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Phase-fieldmodels have already been proven to predict complex fracture patterns
for brittle fracture at small strains. In this paper we discuss a model for phase-
field fracture at finite deformations in more detail. Among the identification of
crack location and projection of crack growth the numerical stability is one of
the main challenges in solid mechanics. Here we present a phase-field model
at finite strains, which takes into account the anisotropy of damage by applying
an anisotropic split of the modified invariants of the right Cauchy-Green strain
tensor. We introduce a suitable weak notion of solution that also allows for a
spatial and temporal discretization of the model. In this framework we study
the existence of solutions and we show that the time-discrete solutions converge
in a weak sense to a solution of the time-continuous formulation of the model.
Numerical examples in two and three space dimensions illustrate the range of
validity of the analytical results.
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1 INTRODUCTION

In solid mechanics, one of the main challenges is the prediction of crack growth and fragmentation patterns. Regard-
ing the modeling side, complicated structures and a non-regular behavior of cracks turn numerical simulations into
a difficult task. The classical brittle fracture approach of Griffith and Irwin [1, 2] is based on an energy minimization
setting for the whole structure. Let us consider a solid with domain 0 ⊂ ℝ3 and boundary 𝜕0 ≡ Γ ⊂ ℝ2 deforming
within a time interval 𝑡 ∈ [0, 𝑇]. Each crack, that is located in a solid, forms a new surface Γ(𝑡) of a priori unknown
position which needs to be identified. Therefore, the total potential energy of a homogeneous but cracking solid is com-
posed of its bulk energy with a Helmholtz free energy density Ψ and of surface energy contributions due to growing
cracks:

𝐸 = ∫
0
Ψ d𝑋 + ∫

Γ(𝑡)

𝑐 dΓ. (1)
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For rate-independent brittle fracture the material’s resistance to cracking, the fracture toughness 𝑐, corresponds to Grif-
fith energy release rate with unit force per length. Rate-independent crack growth sets on as soon as the energy release
rate  reaches the critical value 𝑐. The evolution law encoded therein at time 𝑡 amounts to a minimization of the energy
(1) under the constraint that Γ(𝑡) ⊂ Γ(𝑡) for all 𝑡 < 𝑡 ∈ [0, 𝑇]. However, the minimization of the energy functional (1) is a
challenging task because of the moving boundary Γ(𝑡). Several sophisticated discretization techniques exist, e.g., cohesive
zonemodels [3–5], eroded finite elements [6, 7], or eigenfracture strategies [8, 9] to name some of them. Another approach
to such moving boundary problems is a diffuse-interface approach, which approximates the two dimensional crack sur-
face by a three dimensional damaged volume. These types of phase-field models for fracture have gained much attention
in recent literature, cf. e.g. [10–14]. The main idea of this ansatz is to mark the damage state of the body by a continuous
order parameter 𝑠 ∶ [0, 𝑇] × ℝ3 → ℝ, which evolves in space and time.
From amathematical point of view the phase-field fracture model we shall investigate in this work, is a modification of

theAmbrosio–Tortorelli functional [15], which can be used tomodel rate-independent volume damage, andwhichwe here
augment by a viscous dissipation potential for the variable 𝑠. The modifications made allow it to consider the evolution
problem at finite strains using polyconvex energy densities. They take into account the anisotropy of damage, meaning
that damage only increases under tensile loadings but not under compression. For this, it will be important to consider
the stored energy density as a function of the modified principal invariants of the right Cauchy-Green strain tensor, and
based on this, to introduce an anisotropic split of the energy density, which we shall explain in Section 2.
This model is analyzed in detail in Section 3. We introduce a suitable notion of solution and in this setting we prove

the existence of solutions using a time-discrete scheme via a minimizing movement approach. In particular, we show that
solutions constructedwith a staggered time-discrete scheme converge in aweak sense to a solution of the time-continuous
formulation of the problem. This convergence result is confirmedwithin a series of numerical examples in Section 4,where
we also provide further details on the spatial and temporal discretization. We demonstrate a simple but typical problem
of a mode-I-tension test in two and three dimensions to study different influencing factors.

2 THE PHASE-FIELD FRACTURE APPROACH

In this section the focus is set on the phase-field approach for fracture to overcome the difficulty of moving boundaries.
The phase-field is introduced as an additional parameter which is by definition a continuous field. Thus, the moving
crack boundaries are “smeared” over a small but finite length. The order parameter 𝑠 ∶ 0 × [0, 𝑇] → ℝ with 𝑠 ∈ [0, 1]
characterizes the state of the material, whereby 𝑠 = 1 indicates the unbroken state and 𝑠 = 0 the broken state. The surface
integral in (1) is approximated by a regularization using a crack density function 𝛾 ∶ ℝ × ℝ3 → [0,∞)

∫
Γ(𝑡)

dΓ ≈ ∫
0
𝛾(𝑠(𝑡, 𝑋), ∇𝑠(𝑡, 𝑋)) d𝑋. (2)

This approximation (2) is inserted into (1) so that the total potential energy reads

𝐸 = ∫
0
(Ψ + 𝑐𝛾) d𝑋. (3)

The crack density function is by definition zero along the cracks only. In general different approaches, e.g., a second order
or fourth order crack density function can be applied, cf. Figure 1. Typically, a second-order phase-field approach is defined
as

𝛾(𝑠, ∇𝑠) ∶=
1
2𝑙𝑐
(1 − 𝑠)2 +

𝑙𝑐
2
|∇𝑠|2. (4)

with the fixed parameter 𝑙𝑐 ∈ (0, 1)which is ameasure for the width of the diffuse interface zone, see Figure 1. The length-
scale parameter 𝑙𝑐 weights the influence of the linear and the gradient term whereby the gradient enforces the regulariza-
tion of the sharp interface. The insertion of (4) in (3) leads to a potential which corresponds to the Ambrosio–Tortorelli
functional, cf. [15].
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F IGURE 1 Uniaxial model with a crack
at 𝑥 = 0 and with a continuous phase-field
𝑠 ∈ [0, 1]; phase-field approximation for a
second order and a fourth order
approximation of the crack density function 𝛾

2.1 Governing equations

The elastic boundary value problem is based on the balance of linear momentum

div(𝑷) + 𝒃 = 𝟎 in 0. (5)

Here and in the following 𝑷 denotes the first Piola-Kirchhoff stress tensor, 𝒃 is the prescribed body force and 𝒉 will be
the traction. In this contribution the focus is set on a simple elastic boundary problem such that the body force 𝒃 will be
neglected. The solid’s boundary is divided into displacement and traction boundaries 𝜕D0 and 𝜕N0 with 𝜕D0 ∪ 𝜕N0 =
𝜕0, 𝜕D0 ∩ 𝜕N0 = ∅, and

𝝋 = 𝒈(𝑡) on 𝜕D0 , (6)

𝑷𝑵 = 𝒉(𝑡) on 𝜕N0 . (7)

with the outward normal 𝑵 and fixed prescribed displacements 𝒈(𝑡). All fields refer to the reference configuration. Fur-
thermore, the phase-field evolution equation is stated in general form as

𝑠̇ = −𝑀𝑌, (8)

where the parameter𝑀 denotes the kinematic mobility and 𝑌 summarizes all driving forces which typically represent a
competition of bulk material and surface forces, cf. [16]:

𝑌 = 𝛿𝑠(Ψ + 𝑐𝛾) = 𝛿𝑠Ψ + 𝑐𝛿𝑠𝛾. (9)

In particular, the phase-field model is based on the crack density function (4) and the driving force for crack growth that
consists of components of the free energy.
Here it has to be mentioned that our analytical results also account for the unidirectionality of the damage evolution,

i.e., that damage of the material can only increase during the evolution, but not heal. This can be done by reformulating
Equation (8) for the damage evolution as follows: Under the assumption that the kinematic mobility is strictly positive we
can equivalently rewrite (8) as𝑀−1𝑠̇ = −𝑌. We then introduce (the density of) the quadratic dissipation potential

𝑉𝛼(𝑠̇) ∶=
𝑀−1

2
|𝑠̇|2 + 𝛼𝐼(−∞,0](𝑠̇). (10)

with 𝐼(−∞,0] ∶ ℝ → {0,∞} the characteristic function of the negative real line, i.e., 𝐼(−∞,0](𝑠) = 0 if 𝑠 ∈ (−∞, 0] and
𝐼(−∞,0](𝑠) = ∞ otherwise. In this way, the time derivative 𝑠̇ is forced to take its values in (−∞, 0]. According to the defini-
tion 𝑠 = 1 for the unbroken and 𝑠 = 0 for the completely broken state of thematerial, it thus ensures that the damage of the
material can only increase in time, which means the unidirectionality of the damage evolution. Since the unidirectional-
ity constraint is not incorporated in the numerical simulations presented in Section 4, we use the prefactor 𝛼 = const ≥ 0
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to indicate that we switch this constraint on or off, so that we can consider two different types of models: A model with
𝛼 = const > 0, where the unidirectionality constraint is active, and a model with 𝛼 = 0, where unidirectionality is not
incorporated (i.e. 0 ⋅ ∞ = 0) and which is used in the simulations. Our analytical results cover both cases 𝛼 = const > 0
and 𝛼 = 0. Using (10) we see that the evolution equation (8) for 𝛼 = 0 is given by

D𝑠̇𝑉𝛼(𝑠̇(𝑡)) = −𝑌(𝑡) in 0. (11a)

In the case 𝛼 = const > 0 the dissipation potential 𝑉𝛼 is non-smooth for 𝑠̇ = 0. Then equation (11a) is replaced by the
subdifferential inclusion

𝜕𝑠̇𝑉𝛼(𝑠̇(𝑡)) ∋ −𝑌(𝑡) in 0. (11b)

featuring the multivalued subdifferential of the convex potential 𝑉𝛼. More precisely,

𝜕𝑠̇𝑉𝛼(𝑠̇(𝑡)) = 𝑀
−1𝑠̇ + 𝜕𝑠̇𝐼(−∞,0](𝑠̇), where 𝜕𝑠̇𝐼(−∞,0](𝑠̇) =

⎧⎪⎨⎪⎩
{0} if 𝑠̇ ∈ (−∞, 0),
ℝ+ if 𝑠̇ = 0,
∅ if 𝑠̇ ∈ (0,∞).

(11c)

In Section 3 we will introduce a suitable weak formulation for the evolution problems given by the two cases (11a) and
(11b).

2.2 Finite elasticity and the anisotropy of damage

In this work we set the focus on finite strains and we will subsequently introduce a nonlinear material model and its split
into compressive and tensile parts, which makes sure that only the latter are responsible for crack growth.
In the finite deformation regime a deformationmapping 𝝋 ∶ 0 × [0, 𝑇] → ℝ3 is regarded and the deformation gradient

𝑭 ∶ 0 × [0, 𝑇] → ℝ3×3 is defined as

𝑭 = ∇𝑋𝝋 =
𝜕𝝋

𝜕𝑋
. (12)

Concerning the following notation the fields 𝑋 in capitals refer to the reference configuration. Furthermore, the volume
map is given by the determinant of the deformation gradient, det 𝑭. Further, the assumptions of hyperelasticity, objectivity,
and isotropy of the constitutive law imply that the free energy density can equivalently be written as a function of the
principal invariants of the right Cauchy-Green strain tensor 𝑪 = 𝑭⊤𝑭. In three space dimensions, they are given by

𝜄1(𝑪) ∶= tr 𝑪 = |𝑭|2, 𝜄2(𝑪) ∶= tr(cof 𝑪) = | cof 𝑭|2, 𝜄3(𝑪) ∶= det 𝑪 = (det 𝑭)2. (13)

The cofactor cof 𝑪 maps the element area vector from the reference to the current configuration.
Since many materials behave quite differently under bulk and shear loads, it is often convenient for numerical simula-

tions to introduce a multiplicative decomposition of 𝑭 into a volume-changing and a volume-preserving part:

𝑭 = (det 𝑭)1∕3𝟏𝟏𝑭, with 𝑭 = (det 𝑭)−1∕3𝟏𝟏𝑭. (14)

with (det 𝑭)1∕3𝟏𝟏 being the volume-changing deformation, 𝑭̄ is the volume-preserving deformation and 𝟏𝟏 ∈ ℝ3×3 is the
identity matrix. This split goes back to Richter [17] and was also successfully used by a series of other authors, cf. [18–21].
This leads to a set of modified principal invariants1

𝑈(𝑪) = 𝜄3(𝑪)
−1∕3𝜄1(𝑪) = 𝜄1(𝑭

⊤
𝑭) and 𝑉(𝑪) = 𝜄3(𝑪)−2∕3𝜄2(𝑪) = 𝜄2(𝑭

⊤
𝑭), (15)

1 Please note that the notations𝑈 and 𝑉 do not stand for the left and right polar decomposition here. Throughout this contribution𝑈 and 𝑉 will always
denote the modified invariants defined in (15).
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which in fact guarantee a stress-free reference configuration since

𝜕𝑭𝑈(𝑭
⊤𝑭) = 𝜕𝑭𝑉(𝑭

⊤𝑭) = 0,

cf. (88). The free energy density Ψmay now be expressed either in terms of the invariants (𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) or in terms
of the modified invariants (𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪)). As we shall see, the use of the modified invariants is more convenient.
The formof the free energy density is further specified by taking into account the anisotropy of fracture. Cracks growand

damage increases only under tensile deformations but not under compression. To incorporate this feature, we first renor-
malize the stored energy density of the reference configuration. Here we assume that the reference configuration is associ-
atedwith the state (𝑭, 𝑠) = (𝟏𝟏, 1), 𝑠 = 1marks the undamaged state of the body.We now impose that𝑊(𝟏𝟏, 1) = 0. For this,
we note that 𝜄1(𝟏𝟏) = 𝑈(𝟏𝟏) = 𝜄2(𝟏𝟏) = 𝑉(𝟏𝟏). Thus, the condition𝑊(𝟏𝟏, 1) = 0 can be achieved if𝑊(⋅, 1) is composed e.g. of
renormalized power terms of the form (𝐴(𝑭⊤𝑭) − 𝐴(𝟏𝟏))𝑖 or (𝐴(𝑭⊤𝑭)𝑖 − 𝐴(𝟏𝟏)𝑖) with 𝑖 ≥ 1 and 𝐴 being a placeholder for
the invariant functions 𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉. Moreover, compressive deformations are characterized by 𝐴(𝑭⊤𝑭) < 𝐴(𝟏𝟏), while
tensile deformations are associated with 𝐴(𝑭⊤𝑭) ≥ 𝐴(𝟏𝟏). Hence, the anisotropy of fracture can be incorporated into the
model by making the specific ansatz

Ψ = 𝑊(𝑭, 𝑠) ∶=𝛽(𝑠)𝑊+(𝜄1(𝑭
⊤𝑭), 𝜄2(𝑭

⊤𝑭), 𝜄3(𝑭
⊤𝑭)) +𝑊−(𝜄1(𝑭

⊤𝑭), 𝜄2(𝑭
⊤𝑭), 𝜄3(𝑭

⊤𝑭))

with𝑊±(𝜄1(𝑭⊤𝑭), 𝜄2(𝑭⊤𝑭), 𝜄3(𝑭⊤𝑭)) ∶= 𝑊(𝑚±1 (𝜄1(𝑭
⊤𝑭)),𝑚±2 (𝜄2(𝑭

⊤𝑭)),𝑚±3 (𝜄3(𝑭
⊤𝑭))),

(16a)

or, respectively,

Ψ = 𝑊(𝑭, 𝑠) ∶=𝛽(𝑠)𝑊+(𝑈(𝑭
⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭

⊤𝑭)) +𝑊−(𝑈(𝑭
⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭

⊤𝑭))

with𝑊±(𝑈(𝑭
⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭

⊤𝑭)) ∶= 𝑊(𝑚±1 (𝑈(𝑭
⊤𝑭)),𝑚±2 (𝑉(𝑭

⊤𝑭)),𝑚±3 (𝜄3(𝑭
⊤𝑭))),

(16b)

where we introduced𝑚±𝑖 (𝐼𝑖(𝑭
⊤𝑭)) = ±max{±(𝐼𝑖(𝑭

⊤𝑭)𝛼𝑖 − 𝐼𝑖(𝟏𝟏)
𝛼𝑖 ), 0} for 𝛼𝑖 ≥ 1,𝑖 = 1, 2, 3, and for the two sets of invari-

ants (𝐼1, 𝐼2, 𝐼3) ∈ {(𝜄1, 𝜄2, 𝜄3), (𝑈, 𝑉, 𝜄3)}. In the discussion below we will also use

…
𝑊 as a placeholder for 𝑊 and 𝑊. (16c)

The degradation function 𝛽 is defined with the specific ansatz

𝛽 ∶ [0, 1] → [𝜂,∞), 𝛽(𝑠) ∶= (𝜂 + 𝑠2). (17)

where the parameter 𝜂 > 0 is a very small value 𝜂 ≪ 1 to catch numerical instabilities in the cases of 𝑠 = 0. In fact, from
a mathematical point of view the introduction of 𝜂 > 0 ensures the coercivity of𝑊(⋅, 𝑠) for any 𝑠 ∈ [0, 1]. Thus, at level
𝜂 > 0, only incomplete damage is modeled, because the material is still able to carry stresses even if 𝑠 = 0.
The split with𝑚±𝑖 is explicitely tailored for energy densities of power-law type alike

