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1Abstrat. We show that ellipti seond order operators A of divergene typeful�ll maximal paraboli regularity on distribution spaes, even if the underlyingdomain is highly non-smooth and A is omplemented with mixed boundary on-ditions. Appliations to quasilinear paraboli equations with non-smooth data arepresented. 1. IntrodutionIt is known that divergene operators ful�ll maximal paraboli regularity on Lpspaes � even if the underlying domain is non-smooth, the oe�ients are dison-tinuous and the boundary onditions are mixed, see [6℄ and also [59℄. This providesa powerful tool for the treatment of linear and nonlinear paraboli equations in Lpspaes, see [77, 24, 71, 59℄. The only disadvantage of this onept is that the appear-ing Neumann onditions have to be homogeneous and that distributional right handsides (e.g. surfae densities) are not admissible. Confronted with these phenomena,it seems an adequate alternative to onsider the equations in distribution spaes,what we will do in this paper. Pursuing this idea, one has, of ourse, to prove thatthe ourring ellipti operators satisfy paraboli regularity on those spaes in anappropriate sense.In fat, we show that, under very mild onditions on the domain Ω, the Dirih-let boundary part ∂Ω \ Γ and the oe�ient funtion, ellipti divergene operatorssatisfy maximal paraboli regularity on a huge variety of spaes, among whih areSobolev, Besov and Lizorkin-Triebel spaes, provided that the di�erentiability indexis between 0 and −1 (f. Theorem 5.16). We onsider this as the �rst main result ofthis work, also interesting in itself. Up to now, the only existing results for mixedboundary onditions in distribution spaes (apart from the Hilbert spae situation)are, to our knowledge, that of Gröger [55℄ and the reent one of Griepentrog [51℄.Conerning the Dirihlet ase, ompare [18℄ and referenes therein.Having this �rst result at hand, the seond aim of this work is the treatment ofquasilinear paraboli equations of the formal type(1.1) { (
F(u)

)′ −∇ · G(u)µ∇u = R(t, u),

u(T0) = u0,ombined with mixed, nonlinear boundary onditions:(1.2) ν · G(u)µ∇u+ b(u) = g on Γ and u = 0 on ∂Ω \ Γ.Let us point out some ideas, whih will give a ertain guideline for the paper: Ouranalysis is based on a regularity result for the square root (−∇ · µ∇)1/2 on Lpspaes. It has already been remarked in the introdution of [12℄ that estimatesbetween ‖(−∇·µ∇)1/2f‖p and ‖∇f‖p should provide powerful tools for the treatmentof ellipti and paraboli problems involving divergene form operators. It seems,however, that this idea has not yet been developed to its full strength, f. [35,Ch. 5℄.Originally, our strategy for proving maximal paraboli regularity for divergene op-erators on H−1,q
Γ was to show an analog of the entral result of [12℄, this time in ase



2of mixed boundary onditions, namely that(1.3) (
−∇ · µ∇ + 1

)−1/2
: Lq → H1,q

Γprovides a topologial isomorphism for suitable q. This would give the possibilityof arrying over the maximal paraboli regularity, known for Lq, to the dual of
H1,q′

Γ , beause, roughly spoken, (−∇·µ∇+1)−1/2 ommutes with the orrespondingparaboli solution operator. Unfortunately, we were only able to prove the ontinuityof (1.3) within the range q ∈ [2,∞[, due to a result of Duong and McIntosh [32℄,but did not sueed in proving the ontinuity of the inverse in general. Let usexpliitely mention that the proof of the isomorphism property of (1.3) would bea great ahievement. In partiular, this would allow here to avoid the loalizationproedure we had to introdue in Setion 5 in order to prove maximal paraboliregularity, and to generalize our results to higher dimensions. The isomorphismproperty is known for the Hilbert spae ase L2 (see [13℄) in ase of mixed boundaryonditions and even omplex oe�ients, but the proof fundamentally rests on theHilbert spae struture, so that we do not see a possibility of diretly generalizingthis to the Lp ase.It turns out, however, that (1.3) provides a topologial isomorphism, if Ω∪ Γ is theimage under a volume-preserving and bi-Lipshitz mapping of one of Gröger's modelsets [53℄, desribing the geometri on�guration in neighborhoods of boundary pointsof Ω. Thus, in these ases one may arry over the maximal paraboli regularity from
Lq to H−1,q

Γ . Knowing this, we loalize the linear paraboli problem, use the 'loal'maximal paraboli information and interpret this again in the global ontext at theend. Interpolation with the Lp result then yields maximal paraboli regularity onthe orresponding interpolation spaes.Let us expliitely mention that the onept of Gröger's regular sets, where thedomain itself is a Lipshitz domain, seems adequate to us, beause it overs manyrealisti geometries that fail to be domains with Lipshitz boundary. The prie onehas to pay is that the problem of optimal ellipti regularity beomes muh moredeliate and, additionally, trae theorems for this situation are sarely to be foundin the literature.The strategy for proving that (1.1), (1.2) admit a unique loal solution is as follows.We reformulate (1.1) into a usual quasilinear equation, where the time derivativediretly a�ets the unknown funtion. Assuming additionally that the ellipti oper-ator −∇ · µ∇ + 1 : H1,q
Γ → H−1,q

Γ provides a topologial isomorphism for a q largerthan the spae dimension d, the existene and uniqueness results for abstrat quasi-linear equations of Prüss (see [77℄, see also [24℄) apply to the resulting quasilinearparaboli equation. The detailed disussion how to assure all requirements of [77℄,inluding the adequate hoie of the Banah spae, is presented in Setion 6. Theruial point is that the linear ellipti operator whih orresponds to the initial valuesatis�es maximal paraboli regularity, whih has been proved before. Let us furtheremphasize that the presented setting allows for oe�ient funtions that really jumpat hetero interfaes of the material and permits mixed boundary onditions, as wellas domains whih do not possess a Lipshitz boundary, see Setion 7. It is wellknown that this is required when modelling real world problems, see e.g. [83, 20℄



3for problems from thermodynamis or [38, 16℄ onerning biologial models. Lastbut not least, heterostrutures are the determining features of many fundamentale�ets in semiondutors, see for instane [80, 14, 63℄.One further advantage is that nonlinear, nonloal boundary onditions are admis-sible in our onept, despite the fat that the data is highly non-smooth, ompare[2℄. The alulus of maximal paraboli Ls(]T0, T [ ;X) regularity is preferable tothe onept of Hölder ontinuity in time, beause it allows for reation terms Rwhih disontinously depend on time. This is important in many examples (see[88, 58, 65℄), in partiular in the ontrol theory of paraboli equations. Alterna-tively, the reader should think e.g. of a manufaturing proess for semiondutors,where light is swithed on/o� at a sharp time point and, of ourse, parameters inthe hemial proess then hange abruptly. It is remarkable that, nevertheless, thesolution is Hölder ontinuous simultaneously in spae and time, see Corollary 6.16below.We �nish these onsiderations by looking at the speial ase of semilinear prob-lems. It turns out that here satisfatory results may be ahieved even without theadditional ontinuity ondition on −∇·µ∇+1 mentioned above, see Corollary 6.17.In Setion 7 we give examples for geometries, Dirihlet boundary parts and oef-�ients in three dimensions for whih our additional supposition, the isomorphy
−∇ · µ∇ + 1 : H1,q

Γ → H−1,q
Γ really holds for a q > d. In Subsetion 7.3 we take aloser look at the speial geometry of two rossing beams, whih provides a geomet-rially easy example of a domain Ω that does not have a Lipshitz boundary andthus annot be treated by former theories, but whih is overed by our results.Finally, some onluding remarks are given in Setion 8.2. Notation and general assumptionsThroughout this artile the following assumptions are valid.

• Ω ⊆ Rd is a bounded Lipshitz domain and Γ is an open subset of ∂Ω.
• The oe�ient funtion µ is a Lebesgue measurable, bounded funtion on Ωtaking its values in the set of real, symmetri, positive de�nite d×d matries,satisfying the usual elliptiity ondition.Remark 2.1. Conerning the notions 'Lipshitz domain' and 'domain with Lips-hitz boundary' (synonymous: strongly Lipshitz domain) we follow the terminologyof Grisvard [52℄, see also [70℄.For ς ∈ ]0, 1] and 1 < q <∞ we de�ne H ς,q

Γ (Ω) as the losure of(2.1) C∞
Γ (Ω) := {ψ|Ω : ψ ∈ C∞(Rd), supp(ψ) ∩ (∂Ω \ Γ) = ∅}in the Sobolev spae H ς,q(Ω). Of ourse, if Γ = ∅, then H ς,q

Γ (Ω) = H ς,q
0 (Ω) andif Γ = ∂Ω, then H ς,q

Γ (Ω) = H ς,q(Ω). This last point follows from the fat that Ω,as a Lipshitz domain, admits a ontinuous extension operator from H1,q(Ω) into
H1,q(Rd), see [45, Thm. 3.10℄. Thus, the set C∞(Ω) := {ψ|Ω : ψ ∈ C∞(Rd)} is densein H1,q(Ω). Conerning the dual of H ς,q

Γ (Ω), we have to distinguish between the



4spae of linear and the spae of anti-linear forms on this spae. We de�ne H−ς,q
Γ (Ω)as the spae of ontinuous, linear forms on H ς,q′

Γ (Ω) and H̆−ς,q
Γ (Ω) as the spae ofanti-linear forms on H ς,q′

Γ (Ω) if 1/q + 1/q′ = 1. Note that Lp spaes may be viewedas part of H̆−ς,q
Γ for suitable ς, q via the identi�ation of an element f ∈ Lp with theanti-linear form H ς,q′

Γ ∋ ψ 7→
∫
Ω
fψ dx.If misunderstandings are not to be expeted, we drop the Ω in the notation of spaes,i.e. funtion spaes without an expliitely given domain are to be understood asfuntion spaes on Ω.By K we denote the open unit ube in Rd, by K− the lower half ube K ∩{x : xd <

0}, by Σ = K ∩ {x : xd = 0} the upper plate of K− and by Σ0 the left half of Σ,i.e. Σ0 = Σ ∩ {x : xd−1 < 0}.As in the preeding paragraph, we will throughout the paper use x, y, . . . for vetorsin Rd, whereas the omponents of x will be denoted by italis x1, x2, . . . , xd or inthree dimensions also by x, y, z.If B is a losed operator on a Banah spae X, then we denote by domX(B) thedomain of this operator. L(X, Y ) denotes the spae of linear, ontinuous operatorsfrom X into Y ; if X = Y , then we abbreviate L(X). Furthermore, we will write
〈·, ·〉X′ for the dual pairing of elements of X and the spae X ′ of anti-linear formson X.Finally, the letter c denotes a generi onstant, not always of the same value.3. PreliminariesIn this setion we will properly de�ne the ellipti divergene operator and afterwardsollet properties of the Lp realizations of this operator whih will be needed in thesubsequent hapters. First of all we establish the following extension property forfuntion spaes on Lipshitz domains, whih will be used in the sequel.Proposition 3.1. There is a ontinuous extension operator Ext : L1(Ω) → L1(Rd),whose restrition to any spae H1,q(Ω) (q ∈ ]1,∞[) maps this spae ontinuouslyinto H1,q(Rd). Moreover, Ext maps Lp(Ω) ontinuously into Lp(Rd) for p ∈ ]1,∞].Proof. The assertion is proved for the spaes H1,q in [45, Thm. 3.10℄ see also [70,Ch. 1.1.16℄. Inspeting the orresponding proofs (whih are given via loalization,Lipshitz di�eomorphism and symmetri re�etion) one easily reognizes that theextension mapping at the same time ontinuously extends the Lp spaes. �Let us introdue an assumption on Ω and Γ whih will de�ne the geometrial frame-work relevant for us in the sequel.Assumption 3.2. a) For any point x ∈ ∂Ω there is an open neighborhood Υx of

x and a bi-Lipshitz mapping φx from Υx into Rd, suh that φx

(
(Ω∪Γ)∩Υx

)
=

αK− or α(K− ∪ Σ) or α(K− ∪ Σ0) for some positive α = α(x).b) Eah mapping φx is, in addition, volume-preserving.



5Remark 3.3. Assumption 3.2 a) exatly haraterizes Gröger's regular sets, in-trodued in his pioneering paper [53℄. Note that the additional property 'volume-preserving' also has been required in several ontexts (see [48℄ and [55℄).It is not hard to see that every Lipshitz domain and also its losure is regular in thesense of Gröger, the orresponding model sets are then K− or K− ∪Σ, respetively,see [52, Ch 1.2℄. A simplifying topologial haraterization of Gröger's regular setsfor d = 2 and d = 3 will be given in Setion 8.In partiular, all domains with Lipshitz boundary (strongly Lipshitz domains)satisfy Assumption 3.2: if, after a shift and an orthogonal transformation, the do-main lies loally beyond a graph of a Lipshitz funtion ψ, then one an de�ne
φ(x1, . . . , xd) = (x1 − ψ(x2, . . . , xd), x2, . . . , xd). Obviously, the mapping φ is thenbi-Lipshitz and the determinant of its Jaobian is identially 1. For further exam-ples see Setion 7.Next we have to introdue a boundary measure on ∂Ω. Sine in our ontext Ω is notneessarily a domain with Lipshitz boundary, this is not anoni. Let, aording tothe de�nition of a Lipshitz domain, for every point x ∈ ∂Ω an open neighborhood
Υx of x and a bi-Lipshitz funtion φx : Υx → Rd be given, whih satisfy φx(Υx∩Ω) =
K−, φx(Υx ∩ ∂Ω) = Σ and φx(x) = 0. Let Υx1 , . . . ,Υxl

be a �nite subovering of
∂Ω. De�ne on ∂Ω∩Υxj

the measure σj as the φ−1
xj
-image of the (d− 1)-dimensionalLebesgue measure on Σ. Clearly, this measure is a positive, bounded Radon measure.Finally, de�ne the measure σ on ∂Ω by

∫

∂Ω

f dσ :=

l∑

j=1

∫

∂Ω∩Υxj

f dσj, f ∈ C(∂Ω).Clearly, σ also is a bounded, positive Radon measure. Furthermore, it is not hardto see that the measure σ � simultaneously viewed as a measure on Rd � satis�es
sup
x∈Rd

sup
r∈]0,1[

σ(B(x, r))r1−d <∞,where, here and in the sequel, B(x, r) denotes the ball entered at x with radius r,ompare [61, Ch. II.1℄, in partiular Example 1 there.Later we will repeatedly need the following interpolation results from [48℄.Proposition 3.4. Let Ω and Γ satisfy Assumption 3.2 a) and let θ ∈ ]0, 1[.i) Then for q0, q1 ∈ ]1,∞[ and 1
q

= 1−θ
q0

+ θ
q1

one has
Hθ,q

Γ =
[
Lq0 , H1,q1

Γ

]
θ
, if θ 6= 1

q
,(3.1)

H−θ,q
Γ =

[
Lq0 , H−1,q1

Γ

]
θ

if θ 6= 1 − 1

q
(3.2) and

H±1,q
Γ =

[
H±1,q0

Γ , H±1,q1
Γ ]θ.(3.3)



6 ii) If additionally Assumption 3.2 b) is ful�lled and 1
q
6= θ 6= 1 − 1

q
, then(3.4) H±θ,q

Γ =
[
H−1,q

Γ , H1,q
Γ

]
1±θ
2

.Corollary 3.5. Under the same assumptions as for (3.3) one has(3.5) H̆−1,q
Γ =

[
H̆−1,q0

Γ , H̆−1,q1
Γ ]θ.Proof. (3.5) may be dedued from (3.3) by means of the retration/oretrationtheorem (see [85, Ch. 1.2.4℄), where the oretration is the mapping whih assignsto f ∈ H̆−1,r

Γ the linear form H1,r′

Γ ∋ ψ → 〈f, ψ〉H̆−1,r
Γ

. �Having this at hand, we an prove the following trae theorem.Theorem 3.6. Assume q ∈ ]1,∞[ and θ ∈ ]
1
q
, 1

[. Let Π be a Lipshitz hypersurfaein Ω and let ̟ be any measure on Π whih satis�es
sup
x∈Rd

sup
r∈]0,1[

̟(B(x, r))r1−d <∞.Then the trae operator Tr from Hθ,q(Ω) to Lq(Π, ̟) is ontinuous.Proof. Sine Ω is an extension domain for H1,q and Lq simultaneously, one has theinequality(3.6)
‖u|Π‖Lq(Π,̟) = ‖u‖Lq(Ω,̟) ≤ c‖u‖1/q

H1,q(Ω)‖u‖
1−1/q
Lq(Ω) ≤ c‖u‖H1,q(Ω), u ∈ H1,q(Ω),for q ∈ ]1,∞[, see [70, Ch. 1.4.7℄. But due to a general interpolation priniple (see[15, Ch. 5, Prop. 2.10℄) this yields a ontinuous mapping(3.7) (

Lq(Ω), H1,q(Ω)
)

1
q
,1
∋ u 7→ u|Π ∈ Lq(Π, ̟).Sine Ω is a Lipshitz domain, (3.1) in partiular yields the equality Hθ,q(Ω) =

[Lq(Ω), H1,q(Ω)]θ in view of θ > 1/q. Thus, we have the ontinuous embedding
Hθ,q(Ω) =

[
Lq(Ω), H1,q(Ω)

]
θ
→֒

(
Lq(Ω), H1,q(Ω)

)
1
q
,1
,see [85, Ch. 1.10.3, Thm. 1 and Ch. 1.3.3℄. This, together with (3.7), proves thetheorem. �We de�ne the operator A : H1,2

Γ → H̆−1,2
Γ by(3.8) 〈Aψ, ϕ〉H̆−1,2

Γ
:=

∫

Ω

µ∇ψ · ∇ϕ dx +

∫

Γ

κ ψ ϕ dσ, ψ, ϕ ∈ H1,2
Γ ,where κ ∈ L∞(Γ, dσ). Note that in view of (3.6) the form in (3.8) is well de�ned.In the speial ase κ = 0, we write more suggestively −∇ · µ∇ instead of A.The L2 realization of A, i.e. the maximal restrition of A to the spae L2, we denoteby the same symbol A; learly this is idential with the operator whih is induedby the form on the right hand side of (3.8). If B is a selfadjoint operator on L2,then by the Lp realization of B we mean its restrition to Lp if p > 2 and the Lplosure of B if p ∈ [1, 2[.



