear form H1,q′

Γ ∋ ψ → 〈f, ψ〉H̆−1,q
Γ

.Hen
e, H̆−1,q
Γ is also a UMD spa
e. Finally, H̆−ς,q

Γ is a 
omplex interpolationspa
e between the UMD spa
e H̆−1,q
Γ and the UMD spa
e Lq (see Remark5.17 below), and 
onsequently also a UMD spa
e. Hen
e, an appli
ation ofLemma 5.15 yields the result.iii) The �rst assertion follows from Proposition 3.8 ii) and Remark 5.2 iii). These
ond is shown in [49, Thm. 7.4℄.iv) Under the given 
onditions on p, we have the embedding Lp →֒ H̆−1,2

Γ . Thus,the assertion follows from the pre
eding points and Lemma 5.3. �Remark 5.17. The interpolation spa
es [Lp, H−1,q
Γ ]θ (θ ∈ [0, 1]) and (Lp, H−1,q

Γ )θ,s(θ ∈ [0, 1], s ∈ ]1,∞[) are 
hara
terized in [48℄, see in parti
ular Remark 3.6. Identi-fying ea
h f ∈ Lq with the anti-linear form Lq
′ ∋ ψ →

∫
Ω
fψ dx and using again theretra
tion/
oretra
tion theorem with the 
oretra
tion from Corollary 3.5, one easilyidenti�es the interpolation spa
es in (5.24) and (5.25). In parti
ular, this yields[

Lq0 , H̆−1,q1
Γ

]
θ

= H̆−θ,q
Γ if θ 6= 1 − 1

q
.Corollary 5.18. Let Ω and Γ satisfy Assumption 3.2. The operator −A generatesanalyti
 semigroups on all spa
es H̆−1,q

Γ if q ∈ [2, q∗iso[ and on all the interpolationspa
es o

urring in Theorem 5.16, there q also taken from [2, q∗iso[. Moreover, if
κ ≥ 0, the following resolvent estimates are valid:(5.26) ‖(A+ 1 + λ)−1‖L(H̆−1,q

Γ ) ≤
cq

1 + |λ| , Reλ ≥ 0.Proof. The �rst assertion is implied by Theorem 5.4 and Remark 5.2 ii), whi
h gives(5.26) for λ ∈ γ+ Σκ with a �xed γ ∈ R and �xed κ > π/2. On the other hand, theresolvent of A0 is 
ompa
t (see Proposition 3.8), what, due to Lemma 5.15, remainstrue also for A, see [64, Ch. IV.1℄. Sin
e no λ with Reλ ≤ 0 is an eigenvalue,
sup

λ∈{λ:Reλ≥0}\(γ+Σκ)

(|λ| + 1)‖(A+ 1 + λ)−1‖L(H̆−1,q
Γ ) <∞,be
ause {λ : Reλ ≥ 0} \ (γ + Σκ) is 
ompa
t. �6. Nonlinear paraboli
 equationsIn this 
hapter we will apply maximal paraboli
 regularity for the treatment ofquasilinear paraboli
 equations whi
h are of the (formal) type (1.1). Con
erning allthe o

urring operators we will formulate pre
ise requirements in Assumption 6.11below.The outline of the 
hapter is as follows: First we give a motivation for the 
hoi
e ofthe Bana
h spa
e we will regard (1.1)/(1.2) in. Afterwards we show that maximalparaboli
 regularity, 
ombined with regularity results for the ellipti
 operator, allows



30to solve this problem. Below we will transform (1.1)/(1.2) to a problem(6.1) {
u′(t) + B

(
u(t)

)
u(t) = S(t, u(t)), t ∈ J,

u(T0) = u0.To give the reader already here an idea what properties of the operators −∇ ·
G(u)µ∇ and of the 
orresponding Bana
h spa
e are required, we �rst quote theresult on existen
e and uniqueness for abstra
t quasilinear paraboli
 equations (dueto Clément/Li [24℄ and Prüss [77℄) on whi
h our subsequent 
onsiderations will base.Proposition 6.1. Suppose that B is a 
losed operator on some Bana
h spa
e Xwith dense domain D, whi
h satis�es maximal paraboli
 regularity on X. Supposefurther u0 ∈ (X,D)1− 1

s
,s and B : J × (X,D)1− 1

s
,s → L(D,X) to be 
ontinuous with

B = B(T0, u0). Let, in addition, S : J × (X,D)1− 1
s
,s → X be a Carathéodory mapand assume the following Lips
hitz 
onditions on B and S:

(B) For every M > 0 there exists a 
onstant CM > 0, su
h that for all t ∈ J

‖B(t, u)−B(t, ũ)‖L(D,X) ≤ CM ‖u−ũ‖(X,D)
1− 1

s ,s
if ‖u‖(X,D)

1− 1
s ,s
, ‖ũ‖(X,D)

1− 1
s ,s

≤ M.

(R) S(·, 0) ∈ Ls(J ;X) and for ea
h M > 0 there is a fun
tion hM ∈ Ls(J), su
hthat
‖S(t, u) − S(t, ũ)‖X ≤ hM(t) ‖u− ũ‖(X,D)

1− 1
s ,sholds for a.a. t ∈ J , if ‖u‖(X,D)

1− 1
s ,s
, ‖ũ‖(X,D)

1− 1
s ,s

≤M .Then there exists T ∗ ∈ J , su
h that (6.1) admits a unique solution u on ]T0, T
∗[satisfying

u ∈W 1,s(]T0, T
∗[;X) ∩ Ls(]T0, T

∗[;D).Remark 6.2. Up to now we were free to 
onsider 
omplex Bana
h spa
es. Butthe 
ontext of equations like (1.1) requires real spa
es, in parti
ular in view of thequality of the superposition operator F . Therefore, from this moment on we usethe real versions of the spa
es. In parti
ular, H−ς,q
Γ is now understood as the dualof the real spa
e H ς,q′

Γ and 
learly 
an be identi�ed with the set of anti-linear formson the 
omplex spa
e H ς,q′

Γ that take real values when applied to real fun
tions.Fortunately, the property of maximal paraboli
 regularity is maintained for therestri
tion of the operator A to the real spa
es in 
ase of a real fun
tion κ, as Athen 
ommutes with 
omplex 
onjugation.We will now give a motivation for the 
hoi
e of the Bana
h spa
e X we will use later.It is not hard to see that X has � in view of the appli
ability of Proposition 6.1 �to ful�ll the subsequent demands:a) The operators A, or at least the operators −∇ · µ∇, de�ned in (3.8), mustsatisfy maximal paraboli
 regularity on X.b) As in the 
lassi
al theory (see [68℄, [44℄, [84℄ and referen
es therein) quadrati
gradient terms of the solution should be admissible for the right hand side.
) The operators −∇·G(u)µ∇ should behave well 
on
erning their dependen
eon u, see 
ondition (B) above.