…
𝑊(𝐼1(𝑭

⊤𝑭), 𝐼2(𝑭
⊤𝑭), 𝐼3(𝑭

⊤𝑭)) =
𝑙∑
𝑖=1

𝑐1𝑖(𝐼
𝛼1𝑖
1 − 3𝛼1𝑖 )𝑟1𝑖 + 𝑐2𝑖(𝐼

𝛼2𝑖
2 − 3𝛼2𝑖 )𝑟2𝑖 + 𝑐3𝑖(𝐼

𝛼3𝑖
3 − 1)𝑟3𝑖 , (18)

with 𝑟𝑖 ≥ 1, and 𝛼𝑖 ≥ 1. When using a given density
…
𝑊 to introduce𝑊±(𝜄1, 𝜄2, 𝜄3) and𝑊±(𝑈,𝑉, 𝜄3) as in (16), there must

not hold𝑊±(𝜄1, 𝜄2, 𝜄3) = 𝑊±(𝑈,𝑉, 𝜄3), since the densities𝑊± and𝑊± use different sets of invariants to which the func-
tions 𝑚±𝑖 are applied. Because of premultiplication with 𝛽(𝑠) the two definitions of Ψ in terms of either 𝑊 or 𝑊 are
different and lead to different results. In fact, for numerical simulations the use of𝑊 has turned out to be more stable
[22].
In order to fulfill the assumption of hyperelasticity we also want tomake sure that the density

…
𝑊± ∶ ℝ

3 × ℝ3 × ℝ3 → ℝ
is continuously differentiable with respect to the invariants (𝐼1, 𝐼2, 𝐼3). It can be checked that this holds true for energy
densities

…
𝑊 of the form (18) with 𝑟𝑖 > 1, and 𝛼𝑖 ≥ 1. In this way, when focussing on the case 𝑙 = 1, the densities …𝑊± defined
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in (16), are given by

…
𝑊±(𝐼1(𝑭

⊤𝑭), 𝐼2(𝑭
⊤𝑭), 𝐼3(𝑭

⊤𝑭)) =
3∑
𝑘=1

𝑐𝑘𝑚
±
𝑘
(𝐼𝑘(𝑭

⊤𝑭))𝑟𝑘

=
3∑
𝑘=1

𝑐𝑘
(
±max{±(𝐼𝑘(𝑭

⊤𝑭)𝛼𝑘 − 𝐼𝑘(𝟏𝟏)
𝛼𝑘 ), 0}

)𝑟𝑘
for 𝛼𝑘 ≥ 1, 𝑟𝑘 > 1,

(19)

where summation now runs over the 3 invariants. Then it is

𝜕𝐼𝑗
…
𝑊±(𝐼1, 𝐼2, 𝐼3) =

⎧⎪⎨⎪⎩
0 if ± 𝐼

𝛼𝑗
𝑗 ≤ ±𝐼𝑗(𝟏𝟏)𝛼𝑗 ,

𝛼𝑗𝐼
𝛼𝑗−1

𝑗 𝑐𝑗𝑟𝑗(𝐼
𝛼𝑗
𝑗 − 𝐼𝑗(𝟏𝟏)

𝛼𝑗 )𝑟𝑗−1 if ± 𝐼
𝛼𝑗
𝑗 > ±𝐼𝑗(𝟏𝟏)

𝛼𝑗 ,
(20)

and limℎ→0(±(𝐼𝑗(𝟏𝟏) ± ℎ)𝛼𝑗 ∓ 𝐼𝑗(𝟏𝟏)𝛼𝑖 )𝑟𝑗−1 = 0 thanks to 𝑟𝑗 > 1. Hence, each of the derivatives 𝜕𝐼𝑗
…
𝑊± ∶ ℝ+ × ℝ+ × ℝ+ →

ℝ is continuous with 𝜕𝐼𝑗
…
𝑊±(𝐼1(𝟏𝟏), 𝐼2(𝟏𝟏), 𝐼3(𝟏𝟏)) = 0. This ensures that the reference configuration (associated with the

deformation gradient 𝑭 = 𝟏𝟏) is stress-free. In particular, for continuously differentiable densities
…
𝑊± ∶ ℝ

3 × ℝ3 × ℝ3 →
ℝ, due to the assumption of hyperelasticity and relation (16), the first Piola-Kirchhoff stress can be calculated with the
chain rule as

𝑷(𝑭, 𝑠) = 𝜕𝑭𝑊(𝑭, 𝑠) =
3∑
𝑖=1

(
𝛽(𝑠)𝜕𝐼𝑖

…
𝑊+(𝐼1(𝑭

⊤𝑭), 𝐼2(𝑭
⊤𝑭), 𝐼3(𝑭

⊤𝑭))

+𝜕𝐼𝑖
…
𝑊−(𝐼1(𝑭

⊤𝑭), 𝐼2(𝑭
⊤𝑭), 𝐼3(𝑭

⊤𝑭))
)
𝜕𝐼𝑖(𝑭

⊤𝑭)

𝜕𝑭

(21)

and 𝑷(𝟏𝟏, 𝑠) = 0 for any 𝑠 ∈ ℝ because 𝜕𝐼𝑗
…
𝑊±(𝐼1(𝟏𝟏), 𝐼2(𝟏𝟏), 𝐼3(𝟏𝟏)) = 0. In contrast, for 𝑟𝑖 = 1 in (19) one can see that𝑊±

is no longer continuously differentiable in 𝐼𝑗(𝟏𝟏) since the left and the right differential quotient in 𝐼𝑗(𝟏𝟏) do not coincide.
Then, the choice of the set of invariants has an influence on the continuity properties of the first Piola-Kirchhoff stress.
Exemplarily, let us consider the density of a Neo-Hooke material 𝑐(𝜄1(𝑭⊤𝑭) − 3) in the split (16), i.e., 𝛼1, 𝑟1 = 1, 𝑐1 = 𝑐 and
𝑐2 = 𝑐3 = 0 in (19). Using (16) we have𝑊(𝑭, 𝑠) = 𝛽(𝑠)𝑐(𝑚+1 (𝜄1(𝑭

⊤𝑭) − 3)) + 𝑐(𝑚−1 (𝜄1(𝑭
⊤𝑭) − 3)). For 𝑭 ≠ 𝟏𝟏, the density

𝑊(⋅, 𝑠) is continuously differentiable so that the first Piola-Kirchhoff tensor takes the form

𝑷(𝑭, 𝑠) =

{
𝛽(𝑠)2𝑭 if 𝜄1(𝑭⊤𝑭) > 3,
2𝑭 if 𝜄1(𝑭⊤𝑭) < 3.

(22)

For𝑭 = 𝟏𝟏 the energy density is non-differentiable, sincemax{𝜄1(⋅), 3} has a kink in 𝟏𝟏, but the left and right limits of𝑷(𝑭, 𝑠)
do exist for 𝑭 = 𝟏𝟏, and for 𝛽(𝑠) = 1 these two limits coincide. However, a discontinuity of 𝑷(𝑭, 𝑠) in 𝑭 = 𝟏𝟏 cannot be
prevented if 𝛽(𝑠) ≠ 0, i.e., when damage occurs. Instead, when using the Neo-Hooke law with the modified first invariant
in the split (16), i.e.,𝑊(𝑭, 𝑠) = 𝛽(𝑠)𝑐(𝑚+1 (𝑈(𝑭

⊤𝑭) − 3)) + 𝑐(𝑚−1 (𝑈(𝑭
⊤𝑭) − 3)), we find that

𝑷(𝑭, 𝑠)=

⎧⎪⎪⎨⎪⎪⎩
𝛽(𝑠)𝜕𝑭𝑈(𝑭

⊤𝑭) = 2𝛽(𝑠)𝜄
−1∕3
3 (𝑭⊤𝑭)

(
𝑭 −

1

3
𝜄1(𝑭

⊤𝑭)𝑭−⊤
)

if 𝑈(𝑭⊤𝑭) > 3,
(𝛽(𝑠)𝜉+ + 𝜉−)𝑐𝜕𝑭𝑈(𝟏𝟏) = 0 if 𝑈(𝑭⊤𝑭) = 3,

𝜕𝑭𝑈(𝑭
⊤𝑭) = 2𝜄

−1∕3
3 (𝑭⊤𝑭)

(
𝑭 −

1

3
𝜄1(𝑭

⊤𝑭)𝑭−⊤
)

if 𝑈(𝑭⊤𝑭) < 3,

(23)

with lim|𝐻|→0 𝜕𝑭𝑈(𝟏𝟏 ± 𝐻) = 0 and with 𝜉± ∈ 𝜕𝑚±1 (𝑈(𝟏𝟏) − 3) = [0, 1] the multivalued subdifferential of 𝑚±1 in 0, and
where the expression 𝜕𝑭𝑈(𝑭⊤𝑭) is determined in (88d). In other words, the first Piola-Kirchhoff stress of a Neo-Hooke
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F IGURE 2 Illustration of the anisotropic split of the invariants 𝐴 = 𝑈,𝑉, 𝜄3 into tensile and compressive parts with dimension d ∈ {2, 3}

material with modified invariant 𝑈(𝑭⊤𝑭) is continuous with 𝑷(𝟏𝟏, 𝑠) = 0 for any 𝑠 ∈ ℝ, which is not the case when the
principal invariant 𝜄1 is used.
For numerical simulations it may be more convenient to introduce the anisotropic split for energy densities of power

law type in a slightly different way, as proposed in [22]. While the split defined in (16) and (19) is incorporated into the
terms of the free energy density, the anisotropic split proposed in [22] is directly imposed on themodified invariants; more
precisely, the anisotropically splitted invariants are defined by

𝐼±𝐴(𝑭
⊤𝑭) = 𝐼

±

𝐴(𝐴(𝑭
⊤𝑭)) = ±max{±(𝐴(𝑭⊤𝑭) − 𝐴(𝟏𝟏)), 0} + 𝐴(𝟏𝟏), (24)

with 𝐴 being a placeholder for the invariants 𝑈,𝑉, 𝜄3. In Figure 2 the split of the invariants is visualized. We note that

𝐼+𝐴(𝑭
⊤𝑭) + 𝐼−𝐴(𝑭

⊤𝑭) = 𝐴(𝑭⊤𝑭) + 𝐴(𝟏𝟏) for 𝐴 = 𝑈,𝑉, 𝜄3. (25)

This is due to the fact that the split (24) is again tailored to densities of polynomial type as in (18). In particular, for 𝑊
of the form (18) we can check that 𝑊±(𝑈,𝑉, 𝜄3) = 𝑊(𝐼

±
𝑈, 𝐼

±
𝑉, 𝐼

±
𝜄3 ). Therefore, the above discussion about the continuity

of the first Piola-Kirchhoff tensor remains valid also when the anisotropic split is formulated in terms of (24): Conti-
nuity of 𝑷(⋅, 𝑠) in 𝟏𝟏 holds true for exponents 𝑟𝑖𝑘 > 1 in (18) for both sets (𝜄1, 𝜄2, 𝜄3) and (𝑈, 𝑉, 𝜄3). For 𝑟𝑖𝑘 = 1 the densi-
ties𝑊±(𝜄1(𝑭⊤𝑭), 𝜄2(𝑭⊤𝑭), 𝜄3(𝑭⊤𝑭)) =

…
𝑊(𝐼±𝜄1 (𝑭

⊤𝑭), 𝐼±𝜄2 (𝑭
⊤𝑭), 𝐼±𝜄3 (𝑭

⊤𝑭)) are non-differentiable in (𝑭⊤𝑭) = 𝟏𝟏, so that stress
𝑷(⋅, 𝑠) has a discontinuity in 𝟏𝟏, which cannot be prevented for 𝛽(𝑠) ≠ 1. Instead, when the modified invariants are used,
𝑷(⋅, 𝑠) is continuous with 𝑷(𝟏𝟏, 𝑠) = 0.
Tomanifest this statementwewill consider a simplemode-I-tension test in a loading and unloading regime.We regard a

two dimensional platewith a horizontal notch. The geometry and the related boundary conditions are depicted in Figure 3.
On the lower boundary of the plate the displacements are constrained in horizontal and vertical direction and on the
upper side prescribed displacements are applied incrementally. The displacements are increased until the time 𝑡 = 0.5 sec
is reached - after that the plate is relieved to the reference configuration. Furthermore, the mesh presented in Figure 3 is
on the basis of the hierarchical refinement strategy, see [23], and consists of 20 × 20 quadratic B-spline elements before
making use of the refinement. After three local refinement levels in total 2656 elements with overall 12288 degrees of
freedom are employed for the tension test.
The simulation is based on the non-linear Neo-Hookean material model with the proposed anisotropic split (24), here

considered for two dimensions,

𝑊(𝑭, 𝑠) = 𝛽(𝑠)
(𝜇
2
(𝐼+1 (𝑭

𝑇𝑭) − 2) +
𝜅
2
(𝐼+3 (𝑭

𝑇𝑭) − 1)2
)
+
𝜇

2
(𝐼−1 (𝑭

𝑇𝑭) − 2) +
𝜅
2
(𝐼−3 (𝑭

𝑇𝑭) − 1)2. (26)

Thematerial parameter are chosen as follows: shearmodulus 𝜇 = 80.7692 × 109 N
m2
, bulkmodulus 𝜅 = 121.1538 × 109 N

m2
and specific fracture energy as 𝑐 = 2.7 × 103 J

m2
. The process of loading and unloading is illustrated by the load-deflection
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u
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5

5

F IGURE 3 Boundary conditions (left) of a mode-I-tension test and the related mesh based on a hierarchical refinement strategy (right)

F IGURE 4 Load-deflection curve of the mode-I-tension test under loading and unloading at different times steps

curve in Figure 4. The focus is set on the stresses 𝜎 = (det𝑭)−1𝑷𝑭𝑇 during the simulation after different time steps, cf.
Figure 5. The snapshots of stresses demonstrate that the configuration is stressfree after unloading again. That means, the
stresses are continuous with 𝑷(𝟏𝟏, 𝑠) = 0.
Our analysis uses the formulation (16) to take into account the anisotropy of damage. It is carried out directly for the

density𝑊(𝑭, 𝑠), hence it is independent of the set of invariants, but it relies on the assumption that the energy density is
continuously differentiable.

