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a b s t r a c t

Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the
synthesis of materials with desired microstructures and resulting properties. These benefits come at a
cost: process control to manufacture parts within given specifications is very challenging due to the rel-
evance of a large number of processing parameters. Efficient predictive machine learning (ML) models
trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset
inclusive of uncertainty. This is important in order for additively manufactured parts to meet property
specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate
this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on
laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity
as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset.
The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respec-
tive uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to
assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This
HGP model approach enables to systematically improve ML-driven AM processes.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Additive manufacturing (AM) - also known as three-
dimensional (3D) printing - enables the fabrication of near-net
shape components with high geometrical freedom, due to the
layer-by-layer build-up based on a digital model [1–3]. Laser pow-
der bed fusion (LPBF) is a widely used powder-bed based AM tech-
nology for the fabrication of metallic components [2]. A computer-
controlled laser beam locally melts predestined volumes of a
deposited thin powder layer (Fig. 1a). The molten volume fuses
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Fig. 1. Working principle of LPBF. During LPBF, a powder layer is deposited (a), and a focused laser-beam locally melts a specific volume according to a predetermined
geometry. (b) The melt rapidly solidifies generating the first layer and, (c), the next powder layer is deposited and melted. This cycle is additively repeated, until the part is
fully fabricated.
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with the underlying material, so that one component’s layer is
completed (Fig. 1b). Afterwards, the next powder layer is deposited
and melted (Fig. 1c). This cycle is repeated, until the build-up is
completed [4]. (see Table 1).

Metal AM found its way into industry and still continues to be a
transformative manufacturing process across multiple industrial
sectors, such as aerospace, healthcare, energy and automotive
[2,5]. Key challenges still remain with controlling the metal AM
process rating high amongst them. Next to expensive printing
equipment and feedstock material, a plethora of processing param-
eters must be correctly selected for the successful fabrication of
components with desired microstructure ultimately determining
their physical, functional and/ or mechanical properties [3,4]. Cur-
rent practice to identify this so-called optimum processing param-
eter set is still based on trial and error [3], although the expertise of
the AM-device operator as well as design of experiments [6] and
statistical analyses [7,8] contribute to reduce the number of
attempts required. All of these approaches are time-consuming
and expensive which is especially valid for metal AM [2,9,10]. Since
AM operates at the crossroad of materials, machines, computing
and data [7], this innovative manufacturing technology is designed
to be streamlined by automation [9,11,12]. Therefore, the applica-
tion of data-driven ML methods would represent an alternative
approach for the identification of the optimum parameter set. ML
already found its way into metal AM, especially into LPBF [9–22].

One of the main focuses of ML applications to AM processing is
the optimization of processing parameters based on property pre-
dictions of printed parts. The fundamental limitation of such a ML-
based approach is the variability of the AM processes which is not
adequately treated and captured by constructed ML models
[23,24], so far. Physical processes, which govern the LPBF fabrica-
Table 1
All the RMSE values are given in the units of the amorphous volume fraction (i.e., in %).
RMSEbulk corresponds to the validation scheme in which, as the training data, all the
boundary points were taken and the model was tested on the bulk points. RMSELOO

corresponds to the LOO cross-validation scheme. RMSELOO (except one point) stands
for the RMSE value corresponding to the LOO scheme performed for the dataset where
the data point showing the greatest dispersion was removed.

RMSEbulk RMSELOO RMSELOO(except one point)

1.12 2.58 1.69

2

tion of parts, such as the interaction of the laser beamwith metallic
powder leading to its melting and subsequent solidification of the
material are stochastic. Thus, a probability distribution to obtain a
specimen with certain properties results at a given processing
parameter set. To be more precise, variations can encompass pow-
der characteristics (size and morphology of particles) and fluctua-
tions of the laser power or scanning speed as well as further
processing parameters. Next to the fabrication, also the character-
ization of specimens contributes to the resulting dispersion in the
measured target properties [23,25]. Finally, ML models developed
for predicting properties of additively manufactured materials also
have a level of uncertainty depending on, for instance, the ML algo-
rithms used to construct the models. All these various factors con-
tribute to the resulting uncertainty that has to be properly treated.

