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Valley control by linearly polarized laser pulses:
example of WSe2
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Electrons at the band edges of materials are endowed with a valley index, a quantum number locating the band edge
within the Brillouin zone. An important question is then how this index may be controlled by laser pulses, with current
understanding that it couples exclusively via circularly polarized light. Employing both tight-binding and state-of-the-
art time dependent density function theory, we show that on femtosecond time scales valley coupling is a much more
general effect. We find that two time separated linearly polarized pulses allow almost complete control over valley excita-
tion, with the pulse time difference and polarization vectors emerging as key parameters for valley control. Our findings
highlight the possibility of controlling coherent electronic excitation by successive femtosecond laser pulses, and offer a
route towards valleytronics in two-dimensional materials. ©2022Optica PublishingGroup under the terms of theOpticaOpen

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.458991

1. INTRODUCTION

A prominent role in the electronic properties of many two-
dimensional materials is played by the valley degree of freedom
[1–3]. Controlling this degree of freedom promises a novel valley
based electronics (“valleytronics”), and thus over the last decade,
intense research activity has centered on the search for valley con-
trol, by both material modification via complex deformations
[4–6] as well as by external fields such as light [7–12]. This latter
route is exemplified by the celebrated spin–valley coupling of cer-
tain strong spin–orbit transition metal dichalcogenides, in which
the helicity of circularly polarized light determines the spin char-
acter and valley at which charge is excited. This physics arises from
the fact that valleys are endowed with Berry curvature of opposite
sign at conjugate valleys [13], from which follows a valley selection
rule for the dipole matrix elements with circular light [7]. Such a
selection rule would, however, appear to rule out the possibility of
valley control by any other light waveform, e.g., linearly polarized
pulses, sharply circumscribing the application to this field of the
rich control over light waveforms that modern lasers provide.

What we wish to show here is that, contrary to this common
belief, ultrafast pulses of linearly polarized light can provide almost
complete valley control; we show that overlapping and temporally
separated pulses of orthogonal linear polarization excite either
at the K or K∗ valley, with the valley at which charge is excited
depending on the time separation and order of the two pulses.
In materials with spin–orbit split valley bands, this will lead to
spin–valley coupling.

We first establish and explore this effect through a minimal
two band tight-binding model, before employing sophisticated
time dependent density function theory (TD-DFT) calculations

to show that this effect can be observed in realistic simulations of
light–matter interaction in a two-dimensional material, with the
example of the transition metal dichalcogenide WSe2.

2. VALLEY CONTROL VIA LINEAR LIGHT

A minimal model for a two-dimensional semi-conductor with
valley structure is provided by gapped graphene [14]. This model
consists of the famous honeycomb lattice of graphene, but with
a sub-lattice symmetry breaking field applied such that at the K
and K∗ valleys one has a gap the size of which is controlled by the
field strength. Details of this standard model and our simulation
technique can be found in Section 1 of Supplement 1.

Gapped graphene, as for transition metal dichalcogenides, is
endowed with Berry curvature of opposite sign at the K and K∗

valleys. Application of a laser pulse of circularly polarized light σ±

will, therefore, excite charge at either the K or K∗ valley of the spec-
trum (we reproduce this standard result in Section 2 of Supplement
1). Here we wish to consider the response of this system to linear
light. A single linear pulse, which can be viewed as a superposition
of σ+ and σ− circularly polarized light, will evidently excite an
equal amount of charge at all valleys, and therefore cannot “valley
polarize” the material. We now show (Fig. 1) that two linear pulses
result in a very different, valley discriminating, response.