31d) X has to 
ontain 
ertain measures, supported on Lips
hitz hypersurfa
es in
Ω or on ∂Ω in order to allow for surfa
e densities on the right hand sideor/and for inhomogeneous Neumann 
onditions.The 
ondition in a) is assured by Theorem 5.4 and Theorem 5.16 for a great varietyof Bana
h spa
es, among them 
andidates for X. Requirement b) suggests that oneshould have domX(−∇ · µ∇) →֒ H1,q

Γ and L q
2 →֒ X. Sin
e −∇ · µ∇ maps H1,q

Γ into
H−1,q

Γ , this altogether leads to the ne
essary 
ondition(6.2) L
q
2 →֒ X →֒ H−1,q

Γ .Sobolev embedding shows that q 
annot be smaller than the spa
e dimension d.Taking into a

ount d), it is 
lear that X must be a spa
e of distributions whi
h (atleast) 
ontains surfa
e densities. In order to re
over the desired property domX(−∇·
µ∇) →֒ H1,q

Γ from the ne
essary 
ondition in (6.2), we make for all what follows thisgeneralAssumption 6.3. There is a q > d, su
h that −∇ · µ∇ + 1 : H1,q
Γ → H−1,q

Γ is atopologi
al isomorphism.Remark 6.4. For q ≥ 4 Assumption 6.3 is generi
ally false in 
ase of mixed bound-ary 
onditions, see [81℄ for the famous 
ounterexample. Moreover, even in the Diri
h-let 
ase, when the domain Ω has only a Lips
hitz boundary or the 
oe�
ient fun
tion
µ is 
onstant within layers, one 
annot expe
t q ≥ 4, see [60℄ and [34℄. This is thereason, why all our following 
onsiderations are restri
ted to two or three dimensions.Of 
ourse, these are the most relevant ones when treating real world appli
ations.In Se
tion 7 we will present examples for domains Ω, 
oe�
ient fun
tions µ andDiri
hlet boundary parts Ω \ Γ, for whi
h Assumption 6.3 is ful�lled.In all what follows the spa
e dimension d is either 2 or 3 and from now on we �xone q ∈ ]d, 4[ for whi
h Assumption 6.3 holds.As a �rst step we will show that Assumption 6.3 
arries over to a broad 
lass ofmodi�ed operators.Lemma 6.5. Assume that ξ is a real valued, uniformly 
ontinuous fun
tion on Ωthat admits a lower bound ξ > 0. Then the operator −∇·ξµ∇+1 also is a topologi
alisomorphism between H1,q

Γ and H−1,q
Γ .Proof. We identify ξ with its (unique) 
ontinuous 
ontinuation to the 
losure Ω of

Ω. Furthermore, we observe that for any 
oe�
ient fun
tion ω the inequality(6.3) ‖∇ · ω∇‖L(H1,q
Γ ,H−1,q

Γ ) ≤ ‖ω‖L∞(Ω;L(Rd))holds true. Next, by Assumption 6.3 and Corollary 5.18 it is 
lear that
sup
y∈Ω

‖
(
−∇·ξ(y)µ∇+1

)−1‖L(H−1,q
Γ ,H1,q

Γ ) ≤
1

ξ
sup
y∈Ω

‖
(
−∇·µ∇+(ξ(y))−1

)−1‖L(H−1,q
Γ ,H1,q

Γ ) =: γis �nite. Let for any x ∈ Ω a ball Bx around x be given, su
h that(6.4) γ sup
y∈Bx∩Ω

|ξ(x) − ξ(y)|‖µ‖L∞(Ω;L(Rd)) < 1.



32Then, we 
hoose a �nite sub
overing Bx1 , . . . ,Bxk
of Ω and a partition of unity

η1, . . . , ηk subordinate to this sub
overing, and we set Λx := Bx ∩ Ω.Assume that f ∈ H−1,q
Γ ⊆ H−1,2

Γ and v ∈ H1,2
Γ is a solution of −∇ · ξµ∇v + v = f .Then a 
al
ulation, 
ompletely analogous to (5.10) (
hoose there Υ so big that

Ω ⊆ Υ) shows that the fun
tion u := ηjv satis�es the equation(6.5) −∇ · ξµ∇u+ u = ηjf − ξµ∇v · ∇ηj + Ijin H−1,2
Γ , where Ij is the distribution w 7→

∫
Ω
vξµ∇ηj · ∇w dx. Then applyingLemma 5.9 iii) with the same 'big' Υ, we get that the right hand side of (6.5) isfrom H−1,q

Γ , sin
e f ∈ H−1,q
Γ . If we de�ne the fun
tion ξj on Ω by
ξj(y) =

{
ξ(y), if y ∈ Λxj

ξ(xj), elsewhere in Ω,then u = ηjv satis�es besides (6.5) also the equation
−∇ · ξjµ∇u+ u = ηjf − ξµ∇v · ∇ηj + Ij ,be
ause ξj = ξ on the support of u. But we have, a

ording to (6.3) and (6.4)

∥∥(
−∇ · ξjµ∇ + 1 − (−∇ · ξ(xj)µ∇ + 1)

)(
−∇ · ξ(xj)µ∇ + 1

)−1∥∥
L(H−1,q

Γ )

