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Analytic model for the complex 
effective index of the leaky modes 
of tube-type anti-resonant hollow 
core fibers
Matthias Zeisberger1 & Markus A. Schmidt1,2,3

Due to their promising applications, hollow-core fibers, in particular, their anti-resonant versions, 
have recently attracted the attention of the photonics community. Here, we introduce a model that 
approximates, using the reflection of a wave on a single planar film, modal guidance in tube-type anti-
resonant waveguides whose core diameters are large compared to the wavelength. The model yields 
analytic expressions for the real and imaginary parts of the complex effective index of the leaky modes 
supported, and is valid in all practically relevant situations, excellently matching all the important 
dispersion and loss parameters. Essential principles such as the fourth power dependence of the 
modal loss on the core radius at all wavelengths and the geometry-independent transition refractive 
index, below which modal discrimination favors the fundamental mode are discussed. As application 
examples, we use our model for understanding higher-order mode suppression in revolver-type fibers 
and for uncovering the tuning capabilities associated with nonlinear pulse propagation.

Guiding light inside the hollow core of microstructured optical fibers has recently attracted the attention of the 
photonics community, as such fibers have the potential to open up new fields of science and applications for fiber 
optics and to achieve new performance levels, examples of which include surgery1, mid-IR gas lasers2,3, tunable 
UV light sources4, nonlinear optical excitations5, high power pulse delivery6, photothermal gas trace analysis7, 
remote microparticle sensing8, and ultrashort pulse compression9. All currently used hollow core fibers (HCFs) 
have cores with diameters on the order of several tens of micrometers, being larger than those of typical step-index 
fibers, indicating that upscaling the core diameter allows the current loss limit of telecommunication fibers (e.g., 
SMF-28: 0.1 dB/km) to be broken10. Due to the inverted refractive index (RI) contrast (RI core < RI cladding), 
modes in HCFs are intrinsically leaky; i.e., they continuously dissipate energy along the transverse direction11,12, 
which is a fundamental difference compared to modes in regular step-index fibers. As a result, HCF research aims 
to suppress lateral energy dissipation via an as-simple-as-possible microstructure surrounding the core section. 
Besides guidance mechanisms such as photonic band gap confinement13, omnidirectional reflection14,15 or effec-
tive medium reflection16,17, the anti-resonant effect has recently been identified to be highly relevant for future 
high-performance HCFs, as it enables efficient waveguiding on the basis of a straightforward-to-fabricate micro-
structure18,19. The concept of anti-resonant guidance traces back to close-to-unity reflection of dielectric multilay-
ers in the case of near-grazing incidence and has been successfully employed in, e.g., biosensing20,21 or gas 
analysis22 using planar anti-resonant reflecting optical waveguides (ARROWs)23. Various types of anti-resonant 
fiber geometries such as the negative curvature19,24, the double revolver25, the single ring26,27 or the hypocycloid 
core contour28 designs have been recently implemented, exhibiting low optical losses at mid- and near-infrared28, 
visible, and even UV wavelengths26,27,29, and low susceptibility to bending30. It is common knowledge throughout 
the fiber optics community that the innermost part of the microstructured section, which in many HCF cases is a 
ring-type structure, is essential for the overall guidance performance, requiring a precise understanding of leaky 
mode formation mediated by the central microstructure. For example, ref.31 suggests replacing the microstructure 
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of the Kagome design by a simplified design consisting of just a single ring32,33. Especially for nonlinear optics, it 
is vital to obtain precise knowledge of the dispersion of short optical pulses inside the HCFs; e.g., appropriate 
tuning of the group velocity dispersion allows for multi-octave spanning supercontinuum generation in noble gas 
filled HCFs4,34 or for efficient pulse compression35,36. From the attenuation perspective, understanding the 
dependency of modal attenuation on the core radius R is essential, as HCFs allow the loss to be reduced by 
increasing the core dimensions. This is in great contrast to solid step index fibers, in which material loss domi-
nates, placing a fundamental limit on the loss. For a capillary, it is well known that the loss of the fundamental 
mode scales with the inverse cube of the core radius ( R1/ 3∝ )16,37–a behavior that was also observed for Omniguide 
and indefinite metamaterial HCFs15,16,38,39. For a dielectric tube-type waveguide operating at the anti-resonant 
point, a fourth power dependence of the modal loss on the inverse radius was found in ref.40, which was also 
revealed for a broader spectral region within the microwave and THz domain using an approximate dielectric 
tube model41. Another model that analyzes the modal losses of multilayer waveguide structures was given in ref.42. 
First promising experiments of thin-wall silica capillaries at visible wavelengths clearly indicate the potential of 
hollow tube-type waveguides with applications in various fields43. The results presented in ref.44 indicate that the 
modal attenuation of revolver-type HCFs (which are referred to in the aforementioned paper as tube lattice fibers) 
scales with 1/R4.5 44. An approximate model describing anti-resonant fibers has been introduced in ref.45 that is 
applicable for different core shapes but demands numerical integration and does not yield analytic expressions for 
the complex effective mode index.

Here we introduce a planar reflection model that approximates tube-type anti-resonant HCFs by single planar 
films (Fig. 1), yielding entirely analytic expressions for the complex effective index of the leaky modes in such 
HCFs whose core radius is much larger than the wavelength. We compare our model to numerically obtained 
solutions, showing that it describes the real and imaginary parts of the complex effective index extremely well 
across the entire bandwidth of the transmission bands down to core diameters that are below those of practically 
relevant anti-resonant HCFs. Excellent agreement was found for the most important dispersion parameters (i.e., 
the phase velocity, group velocity, and group velocity dispersion) and for the imaginary parts of the effective indi-
ces. The model reveals the essential features of light guidance in tube-type waveguides, examples of which include 
a fourth power dependence of the modal loss on core radius and a transition glass index above which modal 
discrimination counterintuitively favors the TE01 mode, even though the HE11 mode has the greatest phase index. 
Here, we apply our model to two important topics of HCF research, namely, to the suppression of higher-order 
modes in revolver-type fibers via phase-matching them to cladding modes and to zero-dispersion wavelength 
(ZDW) tuning capabilities of gas-filled tube-type HCFs.