To that end, we consider two time separated pulses with
orthogonal linear polarization, as shown in Fig. 1(a). The first
of these pulses is polarized in the y direction with the second in
the x direction, with the carrier–envelope phase of both pulses
set to zero (changing this condition does not impact the results;
see Supplement 1). The resulting k-resolved excited charge is
displayed in Fig. 1(b). We see that rather than couple equally to
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Fig. 1. Valley selective excitation by linearly polarized light. Two temporally separated and orthogonally polarized linear light pulses, y - and x -polarized
pulses occurring at distinct times t1 and t2 as shown in (a) result in valley distinguishing charge excitation, with charge predominately excited at the K val-
ley as shown in (b). Reversing the order of the pulses inverts the valley populations, with excitation now at the K∗ valley (c), (d). The valley polarization
depends in an oscillatory way on the time separation of the pulses (e), as can be seen from the valley polarization (P+ − P−)/(P+ + P−) (with P+ and P−
the excited charge after the laser pulse at the K and K∗ valleys, respectively) plotted as a function of t2; even for significant time separation of the pulses, the
effect persists. (f )–(h) Corresponding valley excitation in momentum space for the points indicated in (e).

all valleys, as would be the case if a single linear pulse excited the
system, a significant valley polarization is observed with charge
excited predominately at the K valley. In contrast, almost no charge
is excited at K∗. If we now change the order in which we apply the
two orthogonally polarized pulses of light [see Figs. 1(c) and 1(d)],
it is now the K∗ valley that is excited in place of the K valley.

To probe the dependence of valley excitation on the time
separation between the two pulses, we consider a series of pulse
separations t2 − t1 and integrate the laser excited charge over
crystal momentum k to yield the charge excited at the K (+) and
K∗ (−) valleys, P±, with the “valley polarization” then given by
(P+ − P−)/(P+ + P−). This quantity encodes the valley response
of the system to light and takes on the values +1 and −1 for the
case of charge excited exclusively at the K and K ∗ valleys, while it is
equal to zero if there is no valley distinction in the response to light.
In Fig. 1(e) we show the valley polarization as a function of the
pulse envelope maximum for the second pulse, t2, with the pulse
envelope maximum of the first pulse, t1, held fixed. A significant
valley discriminating signal is seen that, moreover, oscillates as a
function of the time difference between pulses. For pulses that
are not significantly time separated, the valley response is close to
complete valley polarization, falling to about 25% polarization for
well-separated pairs of pulses (t2 ∼ 50 fs). The valley distinction
in the charge excitation is clearly revealed in Figs. 1(f )–1(h) in
which are displayed the k-resolved excited charge for a series of
representative times t2 of the second pulse [with the times indicated
in the valley polarization curve, Fig. 1(e)]. As can be seen, while
one valley is always substantially more excited than its conjugate
partner, increasing the delay between the first and second pulses
both reduces the valley contrast and at the same time results in
somewhat more complex patterns of charge excitation.

Thus far we have considered pulses with identical amplitude
and perfectly orthogonal polarization, and we now establish how
robust this physics is to non-orthogonal polarization vectors
between the pulses and non-equal vector potential amplitudes and
frequencies of the pulses. Without loss of generality, we can vary
pulse parameters only of the second pulse. Modification of the
second pulse amplitude shows that as it is reduced from that of the
first [indicated by the vertical dashed line in Fig. 2(a)], the valley
polarization is increasingly reduced, falling to zero as the second
pulse amplitude vanishes. In contrast, increasing the amplitude
of the second pulse results in an increase in valley contrast. This
occurs as modification of the amplitude of the vector potential of
the second pulse generates a reduction in amplitude of the valley
polarization oscillation, but also a phase shift as a function of time
difference. It is this second feature that is responsible for the sur-
prising increase in valley contrast at a fixed pulse time. In the inset
of Fig. 2(a) is shown the amplitude of the valley oscillation curve,
showing that this uniformly decreases as the two pulses become
unequal in vector potential amplitude, as one would expect.
Nevertheless, the valley contrast is seen to be robust to quite sub-
stantial changes in the amplitude of the second pulse. Frequency
differences between the two pulses of up to 10% [Fig. 2(c)] also
generate only minor reduction of valley polarization (the inset
again shows the change in amplitude of the valley oscillation
curve), with, however, significant changes in frequency almost
completely destroying the effect. Finally, in Fig. 2(c), we show the
result of changing the angle between the polarization vectors of
the two pulses. This strongly modifies the valley contrast, which
vanishes for co-linear polarization vectors (0 deg). Again, however,
for modest inaccuracies in orthogonality (up to 20 deg), the effect
is seen to be quite robust.
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Fig. 2. Stability of valley control with respect to pulse perturbations. Main panels: change in valley polarization for fixed time delay between pulses (t2 =