≤ ‖ −∇ · ξjµ∇ + 1 − (−∇ · ξ(xj)µ∇ + 1)‖L(H1,q
Γ ,H−1,q

Γ )‖(−∇ · ξ(xj)µ∇ + 1)−1‖L(H−1,q
Γ ,H1,q

Γ )

≤ γ sup
y∈Λxj

|ξ(xj) − ξ(y)|‖µ‖L∞(Ω;L(Rd)) < 1.Thus, by a 
lassi
al perturbation result (see [64, Ch. IV.1℄), the operator−∇·ξjµ∇+

1 also provides a topologi
al isomorphism between H1,q
Γ and H−1,q

Γ . Hen
e, for every
j we have ηjv ∈ H1,q

Γ , and, hen
e, v ∈ H1,q
Γ . So the assertion is implied by the openmapping theorem. �In this spirit, one 
ould now suggest X := H−1,q

Γ to be a good 
hoi
e for the Bana
hspa
e, but in view of 
ondition (R) the right hand side of (6.1) has to be a 
on-tinuous mapping from an interpolation spa
e (domX(A), X)1− 1
s
,s into X. Chosen

X := H−1,q
Γ , for elements ψ ∈ (domX(A), X)1− 1

s
,s = (H1,q

Γ , H−1,q
Γ )1− 1

s
,s the expres-sion |∇ψ|2 
annot be properly de�ned and, if so, will not lie inH−1,q

Γ in general. Thisshows that X := H−1,q
Γ is not an appropriate 
hoi
e, but we will see that X := H−ς,q

Γ ,with ς properly 
hosen, is.Lemma 6.6. Put X := H−ς,q
Γ with ς ∈ [0, 1[ \ {1

q
, 1 − 1

q
}. Theni) For every τ ∈

]
1+ς
2
, 1

[ there is a 
ontinuous embedding (X, domX(−∇ ·
µ∇))τ,1 →֒ H1,q

Γ .ii) If ς ∈ [d
q
, 1], then X has a predual X∗ = H ς,q′

Γ whi
h admits the 
ontinuous,dense inje
tions H1,q′

Γ →֒ X∗ →֒ L( q
2
)′ that by duality 
learly imply (6.2).Furthermore, H1,q

Γ is a multiplier spa
e for X∗.



33Proof. i) −∇ · µ∇ satis�es resolvent estimates(6.6) ‖
(
−∇ · µ∇ + 1 + λ

)−1‖L(Y ) ≤
c

1 + λ
, λ ∈ [0,∞[ ,if Y = H−1,q

Γ or Y = Lq, see Corollary 5.18. In view of (3.2) then (6.6) alsoholds for X. This enables us to de�ne fra
tional powers for −∇ · µ∇ + 1 onea
h of the o

urring spa
es. A

ording to (3.4) and Assumption 6.3 one has
H−ς,q

Γ = [H−1,q
Γ , H1,q

Γ ] 1−ς
2

= [H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇ + 1)] 1−ς

2

→֒ domH−1,q
Γ

((−∇ · µ∇ + 1)̺),if ̺ ∈ ]
0, 1−ς

2

[, see [85, Ch. 1.15.2℄. Thus, (−∇ · µ∇+ 1)̺ ∈ L(H−ς,q
Γ , H−1,q

Γ ),if ̺ ∈ ]
0, 1−ς

2

[. Consequently, we 
an estimate
‖(−∇ · µ∇ + 1)̺−1‖L(H−ς,q

Γ ,H1,q
Γ )

≤ ‖(−∇ · µ∇ + 1)̺‖L(H−ς,q
Γ ,H−1,q

Γ )‖(−∇ · µ∇ + 1)−1‖L(H−1,q
Γ ,H1,q

Γ ) <∞.Clearly, this means domH−ς,q
Γ

(
(−∇·µ∇+1)1−̺) →֒ H1,q

Γ . Putting τ := 1−̺,this implies
(
H−ς,q

Γ , domH−ς,q
Γ

(−∇ · µ∇ + 1)
)
τ,1

→֒ domH−ς,q
Γ

(
(−∇ · µ∇ + 1)τ

)
→֒ H1,q

Γfor τ ∈
]

1+ς
2
, 1

[, see [85, Ch. 1.15.2℄.ii) The �rst assertion is 
lear by Sobolev embedding. The se
ond follows fromknown multiplier results, see [52, Ch. 1.4℄ or [72℄. �Next we will 
onsider requirement 
), see 
ondition (B) in Proposition 6.1.Lemma 6.7. Let q be a number from Assumption 6.3 and let X be a Bana
h spa
ewith predual X∗ that admits the 
ontinuous and dense inje
tions(6.7) H1,q′

Γ →֒ X∗ →֒ L( q
2
)′ .i) If ξ ∈ H1,q is a multiplier on X∗, then domX(−∇·µ∇) →֒ domX(−∇·ξµ∇).ii) If H1,q is a multiplier spa
e for X∗, then the (linear) mapping H1,q ∋ ξ 7→

−∇ · ξµ∇ ∈ L(domX(−∇ · µ∇), X) is well de�ned and 
ontinuous.Proof. The supposition q > d ≥ 2 and (6.7) imply the existen
e of a 
ontinuousand dense inje
tion H1,2
Γ →֒ X∗. Thus, it is not hard to see that ψ belongs to

domX(−∇ · µ∇) i� the linear form
ϕ 7→

∫

Ω

∇ψ · µ∇ϕ dxis 
ontinuous on H1,2
Γ , when H1,2

Γ is equipped with the X∗ topology. We denote theset H1,2
Γ ∩ {ϕ ∈ X∗ : ‖ϕ‖X∗ = 1} by M. Assuming ψ ∈ domX(−∇ · µ∇), we 
an