The goal of the present work is twofold. Firstly, we intend to
introduce ML methods for uncertainty quantification not previ-
ously used in the context of AM. The access to position-resolved
uncertainty in the feature space is essential for designing smallest
possible, but most efficient datasets for developing ML models
with high predictive accuracy. As AM operator, one strives to pro-
duce and especially characterize as less as possible specimens
required for generating the dataset used to develop the model.
Therefore, it is of high interest to identify regions in the feature
space with highest uncertainty, so that particularly the corre-
sponding experimental datapoints are provided to the ML model
for training. Furthermore, uncertainty quantification can be used
to analyze the dataset for revealing underlying physical phenom-
ena or measurement inaccuracy of LPBF-fabricated specimens.
With the present work, we aim to demonstrate both, the identifi-
cation of locations in the feature space with high uncertainty and
the analysis of the experimental data used to develop the present
ML model. Therefore, we generated a dataset based on laser pow-
der bed fusion of a glass-forming Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%)
alloy at varying processing parameters. This specific alloy was
selected, because (partially) amorphous specimens can be fabri-
cated by LPBF allowing to use the so-called amorphicity, which is
a microstructural descriptor, as output label for the present ML
model. The amorphicity is defined as the volume fraction of the
amorphous phase of each (partially) glassy LPBF-fabricated speci-
men. In comparison to other microstructural descriptors, such as
grain size and shape for crystalline materials, the amorphicity
can be relatively easy accessed via differential scanning calorime-
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try. By contrast the determination of grain size and shape require
extensive and very time-consuming investigations involving met-
allurgical preparation and microscopic analysis. In consideration
of a large number of specimens, which needed to be analyzed for
generating a sufficient large dataset, selecting the amorphicty as
output label is the logical choice. A salient feature of the experi-
mental dataset is that its noise (uncertainty) level demonstrates
heteroscedastic behavior. More precisely, the noise level inherent
to the experimental data varies across the LPBF process parameter
space for the specimens’ fabrication. In order to construct a model
with high predictive accuracy, one must adequately consider the
heteroscedastic nature of the uncertainty inherent to the data.
We thus use the HGP algorithm introduced in [26] to model inter-
relations between amorphicity and the LPBF processing parame-
ters and determine the corresponding uncertainty level. Although
Zr-based alloys have been extensively studied in recent years in
the context of additively manufactured bulk metallic glasses [27–
31], a robust model for accurate prediction of amorphicity depen-
dent on the LPBF processing parameters has not been yet con-
structed. The development of such a model and its detailed
analysis is hence our second main goal. The deliberate modulation
of microstructural descriptors permits to design the microstructure
and hence tailor the mechanical properties of LPBF-fabricated parts
[32]. The present efforts are a first step toward exploiting the
process-structure–property-performance linkage for the ML-
driven fabrication of materials by additive manufacturing [11].
Fig. 2. Schematic illustration depicting the sample arrangement on the building
plate. Ten times three samples with identical processing parameter set were
fabricated at each building job. The red rectangles visualize three samples
fabricated at identical parameter set and they were located in the top, center and
bottom section of the build plate.
2. Experimental dataset

We aim to model the amorphicity and the corresponding uncer-
tainty dependent on the LPBF processing parameters. From this
perspective, it is important to have self-consistent data, which
implies the employment of the machine with the same configura-
tion for the production of the entire data, while the target charac-
teristics should be measured using the same methods. Thus, we do
not gather data for the Zr-based alloys from different sources but
use a self-consistent experimental dataset from [33]. Laser power,
scanning velocity and hatching distance were used as input param-
eters, because these processing parameters have been reported to
mostly affect the amorphicity of specimens fabricated by LPBF
from Zr-based glass-forming powder [28,34–36]. Of course, further
processing parameters, such as thickness of the deposited powder
layer or scanning strategy might also have an influence on the
amorphicity. In order to demonstrate that a ML model can be suc-
cessfully developed, those three most influential parameters were
selected to predict the average amorphicity and respective uncer-
tainty. Cuboid-like specimens (5 � 5 �10 mm3) were fabricated
by processing powder with nominal composition of Zr52.5 Cu17.9

Ni14.6 Al10 Ti5 via LPBF using a SLM50 device (Realizer GmbH, laser
spot size of 50 lm). A scanning strategy of unidirectional vectors
rotated by 90�in neighboring layers was utilized and the powder
layer thickness (40 lm) was held constant. For generating the
dataset, the level of the three processing parameters were varied
in such a manner that specimens with cuboid like shape were fab-
ricated. Thereby, the fraction of defects like minor cracks and pores
varied and depended on the exact processing parameters. The goal
is to provide specimens with varying amorphicity, since the ML
model also requires data from samples with low amorphicity to
properly learn the interrelation between amorphicity and the three
processing parameters. The selection of the exact levels is based on
a previous study [28] and is for the three processing parameters as
follows: laser power (90, 100, 110, and 120 W), scanning velocity
(0.7, 0.8, 0.9, 1.0, and 1.1 m/s), and hatching distance (overlapping
between adjacent melt tracks: 0.18, 0.2, and 0.22 mm). Three spec-
imens were fabricated for each parameter set at the top, center and
3

bottom location of the build plate to ensure reproducibility of the
results leading to a total number of 180 specimens fabricated at six
build jobs (Fig. 2). The measured amorphicity of the samples did
not depend on the their print location and we intended only print
iterations permitting the ML model to determine the uncertainty.
Differential scanning calorimetry was conducted for all 180 sam-
ples (sample weight of about 25 mg) at a heating rate of 40 K/
min using Al-crucibles in a Perkin-Elmer Diamond. Each sample
was heated twice to 873 K to obtain a baseline required for deter-
mining the crystallization enthalpy. The amorphous volume frac-
tion, which is defined as amorphicity, was determined from the
measured crystallization enthalpy of each LPBF-fabricated speci-
men and subsequently normalized to the crystallization enthalpy
of a fully amorphous specimen of same nominal composition
which was prepared by copper-mold casting (Edmund Bühler
GmbH). The dataset thus consists of 180 samples fabricated at 60
unique processing parameter sets.
3. Predicting model construction