3 ANALYTICAL SETUP, DISCRETIZATION, AND CONVERGENCE RESULT

For the mathematical analysis of the regularized crack model given by Equations (5) and (8) we define the free energy
functional  ∶ [0, 𝑇] × 𝐔 × 𝐙 → ℝ,

(𝑡, 𝝋, 𝑠) ∶= ∫
0
(𝛽(𝑠)𝑊1(𝕄∇𝝋) +𝑊2(𝕄∇𝝋) + 𝛾(𝑠, ∇𝑠)) d𝑋 + ∫

𝜕N0
𝒉 ⋅ 𝝋 d2 (27)
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F IGURE 5 Von Mises stresses of the mode-I-tension test under loading and unloading at different time steps

on suitable Banach spaces 𝐔,𝐙 with 𝛾 ∶ ℝ × ℝ3 → [0,∞) from (4) and 𝛽 ∶ ℝ → [𝜂,∞), with 𝛽(𝑠) ∶= 𝜂 + 𝑠2 as in (17).
Moreover,

𝕄 ∶ ℝ3×3 → ℝ3×3 × ℝ3×3 × ℝ, 𝕄𝑭 ∶= (𝑭, cof 𝑭, det 𝑭) (28)

maps a 3 × 3-matrix onto the vector of its minors. We remark that the ansatz 𝑊(∇𝝋, 𝑠) ∶= 𝛽(𝑠)𝑊1(𝕄∇𝝋) +𝑊2(𝕄∇𝝋)
used in (27) is in accordance with the setting proposed in (16). In particular, one may choose 𝑊1 = 𝑊+ and 𝑊2 = 𝑊−
from (16). In this way, the anisotropy of damage can be reflected in the model, given that the densities𝑊𝑖 are sufficiently
smooth. The assumptions on the densities𝑊𝑖 ∶ ℝ3×3 × ℝ3×3 × ℝ → ℝ are specified more precisely in (36) in Sec. 3.1. For
the existence analysis, carried out in Sections 3.1–3.3, it will be more convenient to regard the densities 𝑊𝑖 directly as
functions of the minors of gradients, and not as functions of the modified invariants of the right Cauchy-Green tensor
as introduced in (15). Instead, in Section 3.4 we will translate the assumptions (36) imposed on the densities 𝑊𝑖 into
assumptions for densities𝑊𝑖 being functions of the modified invariants.
In accordance with (10) we additionally introduce the viscous dissipation potential 𝛼 ∶ 𝐙 → [0,∞)

𝛼(𝑠̇) ∶= ∫
0

(
𝑀−1

2
|𝑠̇|2 + 𝛼𝐼(−∞,0](𝑠̇)) d𝑋 (29)

with 𝑀−1 the inverse of the kinematic mobility 𝑀 from (8) and 𝐼(−∞,0] ∶ ℝ → {0,∞} the characteristic function of the
negative real line, i.e., 𝐼(−∞,0](𝑠) = 0 if 𝑠 ∈ (−∞, 0] and 𝐼(−∞,0](𝑠) = ∞ otherwise. This constraint forces the time derivative
𝑠̇ to take its values in (−∞, 0]. According to the definition 𝑠 = 1 for the unbroken and 𝑠 = 0 for the completely broken state
of thematerial, it thus ensures that the damage of thematerial can only increase in time,whichmeans the unidirectionality
of the damage evolution. With the prefactor 𝛼 = const ≥ 0we indicate that we switch this constraint on or off, so that we
can consider two different types of models: A model with 𝛼 = const > 0, where the unidirectionality constraint is active,
and a model with 𝛼 = 0, where unidirectionality is not incorporated (i.e., 0 ⋅ ∞ = 0). The latter case is considered in the
phase-field flow rule (8) and used for the numerical simulations presented in Section 4.
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Notion of solution for the body with damage
The elastic body undergoing damage is thus characterized by a suitable state space 𝐔 × 𝐙, the energy functional  from
(27) and the dissipation potential 𝛼 from (29) and we refer to it as the (evolution) system (𝐔 × 𝐙,  ,𝛼).
In accordance with Section 2 we will show in Thm. 3.11 that a solution (𝝋, 𝑠) ∶ [0, 𝑇] → 𝐔 × 𝐙 of system (𝐔 × 𝐙,  ,𝛼)

is characterized for a.a. 𝑡 ∈ (0, 𝑇) by

for all 𝝋̃ ∈ 𝐔 ∶ (𝑡, 𝝋(𝑡), 𝑠(𝑡)) ≤ (𝑡, 𝝋̃, 𝑠(𝑡)), (30a)

if 𝛼 = 0 ∶ 𝑀−1𝑠̇(𝑡) + 𝛽′(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) + 𝛾′(𝑠(𝑡)) − Δ𝑠(𝑡) = 0 in 𝐗∗, (30b)

if 𝛼 > 0 ∶ 𝑀−1𝑠̇(𝑡) + 𝛽′(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) + 𝛾′(𝑠(𝑡)) − Δ𝑠(𝑡) ≥ 0 in (𝐗−)∗, (30c)

together with the energy dissipation estimate:

for all 𝑡 ∈ (0, 𝑇) ∶ (𝑡, 𝝋(𝑡), 𝑠(𝑡)) +
𝑡

∫
0

𝛼(𝑠̇(𝜏)) d𝜏 ≤ (0, 𝝋0, 𝑠0) +
𝑡

∫
0

(𝜏, 𝑠(𝜏)) d𝜏, (30d)

with 𝛼 from (29) and with (𝜏, 𝑠(𝜏)) ∶= sup{𝜕𝜏(𝜏, 𝝋̂, 𝑠(𝜏)), 𝝋̂ ∈ argmin(𝜏, ⋅, 𝑠(𝜏))} as a surrogate for the partial time
derivative. This surrogate arises due to the non-uniquess of minimizers for polyconvex energies in the finite strain setting
and such a formulation has been proposed in [24] in the context of finite-strain viscoplasticity. Moreover, 𝐗∗ in (30b)
denotes the dual of the Banach space 𝐗, and (𝐗−)∗ in (30c) the elements of 𝐗∗ restricted to elements of 𝐗− ∶= {𝑣 ∈
𝐗, 𝑣 ≤ 0}.
Let us discuss formulation (30) more in detail. Condition (30a) provides the minimality property of the deformation 𝝋.

Under the assumptions of [25, Thm. 2.4], minimality condition (30a) is equivalent to (the weak formulation in 𝐔 of) its
Euler-Lagrange equation, which is the weak formulation of the mechanical force balance (5). In this case, (30a) yields the
weak formulation of (5). Instead, the interpretation of (30b) and (30c) is more involved: On the one hand, to well-define
the energy functional (27) with the quadratic damage gradient 𝛾 and the function 𝛽 premultiplied to the deformation
gradients, solutions 𝑠 should satisfy 𝑠 ∈ 𝐗 ∶= 𝐻1(0) ∩ 𝐿∞(0). On the other hand, due to the quadratic growth of 𝛼 it
would be a first choice to understand (30b), resp. (30c), as an 𝐿2-gradient flow. However, for the driving force of damage
𝛽′(𝑠(𝑡))𝑊(𝕄∇𝝋(𝑡)) + 𝛾′(𝑠(𝑡)) − Δ𝑠(𝑡) ∈ 𝐿2(Ω) cannot be expected, so that 𝐿2(Ω) is not the right choice for the state space.
In fact, we will find in Lemma 3.10 that D𝑠(𝑡, 𝝋(𝑡), 𝑠(𝑡)) ∶= 𝛽′(𝑠(𝑡))𝑊(𝕄∇𝝋(𝑡)) + 𝛾′(𝑠(𝑡)) − Δ𝑠(𝑡) is bounded only in 𝐗∗
the dual of the space 𝐗 ∶= 𝐻1(Ω) ∩ 𝐿∞(Ω).
For 𝛼 = 0 we thus find condition (30b), which is the weak formulation of the phase-field equation (103). Formulation

(30c) for 𝛼 > 0, i.e., when the unidirectionality constraint is active, is given in terms of a one-sided variational inequality.
Together with the energy-dissipation estimate (30d) and (30a) it provides a characterization of the solutions for 𝛼 > 0.
Such a formulation of the non-smooth damage evolution in terms of a one-sided variational inequality combined with an
energy dissipation estimate has been applied in [26] in the small-strain setting, and later also e.g. in [27, 28] in the case of
small-strain (visco)plasticity.

Main result and analytical strategy
Our main result, Thm. 3.11, provides the existence of a solution (𝜑, 𝑠) ∶ [0, 𝑇] → 𝐔 × 𝐙 of (𝐔 × 𝐙,  ,𝛼), which satisfies
the governing Equations (30). Its proof will be carried out in Section 3.3 via a time-discretization. For this, we will consider
an equidistant partition of the time interval

Π𝑁 ∶= {0 = 𝑡
0
𝑁 < 𝑡

1
𝑁 < … < 𝑡

𝑁
𝑁 = 𝑇} with time-step size 𝜏𝑁 ∶= 𝑡

𝑖
𝑁 − 𝑡

𝑖−1
𝑁 → as 𝑁 → ∞. (31)

In addition, for the analysis, we will also regularize the unidirectionality constraint 𝐼(−∞,0] by its corresponding Yosida
approximation, i.e., for each 𝑁 ∈ ℕ we introduce

𝛼𝑁(𝑠̇) ∶= ∫
0

(
𝑀−1

2
|𝑠̇|2 + 𝛼𝑁

2
|(𝑠̇)+|2) d𝑋 (32)
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where (𝑠̇)+ ∶= max{0, 𝑠̇} is the positive part of 𝑠̇. Starting out from an admissible inital datum (𝝋0, 𝑧0) ∈ 𝐔 × 𝐙, at each
time-step 𝑡𝑘𝑁 ∈ Π𝑁 we then alternatingly solve

𝝋𝑘𝑁 ∈ argmin𝝋̃∈𝐔(𝑡𝑘𝑁, 𝝋̃, 𝑠𝑘−1𝑁 ), (33a)

𝑠𝑘𝑁 ∈ argmin𝑠∈𝐙

(
(𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠) + 𝜏𝑁𝛼𝑁

(
𝑠−𝑠𝑘−1𝑁

𝜏𝑁

))
, (33b)

which is also called a staggered time-discrete scheme and used for the simulations in Section 4. Existence of solutions
(𝝋𝑘𝑁, 𝑠

𝑘
𝑁) of (33) at each time-step 𝑡

𝑘
𝑁 will be shown in Prop. 3.9. With the discrete solutions (𝝋𝑘𝑁, 𝑠

𝑘
𝑁)
𝑁
𝑘=1

we will construct
suitable interpolants with respect to time and show in our main result, Thm. 3.11, that these interpolants approximate a
solution of the continuous problem (30).

Comparison with other results in literature
Our evolution system (𝐔 × 𝐙,  ,𝛼) combines the energy functional  from (27), which is amodification of theAmbrosio–
Tortorelli functional [15], with a quadratic dissipation potential 𝛼, cf. (29), which thus causes a viscous evolution of the
phase-field variable. Without this viscous contribution, i.e., 𝑀−1 = 0 in (29), the (standard) Ambrosio–Tortorelli func-
tional, combined with the unidirectionality property ensured by 𝛼 > 0, models the rate-independent, unidirectional evo-
lution of the phase-field variable. In this setting, it was shown in [29] that the standard Ambrosio–Tortorelli functional
Γ-converges to the Francfort–Marigo model for brittle, Griffith-type fracture, cf. e.g. [30] as the diffuse-interface parame-
ter 𝑙𝑐 → 0 in the definition of 𝛾, cf. (4). Later, similar approximation results have been obtained in the rate-independent
setting at small strains, allowing for the use of the linearized strain tensor and for modifications of the energy functional
leading to cohesive or elasto-plastic fracture models, cf. [31–36]. Instead, the limit passage 𝑙𝑐 → 0 of an energy functional
of Ambrosio–Tortorelli-type in combination with a viscous evolution of the displacements was investigated in [37].
In this work we do not consider the limit 𝑙𝑐 → 0. We rather study for 𝑙𝑐 > 0 fixed the existence of solutions in the

sense of (30) for the system (𝐔 × 𝐙,  ,𝛼) at finite strains for a modified energy functional that takes into account the
different evolution behavior of a viscous-type phase-field variable with regard to tensile or compressive loads. Due to this
modification, since the energy contribution𝑊2, which accounts for compression, is not premultiplied by the function 𝛽,
we do not expect our model to approximate the Francfort–Marigo fracture model. Instead, we understand (𝐔 × 𝐙,  ,𝛼)
as a very specific model for partial, isotropic damage, which has the property to localize damage in zones of width 𝑙𝑐. This
viewpoint on the Ambrosio–Tortorelli model has also been taken in the rate-independent setting e.g. in [38], where the
alternate minimization scheme (30) has been further iterated in each time-step leading to parametrized 𝐵𝑉-evolutions af
the rate-independent problem, and in [39], where also a viscous regularization has been taken into account.
Othermodels for partial, isotropic damage allow formore general forms of the function𝛽 and the regularization 𝛾.While

the very specific properties of the functions 𝛽, 𝛾 in (27) make it possible to show that a solution 𝑠 satisfies 𝑠(𝑡) ∈ [0, 1] a.e.
in 0 for a.e. 𝑡 ∈ (0, 𝑇), cf. Prop. 3.9, this bound is in general lost for other physically reasonable choices of 𝛽 and 𝛾. Then,
additional indicator terms have to be incorporated into the energy in order in order to ensure that 𝑠 ∈ [0, 1] for physical
and analytical reasons. For the analysis of general models for partial, isotropic damage with a rate-independent damage
evolution we refer to the works, e.g., [40–43] and to the monography [44] for an overview on rate-independent processes.
The viscous, rate-dependent counterpart is studied, e.g., in the works [26, 45–47], also in combination with dynamics,
heat transport, and phase separation, and vanishing-viscosity limits from viscous damage models at small strains to rate-
independent ones are investigated in the series of works [48–50].
Our approach to the analysis of system (𝐔 × 𝐙,  ,𝛼) extends the ideas used in [51], based on [52], for a rate-independent

damage model at finite strains, to the present viscous setting by making use of the notion of solution studied in e.g. [26]
at small strains. The study of the properties of energy densities as functions of the modifed invariants, cf. (15), builds on
results drawn from the works [25, 53–57].

3.1 Analytical setup: Assumptions and direct implications

A physically reasonable deformation preserves orientation, which is ensured by

∇𝝋 ∈ GL+(3) = {𝑭 ∈ ℝ
𝑑×𝑑 | det 𝑭 > 0}
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Further natural requirements on the constitutive relations of particular importance are material frame indifference
(34a) and the non-interpenetration condition (34b):

𝑊̂(𝑹𝑭) = 𝑊̂(𝑭) for 𝑹 ∈ SO(3), 𝑭 ∈ ℝ3×3, (34a)

{
𝑊̂(𝑭) = +∞ for det 𝑭 ≤ 0,
𝑊̂(𝑭) → +∞ for det 𝑭 → 0+.

(34b)

However, they are not compatible with the convexity in the deformation gradient 𝑭, which is a convenient claim in the
setting of small strains. Instead, they can be compatible with the convexity in 𝑪, cf. [58]. To see the incompatibility with
convexity in the deformation gradient 𝑭 consider 𝑷,𝑸 ∈ SO(3), 𝜆 ∈ (0, 1), such that (𝜆𝑷 + (1 − 𝜆)𝑸) ∉ SO(3), which con-
forms to a strain. Then convexity together with material frame indifference yields the following contradiction:

0 < 𝑊̂(𝜆𝑷 + (1 − 𝜆)𝑸) ≤ 𝜆𝑊̂(𝑷) + (1 − 𝜆)𝑊̂(𝑸) = 𝜆𝑊̂(𝟏𝟏) + (1 − 𝜆)𝑊̂(𝟏𝟏) = 0.
The class of energy densities which fit to these natural requirements and which admit to prove existence are polyconvex

energy densities. They were introduced by J.M. Ball in [53].

Definition 3.1 (Polyconvexity). The function 𝑊̂ ∶ ℝ3×3 → ℝ∞ = ℝ ∪ {∞} is called polyconvex if there exists a convex
function𝑊∙ ∶ ℝ3×3 × ℝ3×3 × ℝ → ℝ∞, such that 𝑊̂(𝑭) = 𝑊∙(𝕄(𝑭)) for all 𝑭 ∈ ℝ3×3, where

𝕄 ∶ ℝ3×3 → ℝ3×3 × ℝ3×3 × ℝ, 𝕄(𝑭) = (𝑭, cof 𝑭, det 𝑭) (35)

is the function, which maps a matrix to all its minors.

In [53], p. 362] it was established that the polyconvexity of 𝑊̂ ∶ ℝ3×3 → ℝ implies its quasiconvexity. By C.B. Morrey
in [59 it was proven that quasiconvexity is the notion of convexity which is necessary and sufficient for the lower semi-
continuity of the corresponding integral functionals, so that quasiconvexity together with other technical assumptions
ensures the existence of minimizers. But quasiconvexity does not admit infinitely valued functions, i.e. 𝑊̂ ∶ ℝ3×3 → ℝ∞.
However in [53, Th. 7.3, p. 376] it was shown that the polyconvexity of the density 𝑊̂ ∶ ℝ3×3 → ℝ∞ together with other
technical assumptions is sufficient for the existence of minimizers of infinitely valued functionals.