34estimate
‖ −∇ · ξµ∇ψ‖X = sup

ϕ∈M

∣∣∣∣
∫

Ω

ξµ∇ψ · ∇ϕ dx

∣∣∣∣

≤ sup
ϕ∈M

∣∣∣∣
∫

Ω

∇ψ · µ∇(ξϕ) dx

∣∣∣∣ + sup
ϕ∈M

∣∣∣∣
∫

Ω

∇ψ · µϕ∇ξ dx

∣∣∣∣
≤ ‖ψ‖domX (−∇·µ∇) sup

ϕ∈M
‖ξϕ‖X∗ + ‖ψ‖H1,q‖µ‖L∞‖ξ‖H1,q sup

ϕ∈M
‖ϕ‖

L(
q
2 )′ .(6.8)We observe that the supposition H1,q′

Γ →֒ X∗ together with Assumption 6.3 leads tothe 
ontinuous embedding domX(−∇ · µ∇) →֒ H1,q. Thus, (6.8) is not larger than
mξ ‖ψ‖domX (−∇·µ∇)+‖ξ‖H1,q‖µ‖L∞ Emb

(
domX(−∇·µ∇), H1,q

)
Emb(X∗, L

( q
2
)′)‖ψ‖domX(−∇·µ∇),where mξ denotes the norm of the multiplier on X∗ indu
ed by ξ and Emb(·, ·)stands again for the 
orresponding embedding 
onstants.Assertion ii) also results from the estimates in the proof of i). �Corollary 6.8. If ξ additionally to the hypotheses of Lemma 6.7 i) has a positivelower bound, then

domX(−∇ · ξµ∇) = domX(−∇ · µ∇).Proof. A

ording to Lemma 6.7 i) one has only to show domX(−∇ · ξµ∇) →֒
domX(−∇ · µ∇). By Lemma 6.5 we have domH−1,q

Γ
(−∇ · ξµ∇) = H1,q

Γ . Thus,one 
an apply Lemma 6.7 to the situation µ̃ = ξµ and ξ̃ = 1
ξ
. �Next we will show that fun
tions on ∂Ω or on a Lips
hitz hypersurfa
e, whi
h belongto a suitable summability 
lass, 
an be understood as elements of the distributionspa
e H−ς,q

Γ .Theorem 6.9. Assume q ∈ ]1,∞[, ς ∈
]
1 − 1

q
, 1

[
\ {1

q
} and let Π, ̟ be as inTheorem 3.6. Then the adjoint tra
e operator (Tr)∗ maps Lq(Π) 
ontinuously into(

H ς,q′(Ω)
)′ →֒ H−ς,q

Γ .Proof. The result is obtained from Theorem 3.6 by duality. �Remark 6.10. Here we restri
ted the 
onsiderations to the 
ase of Lips
hitz hy-persurfa
es, sin
e this is the most essential insofar as it gives the possibility ofpres
ribing jumps in the normal 
omponent of the 
urrent j := G(u)µ∇u along hy-persurfa
es where the 
oe�
ient fun
tion jumps. This 
ase is of high relevan
e inview of applied problems and has attra
ted mu
h attention also from the numeri
alpoint of view, see e.g. [1℄, [19℄ and referen
es therein.In fa
t, it is possible to in
lude mu
h more general sets where distributional righthand sides live. For the identi�
ation of (singular) measures as distribtions on lowerdimensional sets, see also [90, Ch. 4℄ and [61, Ch. VI.℄. We did not make expli
ituse of this here, be
ause at present we do not see dire
t appli
ations.From now on we �x on
e and for all a number ς ∈ ]
max{1− 1

q
, d
q
}, 1

[ and set for allwhat follows X := H−ς,q
Γ .



35Next we introdu
e the requirements on the data of problem (1.1)/(1.2).Assumption 6.11. Op) For all what follows we �x a number s > 2
1−ς .Su) There exists f ∈ C2(R), positive, with stri
tly positive derivative, su
h that

F is the superposition operator indu
ed by f .Ga) The mapping G : H1,q → H1,q is lo
ally Lips
hitz 
ontinuous.Gb) For any ball in H1,q there exists δ > 0, su
h that G(u) ≥ δ for all u from thisball.Ra) The fun
tion R : J × H1,q → X is of Carathéodory type, i.e. R(·, u) ismeasurable for all u ∈ H1,q and R(t, ·) is 
ontinuous for a.a. t ∈ J .Rb) R(·, 0) ∈ Ls(J ;X) and for M > 0 there exists hM ∈ Ls(J), su
h that
‖R(t, u) −R(t, ũ)‖X ≤ hM(t)‖u− ũ‖H1,q , t ∈ J,provided max(‖u‖H1,q , ‖ũ‖H1,q) ≤M .BC) b is an operator of the form b(u) = Q(b◦(u)), where b◦ is a (possibly nonlin-ear), lo
ally Lips
hitzian operator from C(Ω) into inself (see Lemma 5.15).Gg) g ∈ Lq(Γ).IC) u0 ∈ (X, domX(−∇ · µ∇))1− 1

s
,s.Remark 6.12. At the �rst glan
e the 
hoi
e of s seems indis
riminate. The point is,however, that generi
ally in appli
ations the expli
it time dependen
e of the rea
tionterm R is essentially bounded. Thus, in view of 
ondition Rb) it is justi�ed to take

s as any arbitrarily large number, whose magnitude needs not to be 
ontrolledexpli
itely, see Example 7.5.Note that the requirement on G allows for nonlo
al operators. This is essential ifthe 
urrent depends on an additional potential governed by an auxiliary equation,what is usually the 
ase in drift-di�usion models, see [3℄, [39℄ or [80℄.The 
onditions Ra) and Rb) are always satis�ed if R is a mapping into Lq/2 withthe analog boundedness and 
ontinuity properties, see Lemma 6.6 ii).The estimate in (5.19) shows that Q in fa
t is well de�ned on C(Ω), therefore 
on-dition BC) makes sense, see also (5.20). In parti
ular, b◦ may be a superpositionoperator, indu
ed by a C1(R) fun
tion. Let us emphasize that in this 
ase the in-du
ing fun
tion needs not to be positive. Thus, non-dissipative boundary 
onditionsare in
luded.Finally, the 
ondition IC) is an 'abstra
t' one and hardly to verify, be
ause onehas no expli
it 
hara
terization of (X, domX(−∇ ·µ∇))1− 1
s
,s at hand. Nevertheless,the 
ondition is reprodu
ed along the traje
tory of the solution by means of theembedding (5.1).In order to solve (1.1)/(1.2), we will 
onsider instead (6.1) with(6.9) B(u) := −∇ · G(u)