7We deided not to use di�erent symbols for all these (and lateron also other) real-izations of our operators in this paper, sine we think that the gain in exatenesswould be largely outweighed by the resulting omplexity of notation. Naturally, thismeans that we have to pay attention to domains even more thoroughly.Remark 3.7. Following [75, Ch. 1.4.2℄ (see also [17, Ch. 1℄), we did not de�ne Aas an operator with values in the spae of linear forms on H1,2
Γ , but in the spae ofanti-linear forms. This guarantees that the restrition of this operator to L2 equalsthe usual selfadjoint operator that is indued by the sesquilinear form in (3.8), whihis ruial for our analysis. In this spirit, the duality between H̆−1,q

Γ and H1,q′

Γ is to beonsidered as the extended L2 duality L2 × L2 ∋ (ψ, ϕ) →
∫
Ω
ψϕ dx, where L2 atsas the set of anti-linear forms on itself. Espeially, all ourring adjoint operatorsare to be understood with respet to this dual pairing.First, we ollet some basi fats on A.Proposition 3.8. i) ∇ · µ∇ generates an analyti semigroup on H̆−1,2

Γ .ii) −∇ · µ∇ is selfadjoint on L2 and bounded by 0 from below. The restritionof −A to L2 is densely de�ned and generates an analyti semigroup there.iii) If λ > 0 then the operator (−∇·µ∇+λ)1/2 : H1,2
Γ → L2 provides a topologialisomorphism; in other words: the domain of (−∇ · µ∇ + λ)1/2 on L2 is theform domain H1,2

Γ .iv) The form domain H1,2
Γ is invariant under multipliation with funtions from

H1,q, if q > d.v) Assume κ ≥ 0. Then, under Assumption 3.2 a), for all p ∈ ]1,∞[ theoperator −A generates a semigroup of ontrations on Lp. Additionally, itsatis�es
‖(A+ λ)−1‖L(Lp) ≤

c

|λ| , Reλ ≥ 0.vi) Under Assumption 3.2 a) domH̆−1,q
Γ

(−∇ · µ∇) embeds ompatly into H̆−1,q
Γfor every q ∈ [2,∞[, i.e. the resolvent of (−∇ · µ∇) is ompat on H̆−1,q

Γ .Proof. i) is proved in [75, Thm. 1.55℄, see also [54℄.ii) The �rst assertion follows from a lassial representation theorem for forms,see [64, Ch. VI.2.1℄. Seondly, one veri�es that the form H1,2
Γ ∋ ψ 7→∫

Γ
κ|ψ|2 dσ is form subordinated to the � positive � form H1,2

Γ ∋ ψ 7→∫
Ω
∇ψ · µ∇ψ + ψψ dx with arbitrarily small relative bound. In fat, thanksto (3.6),

∣∣∣∣
∫

Γ

κ|ψ|2dσ
∣∣∣∣ ≤ ‖κ‖L∞(Γ)‖ψ‖2

L2(∂Ω) ≤ ‖κ‖L∞(Γ)‖ψ‖H1,2
Γ (Ω)‖ψ‖L2(Ω)

≤ ε‖ψ‖2
H1,2

Γ (Ω)
+

1

ε
‖κ‖2

L∞(Γ)‖ψ‖2
L2(Ω).Thus, the form (3.8) is also losed on H1,2

Γ and setorial. Moreover, theoperator −A generates an analyti semigroup by the representation theoremfor setorial forms, see also [64, Ch. VI.2.1℄.



8 iii) This follows from the seond representation theorem of forms (see [64, Ch. VI.2.6℄),applied to the operator −∇ · µ∇ + λ.iv) First, for u ∈ C∞
Γ and v ∈ C∞ the produt uv is obviously in C∞

Γ ⊆ H1,2
Γ .But, by de�nition of H1,2

Γ , the set C∞
Γ (see (2.1)) is dense in H1,2

Γ and C∞is dense in H1,q. Thus, the assertion is implied by the ontinuity of themapping
H1,2

Γ ×H1,q ∋ (u, v) 7→ uv ∈ H1,2,beause H1,2
Γ is losed in H1,2.v) This is proved in [49, Thm. 4.11, Thm. 5.2℄.vi) The operator (−∇ · µ∇ + 1)−1 has the following � ontinuous � mappingproperties(3.9) (−∇ · µ∇ + 1)−1 : H̆−1,2

Γ → H1,2
Γ →֒ L2and(3.10) (−∇ · µ∇ + 1)−1 : H̆−1,q

Γ → L∞ →֒ Ld+1 for q ≥ d+ 1(see [50℄). This shows that the resolvent is ompat for q = 2 and for
q ≥ d + 1. If one takes in (3.10) q = d + 1 and interpolates between (3.9)and (3.10), one obtains a ontinuous mapping (−∇·µ∇+1)−1 : H̆−1,q

Γ → Lqfor every q ∈ ]2, d+ 1[, see Corollary 3.5. �One essential instrument for our subsequent onsiderations are (upper) Gaussianestimates.Theorem 3.9. The semigroup generated by ∇ · µ∇ in L2 satis�es upper Gaussianestimates, preisely:
(et∇·µ∇ f)(x) =

∫

Ω

Kt(x, y)f(y) dy, x ∈ Ω, f ∈ L2,for some measurable funtion Kt : Ω×Ω → R+ and for all ε > 0 there exist onstants
c, b > 0, suh that(3.11) 0 ≤ Kt(x, y) ≤ c

td/2
e−b

|x−y|2

t eεt, t > 0, a.a. x, y ∈ Ω.This follows from the following simpli�ed version of Theorem 6.10 in [75℄ (see also[7℄).Proposition 3.10 (Ouhabaz). Assume that −∇ · ω∇, with ω ∈ L∞(Ω;L(Rd))uniformly ellipti, is de�ned on the form domain V ⊆ H1,2 that satis�esa) V is losed in H1,2,b) H1,2
0 ⊆ V ,) V has the L1-H1,2 extension property,d) u ∈ V implies sign(u) inf(1, |u|) ∈ V , where sign(u) = u/|u| if u 6= 0 and

sign(u) = 0 else.e) u ∈ V implies eψ u ∈ V for every ψ ∈ C∞(Rd), suh that ψ and |∇ψ| arebounded in Rd.Then et∇·ω∇ satis�es an upper Gaussian estimate as in (3.11).



9Proof of Theorem 3.9. We have to verify onditions a) � e) from Proposition 3.10for V = H1,2
Γ . a) and b) are obvious. For ) see Proposition 3.1 and d) is overedby [75, Proposition 4.11℄. Finally, e) follows from Proposition 3.8 iv). �Another notion in our onsiderations will be the bounded holomorphi funtionalalulus that we want to introdue brie�y. Let X be a Banah spae and −B thegenerator of a bounded analyti semigroup on X. Denoting, for κ ∈ ]0, π],

Σκ := {z ∈ C \ {0} : | arg(z)| < κ},we then have for some θ ∈ ]0, π/2[

σ(B) ⊆ Σθ ∪ {0} and ‖R(λ,B)‖L(X) ≤
M

|λ| , λ ∈ C \ Σθ.Following [73℄ (see also [27℄), for any angle κ ∈ ]0, π] we de�ne the funtion spaes
H∞(Σκ) := {ψ : Σκ → C, holomorphi and bounded} and
H∞

0 (Σκ) :=
{
ψ ∈ H∞(Σκ) : there exist C, ε > 0 s.t. |ψ(z)| ≤ C

|z|ε
(1 + |z|)2ε

}
,both equipped with the norm ‖ψ‖H∞

κ
:= supz∈Σκ

|ψ(z)|. Then for ψ ∈ H∞
0 (Σκ) with

κ > θ, we may ompute ψ(B), using the Cauhy integral formula
ψ(B) =

1

2πi

∫

∠

ψ(z)R(z, B) dz,where the path ∠ is given by the two rays t e±iϕ, t > 0, for some θ < ϕ < κ.Note that this integral is absolutely onvergent in L(X). We now say that B has abounded H∞-alulus, if there is a onstant C ≥ 0, suh that
‖ψ(B)‖L(X) ≤ C‖ψ‖H∞

κ
, ψ ∈ H∞

0 (Σκ),for some κ > θ. The in�mum of all angles κ, for whih this holds, is alled the
H∞-angle ϕ∞

B of B.If B admits a bounded H∞-alulus for some κ > θ, then the mapping H∞
0 (Σκ) ∋

ψ 7→ ψ(B) ∈ L(X) an be extended uniquely to an algebra homomorphism between
H∞(Σκ) and L(X).Proposition 3.11. Let ∂Ω \Γ have nonzero boundary measure. Then the followingassertions hold for every p ∈ ]1,∞[.i) For su�iently small γ > 0, the operator −∇ · µ∇− γ has a bounded H∞-alulus on Lp with H∞-angle ϕ∞

−∇·µ∇−γ = 0.ii) The set {(−∇ · µ∇)is : s ∈ R} forms a strongly ontinuous group on Lpadmitting the estimate
‖(−∇ · µ∇)is‖L(Lp) ≤ cp e|s|ϑ, s ∈ R,with 0 ≤ ϑ < π/2.Proof. Sine the boundary measure of ∂Ω \ Γ is nonzero, the operator −∇ · µ∇ isontinuously invertible in L2, i.e. 0 does not belong to the spetrum. Hene, forsu�iently small γ > 0, −∇ · µ∇ − γ is still self-adjoint and bounded by 0 from



10below, f. Proposition 3.8 ii). Thus, for every δ ≥ 0 the operator −∇ · µ∇− γ + δhas a bounded H∞-alulus on L2 with H∞-angle 0. Furthermore, taking δ > γ,the semigroup generated by ∇·µ∇+ γ− δ obeys the Gaussian estimate (3.11) with
ε = 0. Thus, −∇·µ∇−γ+ δ also has a bounded H∞-alulus on Lp with H∞-angle
0 for all 1 < p <∞ by [33℄.In order to eliminate the ` + δ', we observe that the spetrum of −∇ · µ∇ is p-independent, thanks to the Gaussian estimates, see [66℄. Thus, also in Lp the spe-trum of −∇ · µ∇ − γ is ontained in the positive real axis. It was shown in [62,Prop. 6.10℄, that in suh a ase, we may shift bak the operator without losing thebounded H∞-alulus, as long as the spetrum does not reah zero. This shows i).As the funtions z 7→ zis belong to H∞(Σφ) for every s ∈ R and every φ ∈ ]0, π[,part i) of this proof yields (−∇ · µ∇)is ∈ L(Lp) with ‖(−∇ · µ∇)is‖ ≤ c for all
−1 ≤ s ≤ 1. Thus, ii) follows by [4, Thm. III.4.7.1 and Cor. III.4.7.2℄. �4. Mapping properties for (−∇ · µ∇)1/2In this hapter we prove that, under ertain topologial onditions on Ω and Γ, themapping

(−∇ · µ∇)1/2 : H1,q
Γ → Lqis a topologial isomorphism for q ∈ ]1, 2[. We abbreviate −∇·µ∇ by A0 throughoutthis hapter. Let us introdue the followingAssumption 4.1. There is a bi-Lipshitz, volume-preserving mapping φ from aneighborhood of Ω into Rd suh that φ(Ω ∪ Γ) = αK− or α(K− ∪Σ) or α(K− ∪Σ0)for some α > 0.Remark 4.2. It is known that for a bi-Lipshitz mapping the property of beingvolume-preserving is equivalent to the property that the absolute value of the de-terminant of the Jaobian is one almost everywhere (see [36, Ch. 3℄).The main results of this setion are the following two theorems.Theorem 4.3. Under the general assumptions made in Setion 2 the following holdstrue: If ∂Ω\Γ has nonzero boundary measure, then, for every q ∈ ]1, 2], the operator

A
−1/2
0 is a ontinuous operator from Lq into H1,q

Γ . Hene, it ontinuously maps H̆−1,q
Γinto Lq for any q ∈ [2,∞[.Theorem 4.4. If in addition Assumption 4.1 is ful�lled and q ∈ ]1, 2], then A
1/2
0maps H1,q

Γ ontinuously into Lq. Hene, it ontinuously maps Lq into H̆−1,q
Γ for any

q ∈ [2,∞[.Remark 4.5. In both theorems the seond assertion follows from the �rst by theselfadjointness of A0 on L2 and duality (see Remark 3.7); thus we fous on the proofof the �rst assertions in the sequel.Let us �rst prove the ontinuity of the operator A−1/2
0 : Lq → H1,q

Γ . In order to doso, we observe that this follows, whenever



111. The Riesz transform ∇A−1/2
0 is a bounded operator on Lq, and, additionally,2. A−1/2

0 maps Lq into H1,q
Γ .The �rst item an be dedued from the following result of Duong and McIntosh (see[32, Thm. 2℄) that is even true in a muh more general setting.Proposition 4.6. Let B be a positive, selfadjoint operator on L2, having the spae

W as its form domain and admitting the estimate ‖∇ψ‖L2 ≤ c‖B1/2ψ‖L2 for all
ψ ∈W . Assume that W is invariant under multipliation by bounded funtions withbounded, ontinuous �rst derivatives and that the kernel Kt of the semigroup e−tBsatis�es bounds(4.1) |Kt(x, y)| ≤ C

td/2

(
1 +

|x − y|2
t

)−βfor some β > d/2. Then the operator ∇B−1/2 is of weak type (1,1), and, thus anbe extended from L2 to a bounded operator on Lq for all q ∈ ]1, 2[.Proof of Theorem 4.3. Aording to Theorem 3.9 the semigroup kernels orrespond-ing to the operator A0 satisfy the estimate (3.11). Thus, onsidering the operator
A0 + ε for some ε > 0, the orresponding kernels satisfy again (3.11), but withoutthe fator eεt now. Next, we verify that B := A0 + ε and W := H1,2

Γ satisfy theassumptions of Proposition 4.6. By Proposition 3.8, W = H1,2
Γ is the domain for

(A0 + ε)1/2, thus ‖∇ψ‖L2 ≤ c‖(A0 + ε)1/2ψ‖L2 holds for all ψ ∈ W . The invarianeproperty of W under multipliation is ensured by Proposition 3.8. Conerning thebound (4.1), it is easy to see that the resulting Gaussian bounds from Theorem 3.9are even muh stronger, sine the funtion r 7→ (1 + r)β e−br, r ≥ 0, is bounded forevery β > 0. All this shows that (A0 +ε)−1/2 : Lq → H1,q is ontinuous for q ∈ ]1, 2].Writing
A

−1/2
0 = (A0 + ε)−1/2(A0 + ε)1/2A

−1/2
0 ,the assertion 1. follows, if we know that (A0 + ε)1/2A

−1/2
0 : Lq → Lq is ontinuous.In order to see this, hoose ε so small that Proposition 3.11 i) ensures a bounded

H∞-alulus on Lq for A0−ε, and observe that the funtion z 7→ (z+2ε)1/2(z+ε)−1/2is in H∞(Σφ) for any φ ∈ ]0, π[.It remains to show 2. The �rst point makes lear that A−1/2
0 maps Lq ontinuouslyinto H1,q, thus one has only to verify the orret boundary behavior of the images.If f ∈ L2 →֒ Lq, then one has A−1/2

0 f ∈ H1,2
Γ →֒ H1,q

Γ . Thus, the assertion followsfrom 1. and the density of L2 in Lq. �Remark 4.7. Theorem 4.3 is not true for other values of q in general: If it were,then, due to the ase q ≤ 2 and duality, A−1/2
0 : H−1,q

Γ → Lq and A−1/2
0 : Lq → H1,q

Γwould be ontinuous for a q > 2. But for any q > 2 one an �nd a oe�ientfuntion µ suh that the orresponding operator A−1
0 does not map H̆−1,q

Γ into H1,q
Γ ,see [74, 34, 35℄, see also [10℄ and the referenes therein.