Assumptions on the stored elastic energy density
More precisely, for the stored elastic energy density𝑊 ∶ ℝ × ℝ3 → ℝ given by

𝑊(𝑭, 𝑠) ∶= 𝛽(𝑠)𝑊1(𝕄𝑭) +𝑊2(𝕄𝑭) from (27) with 𝛽 ∶ ℝ → [𝑎,∞) from (36𝑔) (36a)

we make the following assumptions:

∙ Continuity:𝑊(⋅, ⋅)∈C0(ℝ3×3 × ℝ,ℝ), 𝑊1∈C0(ℝ3×3 × ℝ, [0,∞)) (36b)

∙ Polyconvexity:𝑊1,𝑊2 ∶ ℝ3×3 × ℝ3×3 × ℝ → ℝ are convex. (36c)

∙ Coercivity: It holds for all (𝑭, 𝑠)∈ℝ3×3×ℝ ∶

𝑐1|𝑭|𝑝 + 𝑐2|cof𝑭|𝑝2 + 𝑐3|det𝑭|𝑝3 − 𝐶 ≤𝑊(𝑭, 𝑠) (36d)

with given, fixed constants 𝑝, 𝑝2, 𝑝3, 𝑐1, 𝑐2, 𝑐3, 𝐶 satisfying one of the following:

a) 𝑝 > 3, 𝑐1 > 0, 𝑝2, 𝑝3 ≥ 1, 𝑐2, 𝑐3, 𝐶 ≥ 0, or
b) 𝑝≥2, 𝑝2≥ 𝑝

𝑝−1
, 𝑝3 > 1, 𝑐1, 𝑐2, 𝑐3 > 0, 𝐶≥0, moreover

b1) 𝐶≥0, 𝑝≥2, 𝑐1 > 0, if𝑊𝑖(𝕄𝑭) = 𝑊𝑖(𝑭), 𝑖 = 1, 2,
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b2) 𝐶≥0, 𝑝≥2, 𝑝2≥ 𝑝

𝑝−1
, 𝑐1, 𝑐2 > 0, if𝑊𝑖(𝕄𝑭) = 𝑊𝑖(𝑭, cof 𝑭), 𝑖 = 1, 2, or

c) 𝑝 ≥ 2, 𝑐1, 𝑐2 > 0, 𝑝2 ≥ 3∕2, 𝑐3, 𝐶 ≥ 0.
∙ Stress control:

For all 𝑠∈ℝ we have𝑊(⋅, 𝑠) ∈ C1(GL+(3), ℝ) and there are

constants 𝑐>0, 𝑐≥0 such that for all (𝑭, 𝑠)∈ℝ3×3×ℝ it holds

|𝜕𝑭𝑊(𝑭, 𝑠)𝑭⊤| ≤ 𝑐(𝑊(𝑭, 𝑠) + 𝑐) (36e)

∙ Uniform continuity of the stresses:

There is a modulus of continuity 𝑜 ∶ [0,∞] → [0,∞], 𝛿>0 so that for all

(𝑭, 𝑠)∈ℝ3×3×ℝ and all 𝐶∈GL+(3) with |𝐶−𝟏𝟏| ≤ 𝛿 we have
|𝜕𝑭𝑊(𝐶𝑭, 𝑠)(𝐶𝑭)⊤ − 𝜕𝑭𝑊(𝑭, 𝑠)𝑭⊤| ≤ 𝑜(|𝐶−𝟏𝟏|)(𝑊(𝑭, 𝑠) + 𝑐) . (36f)

∙ Definition of 𝛽: 𝛽 ∶ ℝ → [𝜂,∞), 𝛽(𝑠) = 𝜂 + 𝑠2 (36g)

∙ Definition of 𝛾: 𝛾 ∈ C2(ℝ × ℝ3,ℝ), 𝛾(𝑠, ∇𝑠) ∶= 1

2𝑙𝑐
(1 − 𝑠)2 +

𝑙𝑐

2
|∇𝑠|2. (36h)

Herein, assumptions (36b)–(36d) ensure the existence of minimizers, see [60], p. 182, Thm. 2.10] and the discussion in
Remark 3.6 below. In fact, the cases a), b), and c) provide three alternative sets of relations for the exponents 𝑝, 𝑝2, 𝑝3
building on compactness results for minors of gradients given in [53, 54, 60], see Remark 3.6. In analytical works on
evolution problems for generalized standard materials often (the 2D- or 𝑑D-version of) assumption (36d) a) is used, cf.
e.g. [24, 40, 52, 61–63], since this ensures the continuity of the deformation and avoids ambiguities in the definition of its
minors, see Remark 3.6. Within cases b) and c) we slightly weaken these assumptions in accordance with the results of
[53, 54, 60] in order to include energy densities into our analysis, which are popular in engineering.We also refer e.g. to the
works [64, 65], respectively [66–68], where (the 2D- or 𝑑D-versions of) assumption (36d) b) has been applied in the context
of rate-independent fracture, resp. for the Γ-limit passage from finite- to small-strain linear elasticity for rate-independent
processes in generalized standard materials. Furthermore, assumptions (36e) and (36f) ensure that a minimizer of (30a)
satisfies the (weak form of the) corresponding Euler–Lagrange Equation (102) and, similarly, a control of the power of the
energy, cf. forthcoming Prop. 3.8. This will be obtained via the following result, cf. [25], Thm. 2.4 and Lemma 2.5] or [61].

Lemma 3.2. Let (36e) be satisfied. Then, for 𝝋 ∈ 𝑊1,𝑝(0; ℝ3), here 𝑝 ∈ [1,∞), satisfying a Dirichlet boundary condition
and being a minimizer of the energy according to (30a), there also holds

∫
0

(
D𝑭𝑊(D𝒚)D𝒚

⊤
)
∶ D𝝋(𝒚) d𝑋 = 0 (37)

for all 𝝋 ∈ 𝐶1(ℝ3;ℝ3) such that 𝝋 and D𝝋 are uniformly bounded and satisfy 𝝋(𝒚) = 0 on the Dirichlet boundary in trace
sense. Moreover, there is 𝛿 > 0 so that for all 𝑪∈GL+(3) with |𝑪 − 𝟏𝟏| ≤ 𝛿 we have

𝑊(𝑪𝑭, 𝑠) + 𝑐 ≤ 3

2
(𝑊(𝑭, 𝑠) + 𝑐) (38)

|𝜕𝑭𝑊(𝑪𝑭, 𝑠)𝑭⊤| ≤ 3𝑐 (𝑊(𝑭, 𝑠) + 𝑐). (39)

Assumptions on the domain, state spaces & given data
As in (27) we consider a bodywith reference configuration0 ⊂ ℝ3 consisting of a nonlinearly elastic material, such that

0 ⊂ ℝ3 is a bounded Lipschitz domain, 𝜕D0 ⊂ 𝜕0 with 𝜕D0 ≠ ∅, 𝜕N0 ∶= 𝜕0∖𝜕D0 . (40)
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This body undergoes a damage process driven by time-dependent exterior forces 𝒉(𝑡) located on the Neumann part
𝜕N0 ⊂ 𝜕0 of the boundary. Moreover, the body is assumed to be clamped at the remaining part 𝜕D0 of its boundary, so
that the deformation is prescribed there: 𝝋(𝑡)=𝒈(𝑡) on 𝜕D0 .
Thus, the set of admissible deformations at time 𝑡 ∈ [0, 𝑇] is given by

𝐔(𝑡) ∶= {𝝓 ∈ 𝑊1,𝑝(Ω,ℝ3) |𝝓 = 𝒈(𝑡) on 𝜕D0 } for 𝑝 as in (36d) (41)

with the weak𝑊1,𝑝-topology. By the assumption on 𝑝 in (36d) we have in particular that 𝑝 > 3∕2 and thus, in three space
dimensions,

𝑊1,𝑝(0, ℝ3) ⋐ 𝐿𝑝′(0, ℝ3) compactly, where 𝑝′ ∶= 𝑝

𝑝 − 1
. (42)

Adapting the ideas of [61] from the setting where 𝑝 > 3 to the present setting 𝑝 ∈ [2,∞), we assume that the Dirichlet
datum can be extended to ℝ3 in the following way:

𝒈∈C1([0, 𝑇] × ℝ3,ℝ3), ∇𝒈∈BC1([0, 𝑇]×ℝ3, Lin(ℝ3,ℝ3)),

∇2𝒈∈B([0, 𝑇]×ℝ3, Lin(ℝ3×3, ℝ3×3)) (43a)

with 𝐶𝒈 ∶= sup
𝑡∈[0,𝑇],𝑦∈ℝ3

(|∇𝒈(𝑡, 𝑦)|+|𝜕𝑡∇𝒈(𝑡, 𝑦)|+|∇2𝒈(𝑡, 𝑦)|), (43b)

|𝒈(𝑡, 𝑦)| ≤ 𝑐𝒈(1 + |𝑦|) for all (𝑡, 𝑦) ∈ [0, 𝑇]×ℝ3, (43c)

|(∇𝒈(𝑡, 𝑦))−1| ≤ 𝐶̃𝒈 for all (𝑡, 𝑦) ∈ [0, 𝑇]×ℝ3. (43d)

For the time-dependent Neumann datum we impose that

𝒉 ∈ C1([0, 𝑇], 𝐿𝑝
′
(𝜕N0 ,ℝ3)) with 𝐶𝒉 ∶= ‖𝒉‖C1([0,𝑇],𝐿𝑝′ (𝜕N0 ,ℝ3)). (44)

To handle the time-dependent Dirichlet conditions one assumes that the deformation is of the form

𝝋(𝑡, 𝑋) = 𝒈(𝑡, 𝑦(𝑋)) with 𝑦 ∈ 𝐘, where (45)

𝐘 ∶= {𝑦 ∈ 𝑊1,𝑝(Ω,ℝ𝑑) | 𝑦 = id on 𝜕D0 } for 𝑝 as in (36d) (46)

with the weak𝑊1,𝑝-topology. Regarding (6) this means that 𝝋(𝑡, 𝑋) = 𝒈(𝑡, 𝑦(𝑋)) = 𝒈𝟎(𝑡, 𝑋) on 𝜕D0 . By the chain rule, the
composition (45) leads to a multiplicative split of the deformation gradient:

∇𝝋(𝑡, 𝑋) = ∇𝑋𝒈(𝑡, 𝑦(𝑋)) = ∇𝑦𝒈(𝑡, 𝑦(𝑋))∇𝑋𝑦(𝑋) = ∇𝒈(𝑡, 𝑦)∇𝑦

Furthermore, we introduce the space

𝐘0 ∶= 𝐘 − {id}. (47)

Under consideration of (27) and the explanations along with (30) we choose the set of admissible damage variables 𝐙
in (27) and the set of admissible test functions 𝐗0 in (30) as

𝐙 ∶= 𝐻1(Ω), (48a)

𝐗 ∶= 𝐙 ∩ 𝐿∞(0), (48b)

𝐗0 ∶= 𝐻
1
0(0) ∩ 𝐿∞(0), (48c)
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equipped with the respective weak topologies. The sets 𝐘 and 𝐙 form the state space 𝐘 × 𝐙, which is endowed with the
weak topology of the product space.
For the closed subspace 𝐘0 ⊂ 𝑊1,𝑝(0, ℝ3) Friedrich’s inequality is available:

Theorem 3.3 (Friedrich’s inequality). Let0 ⊂ ℝ3 be a Lipschitz domain with Dirichlet conditions on 𝜕D0 ⊂ 𝜕0, where
𝜕D0 ≠ ∅. Let 1 < 𝑝 < ∞. There is a constant 𝐶𝐹 = 𝐶𝐹(0, 𝑝) such that the following estimate holds for every 𝑦0 ∈ 𝐘0∶

‖𝑦0‖𝑊1,𝑝(0,ℝ3) ≤ 𝐶𝐹‖∇𝑦0‖𝐿𝑝(0,ℝ3×3) . (49)

Bounds and convergence properties for time-dependent Dirichlet data
We now provide bounds and convergence properties in the spaces 𝐔(𝑡) and 𝐘, cf. (41) and (46), which follow from the
relations for the Dirichlet datum (43) and (45). First of all, the lemma below is a consequence of the growth restriction
(43c).

Lemma 3.4. Let (40), (43) as well as (45) hold. For every 𝑦 ∈ 𝐘 and 𝝋(𝑡) = 𝒈(𝑡, 𝑦) it holds

‖𝝋(𝑡)‖𝑝
𝑊1,𝑝(0,ℝ3) ≤ 𝐶̂𝒈(‖𝑦‖𝑝𝑊1,𝑝(0,ℝ3) + 1).

Proof. By the growth restriction (43c) one directly obtains

‖𝝋(𝑡)‖𝑝
𝑊1,𝑝(0,ℝ3) ≤ 2𝑝−1𝑐

𝑝
𝒈(3(0) + ‖𝑦‖𝑝

𝐿𝑝(0,ℝ3)) + 𝐶
𝑝
𝒈‖∇𝑦‖𝑝𝐿𝑝(0,ℝ3×3).

Hence 𝐶̂𝒈 ∶= max{2𝑝−1𝑐
𝑝
𝒈, 𝐶

𝑝
𝒈 , 2

𝑝−1𝑐
𝑝
𝒈3(0)}. □

Due to the realization of the Dirichlet condition in terms of a superposition, cf. (45), thanks to the regularity properties
(43) of the Dirichlet datum the convergence of a sequence in 𝐘 translates to the convergence of a sequence respecting the
Dirichlet condition in𝐔(𝑡) as follows:

Lemma 3.5. Let (43), (45), and (46) hold. Consider a sequence (𝑦𝑘)𝑘∈ℕ ⊂ 𝐘 such that 𝑦𝑘 ⇀ 𝑦 in𝐘. Then there holds 𝝋𝑘(𝑡) =
𝒈(𝑡, 𝑦𝑘) ⇀ 𝒈(𝑡, 𝑦) = 𝝋(𝑡) in𝐔(𝑡) for all 𝑡 ∈ [0, 𝑇].

Proof. By the compact embeddings𝑊1,𝑝(0, ℝ3)⋐𝐿𝑝(0, ℝ3),𝑊1,𝑝(0, ℝ3)⋐𝐿𝑝′(0, ℝ3), cf. (42), we have 𝑦𝑘 → 𝑦 in both
in 𝐿𝑝′(0, ℝ3) and in 𝐿𝑝(0, ℝ3). By (43a) and (43b) we now find

‖𝝋𝑘(𝑡) − 𝝋(𝑡)‖𝐿𝑝(0,ℝ3) ≤ sup
𝑦̃∈ℝ3

|∇𝒈(𝑡, 𝑦̃)|‖𝑦𝑘(𝑡) − 𝑦(𝑡)‖𝐿𝑝(0,ℝ3) ≤ 𝐶𝒈‖𝑦𝑘(𝑡) − 𝑦(𝑡)‖𝐿𝑝(0,ℝ3) → 0

as 𝑘 → ∞. Furthermore, we obtain ∇𝝋𝑘(𝑡) ⇀ ∇𝝋(𝑡) in 𝐿𝑝(Ω,ℝ𝑑×𝑑), since ∇𝑦𝑘 ⇀ ∇𝑦 in 𝐿𝑝(Ω,ℝ𝑑×𝑑) and ∇𝑦𝒈(𝑡, 𝑦𝑘) →
∇𝑦𝒈(𝑡, 𝑦) in 𝐿𝑝

′
(0, ℝ3×3), which ensues from (43b) by

‖∇𝑦𝒈(𝑡, 𝑦𝑘) − ∇𝑦𝒈(𝑡, 𝑦)‖𝐿𝑝′ (0,ℝ3×3) ≤ sup
𝑦̃∈ℝ3

|∇2𝒈(𝑡, 𝑦̃)|‖𝑦𝑘(𝑡) − 𝑦(𝑡)‖𝐿𝑝′ (0,ℝ3)
≤ 𝐶𝒈‖𝑦𝑘(𝑡) − 𝑦(𝑡)‖𝐿𝑝′ (0,ℝ3) → 0 as 𝑘 → ∞ □

Compactness of minors of gradients according to (36d)
We first motivate our sets of coercivity assumptions (36d) a), b), and c) in a remark.

Remark 3.6 (Results on compactness ofminors). In three space dimensions theminors of amatrix∇𝝋 are given by∇𝝋 itself,
its cofactor matrix cof ∇𝝋, and its determinant det∇𝝋. Hereby, the entries of cof ∇𝝋 contain products of two derivatives
𝜕𝑖𝝋𝑗𝜕𝑘𝝋𝑙, whereas det∇𝝋 is composed of terms given by products of three derivatives 𝜕𝑖𝝋𝑗𝜕𝑘𝝋𝑙𝜕𝑚𝝋𝑛. In this spirit, it is
shown in [53, Cor. 6.2.2] that the map 𝝋 ↦ cof ∇𝝋 ∶ 𝑊1,𝑝(0) → 𝐿𝑝∕2(0) is weakly sequentially lower semicontinuous
if 𝑝 > 2, whilst the map 𝝋 ↦ det∇𝝋 ∶ 𝑊1,𝑝(0) → 𝐿𝑝∕3(0) is weakly sequentially lower semicontinuous if 𝑝 > 3. As
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done in [53, p. 370] the functions cof ∇𝝋, det∇𝝋 can given meaning in the sense of distributions by defining suitable
distributions denoted as Cof ∇𝝋,Det∇𝝋, and in general cof ∇𝝋 and Cof ∇𝝋, resp. det∇𝝋 and Det∇𝝋must not coincide.
We point out the result [53, Thm. 6.2], which relaxes 𝑝 > 3 to the condition 𝑝 > 3∕2, 1

𝑝
+
1

𝑞
< 4∕3 and ensures: If 𝝋𝑘 ⇀ 𝝋

in𝑊1,𝑝(0, ℝ3), thenCof ∇𝝋𝑘 ⇀ Cof ∇𝝋 andDet∇𝝋𝑘 → Det∇𝝋 in′(0), i.e., the price is that the defined distributional
minors cannot be identified with the minors as a function. Yet, as previously discussed, this ambiguity can be ruled out
if 𝑝 > 3. Hence, taking a look at the coercivity assumptions (36d), it is therefore sufficient for 𝑝 > 3, cf. (36d) a), to claim
boundedness of the energy density from below only with regard to |∇𝝋|𝑝; compactness of the other minors then follows
by [53, Cor. 6.2.2]. In contrast, in the case of (36d) b), 𝑝 ∈ [2, 3) is possible, so that 𝑝∕3 < 1, and the weak sequential lower
semicontinuity of the determinant cannot be concluded directly. Similarly, if 𝑝 = 2 compactness cannot be concluded for
bounded sequences of cofactors. This is why coercivity assumption (36d) b), which is taken from [60, Thm. 2.10, p. 182],
requires boundswith exponents larger than one for all of the threeminors. In particular, the set of assumptions is designed
exactly in such a way that, thanks to [60, Thm. 2.6, Part 5, p. 173], ambiguities between cof ∇𝝋 and Cof ∇𝝋, resp. det∇𝝋
and Det∇𝝋 can be ruled out, even though 𝑝 < 3 is admissible. Moreover, assumptions (36d) b1) and b2) are tailored to
the case that the energy density does not depend on det∇𝝋, resp. neither on cof ∇𝝋 nor on det∇𝝋, so that compactness in
these terms is not needed. In this way our analysis also includes e.g. Neo-Hooke and Mooney-Rivlin materials, cf. (91) for
the definition. Finally, assumption (36d) c) builds on the improved compactness result [54, Lemma 4.1] stating that: Let
𝑝 ≥ (𝑑 − 1),𝑝2 > 𝑑∕(𝑑 − 1), 𝑑 space dimension, and (∇𝝋𝑛)𝑛 ∈ 𝑊1,𝑝(0, ℝ𝑑) such that∇𝝋𝑛 ⇀ 𝝋 in𝑊1,𝑝(0, ℝ𝑑), cof ∇𝝋𝑛
bounded in 𝐿𝑝2(0, ℝ𝑑×𝑑),det 𝝋𝑛 > 0. Then

cof ∇𝝋𝑛 ⇀ cof ∇𝝋 in 𝐿𝑝2(0, ℝ𝑑×𝑑) and (50a)

det∇𝝋𝑛 ⇀ det∇𝝋 in 𝐿𝑟(0), where 𝑟 = 𝑝2(𝑑−1)