F ′(u)
µ∇and the right hand side S(6.10) S(t, u) :=

R(t, u)

F ′(u)
+

(
∇ 1

F ′(u)

)
·
(
G(u)µ∇u

)
− Q(b◦(u))

F ′(u)
+

(Tr)∗g

F ′(u)
,



36seeking the solution in the spa
e W 1,s(J ;X) ∩ Ls(J ; domX(−∇ · µ∇)).Remark 6.13. Let us explain this reformulation: as is well known in the theoryof boundary value problems, the boundary 
ondition (1.2) is in
orporated by in-trodu
ing the boundary terms −κb◦(u) and g on the right hand side. In order tounderstand both as elements from X, we write Q(b◦(u)) and (Tr)∗g, see Lemma 5.15and Theorem 6.9. On the other hand, our aim was to eliminate the nonlinearity un-der the time derivation: we formally di�erentiate (F(u))′ = F ′(u)u′ and afterwardsdivide the whole equation by F ′(u). Finally, we employ the equation(6.11) − 1

F ′(u)
∇ · G(u)µ∇u = −∇ · G(u)

F ′(u)
µ∇u−

(
∇ 1

F ′(u)

)
·
(
G(u)µ∇u

)
,whi
h holds for any u ∈ domX(−∇ · G(u)µ∇) = domX(−∇ · µ∇) as an equation in

X, 
ompare Lemma 6.6 ii) and Corollary 6.8.Theorem 6.14. Let d ∈ {2, 3}, let Assumption 6.3 be satis�ed and assume that thedata of the problem satisfy Assumption 6.11. Then (6.1) has a lo
al in time, uniquesolution in W 1,s(J ;X)∩Ls(J ; domX(−∇·µ∇)), provided that B and S are given by(6.9) and (6.10), respe
tively.Proof. First of all we note that, due to Op), 1 − 1
s
> 1+ς

2
. Thus, if τ ∈]1+ς

2
, 1 − 1

s
[by a well known interpolation result (see [85, Ch. 1.3.3℄) and Lemma 6.6 i) we have(6.12) (X, domX(−∇ · µ∇))1− 1

s
,s →֒ (X, domX(−∇ · µ∇))τ,1 →֒ H1,q.Hen
e, by IC), u0 ∈ H1,q. Consequently, due to the suppositions on F and G, boththe fun
tions G(u0)

F ′(u0)
and F ′(u0)

G(u0)
belong to H1,q and are bounded from below by apositive 
onstant. Denoting −∇ · G(u0)

F ′(u0)
µ∇ by B, Corollary 6.8 gives domX(−∇ ·

µ∇) = domX(B). This implies u0 ∈ (X, domX(B))1− 1
s
,s. Furthermore, the sode�ned B has maximal paraboli
 regularity on X, thanks to (5.24) in Theorem 5.16with p = q.Condition (B) from Proposition 6.1 is implied by Lemma 6.7 ii) in 
ooperation withLemma 6.6 ii), the fa
t that the mapping H1,q ∋ φ 7→ G(φ)

F ′(φ)
∈ H1,q is boundedlyLips
hitz and (6.12).It remains to show that the 'new' right hand side S satis�es 
ondition (R) fromProposition 6.1. We do this for every term in (6.10) separately, beginning from theleft: 
on
erning the �rst, one again uses (6.12), the asserted 
onditions Ra) andRb) on R, the lo
al Lips
hitz 
ontinuity of the mapping H1,q ∋ u 7→ 1

F ′(u)
∈ H1,qand the fa
t that H1,q is a multiplier spa
e over X. The se
ond term 
an be treatedin the same spirit, if one takes into a

ount the embedding Lq/2 →֒ X and appliesHölder's inequality. The assertion for the last two terms results from (6.12), theassumptions BC)/Gg), Lemma 5.15 and Theorem 6.9. �Remark 6.15. A

ording to (6.11) it is 
lear that the solution u satis�es the equa-tion(6.13) F ′(u)u′ −∇ · G(u)µ∇u+Q(b◦(u)) = R(t, u) + (Tr)∗g



37as an equation in X. Note that, if R takes its values only in the spa
e Lq/2 →֒ X,then � in the light of Lemma 5.15 � the ellipti
 operators in
orporate the boundary
onditions (1.2) in a generalized sense, see [40, Ch. II.2℄ or [23, Ch. 1.2℄.The remaining problem is to identify F ′(u)u′ with (
F(u)

)′ where the prime has to beunderstood as the distributional derivative with respe
t to time. This identi�
ation(te
hni
ally rather involved) is proved in [59℄ for the 
ase where the Bana
h spa
e
X equals Lq/2, but 
an be 
arried over to the 
ase X = H−ς,q

Γ � word by word.We will now show that the solution u is Hölder 
ontinuous simultaneously in spa
eand time, even more:Corollary 6.16. There exist α, β > 0 su
h that the solution u of (6.13) belongs tothe spa
e Cβ(J ;H1,q
Γ (Ω)) →֒ Cβ(J ;Cα(Ω)).Proof. During this proof we write for short D := domX(B). A straightforwardappli
ation of Hölder's inequality yields the embedding
W 1,s(J ;X) →֒ Cδ(J ;X) with δ = 1 − 1

s
.Take λ from the interval ]1+ς

2

(
1− 1

s

)−1
, 1

[, whi
h is nonempty in view of Op). UsingLemma 6.6 i) and the reiteration theorem for real interpolation, one 
an estimate
‖u(t1) − u(t2)‖H1,q

|t1 − t2|δ(1−λ)
≤ c

‖u(t1) − u(t2)‖(X,D)
λ(1− 1

s ),1

|t1 − t2|δ(1−λ)
≤ c

‖u(t1) − u(t2)‖(X,(X,D)
1− 1

s ,s
)λ,1

|t1 − t2|δ(1−λ)

≤ c
‖u(t1) − u(t2)‖1−λ

X

|t1 − t2|δ(1−λ)
‖u(t1) − u(t2)‖λ(X,D)

1− 1
s ,s

≤ c
(‖u(t1) − u(t2)‖X

|t1 − t2|δ
)1−λ (

2 sup
t∈J

‖u(t)‖(X,D)
1− 1

s ,s

)λ
.