Let us now turn to the ML model construction. In the ML com-
munity, one usually refers to the model’s input data as features,
while the output is called target. In our case, the LPBF processing
parameters are features, and the amorphous volume fraction is
the target. The task here is to predict the amorphicity based on a
set of LPBF parameters. This is a classical regression problem to
be tackled by applying a supervised ML algorithm. There are plenty
of supervised ML algorithms in literature and the most profound
ones among them, such as artificial neural networks, usually
require a large training dataset. When dealing with medium-size
structured data, decision tree-based algorithms (e.g., XGBoost
[37] or Random Forests [38]), generally demonstrate the best pre-
dictive performance. The nature of tree-based algorithms leads to a
non-smooth behavior of the produced response surfaces. The
regression problem at hand, however, suggests that the response
surface for the amorphous volume fraction should be described
by a smooth function. Given the output variation to be fully deter-
mined by the three features at hand, while all other physical
parameters that may influence the amorphicity of the specimens
are constant, it is reasonable to expect that all points in the feature
space within a close vicinity are correlated. The most suitable algo-
rithm for such a task is the Gaussian process (GP) regression
method [39]. Moreover, one main advantage of GP-based algo-
rithms is that they also provide a natural framework for uncer-
tainty quantification.

Based on given processing parameter values, proper application
of GP-based algorithms allows to model the probability distribu-
tion for a certain property (e.g. amorphicity) of a specimen. How-
ever, the classical GP regression algorithm is only suited to
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model the homoscedastic noise distribution, i.e. the noise which is
constant for varying points of the feature space. As for each set of
the LPBF parameters three specimens were produced and their
amorphicity was measured, we may estimate the noise level inher-
ent to these data. The scatter plot in Fig. 3 demonstrates that the
lower amorphicity a specimen shows, the higher dispersion in its
values was measured. One may also observe that the same trait
is inherent to the feature space. The measured dispersion hence
demonstrates heteroscedastic behavior, since it depends on the
input data which shows varying levels of uncertainty for different
regions of the feature space. As a consequence, classical GP regres-
sion algorithms requiring a homoscedastic noise distribution are
not suited for modelling the interrelations between amorphicity
and the processing parameters of the present dataset. Among GP
regression methods, there is a family of algorithms known as
heteroscedastic GP (HGP) [26,40,41] and they are more suited for
the present dataset. These ML algorithms are designed to properly
consider the heteroscedasticity in the noise level and are thus
exploited to solve the present regression problem. Therefore, we
exploited the HGP algorithm proposed in [26]. It should be noted
that the classical (homoscedastic) GP algorithm has been previ-
ously applied by several authors to metal AM [20,10,42–49],
including optimization of the LBPF processing parameters
[20,10,49]. The HGP algorithm is, however, introduced to metal
AM by the present study for the first time.

3.1. HGP regression algorithm

There are three features for the problem at hand: laser scanning
velocity, hatching distance, and laser power. The input vectors xi

from the training dataset are aggregated in the matrix

X ¼ ðx1; . . . ;xnÞT , while the corresponding target values are col-
lected in the vector y with components yi. In the present case, each
vector xi consists of three components, corresponding to the three
LPBF processing parameters. We assume a Gaussian noise term
contribution for the measured training data which depends on
the input data. To be more precise, it is assumed that the measured
amorphicity data, yi, is approximated by yi ¼ f ðxiÞ þ �i, where f is a
Gaussian process prior and �i � Nð0;riÞ is a Gaussian noise term.
The dispersion parameters ri for �i are defined by a function
r2

i ¼ rðxiÞ ¼ r, which is to be identified during the fitting proce-
dure. Denoting a point in the feature space which shall be pre-
dicted by x�, the HGP regression algorithm gives mean m� and
standard deviation r� values for the corresponding target accord-
ing to following relations:

m� ¼ Kðx�;XÞ KðX;XÞ þ RðXÞ½ ��1y;
r2

� ¼ r2
a þ r2

e ;
ð1Þ
Fig. 3. (Color online) Distribution of the standard deviation of the experimentally
measured data points.
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where

r2
a ¼ Rðx�Þ;

r2
e ¼ Kðx�;x�Þ

�Kðx�;XÞ KðX;XÞ þ RðXÞ½ ��1KðX; x�Þ;
ð2Þ

and R is the diagonal matrix RðXÞ ¼ diagðrÞ, while Rðx�Þ ¼ rðx�Þ. The
central object of any GP algorithm is the kernel kð�; �Þ, defining the
expressions above as

KðX;XÞ ¼
kðx1;x1Þ . . . kðx1; xnÞ

..