𝑑
. (50b)

Moreover, if 𝑝2 = 𝑑∕(𝑑 − 1) and if det∇𝝋𝑛 ≥ 0 a.e. in 0, then (50b) is replaced by
det∇𝝋𝑛 ⇀ det∇𝝋 in 𝐿1(𝐾) (50c)

for all compact sets 𝐾 ⊂ 0.
Proposition 3.7 (Compactness of minors of gradients according to (36d)). Consider a sequence (𝝋𝑘)𝑘 ⊂ 𝐔 such that
for all 𝑘 ∈ ℕ

𝐶 ≥ 𝑐1‖∇𝝋𝑘‖𝑝𝐿𝑝(0,ℝ3×3) + 𝑐2‖cof∇𝝋𝑘‖𝑝2𝐿𝑝2 (0,ℝ3×3) + 𝑐3‖det∇𝝋𝑘‖𝑝3𝐿𝑝3 (0,ℝ) − 𝐶, (51)

for some 𝐶 > 0 and where the constants 𝑝, 𝑝2, 𝑝3, 𝑐1, 𝑐2, 𝑐2, 𝐶 match with one of the conditions of (36d) a)– c). Then there
exists a not relabeled subsequence (𝝋𝑘)𝑘 ⊂ 𝐔 and 𝝋 ∈ 𝐔 such that 𝝋𝑘 ⇀ 𝝋 in𝐔, cof∇𝝋𝑘 ⇀ cof∇𝝋 in 𝐿𝑝2(0, ℝ3 × 3), and
det∇𝝋𝑘 ⇀ det∇𝝋 in 𝐿𝑝3(0, ℝ). In case b), if 𝑐𝑗 = 0, 𝑗 = 2, 3, then 𝑝𝑗 = 𝑝∕𝑗 in the previous weak convergence statement. In
case c), for 𝑐3 = 0, 𝑝3 =

𝑝2(𝑑−1)

𝑑
in the previous convergence statement and if 𝑝2 = 3∕2, then det∇𝝋𝑘 ⇀ det∇𝝋 in 𝐿1(𝐾) for

any compact set 𝐾 ⊂ 0.
Proof. The proof of case b) can be retrieved from [60, p. 183]. Case a) follows with [53, Cor. 6.2.2] and case c) is due to [54,
Lemma 4.1], cf. (50). □

Temporal regularity of the energy functional due to assumptions (43), (44) and (36)
In the following we prove temporal regularity properties of the energy functional, based on assumption (43), (44), and
(36). An analogous result was first obtained in [61, Lemma 5.5].

Proposition 3.8. Let (43), (44), and (36) be satisfied. Then there exist constants 𝑐0 ≥ 0, 𝑐1 > 0 such that for all
(𝑡∗, 𝒈(𝑡∗, 𝑦), 𝑠) ∈ [0, 𝑇] × 𝐔 × 𝐙 with (𝑡∗, 𝒈(𝑡∗, 𝑦), 𝑠) < ∞ it holds: (⋅, 𝒈(⋅, 𝑦), 𝑠) ∈ C1([0, 𝑇]) with

𝜕𝑡(𝑡, 𝑞)=∫
0
𝜕𝐹𝑊(𝐹(𝑡), 𝑠)𝐹

⊤∶𝐺(𝑡) d𝑋 − ⟨𝒉̇(𝑡), 𝝋(𝑡)⟩ − ⟨𝒉(𝑡), 𝜕𝑡𝝋(𝑡)⟩ (52)
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for 𝐹(𝑡) ∶= ∇𝝋(𝑡) and 𝐺(𝑡) ∶= (∇𝒈(𝑡, 𝑦))−1𝜕𝑡∇𝒈(𝑡, 𝑦) and

|𝜕𝑡(𝑡, 𝒈(𝑡, 𝑦), 𝑠)| ≤ 𝑐1((𝑡, 𝒈(𝑡, 𝑦), 𝑠) + 𝑐0) for every 𝑡 ∈ [0, 𝑇]. (53)

Moreover, if (𝑡, 𝒈(𝑡, 𝑦), 𝑠) < 𝐸 for some constant 𝐸 ∈ ℝ, the following Lipschitz-estimate holds true:
|(𝑡, 𝒈(𝑡, 𝑦), 𝑠) − (𝜏, 𝒈(𝜏, 𝑦), 𝑠)| ≤ 𝑐𝐸|𝑡 − 𝜏|. (54)

Proof. Proof of (52) and (53):We confine ourselves to prove the existence of 𝜕𝑡(⋅, 𝑞) and estimate (53) in a neighborhood
N(𝑡𝑞) of 𝑡𝑞 ∈ [0, 𝑇]. Similarly to the small-strain setting, where an analogous proof was carried out in [41, Thm. 3.7], this is
basically donewith themean value theorem of differentiability and the dominated convergence theorem. But the different
treatment of the inhomogeneous Dirichlet condition requires different estimates, which will be carried out here. The
existence of 𝜕𝑡(⋅, 𝑞) and the validity of (53) on the whole interval [0, 𝑇] can then be concluded with the same arguments
as in the proof of [41, Thm. 3.7].
Since 𝜕𝑡 ∫ΓN 𝒉(𝑡)𝝋(𝑡) d2 exists by (43) and (44), it remains to show the existence of 𝜕𝑡 ∫0 𝑊(∇𝝋(𝑡) d𝑋 inN(𝑡𝑞). For this

we define for 𝑡 ∈ N(𝑡𝑞)

𝜔(𝑥, 𝑡, 𝛼) ∶=

{ 1

𝛼
(𝑊(∇𝝋(𝑡+𝛼), 𝑠) −𝑊(∇𝝋(𝑡), 𝑠)) if 𝛼 ≠ 0,

𝜕𝐹𝑊(∇𝝋(𝑡), 𝑠)(∇𝝋(𝑡))
⊤∶(∇𝒈(𝑡, 𝑦))−1𝜕𝑡∇𝒈(𝑡, 𝑦) if 𝛼 = 0,

and we have to show that 𝜔(𝑥, 𝑡, ⋅) ∈ C0([−𝛼𝑡, 𝛼𝑡]) for 𝛼𝑡 suitably. By the mean value theorem of differentiability we find
𝛼̃ = 𝛼̃(𝛼) such that it holds for every 𝛼 ∈ [−𝛼𝑡, 𝛼𝑡]

1
𝛼
(𝑊(∇𝝋(𝑡+𝛼), 𝑠)−𝑊(∇𝝋(𝑡), 𝑠))

= 𝜕𝐹𝑊(∇𝝋(𝑡+𝛼̃), 𝑠)(∇𝝋(𝑡+𝛼̃))
⊤∶(∇𝒈(𝑡+𝛼̃, 𝑦))−1𝜕𝑡∇𝒈(𝑡+𝛼̃, 𝑦) (55)

→ 𝜕𝐹𝑊(∇𝝋(𝑡), 𝑠)(∇𝝋(𝑡))
⊤∶(∇𝒈(𝑡, 𝑦))−1𝜕𝑡∇𝒈(𝑡, 𝑦)

as 𝛼, 𝛼̃ → 0 by (36e) and (43). In order to show that the integrals converge as well, we are going to apply the dominated
convergence theorem. For this, we have to construct an integrable majorant for expression (55). Again by the mean value
theorem of differentiability we first obtain 𝛼̂ such that

∇𝝋(𝑡+𝛼̃)=∇(𝝋(𝑡)+𝜕𝑡𝝋(𝑡+𝛼̂)𝛼̃)=
(
𝟏𝟏 + 𝛼̃𝜕𝑡∇𝒈(𝑡+𝛼̂, 𝑦)(∇𝒈(𝑡, 𝑦))

−1
)
∇𝝋(𝑡)=𝐶(𝛼̃)∇𝝋(𝑡)

with 𝐶(𝛼̃) → 𝟏𝟏 as 𝛼̃ → 0 by (43). Hence we conclude by (39) and (43):

|(55)| ≤ 𝐶̃𝑔𝐶𝑔|𝜕𝐹𝑊(𝐶(𝛼̃), 𝑠)(∇𝝋(𝑡))⊤𝐶(𝛼̃)⊤|
≤ 𝐶̃𝑔𝐶𝑔𝑑𝑐(𝑊(∇𝝋(𝑡), 𝑠) + 𝑐)(

√
𝑑+𝛼̃𝐶𝑔𝐶̃𝑔).

(56)

Now, estimate (53) is derived under consideration of

|𝜕𝑡(𝑡, 𝑞)| ≤ |||∫
0
𝜔(𝑥, 𝑡, 0) d𝑋

||| + |⟨𝒉̇(𝑡), 𝝋(𝑡)⟩| + |⟨𝒉(𝑡), 𝜕𝑡𝝋(𝑡)⟩|. (57)

In view of (43), (44), Lemma (3.4), Friedrich’s inequality (49), Young’s inequality and 36d we derive for the loading terms
in (57) an estimate of the form

|⟨𝒉̇(𝑡), 𝝋(𝑡)⟩| + |⟨𝒉(𝑡), 𝜕𝑡𝝋(𝑡)⟩| ≤ 𝐴1(𝑡, 𝑞) + 𝐵1.
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For the elastic energy term in (57) estimate (56) and (43), (44) lead to

|||∫
0
𝜔(𝑥, 𝑡, 0) d𝑋

||| ≤ (56) ≤ 𝐴2(𝑡, 𝑞) + 𝐵2,
so that inequality (53) is obtained.
Proof of (54): The Lipschitz estimate (54) follows by applying the mean value theorem of differentiability and then by

making use of the continuity properties of 𝒈, 𝒉, cf. (43) and (44), together with stress control (36e) as in (55). □

3.2 Analytical results on the convergence of discrete solutions

In this section we gather and explain all our analytical results.
In a first step we verify the existence of discrete solutions (𝝋𝑘𝑁, 𝑠

𝑘
𝑁) ∈ 𝐔(𝑡

𝑘
𝑁) × 𝐙 at each time-step 𝑡

𝑘
𝑁 ∈ Π𝑁 .

Proposition 3.9 (Existence of solutions for the discrete problem (33)). Let the assumptions (36), (44), (43), and
(40) hold true and (𝐔 × 𝐙,  ,𝛼𝑁) be given by (27), (32), (41), (48a). Consider a partition Π𝑁 of [0, 𝑇] as in (31). Sup-
pose that (𝑦0, 𝑠0) ∈ 𝐘 × 𝐙 is an admissible initial datum. Then, the following statements hold true for each 𝑡𝑘𝑁 ∈ Π𝑁
as in (31):

1. There exists a pair (𝑦𝑘𝑁, 𝑠
𝑘
𝑁) ∈ 𝐘 × 𝐙 such that (𝝋(𝑡

𝑘
𝑁, 𝑦

𝑘
𝑁), 𝑠

𝑘
𝑁) ∈ 𝐔 × 𝐙 is a solution for minimization problem (33).

2. Let the initial datum (𝑦0, 𝑠0) ∈ 𝐘 × 𝐙 such that 𝑠0 ∈ [0, 1] a.e. on0. Then, a solution 𝑠𝑘𝑁 of (33b) also satisfies 𝑠𝑘𝑁 ∈ [0, 1]
a.e. in 0 both for 𝛼 = 0 and for 𝛼 > 0 in (32), i.e. 𝑠𝑘𝑁 ∈ 𝐗 = 𝐻1(0) ∩ 𝐿∞(0).
Using the discrete solutions (𝑦𝑘𝑁, 𝑠

𝑘
𝑁)
𝑁
𝑘=1

obtained in Prop. 3.9 we now introduce piecewise constant left-continuous
(𝑦𝑁, 𝑠𝑁) (right-continous (𝑦𝑁, 𝑠𝑁)) piecewise constant interpolants and linear interpolants 𝑠

𝓁
𝑁 as follows:

(𝑦𝑁(𝑡), 𝑠𝑁(𝑡)) ∶= (𝑦
𝑘
𝑁, 𝑠

𝑘
𝑁) for all 𝑡 ∈ (𝑡

𝑘−1
𝑁 , 𝑡𝑘𝑁], (58a)

(𝑦
𝑁
(𝑡), 𝑠

𝑁
(𝑡)) ∶= (𝑦𝑘−1𝑁 , 𝑠𝑘−1𝑁 ) for all 𝑡 ∈ [𝑡𝑘−1𝑁 , 𝑡𝑘𝑁), (58b)

𝑠𝓁𝑁 ∶=
𝑡−𝑡𝑘−1𝑁

𝜏𝑁
𝑠𝑘𝑁 +

𝑡𝑘𝑁−𝑡

𝜏𝑁
𝑠𝑘−1𝑁 for all 𝑡 ∈ [𝑡𝑘−1𝑁 , 𝑡𝑘𝑁), (58c)

and accordingly, we set 𝝋𝑁(𝑡) ∶= 𝒈(𝑡, 𝑦𝑁(𝑡)) and 𝝋𝑁(𝑡) ∶= 𝒈(𝑡, 𝑦𝑁(𝑡)).

For the interpolants (𝑦𝑁, 𝑦𝑁, 𝑠𝑁, 𝑠𝑁, 𝑠
𝓁
𝑁) we then verify a discrete version of the governing equations (30) and uniform

apriori estimates.

Proposition 3.10 (Properties of the interpolants). Let the assumptions of Prop. 3.9 hold true with 𝑠0𝑁 ∈ [0, 1] a.e. in 0.
Then the interpolants (𝑦𝑁, 𝑦𝑁, 𝑠𝑁, 𝑠𝑁, 𝑠

𝓁
𝑁) contructed from solutions (𝑦𝑘𝑁, 𝑠

𝑘
𝑁)
𝑁
𝑘=1

of problem (33) via (58) satisfy uniformly for
all𝑁 ∈ ℕ:

For all 𝝋̃ ∈ 𝐔(𝑡) ∶ (𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) ≤ (𝑡, 𝝋̃, 𝑠
𝑁
(𝑡)), (59a)

D𝑠(𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) + 𝜏𝑁D𝛼𝑁(𝑠̇𝓁𝑁(𝑡)) = 0 in 𝐗∗, i.e., for all 𝑠 ∈ 𝐗0 ∶ (59b)

∫
0

((
𝛽′(𝑠𝑁(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡))) −

1

𝑙𝑐
(1 − 𝑠𝑁) +𝑀

−1𝑠̇𝓁𝑁 + 𝛼𝑁(𝑠̇
𝓁
𝑁)+)𝑠 + 𝑙𝑐∇𝑠𝑁(𝑡) ∶ ∇𝑠

))
d𝑋 = 0.
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In addition, the following energy-dissipation estimate holds true for all𝑁 ∈ ℕ,𝑡 ∈ [0, 𝑇]:

(𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) +
𝑡

∫
0

𝛼𝑁(𝑠̇𝓁𝑁(𝜏)) d𝜏 ≤ (0, 𝝋0𝑁, 𝑠0𝑁) +
𝑡

∫
0

𝜕𝜏(𝜏, 𝒈(𝜏, 𝑦
𝑁
(𝜏)), 𝑠

𝑁
(𝜏)) d𝜏, (60)

where the partial time derivative 𝜕𝜏(𝜏, 𝒈(𝜏, 𝑦
𝑁
(𝜏)), 𝑠

𝑁
(𝜏)) is given by (52).