12It follows the proof of Theorem 4.4. It will be dedued from the subsequent deepresult on divergene operators with Dirihlet boundary onditions and some perma-nene priniples.Proposition 4.8 (Ausher/Thamithian, [12℄). Let q ∈ ]1,∞[ and Ω be a stronglyLipshitz domain. Then the root of the operator A0, ombined with a homogeneousDirihlet boundary ondition, maps H1,q
0 (Ω) ontinuously into Lq(Ω).For further referene we mention the following immediate onsequene of Theo-rem 4.3 and Proposition 4.8.Corollary 4.9. Under the hypotheses of Proposition 4.8 the operator A−1/2

0 providesa topologial isomorphism between Lq and H1,q
0 , if q ∈ ]1, 2].In view of Assumption 4.1 it is a natural idea to redue our onsiderations to thethree model onstellations mentioned there. In order to do so, we have to showthat the assertion of Theorem 4.4 is invariant under volume-preserving bi-Lipshitztransformations of the domain.Proposition 4.10. Assume that φ is a mapping from a neighborhood of Ω into Rdthat is additionally bi-Lipshitz. Let us denote φ(Ω) = Ω△ and φ(Γ) = Γ△. De�nefor any funtion f ∈ L1(Ω△)

(Φf)(x) = f(φ(x)) = (f ◦ φ)(x), x ∈ Ω.Theni) The restrition of Φ to any Lp(Ω△), 1 ≤ p <∞, provides a linear, topologialisomorphism between this spae and Lp(Ω).ii) For any p ∈ ]1,∞[, the mapping Φ indues a linear, topologial isomorphism
Φp : H1,p

Γ△
(Ω△) → H1,p

Γ (Ω).iii) Φ∗
p′ is a linear, topologial isomorphism between H̆−1,p

Γ (Ω) and H̆−1,p
Γ△

(Ω△) forany p ∈ ]1,∞[.iv) One has(4.2) Φ∗
p′A0Φp = −∇ · µ△∇with(4.3) µ△(y) =

1∣∣det(Dφ)(φ−1(y))
∣∣(Dφ)(φ−1(y)) µ(φ−1(y))

(
Dφ

)T
(φ−1(y))for almost all y ∈ Ω△. Here, Dφ denotes the Jaobian of φ and det(Dφ) theorresponding determinant.v) µ△ also is bounded, Lebesgue measurable, ellipti and takes real, symmetrimatries as values.vi) The restrition of Φ∗

2Φ to L2(Ω△) equals the multipliation operator whih isindued by the funtion ∣∣ det(Dφ)(φ−1(·))
∣∣−1. Consequently, if | det(Dφ)| = 1a.e., then the restrition of Φ∗

2Φ to L2(Ω△) is the identity operator on L2(Ω△),or, equivalently, (Φ∗
2)

−1|L2(Ω△) = Φ|L2(Ω△).



13Proof. For i) see [70, Ch. 1.1.7℄. The proof of ii) is ontained in [48, Thm. 2.10)℄and iii) follows from ii) by duality (see Remark 3.7). Assertion iv) is well known,see [56℄ for an expliit veri�ation, while v) is implied by (4.3) and the fat that fora bi-Lipshitz mapping φ the Jaobian Dφ and its inverse (
Dφ)−1 are essentiallybounded (see [36, Ch. 3.1℄). We prove vi). For every f ∈ L2(Ω△) and g ∈ H1,2

Γ△
(Ω△)we alulate:

〈Φ∗
2Φf, g〉H̆−1,2

Γ△
(Ω△) = 〈Φf,Φg〉H̆−1,2

Γ (Ω) = 〈f ◦ φ, g ◦ φ〉H̆−1,2
Γ (Ω) =

∫

Ω

f(φ(x))g(φ(x)) dx

=

∫

Ω△

f(y)g(y)
1∣∣ det(Dφ)(φ−1(y))

∣∣ dy.Thus, the anti-linear formΦ∗
2Φf onH1,2

Γ△
(Ω△) is represented by ∣∣det(Dφ)(φ−1(·))

∣∣−1 ∈
L∞(Ω△). �Lemma 4.11. Let p ∈ ]1,∞[. Suppose further that ∂Ω \ Γ does not have boundarymeasure zero and that | det(Dφ)| = 1 almost everywhere in Ω. Then, in the notationof the preeding proposition, the operator (

−∇·µ△∇
)1/2 maps H1,p

Γ△
(Ω△) ontinuouslyinto Lp(Ω△) if and only if A1/2

0 maps H1,p
Γ (Ω) ontinuously into Lp(Ω).Proof. We will employ the formula(4.4) B−1/2 =

1

π

∫ ∞

0

t−1/2(B + t)−1 dt,

B being a positive operator on a Banah spae X, see [85, Ch. 1.14/1.15℄ or [76,Ch. 2.6℄. Obviously, the integral onverges in the L(X)-norm.It is lear that our hypotheses of ∂Ω \ Γ not having boundary measure zero impliesthat ∂Ω△\Γ△ also has positive boundary measure. Thus, both, A0 and −∇·µ△∇ donot have spetrum in zero and are positive operators in the sense of [85, Ch. 1.14℄on any Lp (see Proposition 3.8). From (4.2) and vi) of the preeding propositionone dedues(4.5) Φ∗
2

(
A0 + t

)
Φ2 = −∇ · µ△∇ + tfor every t > 0. This leads to

Φ−1
2

(
A0 + t

)−1(
Φ∗

2

)−1
=

(
−∇ · µ△∇ + t

)−1
.Restriting this last equation to elements from L2(Ω△) and making one more useof vi) in Proposition 4.10, we get the following operator equation on L2(Ω△):

Φ−1
(
A0 + t

)−1
Φ|L2(Ω△) =

(
−∇ · µ△∇ + t

)−1
.Integrating this equation with weight t−1/2

π
, one obtains, aording to (4.4),(4.6) Φ−1A

−1/2
0 Φ|L2(Ω△) =

(
−∇ · µ△∇

)−1/2
,again as an operator equation on L2(Ω△). We reall that the operators A−1/2

0 :
L2(Ω) → H1,2

Γ (Ω), (−∇ · µ△∇)−1/2 : L2(Ω△) → H1,2
Γ△

(Ω△), Φ2 : H1,2
Γ△

(Ω△) → H1,2
Γ (Ω)



14and Φ : L2(Ω△) → L2(Ω) all are topologial isomorphisms. In partiular, for any
f ∈ L2(Ω△) the element A−1/2

0 Φf is from H1,2
Γ (Ω). Thus, we may write (4.6) as(4.7) Φ−1

2 A
−1/2
0 Φ|L2(Ω△) =

(
−∇ · µ△∇

)−1/2and afterwards invert (4.7). We get the following operator equation on H1,2
Γ△

(Ω△):
Φ−1A

1/2
0 Φ2 =

(
−∇ · µ△∇

)1/2
.In the sequel we make use of the fat that Φp : H1,p

Γ△
(Ω△) → H1,p

Γ (Ω) and Φ :
Lp(Ω△) → Lp(Ω) are topologial isomorphisms for all p ∈ ]1,∞[. Thus, �rst on-sidering the ase p ∈ ]1, 2[ and assuming that A1/2

0 maps H1,p
Γ (Ω) ontinuously into

Lp(Ω), we may estimate for all ψ ∈ H1,2
Γ△

(Ω△)

‖
(
−∇ · µ△∇

)1/2
ψ‖Lp(Ω△) = ‖Φ−1A

1/2
0 Φ2ψ‖Lp(Ω△)

(4.8)
≤ ‖Φ−1

p ‖L(Lp(Ω);Lp(Ω△))‖A1/2
0 ‖L(H1,p

Γ (Ω);Lp(Ω))‖Φ2ψ‖H1,p
Γ (Ω).Observing that Φ2 is only the restrition of Φp, one may estimate the last fator in(4.8):(4.9) ‖Φ2ψ‖H1,p

Γ (Ω) ≤ ‖Φp‖L(H1,p
Γ△

(Ω△);H1,p
Γ (Ω))‖ψ‖H1,p

Γ△
(Ω△).This means that (−∇·µ△∇)1/2 mapsH1,2

Γ△
(Ω△), equipped with the induedH1,p

Γ△
(Ω△)-norm, ontinuously into Lp(Ω△) and, onsequently, extends to a ontinuous mappingfrom the whole H1,p

Γ△
(Ω△) into Lp(Ω△) by density.If p ∈ ]2,∞[, one has the same estimates (4.8) and (4.9), in this ase only forelements ψ ∈ H1,p

Γ△
(Ω△) ⊆ H1,2

Γ△
(Ω△).Finally, the equivalene stated in the assertion follows by simply interhanging theroles of µ and µ△. �Remark 4.12. It is the property of 'volume-preserving' whih leads, due to vi) ofProposition 4.10, to (4.5) and then to (4.6) and thus allows to hide the ompliatedgeometry of the boundary in Φ and µ△.It turns out that 'bi-Lipshitz' together with 'volume-preserving' is not a too re-stritive ondition. In partiular, there are suh mappings � although not easy toonstrut � whih map the ball onto the ylinder, the ball onto the ube and theball onto the half ball, see [47℄, see also [37℄. The general message is that this lasshas enough �exibility to map 'non-smooth objets' onto smooth ones.Lemma 4.11 allows to redue the proof of Theorem 4.4 to Ω = αK− and the threeases Γ = ∅, Γ = αΣ or Γ = αΣ0. The �rst ase, Γ = ∅, is already ontained inProposition 4.8. In order to treat the seond one, we will use a re�etion argument.To this end we de�ne for any x = (x1, . . . , xd) ∈ Rd the symbol x− := (x1, . . . , xd−1,−xd)and for a d× d matrix ω, the matrix ω− by

ω−
j,k :=





ωj,k, if j, k < d,

−ωj,k, if j = d and k 6= d or k = d and j 6= d,

ωj,k, if j = k = d.



15Corresponding to the oe�ient funtion µ on K−, we then de�ne the oe�ientfuntion µ̂ on K by
µ̂(x) :=





µ(x), if x ∈ K−,(
µ(x−)

)−
, if x− ∈ K−,

0, if x ∈ Σ.Finally, we de�ne for ϕ ∈ L1(K) the re�eted funtion ϕ− by ϕ−(x) = ϕ(x−) and,using this, the extension and restrition operators
E : L1(K−) → L1(K), (Ef)(x) =

{
f(x), if x ∈ K−,

f(x−), if x− ∈ K−,

S : H̆−1,2
Σ (K−) → H̆−1,2(K), 〈Sf, ϕ〉H̆−1,2(K) =

〈
f, ϕ|K− + ϕ−|K−

〉
H̆−1,2

Σ (K−)
,

R : L1(K) → L1(K−), Rf = f |K−.Proposition 4.13. i) If ψ ∈ H1,2
Σ (K−) satis�es A0ψ = f ∈ H̆−1,2

Σ (K−), then
−∇ · µ̂∇Eψ = Sf ∈ H̆−1,2(K).ii) The operator S : H̆−1,2
Σ (K−) → H̆−1,2(K) is ontinuous.Proof. i) It is known that Eψ belongs to H1,2

0 (K), see [45, Lemma 3.4℄. Thus,the assertion is obtained by the de�nitions of Eψ, Sf , A0, −∇ · µ̂∇ andstraightforward alulations, based on Proposition 4.10 when applied to thetransformation x 7→ x−.ii) The operator under onsideration is the adjoint of H1,2
0 (K) ∋ ϕ 7→ (ϕ|K− +

ϕ−|K−) ∈ H1,2
Σ (K−). �We are now in the position to prove Theorem 4.4 for the ase Γ = αΣ. Up to ahomothety we may fous on the ase α = 1. First, we note that for any funtion

ϕ ∈ L2(K−) one �nds Eϕ = Sϕ, where we identi�ed the funtions ϕ and Eϕ withthe orresponding regular distributions. Thus, one obtains from Proposition 4.13 i)that (
A0 + t

)
ψ = f ∈ H̆−1,2

Σ (K−) implies
(
−∇ · µ̂∇ + t

)
Eψ = Sf,or, equivalently,

Eψ =
(
−∇ · µ̂∇ + t

)−1
Sffor every t ∈ [0,∞[. Expressing ψ =

(
A0 + t

)−1
f , this yields

E
(
A0 + t

)−1
f =

(
−∇ · µ̂∇ + t

)−1
Sf.Multiplying this by t−1/2

π
and integrating over t, one obtains in aordane with (4.4)(4.10) EA

−1/2
0 f =

(
−∇ · µ̂∇

)−1/2
Sf, f ∈ H̆−1,2

Σ (K−).Applying the restrition operator R to both sides of (4.10), we get(4.11) A
−1/2
0 f = R

(
−∇ · µ̂∇

)−1/2
Sf, f ∈ H̆−1,2

Σ (K−).



16Considering in partiular elements f ∈ L2(K−) and taking for these into aount
Ef = Sf , (4.11) implies(4.12) A

−1/2
0 f = R

(
−∇ · µ̂∇

)−1/2
Ef, f ∈ L2(K−).Sine both operators −A0 and ∇ · µ̂∇ generate ontration semigroups on any Lp,and 0 does not belong to the spetrum for both of them, the operators A−1/2

0 and(
−∇ · µ̂∇

)−1/2 are bounded also on Lp(K−) and Lp(K), respetively. Hene, (4.12)remains true for any f ∈ Lp(K−) with p ∈ ]1, 2[. Now, on one hand it is learthat E(Lp(K−)) equals the symmetri part of Lp(K), i.e. the set of funtions whihsatisfy ϕ = ϕ−. Using the de�nition of the oe�ient funtion µ̂ and formula (4.2),one reognizes that the resolvent of −∇ · µ̂∇ ommutes with the mapping ϕ 7→ ϕ−.Again exploiting formula (4.4), this shows that (−∇ · µ̂∇)−1/2 also ommutes withthe mapping ϕ 7→ ϕ−. Thus, (
−∇ · µ̂∇

)−1/2 maps the set of symmetri funtions,satisfying ϕ = ϕ−, into itself and also the set of antisymmetri funtions, satisfying
ϕ = −ϕ−. Consequently, (

−∇·µ̂∇
)−1/2

E(Lp(K−)) must equal the symmetri part of
H1,p

0 (K) beause (
−∇· µ̂∇

)−1/2 is a surjetion onto the whole H1,p
0 (K) by Corollary4.9. But, it is known (see [45, Thm. 3.10℄) that for any given funtion h ∈ H1,p

Σ (K−)the symmetri extension belongs to H1,p
0 (K). Thus R

(
−∇ · µ̂∇

)−1/2
E = A

−1/2
0 isa surjetion onto H1,p

Σ (K−). Sine, by Theorem 4.3 A−1/2
0 : Lp(K−) → H1,p

Σ (K−) isontinuous, the ontinuity of the inverse is implied by the open mapping theorem.In order to prove the same for the third model onstellation, i.e. Γ = Σ0, we showLemma 4.14. For every α > 0 there is a volume-preserving, bi-Lipshitz mapping
φ : Rd → Rd that maps α(K− ∪ Σ0) onto α(K− ∪ Σ).Proof. Up to a homothety we may fous on the ase α = 1. Let us �rst onsider thease d = 2. We de�ne on the lower halfspae {(x, y) ∈ R2 : y ≤ 0}

ρ1(x, y) :=





(x− y/2, y/2), if x ≤ 0, y ≥ x,

(x/2,−x/2 + y), if x ≤ 0, y < x,

(x/2, x/2 + y), if x > 0, y < −x,
(x+ y/2, y/2), if x > 0, y ≥ −x.Observing that ρ1 ats as the identity on the x-axis, we may de�ne ρ1 on the upperhalf spae {(x, y) ∈ R2 : y > 0} by ρ1(x, y) = (x0,−y0) with (x0, y0) = ρ1(x,−y).In this way we obtain a globally bi-Lipshitz transformation ρ1 from R2 onto itselfthat transforms K− ∪ Σ0 onto the triangle shown in Figure 1.Next we de�ne the bi-Lipshitz mapping ρ2 : R2 → R2 by

ρ2(x, y) :=

{
(x, x+ 2y + 1), if x ≤ 0,

(x,−x+ 2y + 1), if x > 0,in order to get the geometri onstellation in Figure 2.
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Figure 1. K− ∪ Σ0 and ρ1(K− ∪ Σ0)
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Figure 2. ρ2(ρ1(K− ∪ Σ0))If ρ3 is the (lokwise) rotation of π/4, we thus ahieved that ρ := ρ3ρ2ρ1 : R2 → R2is bi-Lipshitzian and satis�es
ρ(K− ∪ Σ0) =