Results
The general principle for light guidance in a tube-type anti-resonant HCF relies on the reflection of a single wave 
at the inner and outer surfaces of the glass ring and the constructive interference of both reflected waves. It is 
important to note that close-to-unity reflection values (| | r 12 , r: amplitude reflection coefficient) are obtained 
in the case of near-grazing incidence even for such a comparably simple geometry, which forms one of the under-
lying mechanisms for the low loss of anti-resonant HCFs. Comparable to our approach presented in ref.16 we use 
this particular property and expand the amplitude reflection coefficient of a single planar interface with respect to 
the incidence angle, assuming near-grazing incidence. The resulting expression for the reflection coefficient is 
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Figure 1.  (a) Cross section of the tube-type anti-resonant hollow core fiber geometry discussed here, consisting 
of an air core, a glass ring and an air cladding with all relevant parameters (light blue: air, purple: glass. na and ng: 
refractive indices of air and glass). (b) Planar single layer reflection model, including a single wave (indicated by 
the blue arrows) reflected on a planar glass film from the interior air side. The various arrows below the sketch 
represent the wave vector diagram of the propagating mode, i.e., of the wave incident on the glass film (purple: 
propagation constant, blue: wave vector of incident wave, green: transverse wave vector).
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then included in approximate formulations of the field distributions of the leaky core modes, yielding an entirely 
analytical expression for the complex effective index of the leaky modes of this geometry.

Fields in the core and zero-order approximation.  The fields in the core are determined by the solutions 
of the Helmholtz equation in cylindrical coordinates46. Modes are formed by taking into account the continuity 
of the transverse field components across the layer boundaries. Due to the azimuthal invariance of the cylindrical 
geometry, it is sufficient to analyze the radial distributions of the longitudinal and azimuthal components of the 
electric and magnetic fields (z and φ directions), given by
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with the axial and radial wave vector components being β and κ, the vacuum wave number k0, the core and out-
ermost RI na, the radial coordinate ρ, the azimuthal mode index m, the vacuum impedance Z0, and the amplitudes 
A1 and A2 (full expressions for the fields are given in the Methods section). As shown in our previous work16, the 
effect of the media or microstructure surrounding the core is subsumed in the polarization-dependent amplitude 
reflection coefficients re and rm (e: TE pol., m: TM pol.). Using these quantities, the following conditions for the 
fields at the core boundary ( Rρ = ) are derived (see16 for details):
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Low fiber losses imply a high layer reflectivity, i.e., a reflection coefficient r 1e m/ ≈ −  (the reflection coeffi- 
cient is defined here as the ratio of the reflected (r) and incident (i) transverse field components: 
r E E r H H/ , /e

r i
m

r i( ) ( ) ( ) ( )= =φ φ φ φ ). In the limiting case of a perfectly reflecting interface ( = = −r r 1e m ) Eq. (4) reduce 
to =φE 0 and =φH 0 resulting in the following solutions for the radial wavenumber16:
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where jmn is the n-th root of the Bessel function jm. In the general case of non-unity reflectivity ( r 1| | ), the solu-
tion for the radial wave number can be obtained by inserting Eqs. (1, 2) into Eq. (4) which results in a homogene-
ous system of equations for the amplitudes A1 and A2:
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The values of κ that correspond to the modes of the cylindrical fiber waveguide can be obtained by finding the 
nontrivial solutions of Eq. (6), imposing the condition det(M) = 0.

Reflection at a planar film.  In order to obtain the reflection coefficients we consider a small volume ele-
ment of size zρ ρ φ∆ × ∆ × ∆  at the boundary of the core that includes the inner and the outer surfaces of the 
glass ring (Fig. 1b). If Rρ∆   and φ∆ 1 , we can neglect the curvature of the surfaces of the glass ring, allow-
ing us to approximate the considered volume as a symmetric planar film and the fields as a superposition of the 
incident and reflected plane waves. The reflection coefficients of the TE/TM waves for such a film are given by the 
Airy formula, which fundamentally describes a Fabry–Perot-type structure47:
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The relative phase φ corresponds to the accumulated phase acquired between two reflection events of a single 
wave inside the film of thickness w and is given by
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with κ and κg  being the wave vector components perpendicular to the film surface in air and glass, respectively. 
The parameters rem  are the polarization-dependent amplitude reflection coefficients of a single air–glass interface 
and are given by the Fresnel equations47:
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It is evident from Eq. (8) that the main spectral characteristics of a thin film, i.e., its resonant behavior, result 
from the relative phase φ, especially in the case of low material dispersion. For ll

r( )φ φ π= =  with l 1, 2,= ..., the 
optical wave is in resonance with the film; i.e., the reflection coefficient is zero, which in the case of a fiber wave-
guide corresponds to an infinitely high loss. The maximum reflectivity (i.e., the lowest possible fiber attenuation) 
occurs for the anti-resonant condition l(2 1) /2l

a( )φ φ π= = − . The main approximation of our model is that the 
core diameter is much larger than the operational wavelength ( λR  ), leading to a radial wavenumber in the 
core that is small compared to the wavenumber of the wave considered (κ = k k na a0 ) and yielding the 
near-grazing incidence condition. For this situation we can expand the amplitude reflection coefficients of the 
single interface re m/  with respect to κ up to the second-order term and obtain the following expression:
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In addition, we obtain the following approximation for the phase
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In the case of a glass capillary (i.e., no outer glass–air boundary; corresponding to a single planar air–glass 
interface), we have shown in a previous contribution that the linear approximation of re m/  is sufficient to calculate 
the modal losses16, yielding the well-known Marcatili expression37. In the case of the tube-type anti-resonant fiber, 
however, Eq. (11) shows that the linear term is entirely imaginary, indicating that this term merely causes a phase 
shift and has no influence on the modal losses. It is important to note that at the anti-resonance point ( l

a( )φ ) the 
linear term completely vanishes (as φ =cot( ) 0), and the linear approximation of re m/  is not sufficient to calculate 
the losses of an anti-resonant fiber, requiring inclusion of the next higher-order expansion term that is propor-
tional to κ2.