. . .
. ..

.

kðxn;x1Þ . . . kðxn;xnÞ

2
664

3
775; ð3Þ

together with

Kðx�;XÞ ¼ ðkðx�;x1Þ; . . . ; kðx�;xnÞÞ;
KðX; x�Þ ¼ KTðx�;XÞ;

ð4Þ

and Kðx�;x�Þ ¼ kðx�; x�Þ. The ability to predict the standard devia-
tion is the basis for the uncertainty quantification analysis demon-
strated in this work. The meaning of variances r2

a and r2
e will be

explained in the following sections.
The HGP and classical (homoscedastic) GP regression algo-

rithms mainly differ in the term Rð�Þ, which in the case of classical
GP has to be replaced by the identity matrix I multiplied by a con-
stant parameter r2

n [39]. The kernel function kð�; �Þ determines the
generalization properties of the HGP model. For example, if one
deals with data demonstrating periodic behavior, the best choice
for the model construction would be to take a periodic kernel.
However, the proper selection of the structural form of the kernel
for most ML problems is somehow a black art [50]. In general, a
common strategy is to use a kernel function from the Matérn class
of kernels. In order to construct the present HGP model, we chose
the Matérn-3/2 function which is defined by

kðxi; xjÞ ¼ A2 1þ
ffiffiffi
3

p
dðxi; xjÞ

� �
e�

ffiffi
3

p
dðxi ;xjÞ:

One may think of dðxi; xjÞ as a metric in the feature space and it (its
squared value) can be written as

d2ðxi; xjÞ ¼ ðxi � xjÞTMðxi � xjÞ; ð6Þ

where M is the diagonal matrix M ¼ diagðlÞ�2. In our case, there are
three non-vanishing components l ¼ ðlP ; lv ; lhÞ of the matrix which
correspond to laser power, laser velocity and hatching distance,
respectively. These parameters strongly affect the characteristic
length scales which, in a sense, define how far one needs to move
along one particular axis in the feature space to observe a signifi-

cant change in the target values. The parameter A2 is usually called
signal variance and defines the kernel function amplitude. The con-
stant parameters described above are usually called hyperparame-
ters, and in what follows, we will refer to them by the symbol h.
Thus, in our case h ¼ ðl;AÞ. The hyperparameters must be identified
during the fitting procedure of the present HGP regression model.

3.1.1. Fitting procedure
The main idea behind the algorithm proposed in [26] is to esti-

mate the uncertainty level from the training data and to build an
additional model to accurately predict it. To do so, one can perform
the following steps. Firstly, a classical (homoscedastic) GP model,
G1, is fitted using the training data. By definition, this model pre-
dicts a multivariate probability distribution for the target. In the
next step, for each training input xi, one takes a number s of target

values yðpÞi from the distribution generated by the model G1 and
estimates the noise level according to following formula:
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rðxiÞ ¼ 1
2s

Xs

p¼1

yi � yðpÞi

� �2
; ð7Þ

where yi is the predicted mean value of the target at point xi. In our
model, we use the number of samples as s ¼ 100. This step is fol-
lowed by training another GP model, G2, for which target is the
noise level RðXÞ. Mean values predicted by G2 for the training input
define the term RðXÞ which is used to fit the model G1 at the follow-
ing step. Thus, G1 is fitted with the noise term RðXÞ predicted by G2,
in all the subsequent iterations. The cycle should be repeated until
it converges. In our experiments, about ten iterations were, there-
fore, needed.

All hyperparameters are optimized following the marginal like-
lihood maximization procedure [39]. The log marginal likelihood is
defined by

LðhÞ ¼ � 1
2 y

T KðX;XÞ þ RðXÞð Þ�1y
� 1

2 log det KðX;XÞ þ RðXÞð Þ � n
2 log 2p;

ð8Þ

which is a function of hyperparameters h that are optimized to
maximize the function L. In the first iteration of the fitting algo-
rithm, for the G1 model, the matrix R should be replaced by a diag-
onal matrix with the constant noise term r2

nI which also has to be
fitted. At all following iterations, one fits the model by minimizing
the likelihood function with the noise level R predicted by the
model G2.