{
(x, y) ∈ R2 : − 1√

2
< x <

1√
2
, − 1√

2
< y ≤ 1√

2

}
.Let ρ4 : R2 → R2 be the a�ne mapping (x, y) 7→ (

√
2x, 1√

2
y−1

2
). Then φ = φ2 := ρ4ρmaps K− ∪ Σ0 bi-Lipshitzian onto K− ∪ Σ in the 2-d ase. As is easy to hek,the modulus of the determinant of the Jaobian is identially one a.e. Hene, φ2 isvolume-preserving.If d ≥ 3, one simply puts φ(x1, . . . , xd) := (x1, . . . , xd−2, φ2(xd−1, xd)). �Thus, the proof of Theorem 4.4 in the ase Γ = αΣ0 results from the ase Γ = αΣ,Lemma 4.11 and Lemma 4.14.Remark 4.15. Let us mention that Lemma 4.11, only applied to Ω = K and Γ = ∅(the pure Dirihlet ase) already provides a zoo of geometries whih is not overed



18by [12℄. Notie in this ontext that the image of a strongly Lipshitz domain undera bi-Lipshitz transformation needs not to be a strongly Lipshitz domain at all, f.Subsetion 7.3, see also [52, Ch. 1.2℄.5. Maximal paraboli regularity for AIn this setion we intend to prove the �rst main result of this work announed inthe introdution. Let us �rst reall the notion of maximal paraboli Ls regularity.De�nition 5.1. Let 1 < s <∞, let X be a Banah spae and let J := ]T0, T [ ⊆ Rbe a bounded interval. Assume that B is a losed operator in X with dense domain
D (in the sequel always equipped with the graph norm). We say that B satis�esmaximal paraboli Ls(J ;X) regularity, if for any f ∈ Ls(J ;X) there exists a uniquefuntion u ∈W 1,s(J ;X) ∩ Ls(J ;D) satisfying

u′ +Bu = f, u(T0) = 0,where the time derivative is taken in the sense of X-valued distributions on J (see[4, Ch III.1℄).Remark 5.2. i) It is well known that the property of maximal paraboli reg-ularity of an operator B is independent of s ∈ ]1,∞[ and the spei� hoieof the interval J (f. [31℄). Thus, in the following we will say for short that
B admits maximal paraboli regularity on X.ii) If an operator satis�es maximal paraboli regularity on a Banah spae X,then its negative generates an analyti semigroup on X (f. [31℄). In parti-ular, a suitable left half plane belongs to its resolvent set.iii) If X is a Hilbert spae, the onverse is also true: The negative of every gen-erator of an analyti semigroup on X satis�es maximal paraboli regularity,f. [28℄ or [31℄.iv) If −B is a generator of an analyti semigroup on a Banah spae X, wede�ne

B
( ∂
∂t

+B
)−1

: C(J ; domX(B)) → Ls(J ;X)by (
B

( ∂
∂t

+B
)−1

f
)
(t) := B

∫ t

T0

e(s−t)B f(s) ds.Then, by de�nition of the distributional time derivative, it is easy to seethat B has maximal paraboli regularity on X if and only if the operator
B

(
∂
∂t

+B
)−1 ontinuously extends to an operator from Ls(J ;X) into itself.v) Observe that(5.1) W 1,s(J ;X) ∩ Ls(J ;D) →֒ C(J ; (X,D)1− 1

s
,s).Let us �rst formulate the following lemma, needed in the sequel.Lemma 5.3. Suppose that X, Y are Banah spaes, whih are ontained in a thirdBanah spae Z with ontinuous injetions. Let B be a linear operator on Z whoserestrition to eah of the spaes X, Y indue losed, densely de�ned operators there.Assume that the indued operators ful�ll maximal paraboli regularity on X and Y ,



19respetively. Then B satis�es maximal paraboli regularity on eah of the interpola-tion spaes [X, Y ]θ and (X, Y )θ,s with θ ∈ ]0, 1[, s ∈ ]1,∞[.Proof. By supposition, (X, Y ) forms an interpolation ouple. In this ase it is known(see [85, Ch. 1.18.4℄) that one has for any θ ∈ ]0, 1[ and any s ∈ ]1,∞[ the interpo-lation identities
[
Ls(J ;X), Ls(J ;Y )

]
θ

= Ls(J ; [X, Y ]θ)(5.2)and
(
Ls(J ;X), Ls(J ;Y )

)
θ,s

= Ls(J ; (X, Y )θ,s).(5.3)Due to Remark 5.2 ii), −B generates an analyti semigroup on X and Y , respe-tively. Obviously, the orresponding resolvent estimates are maintained under realand omplex interpolation, so −B also generates an analyti semigroup on the or-responding interpolation spaes. Taking into aount (5.2) or (5.3) and invokingRemark 5.2 iv), the operators
B

( ∂
∂t

+B
)−1

: Ls(J ;X) → Ls(J ;X)and
B

( ∂
∂t

+B
)−1

: Ls(J ;Y ) → Ls(J ;Y )are ontinuous, if s ∈ ]1,∞[. Thus, interpolation together with (5.2) ((5.3), re-spetively) tells us that B(
∂
∂t

+ B
)−1 also maps Ls(J ; [X, Y ]θ) and Ls(J ; (X, Y )θ,s)ontinuously into itself. So the assertion follows again by Remark 5.2 iv). �This lemma will lead to the main result of this setion, maximal regularity of A invarious distribution spaes, as soon as we an show this in the spae H̆−1,q

Γ , whatwe will do now. Preisely, we will show the following result.Theorem 5.4. Let Ω, Γ ful�ll Assumption 3.2 and set qiso := supMiso, where
Miso := {q ∈ [2,∞[ : −∇ · µ∇ + 1 : H1,q

Γ → H̆−1,q
Γ is a topologial isomorphism}.Then −∇ · µ∇ satis�es maximal paraboli regularity on H̆−1,q

Γ for all q ∈ [2, q∗iso[,where by r∗ we denote the Sobolev onjugated index of r, i.e.
r∗ =

{
∞, if r ≥ d,(

1
r
− 1

d

)−1
, if r ∈ [1, d[ .Remark 5.5. i) If Ω, Γ ful�ll Assumption 3.2 a), then qiso > 2, see [54℄ andalso [53℄.ii) It is lear by Lax-Milgram and interpolation (see Proposition 3.4 and Corol-lary 3.5) that Miso is the interval [2, qiso[ or [2, qiso]. Moreover, it an beonluded from a deep theorem of Sneiberg [82℄ (see also [10, Lemma 4.16℄)that the seond ase annot our.In a �rst step we show



20Theorem 5.6. Let Ω,Γ ful�ll Assumption 4.1. Then −∇ · µ∇ satis�es maximalparaboli regularity on H̆−1,q
Γ for all q ∈ [2,∞[.This will be a onsequene of the following lemma.Lemma 5.7. Let Ω,Γ satisfy Assumption 4.1. Then for all q ∈ [2,∞[ the set

{(−∇ · µ∇)is : s ∈ R} forms a strongly ontinuous group on H̆−1,q
Γ , satisfying theestimate(5.4) ‖(−∇ · µ∇)is‖L(H̆−1,q

Γ ) ≤ c e|s|ϑ, s ∈ R,for some ϑ ∈ [0, π
2
[.Moreover, we have the following resolvent estimate(5.5) ‖(−∇ · µ∇ + λ)−1‖L(H̆−1,q

Γ ) ≤
c

1 + |λ| , Reλ ≥ 0.Proof. We �rst note that Assumption 4.1 in partiular implies that the Dirihletboundary part ∂Ω\Γ has non-zero boundary measure. Thus, by Proposition 3.11 i),we may �x some ε > 0, suh that −∇ · µ∇− ε has a bounded H∞-alulus on Lq.Sine the funtions z 7→ (z + ε)is = (z + ε)1/2(z + ε)is(z + ε)−1/2, s ∈ R, and
z 7→ (z + ε+ λ)−1 = (z + ε)1/2(λ+ z + ε)−1(z + ε)−1/2, Reλ ≥ 0, are in H∞(Σφ) forall φ ∈ ]0, π[, one has the operator identities

(
−∇ · µ∇

)is
=

(
−∇ · µ∇

)1/2(−∇ · µ∇
)is(−∇ · µ∇

)−1/2
, s ∈ R,(5.6)and

(
−∇ · µ∇ + λ

)−1
=

(
−∇ · µ∇

)1/2(−∇ · µ∇ + λ
)−1(−∇ · µ∇

)−1/2
, Reλ ≥ 0,

(5.7)on Lq. Under Assumption 4.1 (−∇ · µ∇)1/2 is a topologial isomorphism between
Lq and H̆−1,q

Γ for every q ∈ [2,∞[, thanks to Theorem 4.3 and Theorem 4.4. Thus,one an estimate for every f ∈ Lq

‖(−∇ · µ∇)isf‖H̆−1,q
Γ

≤ ‖(−∇ · µ∇)1/2‖L(Lq,H̆−1,q
Γ )‖(−∇ · µ∇)is‖L(Lq)‖(−∇ · µ∇)−1/2‖L(H̆−1,q

Γ ,Lq)‖f‖H̆−1,q
Γ

.Sine Lq is dense in H̆−1,q
Γ , this inequality extends to all of H̆−1,q

Γ . Together withProposition 3.11 ii) this yields the estimate (5.4), whih also implies the groupproperty, see [4, Thm. III.4.7.1 and Cor. III.4.7.2℄.(5.5) is proved analogously to (5.4), only using (5.7) instead of (5.6) and the orre-sponding resolvent estimate in Lq, f. Proposition 3.8 v) (note that here −∇ · µ∇is ontinuously invertible). �It follows the proof of Theorem 5.6: By Theorems 4.3 and 4.4, H̆−1,q
Γ is an isomorphiimage of the UMD spae Lq and, hene, a UMD spae itself. Sine by Lemma 5.7the operator −∇ · µ∇ generates an analyti semigroup and has bounded imaginarypowers with the right bound, maximal paraboli regularity follows by the Dore-Venniresult [30℄.



21Now we intend to 'globalize' Theorem 5.6, in other words: We prove that −∇ · µ∇satis�es maximal paraboli regularity on H̆−1,q
Γ for suitable q if Ω, Γ satisfy onlyAssumption 3.2, i.e. if αK−, α(K− ∪ Σ) and α(K− ∪ Σ0) need only to be modelsets for the onstellation around boundary points. Obviously, then the variety ofadmissible Ω's and Γ's inreases onsiderably, in partiular, Γ may have more thanone onneted omponent.5.1. Auxiliaries. We ontinue with some results whih in essene allow to restritdistributions to subdomains and, on the other hand, to extend them to a largerdomain � inluding the adequate boundary behavior.Lemma 5.8. Let Ω,Γ satisfy Assumption 3.2 and let Υ ⊆ Rd be open, suh that

Ω• := Ω ∩ Υ is also a Lipshitz domain. Furthermore, we put Γ• := Γ ∩ Υ and �xan arbitrary funtion η ∈ C∞
0 (Rd) with supp(η) ⊆ Υ. Then for any q ∈ ]1,∞[ wehave the following assertions.i) If v ∈ H1,q

Γ (Ω), then ηv|Ω• ∈ H1,q
Γ•

(Ω•) and the mapping
H1,q

Γ (Ω) ∋ v 7→ ηv|Ω• ∈ H1,q
Γ•

(Ω•)is ontinuous.ii) Let for any v ∈ L1(Ω•) the symbol ṽ indiate the extension of v to Ω by zero.Then the mapping
H1,q

Γ•
(Ω•) ∋ v 7→ η̃vhas its image in H1,q

Γ (Ω) and is ontinuous.Proof. For the proof of both items we will employ the following well known setinlusion (f. [29, Ch. 3.8℄)(5.8) (∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ) ⊆ ∂Ω• ⊆ (∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ).i) First one observes that the multipliation with η ombined with the restri-tion is a ontinuous mapping fromH1,q
Γ (Ω) intoH1,q(Ω•). Thus, we only haveto show that the image is ontained in H1,q

Γ•
(Ω•), whih, in turn, is su�ientto show for elements of the dense subset

{
v|Ω : v ∈ C∞(Rd), supp(v) ∩ (∂Ω \ Γ) = ∅

}only. By (5.8) we get for suh funtions
supp(ηv) ∩ (∂Ω• \ Γ•) ⊆ supp(η) ∩ supp(v) ∩

[(
(∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ)

)
\

(
Γ ∩ Υ

)]
.Sine (Ω ∩ ∂Υ) ∩ (Γ ∩ Υ) = ∅, we see

(
(∂Ω ∩ Υ) ∪ (Ω ∩ ∂Υ)

)
\

(
Γ ∩ Υ

)
=

(
(∂Ω ∩ Υ) \ (Γ ∩ Υ)

)
∪

(
(Ω ∩ ∂Υ) \ (Γ ∩ Υ)

)

=
(
(∂Ω \ Γ) ∩ Υ

)
∪ (Ω ∩ ∂Υ).This, together with supp(η) ⊆ Υ, yields

supp(ηv) ∩ (∂Ω• \ Γ•) ⊆ supp(η) ∩ supp(v) ∩
(
(∂Ω \ Γ) ∩ Υ

)
= ∅.



22 ii) Let v ∈ C∞(Rd) with supp(v) ∩ (∂Ω• \ Γ•) = ∅. Sine by the left hand sideof (5.8) we have
∂Ω• \ Γ• ⊇ (∂Ω ∩ Υ) \ Γ• = Υ ∩ (∂Ω \ Γ),it follows supp(v) ∩

(
Υ ∩ (∂Ω \ Γ)

)
= ∅. Combining this with supp(η) ⊆ Υ,we obtain

supp(ηv) ∩ (∂Ω \ Γ) = supp(ηv) ∩
(
Υ ∩ (∂Ω \ Γ

)
= ∅,so ηv|Ω ∈ H1,q

Γ (Ω). Furthermore, it is not hard to see that ‖ηv‖H1,q(Ω) ≤
cη‖v‖H1,q(Ω•), where the onstant cη is independent from v. Thus, the asser-tion follows, sine {v|Ω• : v ∈ C∞(Rd), supp(v) ∩ (∂Ω• \ Γ•) = ∅} is densein H1,q

Γ•
(Ω•) and H1,q

Γ (Ω) is losed in H1,q(Ω). �Lemma 5.9. Let Ω, Γ, Υ, η, Ω• and Γ• be as in the preeding lemma, but assume
η to be real valued. Denote by µ• the restrition of the oe�ient funtion µ to Ω•and assume v ∈ H1,2

Γ (Ω) to be the solution of
−∇ · µ∇v = f ∈ H̆−1,2

Γ (Ω).Then the following holds true:i) For all q ∈ ]1,∞[ the anti-linear form
f• : w 7→ 〈f, η̃w〉H̆−1,2

Γ(where η̃w again means the extension of ηw by zero to the whole Ω) is wellde�ned and ontinuous on H1,q′

Γ•
(Ω•), whenever f is an anti-linear form from

H̆−1,q
Γ (Ω). The mapping H̆−1,q

Γ (Ω) ∋ f 7→ f• ∈ H̆−1,q
Γ•

(Ω•) is ontinuous.ii) If we denote the anti-linear form
H1,2

Γ•
(Ω•) ∋ w 7→

∫

Ω•

vµ•∇η · ∇w dxby Iv, then u := ηv|Ω• satis�es
−∇ · µ•∇u = −µ•∇v|Ω• · ∇η|Ω• + Iv + f•.iii) For every q ≥ 2 and all r ∈ [2, q∗[ (q∗ denoting again the Sobolev onjugatedindex of q) the mapping(5.9) H1,q

Γ (Ω) ∋ v 7→ −µ•∇v|Ω• · ∇η|Ω• + Iv ∈ H̆−1,r
Γ•

(Ω•)is well de�ned and ontinuous.Proof. i) The mapping f 7→ f• is the adjoint to v 7→ η̃v whih maps by thepreeding lemma H1,q′

Γ•
(Ω•) ontinuously into H1,q′

Γ (Ω).ii) For every w ∈ H1,2
Γ•

(Ω•) we have
〈−∇ · µ•∇u, w〉H̆−1,2

Γ•
(Ω•) =

∫

Ω•

µ•∇(ηv) · ∇w dx

= −
∫

Ω•

w µ•∇v · ∇η dx +

∫

Ω•

vµ•∇η · ∇w dx +

∫

Ω

µ∇v · ∇(̃ηw) dx.(5.10) An appliation of the de�nitions of Iv and f• yields the assertion.