Perturbation treatment.  In the following, we derive an approximate solution for the complex effective 
index neff  of the lowest-order modes in the case of high layer reflectivity ( r 1e m/| | − ). The perturbation parame-
ter we use here is k R R1/( ) / 1a σ λ= ∝  (with the core wavenumber ka) which is small for the condition con-
sidered here (  λR ). We use the following ansatz for the radial wavenumber:
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which is consistent with the solution for the perfectly reflecting interface (Eq. (5)). To obtain solutions for neff  Eq. 
(13) is inserted into Eq. (11) and the result into the system of equations (Eq. (6)). After a third-order series expan-
sion of the resulting equations with respect to σ, the coefficients κ1, κ2 and κ3 can be obtained by equating the 
coefficients of σ. The series expansions result in derivatives of Bessel functions up to the third order which are 
reformulated using the equations shown in the Methods section. Using the solution for the radial wavenumber 
the effective index can be calculated by the following expression:
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Detailed calculations for the different mode types show that 1κ  and κ2 are real-valued, whereas κ3 is complex 
(in the case of real material parameters). As a consequence, we are allowed to express neff  using four real parame-
ters (labeled as a, b, c, and d):
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TE and TM modes.  The azimuthal invariance of the cylindrical polarized modes leads to a vanishing azi-
muthal mode index (m = 0)48, considerably simplifying the derivation of the effective index. In the case of TE0n 
modes, A1 = 0, which reduces the system of equations (Eq. (6)) to the single equation:
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A similar equation is obtained for the TM0n modes (A2 = 0) by substituting re by rm. The calculation for both 
types of modes results in the following expressions for the expansion coefficients
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from which we obtain the coefficients for Eq. (15):
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Hybrid modes.  In the case of HEmn and EHmn modes, the values of κ are obtained by solving det(M) = 0. 
With the perturbation ansatz (Eq. (13)) we obtain the following expressions for the expansion coefficients of the 
radial wavenumber:
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where = −s 1 refers to HE and = +s 1 to EH modes. The effective mode index is represented by the same expres-
sion as for the TE/TM modes (Eq. (15)) with the following parameters and constants:
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Discussion
The calculations in the previous sections show that Eq. (15) describes the complex effective index of all modes, 
with the coefficients a, b, c, and d being real numbers that depend on the type and indices (m, n) of the mode 
under investigation. The second-order approximation given by the terms σ− a1 2 represents the limiting case of 
a lossless cylindrical fiber, i.e., a tube waveguide with a perfectly reflecting surface. The third-order term b 3σ  in Eq. 
(15) describes resonant effects in the real part of neff. The c 4σ  term is an additional contribution to the real part, 
which is in all cases considered here small compared to σb 3 and can be neglected for all practical purposes. The 
last term in Eq. (15) represents the imaginary part of the effective index (Im σ=n n d( )eff a

4) which is proportional 
to the modal loss and scales here with R1/ 4, which is remarkably different from other types of HCF such as pho-
tonic band gap fibers. For the case of operation at the anti-resonant point ( φ =cot 0), the imaginary part corre-
sponds to the results shown in ref.40, whereas an excellent match to the loss expressions reported in ref.41 was also 
found. It is important to note that the loss of tube lattice fibers scales with R−4.5 (as numerically shown in ref.44), 
which is very close to the radius dependence observed here. By inserting the correct terms into Eq. (15), we obtain 
the following analytic expressions for the real part of the effective index (i.e., the phase index Re (neff)) and the loss 
coefficient α (given in m−1):
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It is important to note that our work focusses on tube-type waveguides in which the losses arise only from 
leaky waves rather than material absorption, thus allowing to understand the influence of non-unity interface 
reflection on modal attenuation. As a consequence the coefficients a, b, c, and d in Eq. (15) are real valued for real 
RIs which allows to clearly distinguish the real and imaginary parts in Eq. (15). However, the derivation presented 
in the previous section is not restricted to real valued na and ng and Eq. (15) is valid for materials with 
non-negligible imaginary parts as well. In this case, the coefficients a, b, c, and d become complex, and the clear 
separation of the real and imaginary terms in Eq. (15) is not obvious anymore. We have checked various numer-
ical examples including complex material permittivities using Eqs (15, 19, 23) and found a very good agreement 
of Im(neff) with results obtained from the equations given in ref.42. The final equations for Re(neff) and α (Eqs (25) 
and (26)) are derived from the previous equations assuming real RIs and thus are valid for non-absorbing mate-
rials only.

To verify the validity of our planar reflection model, we compared spectral distributions of the complex RI 
dispersion of the fundamental leaky mode (HE11 mode) of a single silica tube in air calculated using Eq. (15) 
(solid lines in Fig. 2) with full numerical solutions (points in Fig. 2) for three different core radii. Both real 
(Fig. 2a) and imaginary (Fig. 2b) parts of the numerical solutions are fully reproduced by our analytical model 
(Eqs (15, 23–24)) for all bands considered, even close to the resonances, indicating that the expansion of κ up to 
the third-order term is sufficient to describe the modal behavior of tube-type anti-resonant HCFs. In particular, 
the extremely good match in the imaginary parts is remarkable (Fig. 2b). Only in very close proximity to the 
resonances (corresponding to practically irrelevant domains due to the exceedingly high loss), particularly on the 
long-wavelength side of the lowest-order transmission band, does the planar model slightly deviate from the 
numerical solutions, which overall is due to the reduced reflectivity of the thin glass layer, i.e., from the break-
down of the condition of high reflectivity ( r 1 1e m/ | + | ). From the practical perspective, HCFs are always oper-
ated far away from the resonances in order to avoid excessive modal loss.

It is interesting to note that the spectral positions of minimum loss (gray dashed lines in Fig. 2b) and of the 
corresponding anti-resonance wavelengths (dark blue dashed lines in Fig. 2b) generally do not coincide, which is 
particularly pronounced for the longest-wavelength transmission band. As an example in the case of =l 1, the 
anti-resonance wavelength is 980 nm, whereas the wavelength of minimal loss is located about 70 nm towards the 
shorter wavelengths (908 nm). This effect emerges as a consequence of Eqs (15, 23): The positions of the 
anti-resonance points are given by the minima of the coefficient d which depends on λ via φcot2 . The factor σ4 of 
the imaginary part of neff contains an additional factor 4λ  that shifts the loss minima towards shorter wavelengths. 
As the next step, we analyzed the spectral distribution of the complex effective index for the three lowest-order 
modes (HE11: blue, TE01: purple, TM01: magenta) at a fixed core radius of μ=R 20 m (Fig. 3a,b). Again, excellent 
agreement between the planar reflection model and numerical solutions across almost the entire bandwidth of 
the individual transmission band is obtained, confirming once more the applicability of the planar reflection 
model for describing guidance in tube-type anti-resonant HCFs.