Furthermore, there is a constant 𝐶 > 0 such that the following apriori estimates are satisfied uniformly for all 𝑁 ∈ ℕ and
all 𝑡 ∈ [0, 𝑇]:

(𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) ≤ 𝐶, (𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) ≤ 𝐶,
𝑡

∫
0

𝛼𝑁(𝑠̇𝓁𝑁(𝜏)) d𝜏 ≤ 𝐶, (61a)

‖𝑦𝑁(𝑡)‖𝐘 ≤ 𝐶 & ‖𝑦
𝑁
(𝑡)‖𝐘 ≤ 𝐶, (61b)

‖𝑠̇𝓁𝑁‖𝐿2(0,𝑡;𝐿2(0)) ≤ 𝐶 (61c)

‖𝑠𝑁(𝑡)‖𝐙 ≤ 𝐶 & ‖𝑠
𝑁
(𝑡)‖𝐙 ≤ 𝐶, (61d)

‖𝑠𝑁(𝑡)‖𝐿∞(0) ≤ 1 & ‖𝑠
𝑁
(𝑡)‖𝐿∞(0) ≤ 1, (61e)

‖𝛽(𝑠𝑁(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡))‖𝐗∗ ≤ 𝐶. (61f)

Thanks to the apriori estimates (61) we are now in the position to extract a (not relabeled) subsequence
(𝑦𝑁, 𝑦𝑁

, 𝑠𝑁, 𝑠𝑁, 𝑠
𝓁
𝑁)𝑁 of the interpolants, which converge to a limit pair (𝑦, 𝑠) that satisfies (30):

Theorem 3.11 (Convergence of the time-discrete solutions, existence of a solution for (30)). Let the assumptions
of Prop. 3.10 hold true. Then there is a (not relabeled) subsequence (𝑦𝑁, 𝑦𝑁, 𝑠𝑁, 𝑠𝑁, 𝑠

𝓁
𝑁)𝑁 satisfying (59)–(61), a function 𝑦 ∶

[0, 𝑇] → 𝐘, and a pair (𝑦, 𝑠) ∶ [0, 𝑇] → 𝐘 × 𝐗 with 𝝋(𝑡) = 𝒈(𝑡, 𝑦(𝑡)) such that

𝑠𝓁𝑁 ⇀ 𝑠 in𝐻1(0, 𝑇; 𝐿2(0)), (62a)

𝑠𝓁𝑁, 𝑠𝑁, 𝑠𝑁 ⇀ 𝑠 in 𝐿2(0, 𝑇; 𝐿2(0)), (62b)

𝑠𝑁(𝑡), 𝑠𝑁(𝑡) ⇀ 𝑠(𝑡) in 𝐗 for all 𝑡 ∈ [0, 𝑇], (62c)

𝑦𝑁(𝑡) ⇀ 𝑦(𝑡) in 𝐘 for a.a. 𝑡 ∈ (0, 𝑇), (62d)

𝑦
𝑁
(𝑡) ⇀ 𝑦(𝑡) in 𝐘 for a.a. 𝑡 ∈ (0, 𝑇), (62e)

𝑧𝑁𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) ⇀ 𝑧𝑊𝑖(𝕄∇𝝋(𝑡)) in 𝐿1(0) for a.a. 𝑡 ∈ (0, 𝑇), 𝑖 = 1, 2, (62f)

for any sequence 𝑧𝑁 → 𝑧 in 𝐿𝑞(0) for some 𝑞 ≥ 1 with 0 ≤ 𝑧𝑁 ≤ 1 a.e. in 0.
In particular, the pair (𝑦, 𝑠) ∶ [0, 𝑇] → 𝐘 × 𝐗 satisfies:

∙ For all 𝑡 ∈ [0, 𝑇], for all 𝝋̃ ∈ 𝐔 ∶ (𝑡, 𝝋(𝑡), 𝑠(𝑡)) ≤ (𝑡, 𝝋̃, 𝑠(𝑡)), (63a)

∙ if 𝛼 = 0, for a.a. 𝑡 ∈ (0, 𝑇), for all 𝑠 ∈ 𝐗0 ∶ (63b)

∫
0

((
𝛽′(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡))) −

𝑐
𝑙𝑐
(1 − 𝑠(𝑡)) + 𝑀−1𝑠̇(𝑡))𝑠 + 𝑐𝑙𝑐∇𝑠(𝑡) ∶ ∇𝑠

))
d𝑋 = 0
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∙ if 𝛼 > 0, for a.a. 𝑡 ∈ (0, 𝑇), for all 𝑠 ∈ 𝐗0 such that 𝑠 ≤ 0 a.e. in 0 ∶ (63c)

∫
0

((
𝛽′(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡))) −

𝑐
𝑙𝑐
(1 − 𝑠(𝑡)) + 𝑀−1𝑠̇(𝑡))𝑠 + 𝑐𝑙𝑐∇𝑠(𝑡) ∶ ∇𝑠

))
d𝑋 ≥ 0,

∙ if 𝛼 > 0, then 𝑠̇(𝑡) ≤ 0 for a.a. 𝑡 ∈ (0, 𝑇), a.e. in 0, (63d)

∙ and the energy dissipation inequality for all 𝑡 ∈ [0, 𝑇]: (63e)

(𝑡, 𝝋(𝑡), 𝑠(𝑡)) +
𝑡

∫
0

𝛼(𝑠̇(𝜏)) d𝜏 ≤ (0, 𝝋0, 𝑠0) +
𝑡

∫
0

(𝜏, 𝑠(𝜏)) d𝜏,

with 𝛼 from (29) and with (𝜏, 𝑠(𝜏)) ∶= sup{𝜕𝜏(𝜏, 𝝋̂, 𝑠(𝜏)), 𝝋̂ ∈ argmin(𝜏, ⋅, 𝑠(𝜏))} as a surrogate for the partial time
derivative from (52).

3.3 Proofs of Prop. 3.9–Thm. 3.11

3.3.1 Proof of Prop. 3.9

In order to establish the proof of Item 1, we will employ the direct method of the calculus of variations. For this, we will
verify the coercivity and the weak sequential lower semicontinuity of the functional (𝑡, ⋅, ⋅). To deduce the latter for the
polyconvex functional (𝑡, ⋅, ⋅)we use the following result on the convergence of minors of gradients, which goes back on
[53, 69], cf. also [52]. With this at hand we now establish weak sequential lower semicontinuity and coercivity.

Lemma 3.12. Let (40), (43), (44) as well as (36a)–(36d) hold. Then, for all 𝑡 ∈ [0, 𝑇] the following statements hold true:

1. (𝑡, ⋅, ⋅) is coercive on 𝐔(𝑡) × 𝐙 for all 𝑡 ∈ [0, 𝑇], in particular, with 𝑙𝑐 < 1 there are constants 𝐵, 𝐶 > 0 such that for all
(𝑦, 𝑠) ∈ 𝐘 × 𝐙 with 𝝋 = 𝒈(𝑡, 𝑦) it holds:

(𝑡, 𝝋, 𝑠) ≥ 𝐶(‖𝑦‖𝑝
𝑊1,𝑝(0,ℝ3) + ‖cof∇𝝋‖𝑝2

𝐿𝑝2 (0,ℝ3×3) + ‖det∇𝝋‖𝑝3
𝐿𝑝3 (0,ℝ)

)
+
𝑙𝑐

4
‖𝑠‖2

𝐻1(0)−𝐵. (64)

2. (𝑡, ⋅, ⋅) ∶ 𝐔 × 𝐙 → ℝ has weakly sequentially compact sublevels.

Proof. Proof of 1.: Let (𝑦𝑘, 𝑠𝑘)𝑘∈ℕ ⊂ 𝐘 × 𝐙. In view of (4), we find that (1 − 𝑠)2 ≥ (1 + 𝑠2 − 1

2
𝑠2 − 2) =

1

2
𝑠2 − 1 by Young’s

inequality. Moreover, by (36d), (43), (44), Young’s inequality with 𝜀 = ( 𝑐1𝑝

2𝐶
𝑝
𝑔 𝐶
𝑝
𝐹

)
1

𝑝 , and Lemma 3.4 it is for 𝑙𝑐 < 1:

(𝑡, 𝝋𝑘, 𝑠𝑘) ≥
(
𝑐1‖∇𝝋𝑘(𝑡)‖𝑝𝐿𝑝(Ω,ℝ3×3) + 𝑐2‖cof∇𝝋𝑘‖𝑝2𝐿𝑝2 (0,ℝ3×3) + 𝑐3‖det∇𝝋𝑘‖𝑝3𝐿𝑝3 (0,ℝ)−𝐶3(0)
+
𝑙𝑐

4
‖𝑠‖2

𝐻1(0) −
1

2𝑙𝑐
3(0)−

(
𝐶𝒉

𝑝′𝜀

)𝑝′
−
𝜀𝑝

𝑝
‖𝝋𝑘(𝑡)‖𝑝𝑊1,𝑝(0,ℝ3)

)
≥
(
𝑐1

𝐶
𝑝
𝑔
(21−𝑝‖∇(𝑦𝑘−id)‖𝑝𝐿𝑝(0,ℝ3×3)−3 1𝑝3(0)) + 𝑐2‖cof∇𝝋𝑘‖𝑝2𝐿𝑝2 (0,ℝ3×3)

+ 𝑐3‖det∇𝝋𝑘‖𝑝3𝐿𝑝3 (0,ℝ)−𝐶3(0)+ 𝑙𝑐4 ‖𝑠‖2𝐻1(0)− 𝜀𝑝𝑝 (‖𝑦𝑘‖𝑝𝑊1,𝑝(0,ℝ3)+1)−𝐵̃)
≥
(

𝑐1

𝐶
𝑝
𝑔 𝐶
𝑝
𝐹

−
𝜀𝑝

𝑝

)‖𝑦𝑘‖𝑝𝑊1,𝑝(0,ℝ3) + 𝑐2‖cof∇𝝋𝑘‖𝑝2𝐿𝑝2 (0,ℝ3×3) + 𝑐3‖det∇𝝋𝑘‖𝑝3𝐿𝑝3 (0,ℝ)
+
𝑙𝑐

4
‖𝑠𝑘‖2𝐻1(0) − 𝐵,

which states (64).
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Proof of 2.: To establish the weak sequential compactness of the energy sublevels we now consider a sequence
(𝑦𝑘, 𝑠𝑘)𝑘∈ℕ ⊂ 𝐘 × 𝐙 with (𝑡, 𝝋𝑘, 𝑠𝑘) ≤ 𝐶 uniformly for all 𝑘 ∈ ℕ. Coercivity estimate (36d) thus allows us to employ
Prop. 3.7, which, by Prop. 3.5, implies the existence of a subsequence 𝑦𝑘 ⇀ 𝑦 in 𝐘, such that 𝝋𝑘 ⇀ 𝝋 in 𝐔, cof∇𝝋𝑘 ⇀
cof∇𝝋 in 𝐿𝑝2(0, ℝ3 × 3), and det∇𝝋𝑘 ⇀ det∇𝝋 in 𝐿𝑝3(0, ℝ). Moreover, thanks to (64) we also find a subsequence
𝑠𝑘 ⇀ 𝑠 in 𝐙. It thus remains to deduce the weak sequential lower semicontinuity of each of the contributions
of  .
To establish the weak sequential lower semicontinuity of the functional ∫0 𝑐𝛾(⋅, ⋅) d𝑋 ∶ 𝐙 × 𝐙 → [0,∞) with 𝛾 from

(4), we first note that 𝛾 ∈ C1(ℝ × ℝ3,ℝ) and bounded from below by 0. Moreover, the gradient term is strictly convex and
the compact embedding 𝐙 ⋐ 𝐿2(Ω) will ensure that 𝑠𝑘 → 𝑠 strongly in 𝐿2(0) if 𝑠𝑘 ⇀ 𝑠 in 𝐙. Hence, the weak sequential
lower semicontinuity of the integral functional follows by [60, Sec. 3, Thm. 3.4].
Assumption (44) and Lemma 3.5 ensure ∫

𝜕N0 𝒉(𝑡) ⋅ 𝒈(𝑡, 𝑦𝑘) d𝑋 → ∫
𝜕N0 𝒉(𝑡) ⋅ 𝒈(𝑡, 𝑦) d𝑋. With the above findings on

∫0 𝑐𝛾(⋅, ⋅) d𝑋 and further taking into account Hypotheses (36b)–(36d), which state that𝑊 is a Carathéodory-function,
polyconvex and bounded from below for every 𝑭 ∈ GL+(3), the weak sequential lower semicontinuity of the full func-
tional ∫0 (𝛽(⋅)𝑊1(𝕄(⋅)) +𝑊2(𝕄(⋅)) + 𝑐𝛾(⋅, ⋅)) d𝑋 can be obtained by applying weak lower semicontinuity results for the
convex case, cf. [60, Sec. 3, Thm. 3.4]. □

We are now in the position to verify the existence of minimizers for problem (30) via the direct method of the calculus
of variations.
Proof of Prop. 3.9, Item 1: Asume that 𝑠0𝑁 ∈ [0, 1] a.e. in 0. Thus, (𝑡1𝑁, ⋅, 𝑠0𝑁) ∶ 𝐔 → ℝ is well-defined. We con-

clude the existence of a minimizer 𝑦1𝑁 ∈ 𝐘 such that 𝝋
1
𝑁 = 𝒈(𝑡

1
𝑁, 𝑦

1
𝑛) via the direct method of the calculus of variations by

applying Lemma 3.12 to (𝑡1𝑁, ⋅, 𝑠0𝑁). Let 𝑡𝑘𝑁 ∈ Π𝑁 fixed and assume that 𝑠𝑘−1𝑁 ∈ [0, 1] (which we will show in Item 2 by
induction). Again, (𝑡𝑘𝑁, ⋅, 𝑠𝑘−1𝑁 ) ∶ 𝐔 → ℝ is well-defined and we may deduce the existence of a minimizer 𝑦𝑘𝑁 ∈ 𝐘𝑁 such
that 𝝋𝑘𝑁 = 𝒈(𝑡

𝑘
𝑁, 𝑦

𝑘
𝑛) via the direct method by applying Lemma 3.12 to (𝑡𝑘𝑁, ⋅, 𝑠𝑘−1𝑁 ). Similarly, the existence of a minimizer

𝑠𝑘𝑁 follows from Lemma 3.12 applied to the functional (𝑡𝑘𝑁, 𝝋𝑘𝑁, ⋅) + 𝜏𝑁𝛼𝑁( (⋅)−𝑠
𝑘−1
𝑁

𝜏𝑁
). For this, note that 𝛼𝑁( (⋅)−𝑠

𝑘−1
𝑁

𝜏𝑁
) only

contains quadratic, convex lower order terms. □
Proof of Prop. 3.9, Item 2:We proceed by contradiction. For this, suppose that 𝑠𝑘−1𝑁 ∈ [0, 1] a.e. in 0 but that there

exist sets 𝐵0, 𝐵1 ⊂ 0 with 3(𝐵0),3(𝐵1) > 0 such that 𝑠𝑘𝑁 < 0 a.e. on 𝐵0 and 𝑠𝑘𝑁 > 1 a.e. on 𝐵1. We test the minimality
(33b) by 𝑠 ∶= min{1,max{0, 𝑠𝑘𝑁}}, which is an admissible testfunction according to [70]. In view of (36g), (36h), (27), and
(32) we thus have

𝛽(𝑠𝑘𝑁)𝑊1(𝕄∇𝝋
𝑘
𝑁) ≥ 𝛽(𝑠)𝑊1(𝕄∇𝝋𝑘𝑁),

(1 − 𝑠𝑘𝑁)
2 ≥ (1 − 𝑠)2,

∫
0

|∇𝑠𝑘𝑁|2 d𝑋 ≥ ∫
0

|∇𝑠|2 d𝑋,
𝛼𝑁

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)
≥ 𝛼𝑁

(
𝑠 − 𝑠𝑘−1𝑁

𝜏𝑁

)
.

Here, the first inequality follows from themonotonicity of 𝛽 on [0,∞) and (−∞, 0] togetherwith𝑊1 ≥ 0. To see the second
inequality observe that (1 − 𝑠)2 > 1 = (1 − 𝑠)2 for 𝑠 < 0 and (1 − 𝑠)2 > 0 = (1 − 𝑠)2 for 𝑠 > 1. The third inequality follows
from [70, Sec. 2], which implies that∇𝑠 = 0 a.e. on 𝐵 = 𝐵0 ∪ 𝐵1 and∇𝑠 = ∇𝑠𝑘𝑁 a.e. on0∖𝐵. The fourth inequality ensues
from

for 𝑠𝑘𝑁 < 0, 𝑠
𝑘−1
𝑁 ≥ 0 ∶

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)2
≥
(
−𝑠𝑘−1𝑁

𝜏𝑁

)2
and 0 =

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)2
+

≥
(
−𝑠𝑘−1𝑁

𝜏𝑁

)2
+

= 0,

for 𝑠𝑘𝑁 > 1, 𝑠
𝑘−1
𝑁 ≤ 1 ∶

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)2
≥
(
1 − 𝑠𝑘−1𝑁

𝜏𝑁

)2
and

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)2
+

≥
(
1 − 𝑠𝑘−1𝑁

𝜏𝑁

)2
+

.
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Altogether, the four relations imply

(𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠) + 𝛼𝑁
(
𝑠 − 𝑠𝑘−1𝑁

𝜏𝑁

)
< (𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠𝑘𝑁) + 𝛼𝑁

(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)
,

which is in contradiction to the minimality of 𝑠𝑘𝑁 and hence 𝑠
𝑘
𝑁 ∈ [0, 1] a.e. in 0.