23iii) We regard the terms on the right hand side of (5.9) from left to right:
|∇η| ∈ L∞(Ω•) and |µ•∇v|Ω•| ∈ Lq(Ω•), onsequently µ•∇v|Ω• · ∇η|Ω• ∈
Lq(Ω•). This gives by Sobolev embedding and duality µ•∇v|Ω• · ∇η|Ω• ∈
(H1,r′(Ω•))

′ →֒ H̆−1,r
Γ•

(Ω•). On the other hand, we have v ∈ H1,q
Γ (Ω) →֒

Lr(Ω). Thus, onerning Iv, we an estimate
|〈Iv, w〉H̆−1,r

Γ•
(Ω•)| ≤ ‖v‖Lr(Ω•) ‖µ‖L∞(Ω;L(Cd)) ‖∇η‖L∞(Ω•) ‖w‖H1,r′

Γ•
(Ω•)

,what implies the assertion. �Remark 5.10. It is the lak of integrability for the gradient of v (see the ounterex-ample in [35, Ch. 4℄) together with the quality of the needed Sobolev embeddingswhih limits the quality of the orretion terms. In the end it is this e�et whihprevents the appliability of the loalization proedure in Subsetion 5.2 in higherdimensions � at least when one aims at a q > d.Remark 5.11. If v ∈ L2(Ω) is a regular distribution, then v• is the regular distri-bution (ηv)|Ω• .Lemma 5.12. Let in the terminology of Lemma 5.9 χ ∈ C∞(Rd) be a funtion with
supp(χ) ⊆ Υ and χ ≡ 1 in a neighborhood of supp(η). Furthermore, for q ∈ ]1,∞[,we de�ne for every f ∈ H̆−1,q

Γ•
(Ω•) the element f • ∈ H̆−1,q

Γ (Ω) by 〈f •, ψ〉H̆−1,q
Γ (Ω) :=

〈f, (χψ)|Ω•〉H̆−1,q
Γ•

(Ω•), ψ ∈ H1,q′

Γ (Ω). (The de�nition is justi�ed by Lemma 5.8.) Theni) For every f ∈ H̆−1,q
Γ•

(Ω•) one has f • ∈ H̆−1,q
Γ (Ω), and the mapping

H̆−1,q
Γ•

(Ω•) ∋ f 7→ f • ∈ H̆−1,q
Γ (Ω)is ontinuous.ii) For any f ∈ H̆−1,q

Γ (Ω) one has the identity (
f•

)•
= ηf ∈ H̆−1,q

Γ (Ω).iii) If v ∈ H1,2
Γ (Ω) and −∇ · µ•∇(ηv|Ω•) ∈ H̆−1,q

Γ•
(Ω•), then

(
−∇ · µ•∇(ηv|Ω•)

)•
= −∇ · µ∇(ηv) ∈ H̆−1,q

Γ (Ω).Proof. i) The mapping f 7→ f • is the adjoint to H1,q′

Γ (Ω) ∋ v 7→ (χv)|Ω• whihats ontinuously into H1,q′

Γ•
(Ω•), see Lemma 5.8.ii) We only need to prove the assertion for elements f ∈ Lq(Ω), beause Lq(Ω)is dense in H̆−1,q

Γ (Ω) and the mappings H̆−1,q
Γ (Ω) ∋ f 7→

(
f•

)• ∈ H̆−1,q
Γ (Ω)and H̆−1,q

Γ (Ω) ∋ f 7→ ηf ∈ H̆−1,q
Γ (Ω) are both ontinuous. For f ∈ Lq(Ω) theassertion follows diretly from the de�nitions of f• and f •.iii) For any ψ ∈ H1,q′

Γ (Ω) we have
〈(
−∇ · µ•∇(ηv|Ω•)

)•
, ψ

〉
H̆−1,q

Γ (Ω)
=

〈
−∇ · µ•∇(ηv|Ω•), (χψ)|Ω•

〉
H̆−1,q

Γ•
(Ω•)

=

∫

Ω•

µ•∇(ηv) · ∇(χψ) dx =

∫

Ω

µ∇(ηv) · ∇(χψ) dx

=

∫

Ω

µ∇(ηv) · ∇ψ dx = 〈−∇ · µ∇(ηv), ψ〉H̆−1,q
Γ (Ω),beause η ≡ 0 on Ω \ Υ and χ ≡ 1 on supp(η). �



245.2. Core of the proof of Theorem 5.4. We are now in the position to start theproof of Theorem 5.4. We �rst note that in any ase the operator −∇ · µ∇ admitsmaximal paraboli regularity on the Hilbert spae H̆−1,2
Γ , sine its negative generatesan analyti semigroup on this spae by Proposition 3.8, f. Remark 5.2 iii). Thus,de�ning

MMR := {q ≥ 2 : −∇ · µ∇ admits maximal regularity on H̆−1,q
Γ }and qMR := supMMR, yields qMR ≥ 2. In the same way as for qiso and usingLemma 5.3, we see by interpolation thatMMR is {2} or an interval with left endpoint

2.Our aim is to show that in fat qMR ≥ q∗iso, so we assume that qMR < q∗iso. The mainstep towards a ontradition is ontained in the following lemma.Lemma 5.13. Let Ω, Γ, Υ, η, Ω•, Γ•, µ• be as before. Assume that −∇ · µ•∇satis�es maximal paraboli regularity on H̆−1,q
Γ•

(Ω•) for all q ∈ [2,∞[ and that −∇ ·
µ∇ satis�es maximal paraboli regularity on H̆−1,q

Γ (Ω) for some q ∈ [2, qiso[. If
r ∈ [q, q∗[ and G ∈ Ls(J ; H̆−1,r

Γ (Ω)) →֒ Ls(J ; H̆−1,q
Γ (Ω)), then the unique solution

V ∈W 1,s(J ; H̆−1,q
Γ (Ω)) ∩ Ls(J ; domH̆−1,q

Γ (Ω)(−∇ · µ∇)) of(5.11) V ′ −∇ · µ∇V = G, V (T0) = 0,even satis�es
ηV ∈W 1,s(J ; H̆−1,r

Γ (Ω)) ∩ Ls(J ; domH̆−1,r
Γ (Ω)(−∇ · µ∇)).Proof. V ∈ Ls(J ; domH̆−1,q

Γ (Ω)(−∇ · µ∇)) implies, due to our supposition q ∈ [2, qiso[and Remark 5.5 ii), V ∈ Ls(J ;H1,q
Γ (Ω)). Of ourse, equation (5.11) is to be read asfollows: For almost all t ∈ J it holds −∇·µ∇

(
V (t)

)
= G(t)−V ′(t), where V ′ is thederivative in the sense of H̆−1,q

Γ -valued distributions. Hene, Lemma 5.9 ii) impliesfor almost all t ∈ J(5.12) (V ′(t))• −∇ · µ•∇
(
(ηV (t))|Ω•

)
= −µ•∇V (t)|Ω• · ∇η|Ω• + IV (t) + (G(t))•.Sine by Lemma 5.9 i) the mapping H̆−1,r

Γ (Ω) ∋ f 7→ f• ∈ H̆−1,r
Γ•

(Ω•) is ontinuous,we have (
G(·)

)
• ∈ Ls(J ; H̆−1,r

Γ•
(Ω•)). Moreover, the property V ∈ Ls(J ;H1,q

Γ (Ω))and iii) of Lemma 5.9 assure −µ•∇V (·)|Ω• · ∇η|Ω• + IV (·) ∈ Ls(J ; H̆−1,r
Γ•

(Ω•)). Thus,the right hand side of (5.12) is ontained in Ls(J ; H̆−1,r
Γ•

(Ω•)) →֒ Ls(J ; H̆−1,q
Γ•

(Ω•)).Let us next inspet the term (V ′(t))•: Sine H̆−1,q
Γ (Ω) ∋ w 7→ w• ∈ H̆−1,q

Γ•
(Ω•) islinear and ontinuous, it equals (V•)

′(t). But by Remark 5.11 the funtion t 7→ V•(t)is idential to the funtion t 7→ (
ηV (t)

)
|Ω• . Hene, (

ηV (·)
)
|Ω• satis�es the followingequation in H̆−1,q

Γ•
(Ω•):(5.13) (

(ηV )|Ω•

)′
(t)−∇·µ•∇

(
(ηV (t))|Ω•

)
= −µ•∇V (t)|Ω• ·∇η|Ω• +IV (t) +(G(t))•.By supposition, −∇·µ•∇ ful�lls maximal paraboli regularity in H̆−1,r

Γ•
(Ω•). As theright hand side of (5.13) is in fat from Ls(J ; H̆−1,r

Γ•
(Ω•)), this implies that there is



25a unique funtion U ∈ W 1,s(J ; H̆−1,r
Γ•

(Ω•)) ∩ Ls(J ; domH̆−1,r
Γ•

(Ω•)(−∇ · µ•∇)) whihsatis�es U(T0) = 0 and(5.14) U ′(t) −∇ · µ•∇
(
U(t)

)
= −µ•∇V (t)|Ω• · ∇η|Ω• + IV (t) + (G(t))•as an equation in Ls(J ; H̆−1,r

Γ•
(Ω•)). However, this last equation an (by the em-bedding H̆−1,r

Γ•
(Ω•) →֒ H̆−1,q

Γ•
(Ω•)) also be read as an equation in Ls(J ; H̆−1,q

Γ•
(Ω•)).Sine the solution is unique in Ls(J ; H̆−1,q

Γ•
(Ω•)), (5.13) and (5.14) together imply

U =
(
ηV (·)

)
|Ω• and, onsequently,(5.15) (

V (·)
)
• =

(
ηV (·)

)
|Ω• ∈W 1,s(J ; H̆−1,r

Γ•
(Ω•))∩Ls(J ; domH̆−1,r

Γ•
(Ω•)(−∇·µ•∇)),see Remark 5.11.We now aim at a re-interpretation of this regularity in terms of the spaeW 1,s(J ; H̆−1,r

Γ (Ω))∩
Ls(J ; domH̆−1,r

Γ (Ω)(−∇ · µ∇)). Observe that (5.15) implies −∇ · µ•∇
((
ηV (·)

)
|Ω•

)
∈

Ls(J ; H̆−1,r
Γ•

(Ω•)). Applying Lemma 5.12 iii), this gives(5.16) −∇ · µ∇
(
ηV (·)

)
∈ Ls(J ; H̆−1,r

Γ (Ω)).Obviously, V ∈ Ls(J ;H1,q
Γ ) yields ηV ∈ Ls(J ;H1,q

Γ ), while r ∈ ]q, q∗[ implies theembedding H1,q
Γ →֒ Lr →֒ H̆−1,r

Γ . Hene, one obtains(5.17) ηV ∈ Ls(J ;H1,q
Γ ) →֒ Ls(J ; H̆−1,r

Γ ).Combining this with (5.16), we �nd
ηV (·) ∈ Ls(J ; domH̆−1,r

Γ (Ω)(−∇ · µ∇)).On the other hand, (5.15) implies
((
V (·)

)
•
)′ ∈ Ls(J ; H̆−1,r

Γ•
(Ω•)).By Lemma 5.12 i), we have ((

(V (·))•
)′)• ∈ Ls(J ; H̆−1,r

Γ (Ω)). But as before ((
(V (·))•

)′)•equals ((
(V (·))•

)•)′, whih, by Lemma 5.12 ii), is (
ηV (·)

)′. Summing up, we get
(
ηV (·)

)′ ∈ Ls(J ; H̆−1,r
Γ (Ω)).Taking into aount (5.17) again, this gives

ηV (·) ∈W 1,s(J ; H̆−1,r
Γ (Ω)),what proves the lemma. �Proof of Theorem 5.4. For every x ∈ Ω let Ξx ⊆ Ω be an open ube, ontaining x.Furthermore, let for any point x ∈ ∂Ω an open neighborhood be given aordingto the supposition of the theorem (see Assumption 3.2). Possibly shrinking thisneighborhood to a smaller one, one obtains a new neighborhood Υx, and a bi-Lipshitz, volume-preserving mapping φx from a neighborhood of Υx into Rd suhthat φx(Υx ∩ (Ω ∪ Γ)) = βK−, β(K− ∪ Σ) or β(K− ∪ Σ0) for some β = β(x) > 0.Obviously, the Ξx andΥx together form an open overing ofΩ. Let Ξx1 , . . . ,Ξxk

,Υxk+1
, . . . ,Υxlbe a �nite subovering and η1, . . . , ηl a C∞ partition of unity, subordinate to thissubovering. Set Ωj := Ξxj

= Ξxj
∩ Ω for j ∈ {1, . . . , k} and Ωj := Υxj

∩ Ω for
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j ∈ {k + 1, . . . , l}. Moreover, set Γj := ∅ for j ∈ {1, . . . , k} and Γj := Υxj

∩ Γ for
j ∈ {k + 1, . . . , l}.Denoting the restrition of µ to Ωj by µj, eah operator −∇ · µj∇ satis�es max-imal paraboli regularity in H̆−1,q

Γj
(Ωj) for all q ∈ [2,∞[ and all j, aording toTheorem 5.6.Assuming now qMR < q∗iso, we may hoose some q ∈ [2, qiso[ with qMR < q∗. In orderto see this, we �rst observe that(5.18) p ≤ q ⇐⇒ p∗ ≤ q∗holds, whenever p∗ <∞. Setting q = max{2, dq̃/(d+q̃)} for some q̃ ∈ ]qMR, q

∗
iso[, this,together with (dq̃/(d+q̃))∗ = q̃, yields immediately that q∗ = max{2∗, q̃} ≥ q̃ > qMR.Furthermore, again by (5.18), we have q < qiso, sine q∗ < q∗iso and �nally q ≥ 2is guaranteed by the hoie of q. Having the so hosen q at hand, we take some

r ∈ ]max{q, qMR}, q∗[, whih is possible due to q < q∗. Now, let G ∈ Ls(J ; H̆−1,r
Γ ) begiven. Then by Lemma 5.13 the unique solution V ∈ W 1,s(J ; H̆−1,q

Γ ) ∩ Ls(J ;H1,q
Γ )of (5.11) satis�es ηjV ∈W 1,s(J ; H̆−1,r

Γ (Ω)) ∩ Ls(J ; domH̆−1,r
Γ (Ω)(−∇ · µ∇)) for every

j. This implies maximal paraboli regularity for −∇·µ∇ on H̆−1,r
Γ , in ontraditionto r > qMR. Thus we have qMR ≥ q∗iso and the proof is �nished. �Remark 5.14. Note that Theorem 5.4 already yields maximal regularity of −∇·µ∇on H̆−1,q

Γ for all q ∈ [2, 2∗[ without any additional information on domH̆−1,q
Γ

(−∇·µ∇)nor on domH̆−1,q
Γj

(Ωj)
(−∇ · µj∇).In the 2-d ase this already implies maximal regularity for every q ∈ [2,∞[. Takinginto aount Remark 5.5 i), without further knowledge on the domains we get in the3-d ase every q ∈ [2, 6 + ε[ and in the 4-d ase every q ∈ [2, 4 + ε[, where ε dependson Ω,Γ, µ.5.3. The operator A. Next we arry over the maximal paraboli regularity result,up to now proved for −∇·µ∇ on the spaes H̆−1,q

Γ , to the operator A and to a muhbroader lass of distribution spaes. For this we need the following perturbationresult.Lemma 5.15. Suppose q ≥ 2, ς ∈ ]
1− 1

q
, 1

] and κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfyAssumption 3.2. If we de�ne the mapping Q : domH̆−ς,q
Γ

(−∇ · µ∇) → H̆−ς,q
Γ by

〈Qψ, ϕ〉H−ς,q
Γ

:=

∫

Γ

κ ψ ϕdσ, ϕ ∈ H ς,q′

Γ ,then Q is well de�ned and ontinuous. Moreover, it is relatively bounded with respetto −∇·µ∇, when onsidered on the spae H̆−ς,q
Γ , and the relative bound may be takenarbitrarily small.