It is particularly important to examine the wavelengths of lowest loss, which are roughly located within the 
center of the respective transmission band and are independent of the core diameter as revealed by our analysis. 
Starting from large core diameters (R 80 mμ= ), the real part of the complex effective index substantially reduces 
towards smaller cores (Fig. 4a), whereas Im (neff) increases by orders of magnitude (Fig. 4b), with both effects 
being fully reproduced by our model for any of the core diameters considered. It is remarkable that the agreement 

Figure 2.  Comparison of the spectral distributions of the real (a) and imaginary (b) parts of the effective mode 
index of the fundamental leaky HE11 mode supported by the tube-type anti-resonant hollow core fiber of model 
(lines) and full numerical solution (circles) for different core radii (light green: μ=R 20 m, blue: μ=R 40 m, 
purple: μ=R 80 m). The simulated structure assumes thickness and refractive index values of the tube of 
w 0 7 mμ= .  and n 1 45g = .  and a refractive index of unity in the core and outermost medium. The inset in (a) is 
a close-up view of the distribution with μ=R 80 m in the vicinity of the two resonances. In all plots, the dark 
yellow vertical dashed lines indicate the resonances, the gray lines the wavelength of minimal loss and the dark 
blue lines the anti-resonant wavelength. The dark blue (dark yellow) numbers indicate the respective anti-
resonance (resonance) order.
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holds even for core diameters 5 mμ<  - a diameter range being below that of any practically relevant HCF - 
emphasizing that guidance in tube-type anti-resonant HCFs is well described by a reflection process of a wave on 
a single planar interface. As a consequence of this agreement, the imaginary part of Eq. (15) directly reveals that 
the loss of tube-type anti-resonant HCFs scales with R−4 (inset of Fig. 4b), which is to some extent unexpected 
due to the inverse cube dependence observed in other types of HCFs, but is a direct consequence of the vanishing 
linear term in the expansion of the film reflection coefficient re m/  (Eq. (11)) in the case of anti-resonance, requir-
ing inclusion of the quadratic term. It should be mentioned that, compared to the tube-type geometry investi-
gated here, revolver-type anti-resonant fibers19,24 can show significantly lower losses which can be qualitatively 
understood in context of our model as a higher interface reflection caused by the negative curvature of the core 
region. As we investigate here light guidance in tube-type waveguides from a general perspective, we omit a direct 
comparison to concrete single-ring hollow core fiber designs which would be beyond the scope of this work.

Especially from the ultrafast nonlinear optics perspective, precise knowledge on pulse dispersion is required 
to optimize the nonlinear conversion processes. For instance, tuning group velocity dispersion (GVD) in a tai-
lored way has allowed for multi-octave spanning supercontinuum generation down to UV wavelengths using 
ultrafast light-matter interaction in noble gas-filled Kagome or anti-resonant HCFs4,34. Moreover, accurate knowl-
edge of the spectral evolution of the group velocity (GV) is important for parametric processes in case femtosec-
ond pulses are employed49. Here we determine the spectral distribution of both the GVD and the GV of the 
tube-type leaky waveguide geometry (Fig. 5a,b) by using the real part of the effective index of the fundamental 
leaky mode (GVD c d d/(2 ) ( / )0

2
0

2 2
0

ω π β ω= − ⋅ |ω ω= ; v d d(( / ) ) )g
1

0
β ω= |ω ω=

−  for the three different core radii used 
in Fig. 2. An extremely good match of both GVD and GV calculated using the planar reflection model and full 

Figure 3.  Comparison of the spectral distributions of the real (a) and imaginary (b) parts of the effective mode 
index of the three lowest-order modes supported by the tube-type anti-resonant hollow core fiber (blue: HE11, 
purple: TE01, pink: TM01, μ=R 20 m, μ= .w 0 7 m, ng = 1.45, na = 1, lines: model, circles: numerical 
solution). In both plots, the dark yellow vertical dashed lines indicate the resonances with the corresponding 
order. The inset in (a) is a close-up view of the spectral interval between the second and third-order resonances.

Figure 4.  Comparison of the radius dependence of the real (a) and imaginary (b) parts of the effective mode 
index of the fundamental leaky HE11 mode supported by the tube-type anti-resonant hollow core fiber at 
the wavelengths of lowest loss of the three investigated transmission bands (lines: model, circles: numerical 
solution, light yellow: band 1, light green: band 2, green: band 3). The corresponding wavelengths are indicated 
in the plots. The inset in (a) shows the radius dependence in a reduced radius interval between 1 μm and 10 μm. 
The inset shown in (b) is a double-logarithmic representation of the radius dependence of Im (neff) at the three 
wavelengths considered, emphasizing the R−4 dependence.
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numerical simulations has been obtained across all three transmission bands for all the core radii considered. It is 
important to highlight the excellent match of the GVD, as this parameter does not depend on the absolute value 
of Re (neff) but rather on the shape of the dispersion curve. As a result of the excellent match in both the GVD and 
the GV, it is apparent that our reflection model and the derived analytic expression of the complex effective index 
(Eqs (25, 26)) correctly describe the dispersion properties of the tube-type anti-resonant fibers. The mathematical 
form of Eq. (25) intuitively suggests that away from the resonances, the dispersion of tube-type cylindrical fibers 
corresponds to a tube waveguide with a perfectly reflecting cladding (first two terms in Eq. (25)), which is modi-
fied by an additional resonance term (the third term in Eq. (25)) within the spectral vicinities of the resonances.