40 fs) upon pulse perturbation. Insets: change in the amplitude of the valley polarization oscillation with pulse perturbation. Deviations of the amplitude A0

and frequency of the second pulse from that of the first always reduce the amplitude of the valley polarization oscillation [insets in (a), (b)], but probing at a
fixed time may result in an unexpected increase in valley polarization (a). Deviation of the laser pulse polarization vectors from orthogonality always reduces
both valley polarization and amplitude (c).

Fig. 3. (a) Dynamics of charge excitation at K and K∗ valleys for the pair of linear pulses. (b) While the first pulse excites charge equally at both valleys, the
second linear pulse produces dramatically different dynamics with further excitation at K∗ but de-excitation at K. (c)–(j) The momentum resolved charge
excitation at each valley reinforces the fact that the K valley de-excites after the second pulse. (k) Valleys are distinguished most strongly at sub-gap frequen-
cies (value of the gap indicated by vertical red line), with a less pronounced dependence found for the vector potential amplitude. (l) The period of the valley
oscillation depends sensitively on the gap.

To gain more insight into the origin of this effect, we now
consider the valley charge [P±(t)] dynamics during laser exci-
tation; see Fig. 3(a). Under the action of the first pulse, charge is
excited equally at both K and K∗, rising to a maximum at the pulse
envelope peak before falling again during the pulse tail, behavior
typical of the charge dynamics induced by intense laser light in
many materials. During the second pulse, however, the charge
dynamics is unusual. While P− shows approximately a doubling of
the excited charge at K∗, roughly what one would expect from the
application of a second pulse, P+ shows less excited charge exists
at the K valley: for this valley, the second linearly polarized pulse
de-excites. In short: while the first pulse excites at both valleys, the
second pulse excites at one valley and de-excites at the conjugate
valley. To highlight this excitation/de-excitation, we show at vari-
ous points along the P± curves the k resolved excited charge; see
Figs. 3(c)–3(j).

Changing the frequency and amplitude of the both pulses [see
Fig. 3(k)] results in changes in the strength of the effect with the
amplitude of valley polarization oscillation [defined in the inset of
Fig. 3(l)] revealing a sub-gap maximum as a function of frequency,

highlighting the difference from the well-known selection rule for
circular light that would be a maximum at the frequency of the gap
[indicated by the vertical dashed line in Fig. 3(k)]. On the other
hand, an increase in vector potential amplitude A0 of both pulses
results in no significant change in polarization.

Finally, we consider the effect of changing the value of the
bandgap, for which we scale the pulse frequency such that its ratio
with the gap remains unchanged. In Fig. 3(l) is shown the period
of the valley polarization oscillation as a function of gap, revealing
that a decrease in gap magnitude results in a significant and non-
linear increase in the oscillation period. Evidently, the evolution of
the dynamical phase between the two linear pulses (which will have
a rate set by the gap) plays an important role, bringing out clearly
that it is the physics of wave function interference, i.e., coherent
phase physics, destructive and constructive at the different valleys,
that lies at the heart of this effect.

3. INTERFERENCE PHYSICS

To discover the origin of this interference effect, we now con-
sider the low energy approximation to the tight-binding model
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of gapped graphene, the Dirac–Weyl Hamiltonian. As shown in
Supplement 1, this Hamiltonian yields a propagation matrix for a
single linear pulse at the K or K∗ point given by