4. ML modeling of the amorphous volume fraction

Following the algorithm described above, a HGP model was
developed (the source code for the HGP algorithm is available in
a GitHub repository [51]). The predicted mean and uncertainty (s-
tandard deviation) values for amorphicity are depicted in Figs. 4
and 5, respectively. In the following, we will discuss the model per-
formance and describe the influence of the LPBF parameters on
amorphicity.
Fig. 4. (Color online) HGP model predictions for mean va
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4.1. Model’s performance

The creation of a dataset by metal AM technologies is generally
laborious and cost-intensive, due to the processing of the feedstock
and especially characterization of the resulting specimens [19]. As
a consequence, relatively small datasets of high quality are mostly
provided for developing ML models, such as the present HGP
model. For the development of a ML model, the dataset must be
split for training and testing, so that ”overfitting”, which is a statis-
tical challenge for ML in general [52], is avoided. Testing reveals
whether the model really ”learned” the underlying interrelations
between the output (e.g. amorphicity) and the features (e.g. pro-
cessing parameters) and hence ”generalizes”, or whether it is over-
fitted during training. In order to fully exploit the dataset for
developing an accurate model, the so-called k-fold cross-
validation (CV) [39] can be used. Within the k-fold CV approach,
the dataset is randomly split into k groups of equal size known
as folds. One of the folds is used for testing, whereas the residual
folds are used for training. However, for the present small dataset,
the experimental matrix design has a subtlety: Removing just a
small number of points would lead to a large region of the feature
space uncovered, leaving the model without knowledge of the tar-
get behavior in this particular region. Yet, it is reasonable to expect
the model to have good interpolation abilities. Let us remind that
the training points form a cubic lattice. There are 54 points on
the boundary of this cube and six points lie in the bulk. Using
boundary points as a training dataset, while the bulk ones as test
data, one may find the root-mean-squared error (RMSE) to be
1.12%. Compared to the range of the original observed amorphicity
values, the RMSE is reasonably low. k-fold CV can be carried out to
the extreme by splitting the dataset into the number of data-
vectors, so that each data-vector is used once for testing and all
residual ones for training. This split method is known as leave-
one-out cross-validation (LOO CV), which we exploit in order to
get insight into the extrapolation properties of our model. Recalling
that for each point of the feature space three samples were fabri-
cated, we define a performance metric
lues of amorphicity (a) and its total uncertainty (b).



Fig. 5. (Color online) Two-dimensional contour maps of HGP model predictions for mean values of amorphicity (a) and its total uncertainty (b).
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RMSELOO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

hyexpi i � ypredi

� �2

vuut ;
where n is equal to the number of parameter sets used to generate
the experimental dataset (n ¼ 60). Here hyexpi i stands for an aver-
aged value of amorphicity over three samples for a point in the fea-

ture space i, while ypredi is the corresponding mean value predicted
by the HGP model according to Eq. (1). The present model yields
an RMSELOO of 2.58%. In other words, it predicts the amorphicity at
a given processing parameter set with an accuracy of 2.58%. We
note that this error is rating the overall predictive performance of
our HGP model, but not the position-resolved uncertainty of an
output-inputs vector of the feature space. Certain points of the data-
set used for developing this model are crucial. When performing the
LOO CV, the largest contribution to the resulting error stems from
points with lowest amorphicity and their neighboring data points
(these are the points in the left bottom corner in Fig. 4). The model
is not able to adequately capture a drastic change in amorphicity in
the vicinity of this region when the corresponding data points are
removed from the training dataset. This fact is also reflected in
the high experimentally measured dispersion which will be dis-
cussed below. If removing only one point with the highest experi-
6

mentally measured dispersion prior to performing LOO CV, the
RMSELOO significantly drops down to 1.69%.
4.2. Amorphicity dependence on the LPBF processing parameters

The aim of the HGPmodel is to accurately predict the amorphic-
ity for the three given processing parameters. Following the fitting
procedure described in the previous section, this model was devel-
oped using the complete experimental dataset. Fig. 4a displays the
mean values of the predicted amorphicity as a function of the three
features (laser power, scanning velocity, hatching distance), thus
covering the three-dimensional features space. Fig. 5a allows a
more quantitative perception of the amorphicity by illustrating
the corresponding mean values in two-dimensional contour maps
of this space at varying scanning velocity. In general, the amorphic-
ity of the specimens is higher when lower laser powers and larger
values for the hatching distance and scanning velocity were
employed during their LPBF-fabrication as is in line with literature
[35,53,28,33]. In particular, the contour maps shown in Fig. 5a dis-
close two characteristic regions. At low laser powers up to about
100 W, the LPBF-fabricated specimens showed high mean values
down to 98% for amorphicity. Interestingly, amorphicity is hardly
affected by the scanning velocity and hatching distance in this
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region. By contrast, both processing parameters have a strong
impact on amorphicity when a laser power higher than 100 W
was employed for LPBF fabrication. Then the amorphicity strongly
varies with scanning velocity and also hatching distance. A drastic
drop in amorphicity from 95� 80% was observed with decreasing
scanning velocity from 0:9� 0:7 m/s (Fig. 5a). Since highly amor-
phous specimens are fabricated by LPBF in the first processing
regime, higher cooling rates must be then effective. The volume
fraction of the vitrified phase – its amorphicity – is determined
by the exact cooling rate which the utilized processing parameters
dictate. The heat from the consecutively molten pools is extracted
through the underlying solid material [4]. The speed of heat extrac-
tion determines the cooling rate and depends on the thermophys-
ical properties of the underlying solid and especially on the
processing parameters. There is no access to alter the materials
properties, but variation of the processing parameters allows to
adjust the cooling rates. They must be sufficiently high to circum-
vent intervening crystallization and in turn favor vitrification. Low
laser powers, fast scanning velocities and large hatching distances
thus favor amorphicity or are more efficient in preventing crystal-
lization during LPBF-processing.
5. Uncertainty modeling