Many applications of HCFs require strong fundamental mode discrimination such that the fundamental leaky 
mode with a Gaussian-type field profile inside the core has the lowest loss of all modes supported with as high 
as possible loss discrimination for all other higher-order modes (HOMs)24,26. Efficient modal discrimination is 
critically important in the case of HCFs, as the number of modes in leaky waveguides cannot be controlled in the 
same a way as for waveguides supporting guided modes11. Our planar reflection model allows formulation of ana-
lytic expressions for the modal discrimination of the fundamental mode with respect to the HOMs using the vari-
ous imaginary parts of Eq. (15), which in the case of the three lowest-order modes (HE11, TE01 and TM01), leads to
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Such relations were also discussed in refs40,41. for the special case of operation at the anti-resonant point (i.e., 
φ =cot 0), whereas we show here that these relations are valid at all wavelengths. The discrimination parameters 

cTE and cTM only include constants and the material dielectric functions and are independent of fiber geometry 
and wavelength (in the case of negligible material dispersion). In particular, they do not depend on the core 
radius which to some extent is counterintuitive. We analyzed the modal discrimination by calculating Im (neff) as 
function of the RI of the tube for the three modes considered using numerical solutions and our reflection model 
(inset of Fig. 6b), obtaining an excellent agreement and thereby justifying the validity of Eq. (27). Analyzing the 
modal discriminations as functions of ng reveals an interesting feature (Fig. 6b), which was also observed for the 
specific situation of the anti-resonant point in refs40,41: within the RI interval between 1.45 and 1.632 (the green 
area in Fig. 6), the HE11 mode has the lowest loss of all modes in the system. For larger RIs, however, the loss of 
the HE11 mode exceeds that of the TE01 mode and remains above it for any higher value of ng (the white area in 
Fig. 6). This effect, which was confirmed by numerical simulations (symbols in Fig. 6), is not visible in the disper-
sions of the modes (i.e., the real parts of neff ), showing that the HE11 mode has the highest effective index for any 
value of ng  (Fig. 6a). Overall, this unusual discrimination behavior underscores an important conclusion: RIs 
below the transition value of 1.632 are favorable for tube-type anti-resonant HCFs, as higher RIs impose insuffi-
cient modal discrimination of the HE11 mode on HOMs. A similar type of discrimination behavior at a transition 
RI of 2.02 was found for capillary-type waveguides37. Compared to the tube-type waveguide geometry discussed 
here, the larger value of the transition index can mathematically be explained by the different powers of the zeros 
of Bessel function in the expressions for the attenuation ( j3 for tube-type waveguide (Eq. (26)), j2 for 
capillaries37).

To illustrate the usefulness of our dispersion model, we apply the analytic form of the real part of the effective 
mode index (Eq. 25) to two different scientific questions addressing important issues of HCF research. The first 
issue relates to the suppression of HOMs in hollow-core revolver-type fibers (or hypocycloid core contour 
anti-resonant HCFs) via resonant modal filtering26,50. The idea of this approach relies on phase-matching the first 
higher-order mode in the central air core to the fundamental mode of the surrounding anti-resonant elements 
(AREs), effectively removing the contributions of the HOMs from the overall fiber transmission and thus yielding 

Figure 5.  Comparison of the spectral distributions of (a) group velocity dispersion and (b) group velocity of the 
fundamental leaky mode of the tube-type anti-resonant fiber for three different core radii (light green: 20 μm, blue: 
40 μm, purple: 80 μm; lines: reflection model; circles: full numerical solution; w 0 7 mμ= . ; n 1 45g = . ; RIs of core 
and cladding are unity; material dispersions have been neglected here). In both plots, the dark yellow vertical 
dashed lines represent the resonances.
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single-mode guidance. In the work presented by P. Uebel et al.50, this phase-matching process was analyzed using 
the analytic form of the dispersion of a capillary waveguide (air core surrounded by an infinite homogenous glass 
cladding, Marcatili–Schmeltzer expression37), showing that the ratio of the diameters of ARE dARE and central 
core dcore should be approximately 0.628 (in case the two fitting parameters used in the work by Uebel et al. are 
assumed to be unity). It is important to note that this analysis relies on the dispersion equation of a large-core 
capillary, and thus it remains unclear to what extent resonances influence the condition. Here, we apply the ana-
lytic form of the dispersion equation of the tube-type anti-resonant fiber (Eq. 25) within the mentioned 
phase-matching condition, revealing two key issues: First, the condition derived by Uebel et al. only holds exactly 
at the anti-resonant points (i.e., at those points tube-type fibers behave like capillaries waveguides), and higher or 
smaller ratios of d d/ARE core are found towards the edges of the transmission bands (Fig. 7). Second, deviations from 
the criterion presented by Uebel et al. are more pronounced for smaller core diameters, showing that revolver-type 
fibers with large cores are less critical with regard to single-mode guidance.

A similar kind of consideration can be applied to analyze the critical bend radius of revolver-type HCFs. An 
analytical equation of the critical bend radius presented in ref.51 is based on phase-matching the effective indices 
of core and capillary mode, whereas the latter is modified by a bend radius dependent factor. The calculations of 

Figure 6.  (a) Dispersion of the three lowest-order leaky modes as a function of the tube refractive index (blue: 
HE11, purple: TE01, magenta: TM01). Because the dispersions of the TE01 and TM01 modes fully overlap, the 
TM01 curve is not visible. (b) Modal discrimination of the TE01 and TM01 modes with respect to the HE11 mode 
(green: TE-discrimination, dark yellow: TM-discrimination) as a function of tube index. The purpose of the 
dashed blue lines is to guide the eye; they highlight the transition refractive index (indicated by the green dot) 
and separate the regions of the HE11 (light green) and TE01 (white) mode, being the lowest loss modes in the 
system. The inset shows the evolution of Im n( )eff  as a function of the tube index for the HE11 (blue), TE01 
(purple), and TM01 (magenta) modes. The results in all plots have been calculated at the anti-resonance point of 
the longest wavelength transmission band assuming μ=R 80 m and =n 1a  (symbols: numerical solutions; 
lines: planar reflection model).

Figure 7.  Spectral distribution of the optimal diameter ratio of anti-resonant element and central air core of a 
revolver-type hollow core fiber to achieve single mode guidance. The ratio was obtained by phase-matching the 
effective indices of the first higher-order core mode to the fundamental mode of the ARE using Eq. (25). The 
three different solid lines refer to different central core diameters (yellow: 60 μm, green 160 μm, blue: 260 μm) 
and the dashed horizontal green line to the criterion derived by Uebel et al.50. The three yellow dots emphasize 
the anti-resonant point, i.e., the configurations at which the criterion derived by Uebel el al. is valid.
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ref.51 include the Marcatili expressions37 for Re(neff ) which correspond to our equations at the anti-resonant point 
(i.e., at φ =cot 0).