�Finally, we will have a 
loser look at the semilinear 
ase. It turns out that one 
ana
hieve satisfa
tory results here without Assumption 6.3, and thus also without the
orresponding restri
tion on the spa
e dimension, at least when the nonlinear termdepends only on the fun
tion itself and not on its gradient.Theorem 6.17. Assume that −∇ · µ∇ satis�es maximal paraboli
 regularity on
H−1,q

Γ for some q > d. Suppose further that the fun
tion R : J × C(Ω) → H−1,q
Γis of Carathéodory type, i.e. R(·, u) is measurable for all u ∈ C(Ω) and R(t, ·) is
ontinuous for a.a. t ∈ J and, additionally, obeys the following 
ondition: R(·, 0) ∈

Ls(J ;H−1,q
Γ ) and for all M > 0 there exists hM ∈ Ls(J), su
h that

‖R(t, u) −R(t, ũ)‖H−1,q
Γ

≤ hM(t)‖u− ũ‖C(Ω), t ∈ J.Then the equation
u′ −∇ · µ∇u = R(t, u), u(T0) = 0admits exa
tly one lo
al in time solution.



38Proof. It is 
lear that R satis�es the abstra
t 
onditions on the rea
tion term, posedin Proposition 6.1, if we 
an show [H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇)]θ →֒ C(Ω) for somelarge θ ∈ ]0, 1[. This we will do: using the embedding domH−1,q

Γ
(−∇ · µ∇) →֒ Cαfor some positive α (see [50℄) and the reiteration theorem for 
omplex interpolation,one 
an write

[H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇)]θ =

[
[H−1,q

Γ , domH−1,q
Γ

(−∇ · µ∇)] 1
2
, domH−1,q

Γ
(−∇ · µ∇)

]
2θ−1

→֒
[
[H−1,2

Γ , H1,2
Γ ] 1

2
, Cα

]
2θ−1

= [L2, Cα]2θ−1.But based on the results of Triebel [86℄, in [49, Ch. 7℄ it is shown that this last spa
e
ontinuously embeds into another Hölder spa
e, if θ is 
hosen large enough. �7. ExamplesIn this se
tion we des
ribe geometri
 
on�gurations for whi
h our Assumption 6.3holds true and we present 
on
rete examples of mappings G and rea
tion terms R�tting into our framework. Another part of this se
tion is then devoted to the spe
ialgeometry of two 
rossing beams that is interesting, sin
e this is not a domain withLips
hitz boundary, but it falls into the s
ope of our theory, as we will show.7.1. Geometri
 
onstellations. While our results in Se
tions 4 and 5 on thesquare root of −∇ · µ∇ and maximal paraboli
 regularity are valid in the generalgeometri
 framework of Assumption 3.2, we additionally had to impose Assump-tion 6.3 for the treatment of quasilinear equations in Se
tion 6. Here we shortlydes
ribe geometri
 
onstellations, in whi
h this additional 
ondition is satis�ed.Let us start with the observation that the 2-d 
ase is 
overed by Remark 5.5 i).Admissible three-dimensional settings may be des
ribed as follows.Proposition 7.1. Let Ω ⊆ R3 be a bounded Lips
hitz domain. Then there exists a
q > 3 su
h that −∇ · µ∇ + 1 is a topologi
al isomorphism from H1,q

Γ onto H−1,q
Γ , ifone of the following 
onditions is satis�ed:i) Ω has a Lips
hitz boundary. Γ = ∅ or Γ = ∂Ω. Ω◦ ⊆ Ω is another domainwhi
h is C1 and whi
h does not tou
h the boundary of Ω. µ|Ω◦ ∈ BUC(Ω◦)and µ|Ω\Ω◦

∈ BUC(Ω \ Ω◦).ii) Ω has a Lips
hitz boundary. Γ = ∅. Ω◦ ⊆ Ω is a Lips
hitz domain, su
h that
∂Ω◦ ∩Ω is a C1 surfa
e and ∂Ω and ∂Ω◦ meet suitably (see [35℄ for details).
µ|Ω◦ ∈ BUC(Ω◦) and µ|Ω\Ω◦

∈ BUC(Ω \ Ω◦).iii) Ω is a three dimensional Lips
hitzian polyhedron. Γ = ∅. There are hyper-planes H1, . . . ,Hn in R3 whi
h meet at most in a vertex of the polyhedronsu
h that the 
oe�
ient fun
tion µ is 
onstantly a real, symmetri
, positivede�nite 3 × 3 matrix on ea
h of the 
onne
ted 
omponents of Ω \ ∪nl=1Hl.Moreover, for every edge on the boundary, indu
ed by a hetero interfa
e Hl,the angles between the outer boundary plane and the hetero interfa
e do notex
eed π and at most one of them may equal π.iv) Ω is a 
onvex polyhedron, Γ ∩ (∂Ω \ Γ) is a �nite union of line segments.
µ ≡ 1.