Gaussian process-based models, such as the present HGP algo-
rithm, provide a natural framework to quantify the uncertainty
of the predicted mean values for an output label of choice (e.g.
amorphicity). This means that the model provides a position-
resolved uncertainty for any mean value in the feature space,
unlike the RMSE value rating the performance accuracy of the GP
model (see Section 4.1). The access to position-resolved uncer-
tainty is almost invaluable for generating smallest possible data-
sets which still allow for developing ML models with high
predictive accuracy. This advantage is decisive especially for opti-
mizing metal AM processing, since the generation of a dataset,
which is tantamount to the fabrication and characterization of
specimens, is time- and cost-intensive. Therefore, one aims to pro-
vide an absolute minimum number of experimental points to the
ML algorithm to construct the respective model. In order to effi-
ciently enhance its predictive accuracy, data points in the feature
space with highest uncertainty must be identified, so that the cor-
responding specimens can be fabricated and characterized. The
current HGP model exactly enables the identification of data points
with high uncertainty. It additionally allows to understand the
higher uncertainty in the feature space by providing the uncer-
tainty contributions. This approach is demonstrated in the follow-
ing by the uncertainty distribution of the amorphicity as a function
of the processing parameters. Fig. 4b displays a three-dimensional
plot of the total uncertainty as a function of the three features:
scanning velocity, hatching distance and laser power. Highest val-
ues of the standard deviation calculated according to Eq. (1), which
is a measure for the total uncertainty predicted by the HGP model,
are observed in a contiguous region above a laser power of 100 W,
below a scanning velocity of 0.9 m/s, and at a decreasing hatching
distance (Fig. 4b, bottom left corner). Lowest mean values for
amorphicity exactly characterize this particular region of the fea-
ture space, as Fig. 4a proves. Possible reasons could stem from
the intervening crystallization or the measurement accuracy of
the amorphicity by DSC, and we are going to elaborate on these
reasons later on. Higher values of the uncertainty can be, further-
more, found in regions located between the experimental data
points. In other words, the total uncertainty shows lowest values
in the vicinity of the training points, while distant points are char-
acterized by higher uncertainty [39].
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For the present HGP model, higher uncertainty can be found in
regions periodically arranged in the feature space forming a lay-
ered structure of larger uncertainty. The respective two-
dimensional contour plots (Fig. 5b) point out this layered structure.
Larger uncertainty is clearly visible between the experimental data
points in the contour plot at a constant scanning velocity of 0.9 m/
s. The dispersion length differs along the three features. Otherwise,
uncertainty would have been concentrated in regions with a
cuboid-like shape in the feature space located between the exper-
imental points which are defined by the three features. This is not
the case, since contiguous layered regions of larger uncertainty are
present at constant laser powers (Figs. 4b and 5b). A possible
explanation for this uncertainty distribution pattern is the follow-
ing. After having fitted the model, one may check that the length
scale lP in Eq. (5) for laser power has the lowest value compared
to the other features. The correlation length defines how far one
should move along the corresponding axis to see a significant
change in the target values. The lower value the length scale has
for a particular feature, the weaker correlation will the points along
the axis defined by the feature have [39]. When varying the feature
laser power and moving away from the experimental points along
the laser power axis, a higher uncertainty results than by varying
the other feature values.
5.1. Aleatoric and epistemic uncertainty

The total uncertainty is distributed in the feature space within
two characteristic structures (Figs. 4b and 5b): (i) a contiguous
region demarcated by low scanning velocities (below 0.9 m/s)
and higher laser powers (above 100 W), and (ii) the layered struc-
ture. This finding could indicate two different sources of uncer-
tainty. In machine learning often a distinction of uncertainty may
appear unnecessary, because the ML model is asked to make a pre-
diction for an output and the exact source of its uncertainty may be
then irrelevant [54]. If, however, the aim is directed towards
understanding the dataset for ultimately reducing the uncertainty
of the ML model, a distinction of the corresponding sources is vital.
Any source of uncertainty can be generally categorized as either
aleatoric or epistemic [55,54]. Aleatoric uncertainty is inherent in
the observations. To be more precise, the outcome of a specific
experiment, such as e.g. ”coin flipping” is dictated by inherently
random effects [54]. Consequently, this type of uncertainty cannot
be reduced by gathering more knowledge or improving the pre-
dicting model. By contrast, the epistemic uncertainty originates
from a lack of knowledge and can be in principle reduced by pro-
viding additional information for training the model [54].