M(φi )=

(
C∗ −iT∗e−iνφi

−iTe iνφi C

)
, (1)

where φi is the polarization angle of linearly polarized light, and
ν =±1 labels the two conjugate valleys, K and K∗, respectively.
Constants C and T are given in Section 3 of Supplement 1 along
with a full derivation. The crucial feature of this propagation
matrix is that the off-diagonal blocks, which determine charge
excitation and de-excitation at K, contain the phases ±νφ. Thus
on charge excitation within a valley, quasi-particles acquire a valley
distinguishing phase combining the polarization angle of the
linear pulse (φi ) with a valley distinguishing sign ν =±1. For two
temporally separated linearly polarized pulses, this then leads to
an interference effect between these phases with the excited charge
after both pulses given by

|bc |
2
= 4|C |2|T|2 cos2(1gapδT + ν(φ2 − φ1)/2). (2)

This expression captures in a microcosm the remarkable val-
ley response found in the full dynamics using the tight-binding
Hamiltonian. For orthogonal pulses, (φ2 − φ1)= π/2, and so
the K (ν =+1) and K∗ (ν =−1) conduction occupations are
half a period out of phase: when K∗ is excited, K is de-excited
and vice versa, the basic result shown Fig. 1. The peculiar valley
switching on changing the order of the pulses is now also easily
explained: switching the order of the x - and y -polarized pulses
sends (φ2 − φ1) from π/2 to −π/2, thus switching the valley at
which charge is excited. Similarly, the cosine-like dependence on
the angle of the second pulse [see Fig. 2(c) inset] is also reproduced
by this result.

The valley discriminating response to pairs of orthogonally
polarized linear light thus arises from interference between the
excitations of each pulse, as quasi-particles, in the vicinity of the
valleys have phases controlled by both the pulse polarization vector
and the valley index. The physical origin of this phase is that the
Dirac–Weyl Hamiltonian

HDW =

(
−1gap/2 vF ke−νφk

vF ke−νφk 1gap/2

)
(3)

possesses a phase e±iνφk combining the valley index ν with the
azimuthal angle φk of the quasi-particle momentum. Excitations
by linearly polarized light in the vicinity of the valley centers then
acquire this phase as, from the Bloch acceleration theorem, their
trajectory is along lines of constant φk = φi . The difference of this
phase νφi at the K and K∗ valleys, which we denote1φvc, is plotted

in Fig. 4, showing as expected that in the vicinity of the valley
center, it takes on values close to zero for the x -polarized pulse and
close toπ for t he y -polarized pulse.

4. EXCITONS AND VALLEY PHASE DESTRUCTION

Thus far we have considered only single particle excitations, and we
now turn to the question of whether composite many-body excita-
tions (such as excitons and trions [15]) will inherit this phase struc-
ture. If we then write an exciton wave function as

|φX 〉 =
∑
vck

AX
vcc

†
ckc vk|0〉, (4)

we see that for excitations by linearly polarized light, all amplitudes
AX

vc will have the valley discriminating phase νφ, and, therefore, the
exciton wave function itself will bear an imprint of the polarization
vector via this phase. Whether intereference between the excitonic
fraction occurs is a more subtle question, requiring solution of a
TD many-body problem, which we do not consider here.

Evidently the requirement for coherent dynamics renders the
effect vulnerable to phase breaking, either from lattice dynam-
ics (with time constants of >50 fs [16]) or coulomb interaction
scattering (with much shorter time constants of 13 fs in graphene
[16] and of the order of 10 fs in MoS2 [17]). While these latter
time scales are fast, we note that the valley coherence we rely on has
previously been reported in experiment, but for the case of a single
linearly polarized pulse [18]. While exploration of the microscopic
physics of decoherence is beyond the scope of the present work, we
probe phase breaking via a phenomenological model of intervalley
scattering between conjugate valleys. As we show in Supplement 1,
a strong reduction in valley polarization by temporally separated
linearly polarized pulses would also drive a comparably strong (and
on the same time scale) reduction in valley polarization created by a
single circularly polarized pulse (via charge redistribution between
the two valleys); we thus believe that both these effects should be
comparably robust to intervalley scattering.