Note that the above contradicition argument holds in particular for 𝑘 = 1 under the assumption that 𝑠0𝑁 ∈ [0, 1] a.e.
in 0, i.e., in this case we find that 𝑠1𝑁 ∈ [0, 1] a.e. Therefore, the above argument allows us to conclude the statement
by induction. □

3.3.2 Proof of Prop. 3.10

We start with the proof of the discrete notion of solution (59).
Proof of (59a):We observe that a minimizer 𝝋𝑘𝑁 of problem (33a) equivalently satisfies for all 𝝋̃ ∈ 𝐔

(𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠𝑘−1𝑁 ) ≤ (𝑡𝑘𝑁, 𝝋̃, 𝑠𝑘−1𝑁 ). (65)

Applying the definition of the interpolants (58) we find (59a).
Proof of (59b):We use that a minimizer 𝑠𝑘𝑁 of problem (33b) satisfies the corresponding Euler-Lagrange equations for

all 𝑠 ∈ 𝐗0:

∫
0

((
𝛽′(𝑠𝑘𝑁)𝑊1(𝕄∇𝝋

𝑘
𝑁(𝑡

𝑘
𝑁))) −

𝑐
𝑙𝑐
(1 − 𝑠𝑘𝑁) + 𝑀

−1(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁
) + 𝛼𝑁(

𝑠𝑘𝑁 − 𝑠
𝑘−1
𝑁

𝜏𝑁
)+)𝑠 + 𝑐𝑙𝑐∇𝑠𝑘𝑁 ∶ ∇𝑠

))
d𝑋 = 0.

Again using the definition of the interpolants (58) we find (59b).
Proof of (60): In order to find the energy dissipation estimate we test the minimality of 𝑠𝑘𝑁 in (33b) by 𝑠

𝑘−1
𝑁 , exploit the

minimality of 𝑦𝑘𝑁 , and add and subtract (𝑡𝑘−1𝑁 , 𝝋𝑘−1𝑁 , 𝑠𝑘−1𝑁 ),

(𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠𝑘𝑁) + 𝜏𝑁𝛼𝑁
(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)
≤ (𝑡𝑘𝑁, 𝝋𝑘𝑁, 𝑠𝑘−1𝑁 )

≤ (𝑡𝑘𝑁, 𝝋𝑘−1𝑁 , 𝑠𝑘−1𝑁 ) + (𝑡𝑘−1𝑁 , 𝝋𝑘−1𝑁 , 𝑠𝑘−1𝑁 ) − (𝑡𝑘−1𝑁 , 𝝋𝑘−1𝑁 , 𝑠𝑘−1𝑁 )

= (𝑡𝑘−1𝑁 , 𝝋𝑘−1𝑁 , 𝑠𝑘−1𝑁 ) +

𝑡𝑘𝑁

∫
𝑡𝑘−1𝑁

𝜕𝜏(𝜏, 𝒈(𝜏, 𝑦𝑘−1𝑁 ), 𝑠𝑘−1𝑁 ) d𝜏.

(66)

Consider now 𝑡 ∈ (𝑡𝑚−1𝑁 , 𝑡𝑚𝑁 ]. Then summing up the above relation over 𝑘 ∈ {1, … ,𝑚}, results in

(𝑡𝑚𝑁 , 𝝋𝑚𝑁, 𝑠𝑚𝑁) +
𝑚∑
𝑘=1

𝜏𝑁𝛼𝑁
(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)
≤ (𝑡0𝑁, 𝝋0𝑁, 𝑠0𝑁) +

𝑚∑
𝑘=1

𝑡𝑘𝑁

∫
𝑡𝑘−1𝑁

𝜕𝜏(𝜏, 𝒈(𝜏, 𝑦𝑘−1𝑁 ), 𝑠𝑘−1𝑁 ) d𝜏.

Again by the definition of the interpolants and using that 𝑡 ∈ (𝑡𝑚−1𝑁 , 𝑡𝑚𝑁 ] we see that this relation is equivalent to (60).
Proof of (61):Wenowwant to exploit the previously obtained discrete estimate (66) to deduce the apriori estimates (61).

To do so, we apply (53) under the integral of (66). This allows us to apply the classical Gronwall inequality and, following
the arguments of e.g. [61], one finds for every𝑚 ∈ {1,… ,𝑁}

(𝑡𝑚𝑁 , 𝝋𝑚𝑁, 𝑠𝑚𝑁) +
𝑚∑
𝑘=1

𝛼𝑁
(
𝑠𝑘𝑁 − 𝑠

𝑘−1
𝑁

𝜏𝑁

)
≤ 𝐶. (67)
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This translates into (61a) and, thanks to (64), also yields the estimates (61b)–(61d).Moreover, in view of 𝑠0𝑁 ∈ [0, 1], estimate
(61e) is due to Prop. 3.9, Item 2. Now, thanks to the properties (36g) of 𝛽 it is 𝛽′(𝑠) = 2𝑠 ≤ 2

𝜂
𝛽(𝑠) for 𝑠 ∈ [0, 1]. Thus, together

with the properties (36) of𝑊1,𝑊2 and coercivity estimate (64) we can verify that there is a constant 𝑐1, 𝑐2 > 0 such that
for all 𝑠 ∈ 𝐗 we have

|||∫
0
𝛽′(𝑠𝑁(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡))𝑠 d𝑋

||| ≤ ‖𝑠‖𝐗(𝑐1(𝑡, 𝝋𝑁(𝑡), 𝑠𝑁(𝑡)) + 𝑐2).
This proves (61f). □

3.3.3 Proof of Theorem 3.11

Proof of convergences (62): In view of (61c) we find a subsequence and a limit 𝑠 ∈ 𝐻1(0, 𝑇; 𝐿2(0)) such that (62a) holds
true. Similarly, by (61d) & (61e) we find further subequences and 𝑠, 𝑠 ∈ 𝐗, such that also 𝑠

∗
⇀ 𝑠 and 𝑠

∗
⇀ 𝑠 in 𝐿∞(0, 𝑇; 𝐗).

Since 𝑠𝓁𝑁(𝑡) − 𝑠𝑁(𝑡) = (𝑡 − 𝑡
𝑘
𝑁)𝑠̇

𝓁
𝑁(𝑡) and 𝑠

𝓁
𝑁(𝑡) − 𝑠𝑁(𝑡) = (𝑡 − 𝑡

𝑘−1
𝑁 )𝑠̇𝓁𝑁(𝑡), we deduce from convergence (62a) that in fact

𝑠 = 𝑠 = 𝑠 in 𝐿∞(0, 𝑇;𝐻1(0)). This proves convergences (62b) & (62c) due to the pointwise bounds in time (61d) and (61e).
Convergences (62d) and (62e) also follow by the boundedness in 𝐿∞(0, 𝑇; 𝐘) implied by the pointwise in time bounds
(61b). Here, the limits 𝑦(𝑡) and 𝑦 of the two sequences must not coincide.
It remains to verify the convergence of𝑊𝑖(𝕄∇𝝋𝑁(𝑡)), i.e., (62f). For this we test the minimality of 𝝋𝑁(𝑡) in (59a) by the

limit 𝝋(𝑡) at any time 𝑡 ∈ (0, 𝑇), where (62d) holds true. Based on this we argue that

lim sup
𝑁→∞ ∫

0

(
𝛽(𝑠

𝑁
(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡)) +𝑊2(𝕄∇𝝋𝑁(𝑡))

)
d𝑋 ≤ ∫

0
(𝛽(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) +𝑊2(𝕄∇𝝋(𝑡))) d𝑋

+ lim sup
𝑁→∞ ∫

𝜕N0
𝒉 ⋅ (𝝋(𝑡) − 𝝋𝑁(𝑡)) d𝑋 + lim sup

𝑁→∞ ∫
0
(𝛽(𝑠

𝑁
(𝑡)) − 𝛽(𝑠(𝑡)))𝑊1(𝕄∇𝝋(𝑡)) d𝑋

= ∫
0
(𝛽(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) +𝑊2(𝕄∇𝝋(𝑡))) d𝑋.

(68)

Here, the convergence of the Neumann-boundary term follows by weak-strong convergence arguments taking into
account (62d) and Prop. 3.7. Convergence (𝛽(𝑠

𝑁
(𝑡)) − 𝛽(𝑠(𝑡)))𝑊1(𝕄∇𝝋(𝑡)) → 0 in 𝐿1(0) ensues by the dominated conver-

gence theorem, using that convergence (62c) implies convergence inmeasure and that (1 + 𝜂)𝑊1(𝕄∇𝝋(𝑡)) +𝑊2(𝕄∇𝝋(𝑡))
provides a majorant, thanks to the uniform bound ‖𝑠

𝑁
(𝑡)‖𝐿∞(0) ≤ 1 for all 𝑁 ∈ ℕ from (61d).

Moreover, making use of the weak sequential lower semicontinuity of the energy terms, the term on the very left of (68)
can be further estimated from below, so that the following chain of inequalities ensues

∫
0
(𝛽(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) +𝑊2(𝕄∇𝝋(𝑡))) d𝑋 ≤ lim inf

𝑁→∞ ∫
0

(
𝛽(𝑠

𝑁
(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡)) +𝑊2(𝕄∇𝝋𝑁(𝑡))

)
d𝑋

≤ lim sup
𝑁→∞ ∫

0

(
𝛽(𝑠

𝑁
(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡)) +𝑊2(𝕄∇𝝋𝑁(𝑡))

)
d𝑋

≤ ∫
0
(𝛽(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡)) +𝑊2(𝕄∇𝝋(𝑡))) d𝑋.

(69)

Observe that each of the three contributions 𝑠2𝑊1(𝕄∇𝝋),𝜂𝑊1(𝕄∇𝝋), and𝑊2(𝕄∇𝝋) generates a lower semicontinuous
energy term. Therefore the above arguments can be carried out separately for each of the three terms (keep only one of
them on the left, the other two then occur with negative sign on the right, alike the Neumann term in (68), and then pass
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to the limit by lower semicontinuity). In total, this implies that

∫
0
𝑠
𝑁
(𝑡)2𝑊1(𝕄∇𝝋𝑁(𝑡)) d𝑋 → ∫

0
𝑠(𝑡)2𝑊1(𝕄∇𝝋(𝑡)) d𝑋, (70a)

∫
0
𝑊1(𝕄∇𝝋𝑁(𝑡)) d𝑋 → ∫

0
𝑊1(𝕄∇𝝋(𝑡)) d𝑋, (70b)

∫
0
𝑊2(𝕄∇𝝋𝑁(𝑡)) d𝑋 → ∫

0
𝑊2(𝕄∇𝝋(𝑡)) d𝑋. (70c)

Further note that each of the three contributions 𝑠2𝑊1(𝕄∇𝝋),𝜂𝑊1(𝕄∇𝝋), and 𝑊2(𝕄∇𝝋) also generates a lower semi-
continuous energy term if integrated over any measurable subset 𝐴 ⊂ 0. Let now (𝑧𝑁)𝑁 ⊂ 𝐿∞(0) such that 𝑧𝑁 → 𝑧 in
𝐿𝑞(0) and ‖𝑧𝑁‖𝐿∞(0) ≤ 1 for all 𝑁 ∈ ℕ. Then, we may argue for 𝑖 = 1, 2

∫
𝐴

𝑧𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋 ≤ lim inf
𝑁→∞ ∫

𝐴

𝑧𝑁𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋 ≤ lim sup
𝑁→∞ ∫

𝐴

𝑧𝑁𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋

= lim sup
𝑁→∞ ∫

𝐴

(
𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) − (1 − 𝑧𝑁)𝑊𝑖(𝕄∇𝝋𝑁(𝑡))

)
d𝑋

≤ lim sup
𝑁→∞ ∫

0
𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋 − lim inf𝑁→∞ ∫

0∖𝐴
𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋 − lim inf𝑁→∞ ∫

𝐴

(1 − 𝑧𝑁)𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋

≤ ∫
0
𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋 − ∫

0∖𝐴
𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋 − ∫

𝐴

(1 − 𝑧)𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋 = ∫
𝐴

𝑧𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋.

(71)

The first inequality of (71) is due to lower semicontinuity of the functional on 𝐴measurable. To pass from the third to the
fourth inequality in (71) we have exploited convergence (70b), resp. (70c), for the first term and the lower semicontinuity
of the other two terms on 0∖𝐴, resp. 𝐴measurable; this yields an estimate from above as they here occur with negative
sign.Hencewehave shown that ∫

𝐴
𝑧𝑁𝑊𝑖(𝕄∇𝝋𝑁(𝑡)) d𝑋 → ∫

𝐴
𝑧𝑊𝑖(𝕄∇𝝋(𝑡)) d𝑋 for any𝐴 ⊂ 0measurable. This, together

with the uniform bound ‖𝑧𝑁𝑊𝑖(𝕄∇𝝋𝑁(𝑡))‖ ≤ 𝐶 is equivalent to weak 𝐿1-convergence, cf. e.g. [71, p. 181, Cor. 2.58], and
thus finishes the proof of (62f).
Proof of the minimality condition (63a): Thanks to convergence (62d) we find by Prop. 3.7 the weak conver-

gences of the correspondingminors. Additionally, convergence (62b) yields the strong convergence 𝑠
𝑁
(𝑡) → 𝑠(𝑡) in 𝐿2(0)

for all 𝑡 ∈ [0, 𝑇], which in turn implies convergence in measure. Using that (𝛽(𝑠
𝑁
(𝑡))𝑊1(𝕄∇𝝋̃(𝑡)) +𝑊2(𝕄∇𝝋̃(𝑡))) ≤

(1 + 𝜂)(𝑊1(𝕄∇𝝋̃(𝑡)) +𝑊2(𝕄∇𝝋̃(𝑡)))we have found a convergent majorant, which allows us to apply the dominated con-
vergence theorem and to pass to the limit on the right-hand side of (59a) by continuity. In turn, the limit passage on the
left-hand side of (59a) is done by weak lower semicontinuity using (62d). Observe that (62d) only holds on (0, 𝑇)∖N with
3(N) = 0. We can define 𝑦(𝑡) for 𝑡 ∈ N by choosing 𝑦(𝑡) ∈ 𝐘 such that 𝝋(𝑡) = 𝒈(𝑡, 𝑦(𝑡)) ∈ argmin𝝋̃∈𝐔(𝑡)(𝑡, 𝝋̃, 𝑠(𝑡)). More-
over, it has to be noted that, due to polyconvexity, i.e., the lack of (strict) convexity the uniqueness of minimizers is not
guaranteed, so that the definition of 𝑦(𝑡) is not unique. This proves (63a).
Proof of the evolution equation (63b) for 𝛼 = 0: Let now 𝛼 = 0 and we want to show (63b). In view of convergences

(62), we may apply weak-strong convergence arguments to pass to the limit in (59b) as an equality, i.e., we find for a.e.
𝑡 ∈ (0, 𝑇), for every 𝑠 ∈ 𝐗0

∫
0

((
𝛽′(𝑠(𝑡))𝑊1(𝕄∇𝝋(𝑡))(𝑡) −

𝑐
𝑙𝑐
(1 − 𝑠(𝑡)) + 𝑀−1𝑠̇)𝑠 + 𝑐𝑙𝑐∇𝑠(𝑡) ∶ ∇𝑠

))
d𝑋 = 0. (72)

More precisely, to obtain the first term we apply convergence result (62f) for 𝑧𝑁 = 𝑠𝑁(𝑡), which matches with the precon-
ditions on the sequences (𝑧𝑁)𝑁 set in (62f), thanks to 0 ≤ 𝑠𝑁(𝑡) ≤ 1 a.e. in 0 by Prop. 3.9, Item (2), the bound (61d), and
convergence (62c).
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Proof of the evolutionary variational inequality (63c) for 𝛼 > 0: Let now 𝛼 > 0. To show the validity of (63c) we
observe that 𝛼𝑁(𝑠̇𝓁𝑁)+𝑠 ≤ 0 for every 𝑠 ∈ 𝐗0 with 𝑠 ≤ 0 a.e. in 0. Hence, when moving this term to the other side of the
equation, we find that (59b) can be reformulated as an inequality, i.e., for all 𝑠 ∈ 𝐗0 with 𝑠 ≤ 0 a.e. in 0:

0 ≤ ∫
0

((
𝛽′(𝑠𝑁(𝑡))𝑊1(𝕄∇𝝋𝑁(𝑡))) −

𝑐
𝑙𝑐
(1 − 𝑠𝑁) +𝑀

−1𝑠̇𝓁𝑁)𝑠 + 𝑐𝑙𝑐∇𝑠𝑁(𝑡) ∶ ∇𝑠
))

d𝑋. (73)

We can then pass to the limit on the right-hand side of (73) using convergences (62) and weak-strong convergence argu-
ments and by arguing for the first term as in the case 𝛼 = 0.
Proof of nonpositivity (63d) if 𝛼 > 0: From the third bound in (61a), we gather that

𝑇

∫
0

∫
0
(𝑠̇𝓁𝑁)+ d𝑋 d𝑡 ≤ 𝐶

𝛼𝑁
→ 0 as 𝑁 → ∞.