39v) Ω ⊆ R3 is a prismati
 domain with a triangle as basis. Γ equals either onehalf of one of the re
tangular sides or one re
tangular side or two of thethree re
tangular sides. There is a plane whi
h interse
ts Ω su
h that the
oe�
ient fun
tion µ is 
onstant above and below the plane.vi) Ω is a bounded domain with Lips
hitz boundary. Additionally, for ea
h x ∈
Γ∩(∂Ω\Γ) the mapping φx de�ned in Assumption 3.2 is a C1-di�eomorphismfrom Υx onto its image. µ ∈ BUC(Ω).The assertions i) and ii) are shown in [35℄, while iii) is proved in [34℄ and iv) is aresult of Dauge [25℄. Re
ently, v) was obtained in [56℄ and vi) will be published ina forth
oming paper. �Corollary 7.2. The assertion remains true, if there is a �nite open 
overing Υ1, . . . ,Υlof Ω, su
h that ea
h of the pairs Ωj := Υj ∩Ω, Γj := Γ∩Υj ful�lls one of the pointsi) � vi).Proof. The 
orollary 
an be proved by means of Lemma 5.9 and Lemma 5.8. �Remark 7.3. Proposition 7.1 together with Corollary 7.2 provides a huge zoo ofgeometries and boundary 
onstellations, for whi
h −∇ · µ∇ provides the requiredisomorphism. We intend to 
omplete this in the future.7.2. Nonlinearities and rea
tion terms. The most 
ommon 
ase is that where

F is the exponential or the Fermi-Dira
 distribution fun
tion F1/2 given by
F1/2(t) :=

2√
π

∫ ∞

0

√
s

1 + es−t
dsand G also is a Nemytzkii operator of the same type. In phase separation problems,a rigorous formulation as a minimal problem for the free energy reveals that G = F ′is appropriate. This topi
 has been thoroughly investigated in [78℄, [79℄, [42℄, and[43℄, see also [41℄ and [46℄. It is noteworthy that in this 
ase G

F ′ ≡ 1 (we 
onje
turethat this is not a

idental) and the evolution equation (1.1) leads not to a quasilinearequation (6.1) but to one whi
h is only semilinear. We 
onsider this as a hint forthe adequateness of our treatment of the paraboli
 equations.As a se
ond example we present a nonlo
al operator arising in the di�usion ofba
teria; see [21℄, [22℄ and referen
es therein.Example 7.4. Let η be a 
ontinuously di�erentiable fun
tion on R whi
h is boundedfrom above and below by positive 
onstants. Assume ϕ ∈ L2(Ω) and de�ne
G(u) := η

(∫

Ω

uϕ dx

)
, u ∈ H1,q.Now we give two examples for mappings R.Example 7.5. Assume that [T0, T [ = ∪jl=1 [tl, tl+1[ is a (disjoint) de
omposition of

[T0, T [ and let for l ∈ {1, . . . , j}
Zl : R × Rd → R



40be a fun
tion whi
h satis�es the following 
ondition: For any 
ompa
t set K ⊆ Rthere is a 
onstant LK su
h that for any a, ã ∈ K, b, b̃ ∈ Rd the inequality
|Zl(a, b) − Zl(ã, b̃)| ≤ LK |a− ã|R

(
|b|2

Rd + |b̃|2
Rd

)
+ LK |b− b̃|Rd

(
|b|Rd + |b̃|Rd

)holds. We de�ne a mapping Z : [T0, T [ × R × Rd → R by setting
Z(t, a, b) := Zl(a, b), if t ∈ [tl, tl+1[.The fun
tion Z de�nes a mapping R : [T0, T [ × H1,q → Lq/2 in the following way:If ψ is the restri
tion of an R-valued, 
ontinuously di�erentiable fun
tion on Rd to

Ω, then we put
R(t, ψ)(x) = Z(t, ψ(x), (∇ψ)(x)) for x ∈ Ωand afterwards extend R by 
ontinuity to the whole set [T0, T [ ×H1,q.Example 7.6. Assume ι : R → ]0,∞[ to be a 
ontinuously di�erentiable fun
tion.Furthermore, let T : H1,q → H1,q be the mapping whi
h assigns to v ∈ H1,q thesolution ϕ of the ellipti
 problem (in
luding boundary 
onditions)(7.1) −∇ · ι(v)∇ϕ = 0.If one de�nes

R(v) = ι(v)|∇(T (v))|2,then, under reasonable suppositions on the data of (7.1), the mapping R satis�esAssumption Ra).This se
ond example 
omes from a model whi
h des
ribes ele
tri
al heat 
ondu
tion;see [5℄ and the referen
es therein.7.3. An unorthodox example: two 
rossing beams. Finally, we want to presentin some detail the example of two beams, mentioned in the introdu
tion, whi
h isnot a domain with Lips
hitz boundary, and, hen
e, not 
overed by former theories.Consider in R3 the set
B⋊⋉ := ]−10, 10[×]−1, 1[×]−2, 0[ ∪ ]−1, 1[×]−10, 10[×]0, 2[ ∪ ]−1, 1[×]−1, 1[×{0},together with a 3 × 3 matrix µ1, 
onsidered as the 
oe�
ient matrix on the �rstbeam, and another 3 × 3 matrix µ2, 
onsidered as the 
oe�
ient fun
tion on theother beam. Both matri
es are assumed to be real, symmetri
 and positive de�nite.If one de�nes the 
oe�
ient fun
tion µ as µ1 on the �rst beam, and as µ2 on theother, then, due to Proposition 7.1 iii),

−∇ · µ∇ : H1,q
0 → H−1,qprovides a topologi
al isomorphism for some q > 3, if one 
an show that B⋊⋉ is aLips
hitz domain. In fa
t, we will show more, namely:Lemma 7.7. B⋊⋉ ful�lls Assumption 3.2.Proof. For all points x ∈ ∂Ω the existen
e of a 
orresponding neighborhood Υx anda mapping Φx 
an be dedu
ed easily, ex
ept for the points x from the set

Sing := {(−1,−1, 0), (−1, 1, 0), (1,−1, 0), (1, 1, 0)}.