The predicted standard deviation values, r� , were calculated
according to Eq. (1) and they are comprised of an aleatoric and
epistemic uncertainty contribution (see, e.g., [56]). The aleatoric
noise level is governed by the term ra from Eq. (2), while re corre-
sponds to the model’s epistemic uncertainty. Figs. 6a and 6b dis-
play the aleatoric and epistemic distribution values predicted by
the HGP model, respectively. The modeled aleatoric part properly
captures the noise level behavior arising from the training dataset
and comprises the contiguous region demarcated by low scanning
velocities and higher laser powers, as also displayed in Fig. 4b.
Thus, the aleatoric contribution poses one source of the total
uncertainty. Fig. 6b visualizes the predicted epistemic uncertainty
also obtained from the training set. Highest values for the standard
distribution are located in regions between the experimental data
points readily characterized by a layered structure. Since, the
superposition of Figs. 6a and 6b yield the total uncertainty visual-
ized in Fig. 4b, the epistemic part is hence the second source of the
total uncertainty.



Fig. 6. (Color online) Position-resolved (a) aleatoric and (b) epistemic uncertainties predicted by the HGP model.
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As previously mentioned, uncertainty quantification can be a
powerful tool to design small datasets specifically for developing
ML models with high predictive accuracy. The aim is to produce
a minumum number of experimental datapoints required for
model construction. The ability to separate the total uncertainty
into the aleatoric and epistemic contributions is therefore the
basis. The epistemic uncertainty is highest in the uncovered fea-
ture space (Fig. 6b) reaching a maximum in between the experi-
mental data points. Therefore, this uncertainty contribution can
be reduced by providing additional data points of uncovered fea-
ture space. By contrast, the aleatoric uncertainty contribution can-
not be reduced by training the HGP model with additional
experimental data points and instead strongly depends on the
measured amorphicity, as depicted by Figs. 4a and 4b. In order to
efficiently improve the model, further experimental data points
shall be generated for regions with highest uncertainty. A strategy
is to determine the maximum value of the epistemic uncertainty
which yields a threshold value, as displayed in Fig. 7 (red dotted
Fig. 7. Uncertainty distribution dependence on power at fixed values of laser
velocity, 0.8 m/s, and hatching distance, 200 lm. The red dotted line corresponds to
the acceptable uncertainty level.
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line) highlighting the dependence of the total uncertainty on the
laser power at constant hatching distance and velocity. One must
generate additional datapoints for locations with higher uncer-
tainty than this threshold value. Then the epistemic part is elimi-
nated, so that only the aleatoric contribution remains. The
separation into epistemic and aleatoric uncertainty contributions
hints at whether performing new measurements would improve
the model’s performance. Eliminating epistemic uncertainty, by
definition, improves the predicting power of the model. If the alea-
toric uncertainty gives the prevailing contribution to the total one
in some region, adding new points in that region would not (signif-
icantly) improve the model performance. A way to circumvent this
issue is to identify sources of the aleatoric uncertainty followed by
revising the experimental procedure, especially the characteriza-
tion method. This is the focus of the following section. Neverthe-
less, in order to testify the described strategy in full scale, the
fabrication of additional samples for the identified processing
parameters is required. This is the subject of future research activ-
ities and hence beyond the scope of the present work.
5.2. Sources for uncertainty

During LPBF, crystallization can either occur during initial (par-
tial) vitrification of the melt or is induced into the bulk metallic
glass during subsequent cyclic re-heating, due to the layer-by-
layer fabrication [35]. During the vitrification of the overlying lay-
ers, the heat is extracted through the underlying material which
then experiences a heat treatment. Previously formed glass is re-
heated above the glass-transition temperature, so that it devitrifies
into a supercooled liquid [57,58]. At further heating, supercritical
nuclei will form and continue to grow leading to (partial) crystal-
lization of the affected volume. The molten pools will be heated
to higher temperatures, when increasing laser powers, decreasing
scanning velocities and lower hatching distances are employed
during LPBF. More heat must be then extracted resulting in lower
cooling rates effective during solidification of the molten pools
[59] and resulting in also stronger heating of the underlying mate-
rial. In this process regime, crystallization of the supercooled liquid
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is more likely to occur, in turn leading to lower amorphicity. The
LPBF process yields reproducible results, since identical powder
is processed at same conditions to fabricate multiple samples with
same microstructure. The size, shape and maximum temperature
of the molten pools are equal, since they are determined by the
same processing parameters. As a consequence, all samples should
show a similar amorphous volume fraction eventually with crys-
tals uniformly distributed throughout the whole sample. Thus,
LPBF fabrication of the samples most likely does not contribute sig-
nificantly to the characteristic uncertainty observed in Fig. 6a (bot-
tom left corner).