27Proof. One has for every ψ ∈ domH̆−ς,q
Γ

(−∇ · µ∇) →֒ domH̆−1,q
Γ

(−∇ · µ∇) →֒ H1,2
Γ

‖Qψ‖H̆−ς,q
Γ

= sup
‖ϕ‖

H
ς,q′

Γ

=1

|〈Qψ, ϕ〉H̆−ς,q
Γ

| = sup
‖ϕ‖

H
ς,q′

Γ

=1

∣∣∣∣
∫

Γ

κψϕ dσ

∣∣∣∣

≤ ‖κ‖L∞(Γ,dσ)‖ψ‖Lq(∂Ω,dσ) sup
‖ϕ‖

H
ς,q′

Γ

=1

‖ϕ‖Lq′(∂Ω,dσ),(5.19)where the last fator is �nite aording to Theorem 3.6. Let us �rst onsider thease q = 2. Then (5.19) an be further estimated (see (3.6))
≤ c‖ψ‖L2(∂Ω,dσ) ≤ c‖ψ‖1/2

H1,2
Γ

‖ψ‖1/2
L2 ≤ c‖ψ‖3/4

H1,2
Γ

‖ψ‖1/4

H̆−1,2
Γ

≤ ε‖ψ‖H1,2
Γ

+
c

ε3
‖ψ‖H̆−1,2

Γby Young's inequality. Taking into aount domH̆−1,2
Γ

(−∇ · µ∇) = H1,2
Γ , this provesthe ase q = 2. Conerning the ase q > 2, we make use of the embedding(5.20)

domH̆−ς,q
Γ

(
−∇ · µ∇

)
→֒ domH̆−1,q

Γ

(
−∇ · µ∇

)
→֒ Cα(Ω) for some α = α(q) > 0,if q > d (see [50℄). Thus, for q > d + 1

2
the term ‖ψ‖Lq(∂Ω,dσ) in (5.19) an beestimated by (σ(∂Ω))

1
q ‖ψ‖C(Ω), what shows, due to (5.20), the asserted ontinuityof Q, if q > d + 1

2
. Sine domH̆−ς,q

Γ

(
−∇ · µ∇

)
→֒ Cα(Ω) →֒ C(Ω) is ompat and

C(Ω) →֒ H̆−ς,q
Γ is ontinuous and injetive, we may apply Ehrling's lemma (see [89,Ch. I, Prop. 7.3℄) and estimate

‖ψ‖C(Ω) ≤ ε‖ψ‖dom
H̆

−ς,q
Γ

(−∇·µ∇) + β(ε)‖ψ‖H̆−ς,q
Γ

, ψ ∈ domH̆−ς,q
Γ

(−∇ · µ∇),for arbitrary ε > 0. Together with (5.19) this yields the seond assertion for q > d+1
2
.Conerning the remaining ase q ∈ ]

2, d+ 1
2

], we employ the representation(5.21) H̆−1,q
Γ = [H̆−1,2d

Γ , H̆−1,2
Γ ]θ with θ =

1

q
· 2d− q

d− 1(see Corollary 3.5) and will invest the knowledge domH̆−1,2d
Γ

(−∇ · µ∇) →֒ L∞ and
domH̆−1,2

Γ
(−∇ · µ∇) = H1,2

Γ . Clearly, (5.21) implies(5.22) domH̆−1,q
Γ

(−∇ · µ∇) = [domH̆−1,2d
Γ

(−∇ · µ∇), domH̆−1,2
Γ

(−∇ · µ∇)]θ.Taking q = 2d in (5.20) and ombining this with the embedding Cα →֒ Lr for any�nite r, (5.22) yields
domH̆−1,q

Γ
(−∇ · µ∇) →֒ [Lr, H1,2

Γ ]θ = H
θ, 2

θ
−δ(r,θ)

Γ ,where δ(r, θ) ց 0 for r → ∞, see Proposition 3.4. If q ∈ ]
2, d+ 1

2

], then it is learfrom the de�nition of θ that θ ≥ 1
q
· d−

1
2

d−1
> 1

q
. On the other hand, one easily veri�es

2
θ
∈

]
q, q 2(d−1)

d− 1
2

]. Thus, hoosing r large enough, one gets for every q ∈
]
2, d + 1

2

] aontinuous embedding
domH̆−1,q

Γ
(−∇ · µ∇) →֒ H

1
q

d− 1
2

d−1
,q

Γ ,



28what gives a ompat embedding(5.23) domH̆−ς,q
Γ

(−∇ · µ∇) →֒ domH̆−1,q
Γ

(−∇ · µ∇) →֒ H
1
q

d− 3
4

d−1
,q

Γ .Due to Theorem 3.6, the term ‖ψ‖Lq(∂Ω,dσ) in (5.19) may be estimated by c‖ψ‖
H

1
q

d− 3
4

d−1
,q

Γ

.But, in view of the ompatness of the mapping (5.23) and the ontinuity of theinjetion H 1
q

d− 3
4

d−1
,q

Γ →֒ H̆−ς,q
Γ one may also here apply Ehrling's lemma and estimate

‖ψ‖
H

1
q

d− 3
4

d−1
,q

Γ

≤ ε‖ψ‖dom
H̆

−ς,q
Γ

(−∇·µ∇) + β(ε)‖ψ‖H̆−ς,q
Γfor ε arbitrarily small. Together with (5.19) this shows the assertion in the lastase. �Theorem 5.16. Suppose q ≥ 2, κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfy Assumption 3.2.i) If ς ∈ ]

1 − 1
q
, 1

], then domH̆−ς,q
Γ

(−∇ · µ∇) = domH̆−ς,q
Γ

(A).ii) If ς ∈ ]
1− 1

q
, 1

] and −∇·µ∇ satis�es maximal paraboli regularity on H̆−ς,q
Γ ,then A also does.iii) The operator A satis�es maximal paraboli regularity on L2. If κ ≥ 0, then

A satis�es maximal paraboli regularity on Lp for all p ∈ ]1,∞[.iv) Suppose that −∇ · µ∇ satis�es maximal paraboli regularity on H̆−1,q
Γ . Then

A satis�es maximal paraboli regularity on any of the interpolation spaes
[L2, H̆−1,q

Γ ]θ, θ ∈ [0, 1],or
(L2, H̆−1,q

Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ .Let κ ≥ 0 and p ∈ ]1,∞[ in ase of d = 2 or p ∈ [
(

1
2

+ 1
d

)−1
,∞[ if d ≥ 3.Then A also satis�es maximal paraboli regularity on any of the interpolationspaes(5.24) [Lp, H̆−1,q

Γ ]θ, θ ∈ [0, 1],or(5.25) (Lp, H̆−1,q
Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ .Proof. i) By Lemma 5.15, if ψ ∈ domH̆−ς,q(−∇ · µ∇), then Qψ is well de�nedand one has the equality Aψ = −∇·µ∇ψ+Qψ by de�nition of A. Thus, theassertion follows from the relative boundedness with relative bound smallerthan 1, shown in Lemma 5.15, and a lassial perturbation theorem, see [64,Ch. IV.1℄.ii) The assertion is also proved by means of a � highly nontrivial � pertur-bation theorem (see [67℄), whih states that, if X is a UMD spae and adensely de�ned, losed operator B satis�es maximal paraboli regularity on

X, then B + B0 also satis�es maximal paraboli regularity on X, provided
domX(B0) ⊇ domX(B) and B0 is relatively bounded with respet to B witharbitrarily small relative bound. In our ase, H−1,q

Γ is � as the dual of the



29losed subspae H1,q′

Γ of the UMD spae H1,q′ � itself a UMD spae, see [4,Ch. III.4.5℄ and [8, Ch. 6.1℄. H−1,q
Γ is the isometri image of H̆−1,q

Γ under themapping whih assigns to f ∈ H̆−1,q
Γ the linear form H1,q′

Γ ∋ ψ → 〈f, ψ〉H̆−1,q
Γ

.Hene, H̆−1,q
Γ is also a UMD spae. Finally, H̆−ς,q

Γ is a omplex interpolationspae between the UMD spae H̆−1,q
Γ and the UMD spae Lq (see Remark5.17 below), and onsequently also a UMD spae. Hene, an appliation ofLemma 5.15 yields the result.iii) The �rst assertion follows from Proposition 3.8 ii) and Remark 5.2 iii). Theseond is shown in [49, Thm. 7.4℄.iv) Under the given onditions on p, we have the embedding Lp →֒ H̆−1,2

Γ . Thus,the assertion follows from the preeding points and Lemma 5.3. �Remark 5.17. The interpolation spaes [Lp, H−1,q
Γ ]θ (θ ∈ [0, 1]) and (Lp, H−1,q

Γ )θ,s(θ ∈ [0, 1], s ∈ ]1,∞[) are haraterized in [48℄, see in partiular Remark 3.6. Identi-fying eah f ∈ Lq with the anti-linear form Lq
′ ∋ ψ →

∫
Ω
fψ dx and using again theretration/oretration theorem with the oretration from Corollary 3.5, one easilyidenti�es the interpolation spaes in (5.24) and (5.25). In partiular, this yields[

Lq0 , H̆−1,q1
Γ

]
θ

= H̆−θ,q
Γ if θ 6= 1 − 1

q
.Corollary 5.18. Let Ω and Γ satisfy Assumption 3.2. The operator −A generatesanalyti semigroups on all spaes H̆−1,q

Γ if q ∈ [2, q∗iso[ and on all the interpolationspaes ourring in Theorem 5.16, there q also taken from [2, q∗iso[. Moreover, if
κ ≥ 0, the following resolvent estimates are valid:(5.26) ‖(A+ 1 + λ)−1‖L(H̆−1,q

Γ ) ≤
cq

1 + |λ| , Reλ ≥ 0.Proof. The �rst assertion is implied by Theorem 5.4 and Remark 5.2 ii), whih gives(5.26) for λ ∈ γ+ Σκ with a �xed γ ∈ R and �xed κ > π/2. On the other hand, theresolvent of A0 is ompat (see Proposition 3.8), what, due to Lemma 5.15, remainstrue also for A, see [64, Ch. IV.1℄. Sine no λ with Reλ ≤ 0 is an eigenvalue,
sup

λ∈{λ:Reλ≥0}\(γ+Σκ)

(|λ| + 1)‖(A+ 1 + λ)−1‖L(H̆−1,q
Γ ) <∞,beause {λ : Reλ ≥ 0} \ (γ + Σκ) is ompat. �6. Nonlinear paraboli equationsIn this hapter we will apply maximal paraboli regularity for the treatment ofquasilinear paraboli equations whih are of the (formal) type (1.1). Conerning allthe ourring operators we will formulate preise requirements in Assumption 6.11below.The outline of the hapter is as follows: First we give a motivation for the hoie ofthe Banah spae we will regard (1.1)/(1.2) in. Afterwards we show that maximalparaboli regularity, ombined with regularity results for the ellipti operator, allows



30to solve this problem. Below we will transform (1.1)/(1.2) to a problem(6.1) {
u′(t) + B

(
u(t)

)
u(t) = S(t, u(t)), t ∈ J,

u(T0) = u0.To give the reader already here an idea what properties of the operators −∇ ·
G(u)µ∇ and of the orresponding Banah spae are required, we �rst quote theresult on existene and uniqueness for abstrat quasilinear paraboli equations (dueto Clément/Li [24℄ and Prüss [77℄) on whih our subsequent onsiderations will base.Proposition 6.1. Suppose that B is a losed operator on some Banah spae Xwith dense domain D, whih satis�es maximal paraboli regularity on X. Supposefurther u0 ∈ (X,D)1− 1

s
,s and B : J × (X,D)1− 1

s
,s → L(D,X) to be ontinuous with

B = B(T0, u0). Let, in addition, S : J × (X,D)1− 1
s
,s → X be a Carathéodory mapand assume the following Lipshitz onditions on B and S:

(B) For every M > 0 there exists a onstant CM > 0, suh that for all t ∈ J

‖B(t, u)−B(t, ũ)‖L(D,X) ≤ CM ‖u−ũ‖(X,D)
1− 1

s ,s
if ‖u‖(X,D)

1− 1
s ,s
, ‖ũ‖(X,D)

1− 1
s ,s

≤ M.

(R) S(·, 0) ∈ Ls(J ;X) and for eah M > 0 there is a funtion hM ∈ Ls(J), suhthat
‖S(t, u) − S(t, ũ)‖X ≤ hM(t) ‖u− ũ‖(X,D)

1− 1
s ,sholds for a.a. t ∈ J , if ‖u‖(X,D)

1− 1
s ,s
, ‖ũ‖(X,D)

1− 1
s ,s

≤M .Then there exists T ∗ ∈ J , suh that (6.1) admits a unique solution u on ]T0, T
∗[satisfying

u ∈W 1,s(]T0, T
∗[;X) ∩ Ls(]T0, T

∗[;D).Remark 6.2. Up to now we were free to onsider omplex Banah spaes. Butthe ontext of equations like (1.1) requires real spaes, in partiular in view of thequality of the superposition operator F . Therefore, from this moment on we usethe real versions of the spaes. In partiular, H−ς,q
Γ is now understood as the dualof the real spae H ς,q′

Γ and learly an be identi�ed with the set of anti-linear formson the omplex spae H ς,q′

Γ that take real values when applied to real funtions.Fortunately, the property of maximal paraboli regularity is maintained for therestrition of the operator A to the real spaes in ase of a real funtion κ, as Athen ommutes with omplex onjugation.We will now give a motivation for the hoie of the Banah spae X we will use later.It is not hard to see that X has � in view of the appliability of Proposition 6.1 �to ful�ll the subsequent demands:a) The operators A, or at least the operators −∇ · µ∇, de�ned in (3.8), mustsatisfy maximal paraboli regularity on X.b) As in the lassial theory (see [68℄, [44℄, [84℄ and referenes therein) quadratigradient terms of the solution should be admissible for the right hand side.) The operators −∇·G(u)µ∇ should behave well onerning their dependeneon u, see ondition (B) above.



31d) X has to ontain ertain measures, supported on Lipshitz hypersurfaes in
Ω or on ∂Ω in order to allow for surfae densities on the right hand sideor/and for inhomogeneous Neumann onditions.The ondition in a) is assured by Theorem 5.4 and Theorem 5.16 for a great varietyof Banah spaes, among them andidates for X. Requirement b) suggests that oneshould have domX(−∇ · µ∇) →֒ H1,q

Γ and L q
2 →֒ X. Sine −∇ · µ∇ maps H1,q

Γ into
H−1,q

Γ , this altogether leads to the neessary ondition(6.2) L
q
2 →֒ X →֒ H−1,q

Γ .Sobolev embedding shows that q annot be smaller than the spae dimension d.Taking into aount d), it is lear that X must be a spae of distributions whih (atleast) ontains surfae densities. In order to reover the desired property domX(−∇·
µ∇) →֒ H1,q

Γ from the neessary ondition in (6.2), we make for all what follows thisgeneralAssumption 6.3. There is a q > d, suh that −∇ · µ∇ + 1 : H1,q
Γ → H−1,q

Γ is atopologial isomorphism.Remark 6.4. For q ≥ 4 Assumption 6.3 is generially false in ase of mixed bound-ary onditions, see [81℄ for the famous ounterexample. Moreover, even in the Dirih-let ase, when the domain Ω has only a Lipshitz boundary or the oe�ient funtion
µ is onstant within layers, one annot expet q ≥ 4, see [60℄ and [34℄. This is thereason, why all our following onsiderations are restrited to two or three dimensions.Of ourse, these are the most relevant ones when treating real world appliations.In Setion 7 we will present examples for domains Ω, oe�ient funtions µ andDirihlet boundary parts Ω \ Γ, for whih Assumption 6.3 is ful�lled.In all what follows the spae dimension d is either 2 or 3 and from now on we �xone q ∈ ]d, 4[ for whih Assumption 6.3 holds.As a �rst step we will show that Assumption 6.3 arries over to a broad lass ofmodi�ed operators.Lemma 6.5. Assume that ξ is a real valued, uniformly ontinuous funtion on Ωthat admits a lower bound ξ > 0. Then the operator −∇·ξµ∇+1 also is a topologialisomorphism between H1,q

Γ and H−1,q
Γ .Proof. We identify ξ with its (unique) ontinuous ontinuation to the losure Ω of

Ω. Furthermore, we observe that for any oe�ient funtion ω the inequality(6.3) ‖∇ · ω∇‖L(H1,q
Γ ,H−1,q

Γ ) ≤ ‖ω‖L∞(Ω;L(Rd))holds true. Next, by Assumption 6.3 and Corollary 5.18 it is lear that
sup
y∈Ω

‖
(
−∇·ξ(y)µ∇+1

)−1‖L(H−1,q
Γ ,H1,q

Γ ) ≤
1

ξ
sup
y∈Ω

‖
(
−∇·µ∇+(ξ(y))−1

)−1‖L(H−1,q
Γ ,H1,q

Γ ) =: γis �nite. Let for any x ∈ Ω a ball Bx around x be given, suh that(6.4) γ sup
y∈Bx∩Ω

|ξ(x) − ξ(y)|‖µ‖L∞(Ω;L(Rd)) < 1.



32Then, we hoose a �nite subovering Bx1 , . . . ,Bxk
of Ω and a partition of unity

η1, . . . , ηk subordinate to this subovering, and we set Λx := Bx ∩ Ω.Assume that f ∈ H−1,q
Γ ⊆ H−1,2

Γ and v ∈ H1,2
Γ is a solution of −∇ · ξµ∇v + v = f .Then a alulation, ompletely analogous to (5.10) (hoose there Υ so big that

Ω ⊆ Υ) shows that the funtion u := ηjv satis�es the equation(6.5) −∇ · ξµ∇u+ u = ηjf − ξµ∇v · ∇ηj + Ijin H−1,2
Γ , where Ij is the distribution w 7→

∫
Ω
vξµ∇ηj · ∇w dx. Then applyingLemma 5.9 iii) with the same 'big' Υ, we get that the right hand side of (6.5) isfrom H−1,q

Γ , sine f ∈ H−1,q
Γ . If we de�ne the funtion ξj on Ω by
ξj(y) =

{
ξ(y), if y ∈ Λxj

ξ(xj), elsewhere in Ω,then u = ηjv satis�es besides (6.5) also the equation
−∇ · ξjµ∇u+ u = ηjf − ξµ∇v · ∇ηj + Ij ,beause ξj = ξ on the support of u. But we have, aording to (6.3) and (6.4)

∥∥(
−∇ · ξjµ∇ + 1 − (−∇ · ξ(xj)µ∇ + 1)

)(
−∇ · ξ(xj)µ∇ + 1

)−1∥∥
L(H−1,q

Γ )

≤ ‖ −∇ · ξjµ∇ + 1 − (−∇ · ξ(xj)µ∇ + 1)‖L(H1,q
Γ ,H−1,q

Γ )‖(−∇ · ξ(xj)µ∇ + 1)−1‖L(H−1,q
Γ ,H1,q

Γ )

≤ γ sup
y∈Λxj

|ξ(xj) − ξ(y)|‖µ‖L∞(Ω;L(Rd)) < 1.Thus, by a lassial perturbation result (see [64, Ch. IV.1℄), the operator−∇·ξjµ∇+

1 also provides a topologial isomorphism between H1,q
Γ and H−1,q

Γ . Hene, for every
j we have ηjv ∈ H1,q

Γ , and, hene, v ∈ H1,q
Γ . So the assertion is implied by the openmapping theorem. �In this spirit, one ould now suggest X := H−1,q

Γ to be a good hoie for the Banahspae, but in view of ondition (R) the right hand side of (6.1) has to be a on-tinuous mapping from an interpolation spae (domX(A), X)1− 1
s
,s into X. Chosen

X := H−1,q
Γ , for elements ψ ∈ (domX(A), X)1− 1

s
,s = (H1,q

Γ , H−1,q
Γ )1− 1

s
,s the expres-sion |∇ψ|2 annot be properly de�ned and, if so, will not lie inH−1,q

Γ in general. Thisshows that X := H−1,q
Γ is not an appropriate hoie, but we will see that X := H−ς,q

Γ ,with ς properly hosen, is.Lemma 6.6. Put X := H−ς,q
Γ with ς ∈ [0, 1[ \ {1

q
, 1 − 1

q
}. Theni) For every τ ∈

]
1+ς
2
, 1

[ there is a ontinuous embedding (X, domX(−∇ ·
µ∇))τ,1 →֒ H1,q

Γ .ii) If ς ∈ [d
q
, 1], then X has a predual X∗ = H ς,q′

Γ whih admits the ontinuous,dense injetions H1,q′

Γ →֒ X∗ →֒ L( q
2
)′ that by duality learly imply (6.2).Furthermore, H1,q

Γ is a multiplier spae for X∗.