As mentioned in the previous section, another important application area of HCFs is ultrafast nonlinear light 
generation in gas-filled HCFs mediated by effects such as soliton fission and the creation of Cherenkov radiation4. 
The most important design aspect for this type of light generation scheme is to engineer and optimize the nonlin-
ear pulse propagation inside the fiber core which strongly depends on the spectral distribution of the GVD of the 
mode of interest. A key parameter that acts as a design indicator widely used in the supercontinuum generation 
community and needs to be optimized to achieve the desired properties of the generated light is the wavelength at 
which the GVD vanishes. In the vicinity of this wavelength, which is commonly referred to ZDW, the propagating 
pulse is hardly influenced by second-order dispersion, and strong nonlinear spectral broadening can be expected 
due to the small temporal pulse dispersion.

The analytic form of Eq. (25) allows studying the dependency of the ZDW of the fundamental leaky mode of 
the tube-type HCF geometry on structural parameters at different wavelengths as exemplified in the following. 
Here, we assumed a silica ring located in argon (material dispersions of silica and argon at a temperature and 
pressure of 273 K and 1 bar are taken from refs52,53), and calculate the ZDW by numerically finding the root of 
the spectral distributions of the GVD in the respective band (i.e., by finding the wavelength at which the GVD 
changes sign (Fig. 5a)). The results for two bands (located between the l = 1 and l = 2 resonances (Fig. 8a), and the 
l = 2 and l = 3 resonances (Fig. 8b)) clearly illustrate that the presence of the resonances has a dramatic effect on 
the ZDW compared to the case of an argon-filled capillary (dark yellow dashed lines in Fig. 8). By appropriately 
choosing the structural parameters (i.e., the core radius and tube thickness), the ZDWs can be tuned to a much 
greater extent than can be achieved in a capillary. It is important to note that each transmission band includes one 
ZDW, allowing a single device exhibiting multiple ZDWs to be created, which is in great contrast to a capillary, 
which typically has only one zero-crossing of the GVD for a given core diameter.

Conclusion
Fibers with hollow interiors, and in particular anti-resonant HCFs, have recently attracted the attention of the 
photonics community due to their straightforward fabrication and outstanding guidance performance. Here we 
introduce a reflection model that approximates the light guidance in tube-type anti-resonant HCFs by the reflec-
tion of a wave at a planar film, obtaining entirely analytic expressions for the complex effective index of the sup-
ported leaky modes. Comparisons with numerical solutions confirm that the model is valid for any practically 
relevant combination of core radius, wavelength, and glass RI and enables fundamental insights into the light 
guidance of tube-type waveguides to be obtained. In particular, excellent agreement was found for the most 
important dispersion parameters (i.e., phase velocity, GV, and GVD) and for the imaginary parts of the effective 
indices. Three important facts have been discussed here: (i) the loss of tube-type anti-resonant fibers scale with 
the inverse fourth power of the core radius (∝ −R 4) at all wavelengths, which is in contrast to other fiber geome-
tries such as Omniguides; (ii) the anti-resonant wavelength and the wavelength of lowest loss do not coincide; and 
(iii) glass ring RIs below 1.632 are favorable for discriminating the HE11 mode. The latter fact is independent of 
the wavelength, core diameter, and ring thickness and is not visible in the modal dispersions, counterintuitively 
suggesting the usage of glass materials with low RI to preferentially guide the HE11 mode. We apply the analytic 
form of the phase index to two issues relevant for HCF research. First, we investigate HOM suppression in 

Figure 8.  Dependence of the zero-dispersion wavelength (ZDW) on the core radius of the fundamental leaky 
mode of an argon-filled tube-type anti-resonant hollow core fiber ( =T 293 K, p 1=  bar) for various values of 
the tube thickness w. The different colors refer to the various thicknesses considered (represented on the top of 
the plot (in nm)). The two diagrams refer to the behavior of the ZDW in two different transmission bands: (a) 
the transmission band between the resonances l = 1 and l = 2, (b) transmission band between the resonances 
l = 2 and l = 3. In both plots, the dark yellow dashed lines refer to the ZDW of an argon-filled capillary of equal 
core diameter.
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revolver-type fibers mediated by phase-matching them to modes in the AREs. We found that the single-mode 
criterion presented in the literature only holds at the anti-resonant point and changes when approaching the 
transmission band edges, whereas fibers with larger cores show this effect in a less pronounced manner. Second, 
we show that resonances strongly change the behavior of the ZDW compared to a gas-filled capillary. Due to its 
universal character and its excellent agreement with numerical solutions our model clearly reveals that the reflec-
tion of a single wave on a planar film is the essential key to understanding the properties of leaky modes sup-
ported by tube-type waveguides. It is important to note that first transmission experiments on thin-wall capillaries 
at visible wavelengths clearly indicate the potential of hollow tube-type anti-resonant waveguides with applica-
tions in multiple fields43. The revealed inverse fourth power core radius dependence shows that the loss of 
anti-resonant fibers fundamentally scales differently compared to other geometries such as photonic band gap 
fibers or capillaries, whereas precise studies are required to specifically explain the behavior of one particular 
anti-resonant fiber geometry. The two discussed applications of the analytic expression of the real part of the 
effective mode index of the supported leaky mode to scientific questions being highly relevant for HCF research 
represent only two selected examples. At this stage, we believe that our analytic model can also be applied to other 
types of problems related to light guidance in thin-wall hollow cylinders. Extending our model to other types of 
hollow waveguides including photonic band gap fibers, Bragg fibers or Omniguides, or even planar geometries 
will be the subject of future studies and will allow further insights to be obtained into light guidance in hollow 
waveguides and the properties of leaky modes in general. Moreover, we believe that a modified version of our 
approach will be useful for optimizing the performance of anti-resonant fibers by calculating the reflection coef-
ficient of the cladding numerically and using the derived equations to calculate the loss, eliminating the need to 
solve the eigenmodes of the entire fiber cross section.

Methods
Numerical solutions for comparison.  Full numerical solutions were obtained using the solution of the 
Helmholtz equation in cylindrical coordinates46. To account for the leakiness of the modes in anti-resonant HCFs, 
we used a Hankel function of the first kind in the most outer medium in order to represent outgoing waves. With 
this ansatz the boundary conditions at both interfaces result in a system of four linear equations in the case of TE 
or TM modes and eight equations for the hybrid modes. The values of the complex effective index that represent 
the modes are obtained by numerically finding the roots of the determinants of the system of equations.