The next step for generating the experimental dataset used for
training the HGP model was the measurement of the amorphous
volume fraction using differential scanning calorimetry. The corre-
sponding measurement can be only carried out with a certain res-
olution. Furthermore, a baseline was generated to extract the
crystallization enthalpy used for calculating the amorphicity. The
measurement and analysis thus involve an error characterized by
a certain absolute value [60]. This absolute value has a stronger
impact on samples with lower absolute values of the crystalliza-
tion enthalpy ultimately leading to a less accurate determination
of the amorphicity, as Fig. 3 proves. The aleatoric uncertainty is
increasing with smaller values of amorphicity. Thus, this behavior
originates from the input-dependent uncertainty so that the amor-
phous volume fraction has higher dispersion above a laser power
of 100 W and below a scanning velocity of 0.9 m/s (Fig. 6a).
6. Conclusions

Here, we have introduced a HGP model for accurate modeling of
materials properties and uncertainty quantification. The realiza-
tion of such a ML-driven approach for the fabrication of materials
with predestined microstructure and resulting properties, was suc-
cessfully demonstrated by modeling the amorphous volume frac-
tion – the amorphicity – of Zr52.5 Cu17.9 Ni14.6 Al10 Ti5 specimens
fabricated by LPBF. The amorphicity served as exemplary property.
Altogether, the used dataset consists of 180 Zr-based fabricated
samples at 60 unique combinations of varied laser power, scanning
velocity and hatching distance. The amorphicity was determined
via differential scanning calorimetry for all fabricated specimens.
The developed HGP model shows an accurate predictive perfor-
mance characterized by a root mean square error (RMSE) of
1.12%. Based on the predicted amorphicity, two characteristic
regions of the feature space can be distinguished: A highly amor-
phous region was observed when laser powers below 100 W were
used for the LPBF fabrication of the Zr-based specimens. The amor-
phicity of this region is hardly affected by varying scanning veloc-
ities and hatching distances. By contrast, the second region
characterized by laser powers above 100 W shows a strong influ-
ence of the residual processing parameters. The amorphicity drops
down to below 80% when additionally, low hatching distances and
slow scanning velocities were used for LPBF fabrication.

The HGP model was designed to not only predict the mean val-
ues of the amorphicity position-resolved in the feature space, but
also to quantify the aleatoric and epistemic uncertainty contribu-
tions. The total uncertainty is distributed in the feature space
within two characteristic structures which correspond to each
uncertainty contribution. The epistemic uncertainty characterized
by high values of the standard deviation is located in regions
between the experimental data points forming a layer-like struc-
ture. This uncertainty source can be reduced by providing addi-
tional data points of uncovered feature space. By contrast, more
training data points would not reduce the aleatoric uncertainty
contribution, which in the present case strongly depends on the
measured amorphicity. The aleatoric uncertainty is inherent to
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the training dataset and showed highest values of the standard
deviation within a contiguous region demarcated by low scanning
velocities and higher laser powers. This uncertainty contribution
originated from the limited measuring accuracy of the differential
scanning calorimetry device used for determining the amorphicity.
Lower values of amorphicity were measured less accurate. Thus,
the present HGP model does not only predict the amorphicity of
Zr-based specimens fabricated by LPBF at a given processing
parameter set with high accuracy, but it additionally provides
the uncertainty of the respective mean value. Furthermore, this
model serves as analysis tool for the investigation of the dataset
used for training. Limited measurement accuracy or the random
influence of underlying physical phenomena can be revealed by
the aleatoric uncertainty contribution. The conceptualization of
the dataset with respect to selected levels and their number of
the processing parameter combinations determine the epistemic
uncertainty. Insights into the uncertainty of the predicted mean
values for a certain microstructural descriptor (e.g. amorphicity)
or property are vital for an AM device operator who uses an HGP
model as a guiding map for the selection of optimum LPBF process-
ing parameters. This additional information allows him to evaluate
the quality of the dataset and to possibly reveal processing param-
eter combinations with high uncertainty of the property. By gener-
ating additional experimental datapoints, the corresponding
epistemic contribution is eliminated, so that the total uncertainty
in this region is reduced. This resource-efficient strategy yields a
HGP model with even higher predictive accuracy. The constructed
HGP model has, however, limitations. Its extrapolation properties
are not reliable for uncovered regions of the feature space spanned
by the LPBF processing parameters. This is particularly valid for
uncovered regions far away from the experimental data points
used for constructing the HGP model and the predicted epistemic
uncertainty demonstrates this fact. We note that this limitation
does not depend on the ML algorithm on its own and can be only
overcome by providing additional experimental data points.

Along this line we would like to address possible further devel-
opments of the present work. The GP family of algorithms is widely
known in the Bayesian optimization context. Thus, the next logical
step would be the combination of the presented HGP approach
with Bayesian optimization methods. The presence of
heteroscedastic noise, however, poses a challenge for Bayesian
optimization and ongoing research activities within the ML com-
munity are focusing on this problem (see, e.g, [56]). We believe
that the incorporation of Bayesian optimization tools into the pre-
sented HGPmethodmay result in the development of a more effec-
tive approach for the optimization of LPBF processing and this is
the focus of upcoming works.
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