33Proof. i) −∇ · µ∇ satis�es resolvent estimates(6.6) ‖
(
−∇ · µ∇ + 1 + λ

)−1‖L(Y ) ≤
c

1 + λ
, λ ∈ [0,∞[ ,if Y = H−1,q

Γ or Y = Lq, see Corollary 5.18. In view of (3.2) then (6.6) alsoholds for X. This enables us to de�ne frational powers for −∇ · µ∇ + 1 oneah of the ourring spaes. Aording to (3.4) and Assumption 6.3 one has
H−ς,q

Γ = [H−1,q
Γ , H1,q

Γ ] 1−ς
2

= [H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇ + 1)] 1−ς

2

→֒ domH−1,q
Γ

((−∇ · µ∇ + 1)̺),if ̺ ∈ ]
0, 1−ς

2

[, see [85, Ch. 1.15.2℄. Thus, (−∇ · µ∇+ 1)̺ ∈ L(H−ς,q
Γ , H−1,q

Γ ),if ̺ ∈ ]
0, 1−ς

2

[. Consequently, we an estimate
‖(−∇ · µ∇ + 1)̺−1‖L(H−ς,q

Γ ,H1,q
Γ )

≤ ‖(−∇ · µ∇ + 1)̺‖L(H−ς,q
Γ ,H−1,q

Γ )‖(−∇ · µ∇ + 1)−1‖L(H−1,q
Γ ,H1,q

Γ ) <∞.Clearly, this means domH−ς,q
Γ

(
(−∇·µ∇+1)1−̺) →֒ H1,q

Γ . Putting τ := 1−̺,this implies
(
H−ς,q

Γ , domH−ς,q
Γ

(−∇ · µ∇ + 1)
)
τ,1

→֒ domH−ς,q
Γ

(
(−∇ · µ∇ + 1)τ

)
→֒ H1,q

Γfor τ ∈
]

1+ς
2
, 1

[, see [85, Ch. 1.15.2℄.ii) The �rst assertion is lear by Sobolev embedding. The seond follows fromknown multiplier results, see [52, Ch. 1.4℄ or [72℄. �Next we will onsider requirement ), see ondition (B) in Proposition 6.1.Lemma 6.7. Let q be a number from Assumption 6.3 and let X be a Banah spaewith predual X∗ that admits the ontinuous and dense injetions(6.7) H1,q′

Γ →֒ X∗ →֒ L( q
2
)′ .i) If ξ ∈ H1,q is a multiplier on X∗, then domX(−∇·µ∇) →֒ domX(−∇·ξµ∇).ii) If H1,q is a multiplier spae for X∗, then the (linear) mapping H1,q ∋ ξ 7→

−∇ · ξµ∇ ∈ L(domX(−∇ · µ∇), X) is well de�ned and ontinuous.Proof. The supposition q > d ≥ 2 and (6.7) imply the existene of a ontinuousand dense injetion H1,2
Γ →֒ X∗. Thus, it is not hard to see that ψ belongs to

domX(−∇ · µ∇) i� the linear form
ϕ 7→

∫

Ω

∇ψ · µ∇ϕ dxis ontinuous on H1,2
Γ , when H1,2

Γ is equipped with the X∗ topology. We denote theset H1,2
Γ ∩ {ϕ ∈ X∗ : ‖ϕ‖X∗ = 1} by M. Assuming ψ ∈ domX(−∇ · µ∇), we an



34estimate
‖ −∇ · ξµ∇ψ‖X = sup

ϕ∈M

∣∣∣∣
∫

Ω

ξµ∇ψ · ∇ϕ dx

∣∣∣∣

≤ sup
ϕ∈M

∣∣∣∣
∫

Ω

∇ψ · µ∇(ξϕ) dx

∣∣∣∣ + sup
ϕ∈M

∣∣∣∣
∫

Ω

∇ψ · µϕ∇ξ dx

∣∣∣∣
≤ ‖ψ‖domX (−∇·µ∇) sup

ϕ∈M
‖ξϕ‖X∗ + ‖ψ‖H1,q‖µ‖L∞‖ξ‖H1,q sup

ϕ∈M
‖ϕ‖

L(
q
2 )′ .(6.8)We observe that the supposition H1,q′

Γ →֒ X∗ together with Assumption 6.3 leads tothe ontinuous embedding domX(−∇ · µ∇) →֒ H1,q. Thus, (6.8) is not larger than
mξ ‖ψ‖domX (−∇·µ∇)+‖ξ‖H1,q‖µ‖L∞ Emb

(
domX(−∇·µ∇), H1,q

)
Emb(X∗, L

( q
2
)′)‖ψ‖domX(−∇·µ∇),where mξ denotes the norm of the multiplier on X∗ indued by ξ and Emb(·, ·)stands again for the orresponding embedding onstants.Assertion ii) also results from the estimates in the proof of i). �Corollary 6.8. If ξ additionally to the hypotheses of Lemma 6.7 i) has a positivelower bound, then

domX(−∇ · ξµ∇) = domX(−∇ · µ∇).Proof. Aording to Lemma 6.7 i) one has only to show domX(−∇ · ξµ∇) →֒
domX(−∇ · µ∇). By Lemma 6.5 we have domH−1,q

Γ
(−∇ · ξµ∇) = H1,q

Γ . Thus,one an apply Lemma 6.7 to the situation µ̃ = ξµ and ξ̃ = 1
ξ
. �Next we will show that funtions on ∂Ω or on a Lipshitz hypersurfae, whih belongto a suitable summability lass, an be understood as elements of the distributionspae H−ς,q

Γ .Theorem 6.9. Assume q ∈ ]1,∞[, ς ∈
]
1 − 1

q
, 1

[
\ {1

q
} and let Π, ̟ be as inTheorem 3.6. Then the adjoint trae operator (Tr)∗ maps Lq(Π) ontinuously into(

H ς,q′(Ω)
)′ →֒ H−ς,q

Γ .Proof. The result is obtained from Theorem 3.6 by duality. �Remark 6.10. Here we restrited the onsiderations to the ase of Lipshitz hy-persurfaes, sine this is the most essential insofar as it gives the possibility ofpresribing jumps in the normal omponent of the urrent j := G(u)µ∇u along hy-persurfaes where the oe�ient funtion jumps. This ase is of high relevane inview of applied problems and has attrated muh attention also from the numerialpoint of view, see e.g. [1℄, [19℄ and referenes therein.In fat, it is possible to inlude muh more general sets where distributional righthand sides live. For the identi�ation of (singular) measures as distribtions on lowerdimensional sets, see also [90, Ch. 4℄ and [61, Ch. VI.℄. We did not make expliituse of this here, beause at present we do not see diret appliations.From now on we �x one and for all a number ς ∈ ]
max{1− 1

q
, d
q
}, 1

[ and set for allwhat follows X := H−ς,q
Γ .



35Next we introdue the requirements on the data of problem (1.1)/(1.2).Assumption 6.11. Op) For all what follows we �x a number s > 2
1−ς .Su) There exists f ∈ C2(R), positive, with stritly positive derivative, suh that

F is the superposition operator indued by f .Ga) The mapping G : H1,q → H1,q is loally Lipshitz ontinuous.Gb) For any ball in H1,q there exists δ > 0, suh that G(u) ≥ δ for all u from thisball.Ra) The funtion R : J × H1,q → X is of Carathéodory type, i.e. R(·, u) ismeasurable for all u ∈ H1,q and R(t, ·) is ontinuous for a.a. t ∈ J .Rb) R(·, 0) ∈ Ls(J ;X) and for M > 0 there exists hM ∈ Ls(J), suh that
‖R(t, u) −R(t, ũ)‖X ≤ hM(t)‖u− ũ‖H1,q , t ∈ J,provided max(‖u‖H1,q , ‖ũ‖H1,q) ≤M .BC) b is an operator of the form b(u) = Q(b◦(u)), where b◦ is a (possibly nonlin-ear), loally Lipshitzian operator from C(Ω) into inself (see Lemma 5.15).Gg) g ∈ Lq(Γ).IC) u0 ∈ (X, domX(−∇ · µ∇))1− 1

s
,s.Remark 6.12. At the �rst glane the hoie of s seems indisriminate. The point is,however, that generially in appliations the expliit time dependene of the reationterm R is essentially bounded. Thus, in view of ondition Rb) it is justi�ed to take

s as any arbitrarily large number, whose magnitude needs not to be ontrolledexpliitely, see Example 7.5.Note that the requirement on G allows for nonloal operators. This is essential ifthe urrent depends on an additional potential governed by an auxiliary equation,what is usually the ase in drift-di�usion models, see [3℄, [39℄ or [80℄.The onditions Ra) and Rb) are always satis�ed if R is a mapping into Lq/2 withthe analog boundedness and ontinuity properties, see Lemma 6.6 ii).The estimate in (5.19) shows that Q in fat is well de�ned on C(Ω), therefore on-dition BC) makes sense, see also (5.20). In partiular, b◦ may be a superpositionoperator, indued by a C1(R) funtion. Let us emphasize that in this ase the in-duing funtion needs not to be positive. Thus, non-dissipative boundary onditionsare inluded.Finally, the ondition IC) is an 'abstrat' one and hardly to verify, beause onehas no expliit haraterization of (X, domX(−∇ ·µ∇))1− 1
s
,s at hand. Nevertheless,the ondition is reprodued along the trajetory of the solution by means of theembedding (5.1).In order to solve (1.1)/(1.2), we will onsider instead (6.1) with(6.9) B(u) := −∇ · G(u)

F ′(u)
µ∇and the right hand side S(6.10) S(t, u) :=

R(t, u)

F ′(u)
+

(
∇ 1

F ′(u)

)
·
(
G(u)µ∇u

)
− Q(b◦(u))

F ′(u)
+

(Tr)∗g

F ′(u)
,



36seeking the solution in the spae W 1,s(J ;X) ∩ Ls(J ; domX(−∇ · µ∇)).Remark 6.13. Let us explain this reformulation: as is well known in the theoryof boundary value problems, the boundary ondition (1.2) is inorporated by in-troduing the boundary terms −κb◦(u) and g on the right hand side. In order tounderstand both as elements from X, we write Q(b◦(u)) and (Tr)∗g, see Lemma 5.15and Theorem 6.9. On the other hand, our aim was to eliminate the nonlinearity un-der the time derivation: we formally di�erentiate (F(u))′ = F ′(u)u′ and afterwardsdivide the whole equation by F ′(u). Finally, we employ the equation(6.11) − 1

F ′(u)
∇ · G(u)µ∇u = −∇ · G(u)

F ′(u)
µ∇u−

(
∇ 1

F ′(u)

)
·
(
G(u)µ∇u

)
,whih holds for any u ∈ domX(−∇ · G(u)µ∇) = domX(−∇ · µ∇) as an equation in

X, ompare Lemma 6.6 ii) and Corollary 6.8.Theorem 6.14. Let d ∈ {2, 3}, let Assumption 6.3 be satis�ed and assume that thedata of the problem satisfy Assumption 6.11. Then (6.1) has a loal in time, uniquesolution in W 1,s(J ;X)∩Ls(J ; domX(−∇·µ∇)), provided that B and S are given by(6.9) and (6.10), respetively.Proof. First of all we note that, due to Op), 1 − 1
s
> 1+ς

2
. Thus, if τ ∈]1+ς

2
, 1 − 1

s
[by a well known interpolation result (see [85, Ch. 1.3.3℄) and Lemma 6.6 i) we have(6.12) (X, domX(−∇ · µ∇))1− 1

s
,s →֒ (X, domX(−∇ · µ∇))τ,1 →֒ H1,q.Hene, by IC), u0 ∈ H1,q. Consequently, due to the suppositions on F and G, boththe funtions G(u0)

F ′(u0)
and F ′(u0)

G(u0)
belong to H1,q and are bounded from below by apositive onstant. Denoting −∇ · G(u0)

F ′(u0)
µ∇ by B, Corollary 6.8 gives domX(−∇ ·

µ∇) = domX(B). This implies u0 ∈ (X, domX(B))1− 1
s
,s. Furthermore, the sode�ned B has maximal paraboli regularity on X, thanks to (5.24) in Theorem 5.16with p = q.Condition (B) from Proposition 6.1 is implied by Lemma 6.7 ii) in ooperation withLemma 6.6 ii), the fat that the mapping H1,q ∋ φ 7→ G(φ)

F ′(φ)
∈ H1,q is boundedlyLipshitz and (6.12).It remains to show that the 'new' right hand side S satis�es ondition (R) fromProposition 6.1. We do this for every term in (6.10) separately, beginning from theleft: onerning the �rst, one again uses (6.12), the asserted onditions Ra) andRb) on R, the loal Lipshitz ontinuity of the mapping H1,q ∋ u 7→ 1

F ′(u)
∈ H1,qand the fat that H1,q is a multiplier spae over X. The seond term an be treatedin the same spirit, if one takes into aount the embedding Lq/2 →֒ X and appliesHölder's inequality. The assertion for the last two terms results from (6.12), theassumptions BC)/Gg), Lemma 5.15 and Theorem 6.9. �Remark 6.15. Aording to (6.11) it is lear that the solution u satis�es the equa-tion(6.13) F ′(u)u′ −∇ · G(u)µ∇u+Q(b◦(u)) = R(t, u) + (Tr)∗g



37as an equation in X. Note that, if R takes its values only in the spae Lq/2 →֒ X,then � in the light of Lemma 5.15 � the ellipti operators inorporate the boundaryonditions (1.2) in a generalized sense, see [40, Ch. II.2℄ or [23, Ch. 1.2℄.The remaining problem is to identify F ′(u)u′ with (
F(u)

)′ where the prime has to beunderstood as the distributional derivative with respet to time. This identi�ation(tehnially rather involved) is proved in [59℄ for the ase where the Banah spae
X equals Lq/2, but an be arried over to the ase X = H−ς,q

Γ � word by word.We will now show that the solution u is Hölder ontinuous simultaneously in spaeand time, even more:Corollary 6.16. There exist α, β > 0 suh that the solution u of (6.13) belongs tothe spae Cβ(J ;H1,q
Γ (Ω)) →֒ Cβ(J ;Cα(Ω)).Proof. During this proof we write for short D := domX(B). A straightforwardappliation of Hölder's inequality yields the embedding
W 1,s(J ;X) →֒ Cδ(J ;X) with δ = 1 − 1

s
.Take λ from the interval ]1+ς

2

(
1− 1

s

)−1
, 1

[, whih is nonempty in view of Op). UsingLemma 6.6 i) and the reiteration theorem for real interpolation, one an estimate
‖u(t1) − u(t2)‖H1,q

|t1 − t2|δ(1−λ)
≤ c

‖u(t1) − u(t2)‖(X,D)
λ(1− 1

s ),1

|t1 − t2|δ(1−λ)
≤ c

‖u(t1) − u(t2)‖(X,(X,D)
1− 1

s ,s
)λ,1

|t1 − t2|δ(1−λ)

≤ c
‖u(t1) − u(t2)‖1−λ

X

|t1 − t2|δ(1−λ)
‖u(t1) − u(t2)‖λ(X,D)

1− 1
s ,s

≤ c
(‖u(t1) − u(t2)‖X

|t1 − t2|δ
)1−λ (

2 sup
t∈J

‖u(t)‖(X,D)
1− 1

s ,s

)λ
.