Expressions of the field.  The general solutions of the Helmholtz equation in cylindrical coordinates (ρ, φ, z) 
can be expressed as

E e e ez E E E i z m t( , , ) ( ) ( ) ( ) exp[ ( )], (28)z zρ φ ρ ρ ρ β φ ω= 
 + + 

 + −ρ ρ φ φ

ρ φ ρ ρ ρ β φ ω= 
 + + 

 + −ρ ρ φ φH e e ez H H H i z m t( , , ) ( ) ( ) ( ) exp[ ( )], (29)z z

where eρ, eφ, and ez are the unity vectors in cylindrical coordinates. The full expressions of the radial functions 
ρρE ( ), E ( )ρφ , ρE ( )z , ρρH ( ), H ( )ρφ  and H ( )z ρ , containing Bessel functions of the first (Jm) and second (Ym) kind, are 

given in ref.46. To obtain a physically finite solution, we drop all the terms including Ym because this functions 
exhibits a singularity at the origin (ρ = 0). The exponential factors in Eqs (28) and (29) are identical in all media 
and thus can be neglected. Because only the tangential field components are required to fulfill the boundary con-
ditions, the only relevant factors to be considered for the mathematical analysis are those given in Eqs (1–2).

Relations of the Bessel functions.  The perturbation treatment conducted above requires calculation of 
the first, second, and third derivatives of the Bessel function Jm for arguments that are zeros of the Bessel function 

±Jm 1, which are analytically expressed as follows. The first derivative of Jm is given by54

J x J x J x( ) 1
2

( ( ) ( )) (30)m m m1 1= − .′
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Applying Eq. (30) recursively allows higher derivatives to be transformed into analytic expressions including 
multiple Bessel functions of different order, which can be further reduced by applying the following equation54 
repeatedly:
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With this procedure, any derivative of the Jm function can be transformed into the following type of expression:
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k

m m s
( ) = + +

where p(x) and q(x) are rational functions and = ±s 1. In particular, the first three derivatives of the Jm function 
can be expressed as follows:
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Data availability.  All data generated or analyzed during this study are included in the figures and can be 
reproduced using the equations of this published article.

References
	 1.	 Holsinger, F. C. et al. Use of the photonic band gap fiber assembly CO2 laser system in head and neck surgical oncology. Laryngoscope 

116, 1288–1290 (2006).
	 2.	 Hassan, M. R. A., Yu, F., Wadsworth, W. J. & Knight, J. C. Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica 3, 

218–221 (2016).
	 3.	 Wang, Z., Belardi, W., Yu, F., Wadsworth, W. J. & Knight, J. C. Efficient diode-pumped mid-infrared emission from acetylene-filled 

hollow-core fiber. Opt. Express 22, 21872–21878 (2014).
	 4.	 Russell, P. S., Holzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. 

Nat. Photonics 8, 278–286 (2014).
	 5.	 Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 

(2003).
	 6.	 Jaworski, P. et al. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision 

micro-machining. Opt. Express 23, 8498–8506 (2015).
	 7.	 Jin, W., Cao, Y. C., Yang, F. & Ho, H. L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 

6, 6767 (2015).
	 8.	 Bykov, D. S., Schmidt, O. A., Euser, T. G. & Russell, P. S. J. Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 

9, 461–U63 (2015).
	 9.	 Heckl, O. H. et al. Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average 

power. Opt. Express 19, 19142–19149 (2011).
	10.	 Humbach, O., Fabian, H., Grzesik, U., Haken, U. & Heitmann, W. Analysis of OH absorption bands in synthetic silica. J. Non-Cryst. 

Solids 203, 19–26 (1996).
	11.	 Snyder, J. A. & Love, J. D. Optical Waveguide Theory (Chapman and Hall, London, New York, 1983).
	12.	 Hu, J. & Menyuk, C. R. Understanding leaky modes: Slab waveguide revisited. Advances in Optics and Photonics 1, 58–106 (2009).
	13.	 Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).
	14.	 Hart, S. D. et al. External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002).
	15.	 Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core omniguide fibers. Opt. Express 9, 748–779 

(2001).
	16.	 Zeisberger, M., Tuniz, A. & Schmidt, M. A. Analytic model for the complex effective index dispersion of metamaterial-cladding 

large-area hollow core fibers. Opt. Express 24, 20515 (2016).
	17.	 Tuniz, A., Zeisberger, M. & Schmidt, M. A. Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers. Opt. 

Express 24, 15702–15709 (2016).
	18.	 Litchinitser, N. M. et al. Resonances in microstructured optical waveguides. Opt. Express 11, 1243 (2003).
	19.	 Yu, F. & Knight, J. Spectral attenuation limits of silica hollow core negative curvature fiber. Opt. Express 21, 21466–21471 (2013).
	20.	 Cai, H. et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific Reports 5 (2015).
	21.	 Bates, K. E. & Lu, H. Optics-integrated microfluidic platforms for biomolecular analyses. Biophys. J. 110, 1684–1697 (2016).
	22.	 Schmidt, H., Yin, D., Deamer, D. W., Barber, J. P. & Hawkins, A. R. Integrated arrow waveguides for gas/liquid sensing. Proc. SPIE 

5515, 67–80 (2004).
	23.	 Yin, D., Schmidt, H., Barber, J. P. & Hawkins, A. R. Integrated arrow waveguides with hollow cores. Opt. Express 12, 2710–2715 

(2004).
	24.	 Uebel, P. et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 41, 

1961–1964 (2016).
	25.	 Kosolapov, A. F. et al. Hollow-core revolver fibre with a double-capillary reflective cladding. Quantum Electronics 46, 267–270 

(2016).
	26.	 Hartung, A. et al. Low-loss single-mode guidance in large-core antiresonant hollow-core fibers. Opt. Lett. 40, 3432–3435 (2015).
	27.	 Hartung, A. et al. Double antiresonant hollow core fiber–guidance in the deep ultraviolet by modified tunneling leaky modes. Opt. 

Express 22, 19131–40 (2014).
	28.	 Debord, B. et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 4, 209–217 (2017).
	29.	 Hartung, A. et al. Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet. Opt. Express 23, 2557–65 (2015).
	30.	 Gao, S.-F., Wang, Y.-Y., Liu, X.-L., Ding, W. & Wang, P. Bending loss characterization in nodeless hollow-core anti-resonant fiber. 