41In fa
t, for all points x ∈ B⋊⋉ \ Sing there is a neighborhood Υx, su
h that either
B⋊⋉∩Υx or Υx \B⋊⋉ is 
onvex and, hen
e, a domain with Lips
hitz boundary. Thus,these points 
an be treated as in Remark 3.3.Exemplarily, we aim at a suitable transformation in a neighborhood of the point
(1,−1, 0); the 
onstru
tion for the other three points is � mutatis mutandis � thesame. For doing so, we �rst shift B⋊⋉ by the ve
tor (−1, 1, 0), so that the transformedpoint of interest be
omes the origin. Now we apply the transformation φN on R3that is given in Figure 3. The following is straighforward to verify:
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Figure 3. Cut through B⋊⋉ + (−1, 1, 0) at a plane y = δ (for δ > 0small) and the transformation φN

• Both transformations 
oin
ide on the plane {x : z = x} and thus togetherde�ne a globally bi-Lips
hitz mapping φN : R3 → R3, whi
h, additionally, isvolume-preserving.
• The interse
tion of φN

(
B⋊⋉ + (−1, 1, 0)

) with a su�
iently small, paraxial
ube εK around 0 equals the set
{x : −ε < x < 0, −ε < y < ε, −ε < z < 0}∪{x : 0 ≤ x < ε, 0 < y < ε, −ε < z < 0}.(To prove the latter, note that the y-
omponent is left invariant under φN and that
φN a
ts in the plane y = 0 as follows: the ve
tor (0, 1) is mapped onto (−1, 0) andthe ve
tor (−1, 0) onto (0,−1). Finally, the ve
tor (1, 0) is left invariant.) Next weintrodu
e the mapping φ△ whi
h is de�ned as the linear mapping 


2 1 0

−1 0 0
0 0 1


on the set {x : −x < y} and as the identity on the set {x : −x ≥ y}, see Figure 4.One dire
tly veri�es that 


2 1 0

−1 0 0
0 0 1


 a
ts as the identity on the set {x : −x =

y}; thus φ△ in fa
t is a bi-Lips
hitz, volume-preserving mapping from R3 onto itself.After this transformation the resulting obje
t, interse
ted with a su�
iently smallparaxial 
ube εK, equals the 
onvex set
{x : −ε < x < ε, 0 < y < ε,−ε < z < 0}.
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Figure 4. Cut through φN

(
B⋊⋉ + (−1, 1, 0)

) at a plane z = −δ in aneighborhood of 0 (δ > 0 su�
iently small)Here again Remark 3.3 applies, what �nishes the proof. �8. Con
luding RemarksRemark 8.1. The reader may have asked himself why we restri
ted the 
onsider-ations to real, symmetri
 
oe�
ient fun
tions µ. The answer is twofold: �rst, weneed at all 
osts Gaussian estimates for our te
hniques and it is known that theseare not available for 
omplex 
oe�
ients in general, see [11℄ and also [26℄. Addi-tionally, Proposition 4.8 also rests on this supposition. On the other hand, in theappli
ations we have primarly in mind this 
ondition is satis�ed.Remark 8.2. Under the additional Assumption 6.3, Theorem 5.4 implies maximalparaboli
 regularity for −∇ · µ∇ on H−1,q
Γ for every q ∈ [2,∞[, as in the 2-d 
ase.Besides, the question arises whether the limitation for the exponents, 
aused by thelo
alization pro
edure, is prin
ipal in nature or may be over
ome when applyingalternative ideas and te
hniques (
f. Theorem 4.4). We do not know the answer atpresent.Remark 8.3. We 
onsidered here only the 
ase of one single paraboli
 equation,but everything 
an be 
arried over in a straightforward way to the 
ase of diagonalsystems; 'diagonal' in this 
ase means that the fun
tion G is allowed to depend onthe ve
tor u = (u1, . . . , un) of solutions and the right hand side also. In the samespirit one 
an treat triagonal systems.Remark 8.4. Inspe
ting Proposition 6.1, one easily observes that in fa
t an addi-tional t-dependen
e of the fun
tion G would be admissible. We did not 
arry thisout here for the sake of te
hni
al simpli
ity.Remark 8.5. In (1.2) we restri
ted our setting to the 
ase where the Diri
hletboundary 
ondition is homogeneous. It is straightforward to generalize this to the
ase of inhomogeneous Diri
hlet 
onditions by splitting o� the inhomogeneity, see



43[40, Ch. II.2℄ or [23, Ch. 1.2℄, see also [59℄ where this has been 
arried out in detailin the 
ase of paraboli
 systems.Remark 8.6. If one knows a priori that the right hand side of (1.1) depends Hölder
ontinuously on the time variable t, then one 
an use other lo
al existen
e anduniqueness results for abstra
t paraboli
 equations, see e.g. [69℄ for details. In this
ase the solution u is even strongly di�erentiable in the spa
e X (with 
ontinu-ous derivative), what may lead to a better justi�
ation of time dis
retization then,
ompare [9℄ and referen
es therein.Remark 8.7. Let us expli
itely mention that Assumption 6.3 is not always ful�lledin the 3-d 
ase. First, there is the 
lassi
al 
ounterexample of Meyers, see [74℄,a simpler (and somewhat more striking) one is 
onstru
ted in [34℄, see also [35℄.The point, however, is that not the mixed boundary 
onditions are the obstru
tionbut a somewhat 'irregular' behavior of the 
oe�
ient fun
tion µ in the inner of thedomain. If one is 
onfronted with this, spa
es with weight may be the way out.Remark 8.8. In two and three spa
e dimensions one 
an give the following simpli-fying 
hara
terization for a set Ω ∪ Γ to be regular in the sense of Gröger, i.e. tosatisfy Assumption 3.2 a), see [57℄:If Ω ⊆ R2 is a bounded Lips
hitz domain and Γ ⊆ ∂Ω is relatively open, then Ω∪Γis regular in the sense of Gröger i� ∂Ω \ Γ is the �nite union of (non-degenerate)
losed ar
 pie
es.In R3 the following 
hara
terization 
an be proved, heavily resting on a deep resultof Tukia [87℄:If Ω ⊂ R3 is a Lips
hitz domain and Γ ⊂ ∂Ω is relatively open, then Ω∪Γ is regularin the sense of Gröger i� the following two 
onditions are satis�ed:i) ∂Ω \ Γ is the 
losure of its interior (within ∂Ω).ii) for any x ∈ Γ ∩ (∂Ω \ Γ) there is an open neighborhood U ∋ x and a bi-Lips
hitz mapping κ : U ∩ Γ ∩ (∂Ω \ Γ) → ]−1, 1[.Referen
es[1℄ L. Adams, Z. Li, The immersed interfa
e/multigrid methods for interfa
e problems, SIAM J.S
i. Comput. 24 (2002) 463�479.[2℄ H. Amann, Paraboli
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