5. EFFECT IN WSe2

Any interference effect requires for its manifestation coherent
charge dynamics, which typically holds for the ultrafast femtosec-
ond scale pulses we consider here. However, any system in which
this effect may occur, such as transition metal dichalcogenides, will
possess TD wave functions with hugely more degrees of freedom
than the simple tight-binding model considered here, as well as a
considerably more complex band structure. All of this can alter the
coherent dynamics of the wave function and so modify (or destroy)
the interference physics that drives valley selection. This possibility

Fig. 4. Phase difference1φvc between K and K∗ valleys acquired upon excitation from valence to conduction by linearly polarized light. (a) Vector poten-
tials of the two linearly polarized light pulses; blue circles denote times at which1φvc is calculated. (b)1φvc plotted as a function of deviation from the valley
center, showing the K/K∗ phase difference to be nearly zero for the x -polarized pulse and nearlyπ for the y -polarized pulse.
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Fig. 5. Valley interference effect in WSe2. (a) Low energy band structure with blue (red) indicating spin up (down) bands. Employing pairs of orthogo-
nally polarized linear pulses [see (b)] of FWHM 8.2 fs, we find exactly the same phenomena of valley control by pulse separation [see (c)–(e)] as found in the
gapped graphene model.

must be carefully explored to establish the effect we propose as
realistic, and we thus now perform TD-DFT simulations for the
transition metal dichalcogenide WSe2. All calculations employ
the adiabatic local density approximation (LDA) functional, an
approach that has been shown to be highly accurate in treating
very early time spin and charge dynamics in many materials. For
complete numerical details, we refer the reader to Supplement 1,
Section 5.

The low energy band structure is shown in Fig. 5(a), in which
the characteristic strong spin–orbit spin–split bands can be seen
near K and K∗. We consider two pulses of duration 8.2 fs and
orthogonal polarization [see Fig. 5(b)] and, as for the model cal-
culations, change the envelope peak of the second pulse, t2, while
holding that of the first pulse fixed. In Fig. 5(c), we show the valley
polarization, now integrated in the valleys defined at K and K∗,
and, just as in the model calculation, an oscillation of the valley
polarization is again observed; see Figs. 5(d) and 5(e). Inspection
of the k-resolved momentum space excitation reveals the valley
discriminating charge excitation seen in the gapped graphene
calculations. Note that here the excitation is spin polarized due to
the spin–split valence bands. This result is perhaps not as surprising
as it may appear, as valley phase structures are generally the most
robust aspect of the simple models used to describe 2D materials
such as graphene and the dichalcogenides.

6. CONCLUSION

We have shown that the paradigm that circularly polarized light
offers the only route to control the valley degree of freedom does
not hold at femtosecond time scales in which ultrafast spin and
charge dynamics are coherent. Pairs of orthogonally polarized
yet temporally separated linear pulses selectively excite conjugate
valleys depending on the duration between pulses and the order of
the pulses (i.e., x followed by y polarization or vice versa). While
the circularly polarized light selection rule relies on Berry curvature
of an avoided band crossing, this effect depends on coherent inter-
ference between the unique valley phases that an avoided crossing
is endowed with. The pulse parameters required are not onerous;
the vector potential corresponds to a peak electric field of the order
of 1 V/nm, with the critical requirements being a well-defined
sub-gap frequency and control over delay time.

We have explored this effect for ideal lattice structures; however,
emission from impurity or strain induced states [19] is expected
to exhibit a similar valley control by linearly polarized light, with,

however, a reduced period of valley polarization oscillation as
compared to the ideal lattice. In materials with spin–split valence
bands, this effect will in all cases result in spin–valley locking,
just as in the case of circular light. While we have established and
understood this new route to valley control on the basis of a simple
gapped graphene model, we have confirmed the effect in sophisti-
cated TD-DFT calculations that have, by now, been established as
the gold standard for very early time spin and charge dynamics. We
have, furthermore, discussed general grounds on which excitons
may inherit this interference effect, and employing a phenom-
enological model have probed the role of intervalley scattering.
We thus expect this effect to open new routes towards spin–valley
orbitronics with linearly polarized light at the femtoscale.
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