Opt. Express 24, 14801–14811 (2016).
	31.	 Fevrier, S., Beaudou, B. & Viale, P. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design 

simplification. Opt. Express 5142–5150 (2010).



www.nature.com/scientificreports/

13ScIentIfIc ReportS |  (2017) 7:11761  | DOI:10.1038/s41598-017-12234-5

	32.	 Couny, F., Benabid, F. & Light, P. Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett 31, 3574–3576 (2006).
	33.	 Bradley, T. D. et al. Modal content in hypocycloid kagome hollow core photonic crystal fibers. Opt. Express 24, 15798–15812 (2016).
	34.	 Sollapur, R. et al. Soliton explosion driven multi-octave supercontinuum generation by geometry-enforced dispersion design in 

antiresonant hollow-core fibers. ArXiv e-prints (2017).
	35.	 Huang, Z. Y., Wang, D., Leng, Y. X. & Dai, Y. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled 

hollow-core fiber compressor. Chinese Physics B 24 (2015).
	36.	 Knight, J., Gerome, F. & Wadsworth, W. Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical 

pulses. Optical and Quantum Electronics 39, 1047–1056 (2007).
	37.	 Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission + lasers. . Bell 

System Technical Journal 43, 1783 (1964).
	38.	 Yan, M. & Mortensen, N. A. Hollow-core infrared fiber incorporating metal-wire metamaterial. Opt. Express 17, 14851–14864 

(2009).
	39.	 Ibanescu, M. et al. Analysis of mode structure in hollow dielectric waveguide fibers. Phys. Rev. E 67 (2003).
	40.	 Manenkov, A. B. Quasi optics of waveguides with selective reflecting dielectric walls. In Fifth Colloquium on Microwave 

Communications, ET–219 (Budapest, 1974).
	41.	 Miyagi, M. & Nishida, S. Transmission characteristics of dielectric tube leaky wave-guide. IEEE Trans. Microwave Theory Techniques 

28, 536–541 (1980).
	42.	 Archambault, J.-L., Black, R. J., Lacroix, S. & Bures, J. Loss calculations for antiresonant waveguides. J. Lightwave Technol. 11, 

416–423 (1993).
	43.	 Rugeland, P., Sterner, C. & Margulis, W. Visible light guidance in silica capillaries by antiresonant reflection. Opt. Express 21, 

29217–29222 (2013).
	44.	 Masruri, M., Cucinotta, A. & Vincetti, L. Scaling laws in tube lattice fibers. In CLEO (Optical Society of America, San Jose, 

California, 2015).
	45.	 Ding, W. & Wang, Y. Analytic model for light guidance in single-wall hollow-core anti-resonant fibers. Opt. Express 22, 27242–27256 

(2014).
	46.	 Kaliteevskii, M. A., Nikolaev, V. V. & Abram, R. A. Calculation of the mode structure of multilayer optical fibers based on transfer 

matrices for cylindrical waves. Opt. Spectrosc. 88, 792–795 (2000).
	47.	 Yariv, A. & Yeh, P. Optical Waves in Crystals. Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1984).
	48.	 Euser, T. G. et al. Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber. J. Opt. Soc. Am. 

B 28, 193–198 (2011).
	49.	 Zhang, S. G., Zhai, K. L., Ma, X. R., Hu, M. L. & Wang, Q. Y. Broadband and efficient femtosecond second-harmonic generation with 

temperature-dependent group velocity matching. IEEE Journal of Quantum Electronics 52 (2016).
	50.	 Uebel, P. et al. Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes. Opt. Lett 41, 1961–1964 

(2016).
	51.	 Frosz, M. H. et al. Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers. Phot. Res. 5, 88–91 

(2017).
	52.	 Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
	53.	 Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-

filled kagome-pcf. Opt. Expr. 21, 10942 (2013).
	54.	 Magnus, W., Oberhettinger, F. & Soni, R. Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, 1966).

Acknowledgements
The authors gratefully acknowledge financial support and funding from the DFG (SCHM2655/6–1) and the 
Thuringian State (Project no. 2016FGR0051).

Author Contributions
The analytical calculations were performed by M.Z. Numerical calculations for validation of the equations were 
done by M.A.S. and M.Z. The figures were prepared by M.A.S., and the manuscript was written by M.A.S. and 
M.Z.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Change History: A correction to this article has been published and is linked from the HTML version of this 
paper. The error has not been fixed in the paper.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers

	Results

	Fields in the core and zero-order approximation. 
	Reflection at a planar film. 
	Perturbation treatment. 
	TE and TM modes. 
	Hybrid modes. 

	Discussion

	Conclusion

	Methods

	Numerical solutions for comparison. 
	Expressions of the field. 
	Relations of the Bessel functions. 
	Data availability. 

	Acknowledgements

	Figure 1 (a) Cross section of the tube-type anti-resonant hollow core fiber geometry discussed here, consisting of an air core, a glass ring and an air cladding with all relevant parameters (light blue: air, purple: glass.
	Figure 2 Comparison of the spectral distributions of the real (a) and imaginary (b) parts of the effective mode index of the fundamental leaky HE11 mode supported by the tube-type anti-resonant hollow core fiber of model (lines) and full numerical solutio
	Figure 3 Comparison of the spectral distributions of the real (a) and imaginary (b) parts of the effective mode index of the three lowest-order modes supported by the tube-type anti-resonant hollow core fiber (blue: HE11, purple: TE01, pink: TM01, , , ng 
	Figure 4 Comparison of the radius dependence of the real (a) and imaginary (b) parts of the effective mode index of the fundamental leaky HE11 mode supported by the tube-type anti-resonant hollow core fiber at the wavelengths of lowest loss of the three i
	Figure 5 Comparison of the spectral distributions of (a) group velocity dispersion and (b) group velocity of the fundamental leaky mode of the tube-type anti-resonant fiber for three different core radii (light green: 20 μm, blue: 40 μm, purple: 80 μm lin
	Figure 6 (a) Dispersion of the three lowest-order leaky modes as a function of the tube refractive index (blue: HE11, purple: TE01, magenta: TM01).
	Figure 7 Spectral distribution of the optimal diameter ratio of anti-resonant element and central air core of a revolver-type hollow core fiber to achieve single mode guidance.
	Figure 8 Dependence of the zero-dispersion wavelength (ZDW) on the core radius of the fundamental leaky mode of an argon-filled tube-type anti-resonant hollow core fiber ( K, bar) for various values of the tube thickness w.