�Finally, we will have a loser look at the semilinear ase. It turns out that one anahieve satisfatory results here without Assumption 6.3, and thus also without theorresponding restrition on the spae dimension, at least when the nonlinear termdepends only on the funtion itself and not on its gradient.Theorem 6.17. Assume that −∇ · µ∇ satis�es maximal paraboli regularity on
H−1,q

Γ for some q > d. Suppose further that the funtion R : J × C(Ω) → H−1,q
Γis of Carathéodory type, i.e. R(·, u) is measurable for all u ∈ C(Ω) and R(t, ·) isontinuous for a.a. t ∈ J and, additionally, obeys the following ondition: R(·, 0) ∈

Ls(J ;H−1,q
Γ ) and for all M > 0 there exists hM ∈ Ls(J), suh that

‖R(t, u) −R(t, ũ)‖H−1,q
Γ

≤ hM(t)‖u− ũ‖C(Ω), t ∈ J.Then the equation
u′ −∇ · µ∇u = R(t, u), u(T0) = 0admits exatly one loal in time solution.



38Proof. It is lear that R satis�es the abstrat onditions on the reation term, posedin Proposition 6.1, if we an show [H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇)]θ →֒ C(Ω) for somelarge θ ∈ ]0, 1[. This we will do: using the embedding domH−1,q

Γ
(−∇ · µ∇) →֒ Cαfor some positive α (see [50℄) and the reiteration theorem for omplex interpolation,one an write

[H−1,q
Γ , domH−1,q

Γ
(−∇ · µ∇)]θ =

[
[H−1,q

Γ , domH−1,q
Γ

(−∇ · µ∇)] 1
2
, domH−1,q

Γ
(−∇ · µ∇)

]
2θ−1

→֒
[
[H−1,2

Γ , H1,2
Γ ] 1

2
, Cα

]
2θ−1

= [L2, Cα]2θ−1.But based on the results of Triebel [86℄, in [49, Ch. 7℄ it is shown that this last spaeontinuously embeds into another Hölder spae, if θ is hosen large enough. �7. ExamplesIn this setion we desribe geometri on�gurations for whih our Assumption 6.3holds true and we present onrete examples of mappings G and reation terms R�tting into our framework. Another part of this setion is then devoted to the speialgeometry of two rossing beams that is interesting, sine this is not a domain withLipshitz boundary, but it falls into the sope of our theory, as we will show.7.1. Geometri onstellations. While our results in Setions 4 and 5 on thesquare root of −∇ · µ∇ and maximal paraboli regularity are valid in the generalgeometri framework of Assumption 3.2, we additionally had to impose Assump-tion 6.3 for the treatment of quasilinear equations in Setion 6. Here we shortlydesribe geometri onstellations, in whih this additional ondition is satis�ed.Let us start with the observation that the 2-d ase is overed by Remark 5.5 i).Admissible three-dimensional settings may be desribed as follows.Proposition 7.1. Let Ω ⊆ R3 be a bounded Lipshitz domain. Then there exists a
q > 3 suh that −∇ · µ∇ + 1 is a topologial isomorphism from H1,q

Γ onto H−1,q
Γ , ifone of the following onditions is satis�ed:i) Ω has a Lipshitz boundary. Γ = ∅ or Γ = ∂Ω. Ω◦ ⊆ Ω is another domainwhih is C1 and whih does not touh the boundary of Ω. µ|Ω◦ ∈ BUC(Ω◦)and µ|Ω\Ω◦

∈ BUC(Ω \ Ω◦).ii) Ω has a Lipshitz boundary. Γ = ∅. Ω◦ ⊆ Ω is a Lipshitz domain, suh that
∂Ω◦ ∩Ω is a C1 surfae and ∂Ω and ∂Ω◦ meet suitably (see [35℄ for details).
µ|Ω◦ ∈ BUC(Ω◦) and µ|Ω\Ω◦

∈ BUC(Ω \ Ω◦).iii) Ω is a three dimensional Lipshitzian polyhedron. Γ = ∅. There are hyper-planes H1, . . . ,Hn in R3 whih meet at most in a vertex of the polyhedronsuh that the oe�ient funtion µ is onstantly a real, symmetri, positivede�nite 3 × 3 matrix on eah of the onneted omponents of Ω \ ∪nl=1Hl.Moreover, for every edge on the boundary, indued by a hetero interfae Hl,the angles between the outer boundary plane and the hetero interfae do notexeed π and at most one of them may equal π.iv) Ω is a onvex polyhedron, Γ ∩ (∂Ω \ Γ) is a �nite union of line segments.
µ ≡ 1.



39v) Ω ⊆ R3 is a prismati domain with a triangle as basis. Γ equals either onehalf of one of the retangular sides or one retangular side or two of thethree retangular sides. There is a plane whih intersets Ω suh that theoe�ient funtion µ is onstant above and below the plane.vi) Ω is a bounded domain with Lipshitz boundary. Additionally, for eah x ∈
Γ∩(∂Ω\Γ) the mapping φx de�ned in Assumption 3.2 is a C1-di�eomorphismfrom Υx onto its image. µ ∈ BUC(Ω).The assertions i) and ii) are shown in [35℄, while iii) is proved in [34℄ and iv) is aresult of Dauge [25℄. Reently, v) was obtained in [56℄ and vi) will be published ina forthoming paper. �Corollary 7.2. The assertion remains true, if there is a �nite open overing Υ1, . . . ,Υlof Ω, suh that eah of the pairs Ωj := Υj ∩Ω, Γj := Γ∩Υj ful�lls one of the pointsi) � vi).Proof. The orollary an be proved by means of Lemma 5.9 and Lemma 5.8. �Remark 7.3. Proposition 7.1 together with Corollary 7.2 provides a huge zoo ofgeometries and boundary onstellations, for whih −∇ · µ∇ provides the requiredisomorphism. We intend to omplete this in the future.7.2. Nonlinearities and reation terms. The most ommon ase is that where

F is the exponential or the Fermi-Dira distribution funtion F1/2 given by
F1/2(t) :=

2√
π

∫ ∞

0

√
s

1 + es−t
dsand G also is a Nemytzkii operator of the same type. In phase separation problems,a rigorous formulation as a minimal problem for the free energy reveals that G = F ′is appropriate. This topi has been thoroughly investigated in [78℄, [79℄, [42℄, and[43℄, see also [41℄ and [46℄. It is noteworthy that in this ase G

F ′ ≡ 1 (we onjeturethat this is not aidental) and the evolution equation (1.1) leads not to a quasilinearequation (6.1) but to one whih is only semilinear. We onsider this as a hint forthe adequateness of our treatment of the paraboli equations.As a seond example we present a nonloal operator arising in the di�usion ofbateria; see [21℄, [22℄ and referenes therein.Example 7.4. Let η be a ontinuously di�erentiable funtion on R whih is boundedfrom above and below by positive onstants. Assume ϕ ∈ L2(Ω) and de�ne
G(u) := η

(∫

Ω

uϕ dx

)
, u ∈ H1,q.Now we give two examples for mappings R.Example 7.5. Assume that [T0, T [ = ∪jl=1 [tl, tl+1[ is a (disjoint) deomposition of

[T0, T [ and let for l ∈ {1, . . . , j}
Zl : R × Rd → R



40be a funtion whih satis�es the following ondition: For any ompat set K ⊆ Rthere is a onstant LK suh that for any a, ã ∈ K, b, b̃ ∈ Rd the inequality
|Zl(a, b) − Zl(ã, b̃)| ≤ LK |a− ã|R

(
|b|2

Rd + |b̃|2
Rd

)
+ LK |b− b̃|Rd

(
|b|Rd + |b̃|Rd

)holds. We de�ne a mapping Z : [T0, T [ × R × Rd → R by setting
Z(t, a, b) := Zl(a, b), if t ∈ [tl, tl+1[.The funtion Z de�nes a mapping R : [T0, T [ × H1,q → Lq/2 in the following way:If ψ is the restrition of an R-valued, ontinuously di�erentiable funtion on Rd to

Ω, then we put
R(t, ψ)(x) = Z(t, ψ(x), (∇ψ)(x)) for x ∈ Ωand afterwards extend R by ontinuity to the whole set [T0, T [ ×H1,q.Example 7.6. Assume ι : R → ]0,∞[ to be a ontinuously di�erentiable funtion.Furthermore, let T : H1,q → H1,q be the mapping whih assigns to v ∈ H1,q thesolution ϕ of the ellipti problem (inluding boundary onditions)(7.1) −∇ · ι(v)∇ϕ = 0.If one de�nes

R(v) = ι(v)|∇(T (v))|2,then, under reasonable suppositions on the data of (7.1), the mapping R satis�esAssumption Ra).This seond example omes from a model whih desribes eletrial heat ondution;see [5℄ and the referenes therein.7.3. An unorthodox example: two rossing beams. Finally, we want to presentin some detail the example of two beams, mentioned in the introdution, whih isnot a domain with Lipshitz boundary, and, hene, not overed by former theories.Consider in R3 the set
B⋊⋉ := ]−10, 10[×]−1, 1[×]−2, 0[ ∪ ]−1, 1[×]−10, 10[×]0, 2[ ∪ ]−1, 1[×]−1, 1[×{0},together with a 3 × 3 matrix µ1, onsidered as the oe�ient matrix on the �rstbeam, and another 3 × 3 matrix µ2, onsidered as the oe�ient funtion on theother beam. Both matries are assumed to be real, symmetri and positive de�nite.If one de�nes the oe�ient funtion µ as µ1 on the �rst beam, and as µ2 on theother, then, due to Proposition 7.1 iii),

−∇ · µ∇ : H1,q
0 → H−1,qprovides a topologial isomorphism for some q > 3, if one an show that B⋊⋉ is aLipshitz domain. In fat, we will show more, namely:Lemma 7.7. B⋊⋉ ful�lls Assumption 3.2.Proof. For all points x ∈ ∂Ω the existene of a orresponding neighborhood Υx anda mapping Φx an be dedued easily, exept for the points x from the set

Sing := {(−1,−1, 0), (−1, 1, 0), (1,−1, 0), (1, 1, 0)}.



41In fat, for all points x ∈ B⋊⋉ \ Sing there is a neighborhood Υx, suh that either
B⋊⋉∩Υx or Υx \B⋊⋉ is onvex and, hene, a domain with Lipshitz boundary. Thus,these points an be treated as in Remark 3.3.Exemplarily, we aim at a suitable transformation in a neighborhood of the point
(1,−1, 0); the onstrution for the other three points is � mutatis mutandis � thesame. For doing so, we �rst shift B⋊⋉ by the vetor (−1, 1, 0), so that the transformedpoint of interest beomes the origin. Now we apply the transformation φN on R3that is given in Figure 3. The following is straighforward to verify:
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Figure 3. Cut through B⋊⋉ + (−1, 1, 0) at a plane y = δ (for δ > 0small) and the transformation φN

• Both transformations oinide on the plane {x : z = x} and thus togetherde�ne a globally bi-Lipshitz mapping φN : R3 → R3, whih, additionally, isvolume-preserving.
• The intersetion of φN

(
B⋊⋉ + (−1, 1, 0)

) with a su�iently small, paraxialube εK around 0 equals the set
{x : −ε < x < 0, −ε < y < ε, −ε < z < 0}∪{x : 0 ≤ x < ε, 0 < y < ε, −ε < z < 0}.(To prove the latter, note that the y-omponent is left invariant under φN and that
φN ats in the plane y = 0 as follows: the vetor (0, 1) is mapped onto (−1, 0) andthe vetor (−1, 0) onto (0,−1). Finally, the vetor (1, 0) is left invariant.) Next weintrodue the mapping φ△ whih is de�ned as the linear mapping 


2 1 0

−1 0 0
0 0 1


on the set {x : −x < y} and as the identity on the set {x : −x ≥ y}, see Figure 4.One diretly veri�es that 


2 1 0

−1 0 0
0 0 1


 ats as the identity on the set {x : −x =

y}; thus φ△ in fat is a bi-Lipshitz, volume-preserving mapping from R3 onto itself.After this transformation the resulting objet, interseted with a su�iently smallparaxial ube εK, equals the onvex set
{x : −ε < x < ε, 0 < y < ε,−ε < z < 0}.
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Figure 4. Cut through φN

(
B⋊⋉ + (−1, 1, 0)

) at a plane z = −δ in aneighborhood of 0 (δ > 0 su�iently small)Here again Remark 3.3 applies, what �nishes the proof. �8. Conluding RemarksRemark 8.1. The reader may have asked himself why we restrited the onsider-ations to real, symmetri oe�ient funtions µ. The answer is twofold: �rst, weneed at all osts Gaussian estimates for our tehniques and it is known that theseare not available for omplex oe�ients in general, see [11℄ and also [26℄. Addi-tionally, Proposition 4.8 also rests on this supposition. On the other hand, in theappliations we have primarly in mind this ondition is satis�ed.Remark 8.2. Under the additional Assumption 6.3, Theorem 5.4 implies maximalparaboli regularity for −∇ · µ∇ on H−1,q
Γ for every q ∈ [2,∞[, as in the 2-d ase.Besides, the question arises whether the limitation for the exponents, aused by theloalization proedure, is prinipal in nature or may be overome when applyingalternative ideas and tehniques (f. Theorem 4.4). We do not know the answer atpresent.Remark 8.3. We onsidered here only the ase of one single paraboli equation,but everything an be arried over in a straightforward way to the ase of diagonalsystems; 'diagonal' in this ase means that the funtion G is allowed to depend onthe vetor u = (u1, . . . , un) of solutions and the right hand side also. In the samespirit one an treat triagonal systems.Remark 8.4. Inspeting Proposition 6.1, one easily observes that in fat an addi-tional t-dependene of the funtion G would be admissible. We did not arry thisout here for the sake of tehnial simpliity.Remark 8.5. In (1.2) we restrited our setting to the ase where the Dirihletboundary ondition is homogeneous. It is straightforward to generalize this to thease of inhomogeneous Dirihlet onditions by splitting o� the inhomogeneity, see



43[40, Ch. II.2℄ or [23, Ch. 1.2℄, see also [59℄ where this has been arried out in detailin the ase of paraboli systems.Remark 8.6. If one knows a priori that the right hand side of (1.1) depends Hölderontinuously on the time variable t, then one an use other loal existene anduniqueness results for abstrat paraboli equations, see e.g. [69℄ for details. In thisase the solution u is even strongly di�erentiable in the spae X (with ontinu-ous derivative), what may lead to a better justi�ation of time disretization then,ompare [9℄ and referenes therein.Remark 8.7. Let us expliitely mention that Assumption 6.3 is not always ful�lledin the 3-d ase. First, there is the lassial ounterexample of Meyers, see [74℄,a simpler (and somewhat more striking) one is onstruted in [34℄, see also [35℄.The point, however, is that not the mixed boundary onditions are the obstrutionbut a somewhat 'irregular' behavior of the oe�ient funtion µ in the inner of thedomain. If one is onfronted with this, spaes with weight may be the way out.Remark 8.8. In two and three spae dimensions one an give the following simpli-fying haraterization for a set Ω ∪ Γ to be regular in the sense of Gröger, i.e. tosatisfy Assumption 3.2 a), see [57℄:If Ω ⊆ R2 is a bounded Lipshitz domain and Γ ⊆ ∂Ω is relatively open, then Ω∪Γis regular in the sense of Gröger i� ∂Ω \ Γ is the �nite union of (non-degenerate)losed ar piees.In R3 the following haraterization an be proved, heavily resting on a deep resultof Tukia [87℄:If Ω ⊂ R3 is a Lipshitz domain and Γ ⊂ ∂Ω is relatively open, then Ω∪Γ is regularin the sense of Gröger i� the following two onditions are satis�ed:i) ∂Ω \ Γ is the losure of its interior (within ∂Ω).ii) for any x ∈ Γ ∩ (∂Ω \ Γ) there is an open neighborhood U ∋ x and a bi-Lipshitz mapping κ : U ∩ Γ ∩ (∂Ω \ Γ) → ]−1, 1[.Referenes[1℄ L. Adams, Z. Li, The immersed interfae/multigrid methods for interfae problems, SIAM J.Si. Comput. 24 (2002) 463�479.[2℄ H. Amann, Paraboli evolution equations and nonlinear boundary onditions, J. Di�er. Equa-tions 72 (1988), no. 2, 201�269.[3℄ H. Amann, Nonhomogeneous linear and quasilinear ellipti and paraboli boundary valueproblems, in: H.-J. Shmeisser et al. (eds.), Funtion spaes, di�erential operators and non-linear analysis, Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9�126.[4℄ H. Amann, Linear and quasilinear paraboli problems, Birkhäuser, Basel-Boston-Berlin, 1995.[5℄ S.N. Antontsev, M. Chipot, The thermistor problem: Existene, smoothness, uniqueness,blowup, SIAM J. Math. Anal. 25 (1994) 1128�1156.[6℄ W. Arendt, Semigroup properties by Gaussian estimates, RIMS Kokyuroku 1009 (1997) 162�180.[7℄ W. Arendt, A.F.M. terElst, Gaussian estimates for seond order ellipti operators with bound-ary onditions, J. Operator Theory 38 (1997) 87�130.
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