By weak lower semicontinuity and convergence (62a) we conclude that

0 = lim inf
𝑁→∞

𝑇

∫
0

∫
0
(𝑠̇𝓁𝑁)+ d𝑋 d𝑡 ≥

𝑇

∫
0

∫
0
(𝑠̇)+ d𝑋 d𝑡,

which implies that 𝑠̇ ≤ 0 a.e. in (0, 𝑇), a.e. in 0.
Proof of the energy-dissipation estimate (63f): Thanks to convergences (62) we can pass to the limit on the left-

hand side of the dicrete energy-dissipation estimate (60) by lower semicontinuity arguments, also using in the case 𝛼 > 0
that 𝛼𝑁(𝑠̇𝓁𝑁(𝑡)) ≥ 0(𝑠̇𝓁𝑁(𝑡)) and 𝛼(𝑠̇(𝑡)) = 0(𝑠̇(𝑡)) since 𝑠̇(𝑡) ≤ 0 for a.e. 𝑡 ∈ (0, 𝑇) by (63d). On the right-hand side, the
energy at initial time is constant wrt. 𝑁 ∈ ℕ and we only have to take care about the limit passage in the powers of the
external loadings. For this, we want to show that

lim sup
𝑁→∞

𝑡

∫
0

𝜕𝜏(𝜏, 𝝋
𝑁
(𝜏), 𝑠

𝑁
(𝜏)) d𝜏 ≤

𝑡

∫
0

(𝜏, 𝑠(𝜏)) d𝜏, (74)

where(𝜏, 𝑠(𝜏)) ∶= sup{𝜕𝜏(𝜏, 𝝋̂, 𝑠(𝜏)), 𝝋̂ ∈ argmin(𝜏, ⋅, 𝑠(𝜏))} is introduced as a surrogate for the partial time derivative
from (52). We can conclude (74) if we first show that

𝝋(𝜏) is a minimizer of (𝜏, ⋅, 𝑠(𝜏)) (75)

and secondly verify that
𝑡

∫
0

𝜕𝜏(𝜏, 𝝋
𝑁
(𝜏), 𝑠

𝑁
(𝜏)) d𝜏 →

𝑡

∫
0

𝜕𝜏(𝜏, 𝝋(𝜏), 𝑠(𝜏)) d𝜏. (76)

Clearly, these two properties imply (74) due to the definition of  . In addition, by the power control estimate (53), we see
that ∫ 𝑡

0
(𝜏, 𝑠(𝜏)) d𝜏 is well-defined and finite.

We now prove statement (75). For this, we introduce a further interpolant, i.e.

𝑠
𝑁
(𝑡) ∶= 𝑠𝑘−1𝑁 for all 𝑡 ∈ [𝑡𝑘𝑁, 𝑡

𝑘+1
𝑁 ) for 𝑘 ∈ {1, … ,𝑁}, 𝑠

𝑁
(𝑡) ∶= 𝑠0𝑁 for all 𝑡 ∈ [𝑡0𝑁, 𝑡

1
𝑁), (77)

which thus satisfies 𝑠
𝑁
(𝑡) = 𝑠

𝑁
(𝑡 − 𝜏𝑁) = 𝑠𝑁(𝑡 − 2𝜏𝑁) for 𝑡 ∈ [𝑡𝑘𝑁, 𝑡

𝑘+1
𝑁 ) and all 𝑘 ∈ {1, … ,𝑁}. With similar arguments as

for the proof of convergences (62b) & (62c) we find that

𝑠
𝑁
(𝑡)

∗
⇀ 𝑠(𝑡) in 𝐿∞(0, 𝑇; 𝐗). (78)
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Using the interpolant 𝑠
𝑁
, we can rewrite minimizality condition (65) for all 𝝋̃ ∈ 𝐔(𝑡

𝑁
(𝑡)) as

(𝑡
𝑁
(𝑡), 𝝋

𝑁
(𝑡), 𝑠

𝑁
(𝑡)) ≤ (𝑡

𝑁
(𝑡), 𝝋̃, 𝑠

𝑁
(𝑡)). (79)

Using convergences (62e) & (78) and by repeating the arguments of the proof of minimality condition (63a) we conclude
(75).
We now turn to the proof of the convergence of the powers of the energy (74). For this, we will adapt the arguments of

[51, Sec. 3] and [61, Prop. 3.3] to the present, rate-dependent situation. More precisely, for  ∶ [0, 𝑇] × 𝐔 × 𝐙,(𝑡, 𝝋, 𝑠) ∶=
∫0 𝑊(∇𝝋, 𝑠) d𝑋 − ∫

𝜕N0 𝒉 ⋅ 𝝋 d𝑋 we will show in Lemma 3.13 below that

1. It holds (𝑡, 𝝋𝑚, 𝑠𝑚) → (𝑡, 𝝋, 𝑠) for each sequence 𝑠𝑚 ⇀ 𝑠 in 𝐗 and 𝝋𝑚 ⇀ 𝝋 in𝐔 with 𝝋𝑚 ∈ argmin{(𝑡𝑚, 𝝋̃, 𝑠𝑚), 𝝋̃ ∈
𝐔}.

2. For every pair (𝑦, 𝑠) ∈ 𝐘 × 𝐙 such that (0, 𝒈(0, 𝑦), 𝑠) < 𝐸 the partial time-derivative 𝜕𝑡(⋅, 𝒈(⋅, 𝑦), 𝑠) = 𝜕𝑡(⋅, 𝒈(⋅, 𝑦), 𝑠)
is uniformly continuous.

The lower semicontinuity of (𝑡, ⋅, ⋅) in 𝐔(𝑡) × 𝐙 together with the above Items 1& 2 will allow us to apply [61,
Prop. 3.3], which then implies that 𝜕𝑡(𝑡, 𝝋𝑚, 𝑠𝑚) → 𝜕𝑡(𝑡, 𝝋, 𝑠). In other words, this result allows us to conclude that
𝜕𝜏(𝜏, 𝝋

𝑁
(𝜏), 𝑠

𝑁
(𝜏)) → 𝜕𝜏(𝜏, 𝝋(𝜏), 𝑠(𝜏)) pointwise for a.e. 𝜏 ∈ (0, 𝑇). Using again the power control (53) providing an inte-

grable majorant, the dominated convergence theorem yields statement (76). Hence the upper energy-dissipation estimate
(63f) is proven, so that the proof of Thm. 3.11 is concluded. □
We now provide the following result, which was used for the proof of the upper energy dissipation estimate (63f):

Lemma 3.13 (Convergence of the energies and powers). Let the assumptions of Thm. 3.11 be satisfied and denote  ∶
[0, 𝑇] × 𝐔 × 𝐙,(𝑡, 𝝋, 𝑠) ∶= ∫0 𝑊(∇𝝋, 𝑠) d𝑋 − ∫

𝜕N0 𝒉 ⋅ 𝝋 d𝑋. Then, the following statements hold true:

1. It holds (𝑡, 𝝋𝑚, 𝑠𝑚) → (𝑡, 𝝋, 𝑠) for every sequence 𝑠𝑚 ⇀ 𝑠 in 𝐗 with ‖𝑠𝑚‖𝐿∞(0) ≤ 1 for all𝑚 ∈ ℕ, and 𝝋𝑚 ⇀ 𝝋 in𝐔(𝑡)
such that 𝝋𝑚 ∈ argmin{(𝑡𝑚, 𝝋̃, 𝑠𝑚), 𝝋̃ ∈ 𝐔(𝑡)}.

2. For every pair (𝑦, 𝑠) ∈ 𝐘 × 𝐙 such that (0, 𝒈(0, 𝑦), 𝑠) < 𝐸 the partial time-derivative 𝜕𝑡(⋅, 𝒈(⋅, 𝑦), 𝑠) = 𝜕𝑡(⋅, 𝒈(⋅, 𝑦), 𝑠) is
uniformly continuous, i.e., for each 𝐸, 𝜀 > 0 there is 𝛿 > 0 such that for all (𝑦, 𝑠) with (0, 𝒈(0, 𝑦), 𝑠) < 𝐸 it is

|𝜕𝑡(𝑡, 𝒈(𝑡, 𝑦), 𝑠) − 𝜕𝑡(𝜏, 𝒈(𝜏, 𝑦), 𝑠)| < 𝜀 if |𝑡 − 𝜏| < 𝛿. (80)

Proof. We start with the proof Item 1. Consider a sequence 𝑠𝑚 ⇀ 𝑠 in 𝐗 with ‖𝑠𝑚‖𝐿∞(0) ≤ 1 and 𝑦 ∈ 𝐗 such that
(0, 𝒈(0, 𝑦), 𝑠1) < 𝐸. Then we find that (𝑡, 𝒈(𝑡, 𝑦), 𝑠𝑚) → (𝑡, 𝒈(𝑡, 𝑦), 𝑠). Note that the convergence of the Neumann
boundary terms is due to the assumptions (43) and (44).Moreover, the convergence of the bulk term follows from the dom-
inated convergence theorem, since𝑊(𝑡, 𝒈(𝑡, 𝑦), 𝑠𝑚) → 𝑊(𝑡, 𝒈(𝑡, 𝑦), 𝑠) in measure thanks to convergence (62c) and since
𝑊(𝑡, 𝒈(𝑡, 𝑦), 1) provides an integrablemajorant.Moreover, 𝝋𝑚minimizes (𝑡𝑚, ⋅, 𝑠𝑚). Hence, by assumptions (43) and (44)
there is a constant 𝐸 such that (𝑡, 𝝋𝑚, 𝑠𝑚) < 𝐸 for all 𝑡 ∈ [0, 𝑇] and, by lower semicontinuity of ∫0 (𝑊1(⋅) +𝑊2(⋅)) d𝑋
also (𝑡, 𝝋, 𝑠𝑚) < 𝐸 for all 𝑡 ∈ [0, 𝑇] and𝑚 ∈ ℕ. Thus (54) holds and we infer

(𝑡, 𝝋𝑚, 𝑠𝑚) − 𝑐𝐸|𝑡𝑚 − 𝑡| ≤ (𝑡𝑚, 𝝋𝑚, 𝑠𝑚) ≤ (𝑡𝑚, 𝝋, 𝑠𝑚) ≤ (𝑡, 𝝋, 𝑠𝑚) + 𝑐𝐸|𝑡𝑚 − 𝑡|→ (𝑡, 𝝋, 𝑠) ;
here the first and the third inequality follow from (54) and the second inequality is due to the minimality property of 𝝋𝑚
for (𝑡𝑚, ⋅, 𝑠𝑚). We conclude (𝑡𝑚, 𝝋𝑚, 𝑠𝑚) → (𝑡, 𝝋, 𝑠) exploiting the weak sequential lower semicontinuity

(𝑡, 𝝋, 𝑠) ≤ lim inf
𝑚→∞

((𝑡, 𝝋𝑚, 𝑠𝑚) − 𝑐𝐸|𝑡𝑚 − 𝑡|) ≤ lim inf𝑚→∞
(𝑡𝑚, 𝝋𝑚, 𝑠𝑚)

≤ lim sup
𝑚→∞

(𝑡𝑚, 𝝋𝑚, 𝑠𝑚) ≤ lim sup
𝑚→∞

(𝑡, 𝝋, 𝑠𝑚)
≤ lim sup

𝑚→∞
((𝑡, 𝝋, 𝑠𝑚) + 𝑐𝐸|𝑡𝑚 − 𝑡|) = (𝑡, 𝝋, 𝑠).

Hence Item 1 of the Lemma is verified.
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We now prove Item 2. Consider (𝑦, 𝑠) such that (0, 𝒈(0, 𝑦), 𝑠) < 𝐸. Due to (43) and (44) we find for every 𝜀>0 a 𝛿̃>0
such that for all 𝜏, 𝑡∈[0, 𝑇] with |𝜏 − 𝑡|<𝛿̃ we have ‖𝑔(𝜏, 𝑦) − 𝑔(𝑡, 𝑦)‖𝐶1(0,ℝ3) + ‖𝑔̇(𝜏, 𝑦) − 𝑔̇(𝑡, 𝑦)‖𝐶1(0,ℝ3) < 𝜀. Choose
now 𝜀, 𝐸>0. By estimate (64) we obtain for 𝑡 = 0:

‖𝑦‖𝑊1,𝑝(0,ℝ3) ≤ ((0, 𝒈(0, 𝑦), 𝑠) + 𝐶3
𝑐3

) 1

𝑝 ≤
(
𝐸 + 𝐶3
𝑐3

) 1

𝑝

=∶ 𝐵̃.

Thanks to the growth control (43c) for 𝒈 his shows that 𝒈(𝑡, 𝑦) for (𝑦, 𝑠)with bounded energy at initial time are uniformly
bounded for every 𝑡 ∈ [0, 𝑇].
Furthermore we estimate

|𝜕𝑡(𝑡, 𝒈(𝑡, 𝑦), 𝑠) − 𝜕𝑡(𝜏, 𝒈(𝜏, 𝑦), 𝑠)| ≤ ||||||| ∫0 𝜕𝐹𝑊(∇𝒈(𝑡, 𝑦), 𝑠)(∇𝒈(𝑡, 𝑦))
⊤ ∶ ∇(𝒈̇(𝑡, 𝑦) − 𝒈̇(𝜏, 𝑦)) d𝑋

||||||| (81)

+

||||||| ∫0 (𝜕𝐹𝑊(∇𝒈(𝑡, 𝑦), 𝑠)(∇𝒈(𝑡, 𝑦))
⊤ − 𝜕𝐹𝑊(∇𝒈(𝜏, 𝑦), 𝑠))(∇𝒈(𝜏, 𝑦))

⊤ ∶ ∇𝒈̇(𝜏, 𝑦) d𝑋

||||||| (82)

+

|||||||| ∫
𝜕N0

(𝒉̇(𝑡) − 𝒉̇(𝜏)) ⋅ 𝒈(𝑡, 𝑦) d𝑋

|||||||| +
|||||||| ∫
𝜕N0

𝒉̇(𝜏) ⋅ (𝒈(𝑡, 𝑦) − 𝒈(𝜏, 𝑦)) d𝑋

|||||||| (83)

+

|||||||| ∫
𝜕N0

(𝒉(𝑡) − 𝒉(𝜏)) ⋅ 𝒈̇(𝑡, 𝑦) d𝑋

|||||||| +
|||||||| ∫
𝜕N0

𝒉(𝜏) ⋅ (𝒈̇(𝑡, 𝑦) − 𝒈̇(𝜏, 𝑦)) d𝑋

||||||||, (84)

where, thanks to assumptions (43) & (44), each of the terms in (83) & (84) can be estimated from above by 𝜀∕8 for |𝑡 − 𝜏| <
𝛿̃0 sufficiently small.
In view of coercivity (36d), stress control (36e) and Lipschitz estimate (54) we see that

(81) ≤ ‖𝜕𝐹𝑊(∇𝒈(𝑡, 𝑦), 𝑠)(∇𝒈(𝑡, 𝑦))⊤‖𝐿1(0)‖∇(𝒈̇(𝑡, 𝑦) − 𝒈̇(𝜏, 𝑦))‖𝐿∞(0,ℝ3×3)
≤ ((0, 𝒈(0, 𝑦), 𝑠) + 𝐶3(0) + 𝑐𝐸𝑇 + 𝑐𝑙𝐵)‖∇(𝒈̇(𝑡, 𝑦) − 𝒈̇(𝜏, 𝑦))‖𝐿∞(0,ℝ3×3) < 𝜀4 ,

if |𝑡−𝜏|<𝛿̃1 is sufficiently small. In view of the continuity of the stresses (36f) and the Gronwall estimate we find

(82) ≤ 𝑐𝑔𝜔(‖∇(𝒈̇(𝑡, 𝑦) − 𝒈̇(𝜏, 𝑦))‖𝐿∞)(‖𝑊(∇𝒈(𝑡, 𝑦), 𝑠)‖𝐿1(1 + exp(2𝑐𝑐𝑔))+𝐶) < 𝜀4
for |𝜏 − 𝑡| < 𝛿̃2 sufficiently small, where we used 𝐶 ∶= (1+exp(2𝑐𝑐𝑔)𝑐𝑐𝑔)𝑐𝑑(Ω). Hence we obtain (82)< 𝜀4 if |𝑠−𝑡|<𝛿̃2.
Alltogether we conclude that |𝜕𝑡(𝑠, 𝑞)−𝜕𝑡(𝑡, 𝑞)|<𝜀 if |𝑠−𝑡| < 𝛿 ∶= min{𝛿̃0, 𝛿̃1, 𝛿̃2}. □

3.4 Examples of energy densities satisfying assumptions (36)

In this section we discuss well-known constitutive laws in nonlinear elasticity with regard to their admissibility for
assumptions (36), which are at the core of our existence result. The related proofs of the main statements can be
found in the Appendix. Note that assumptions (36) are formulated for an energy density 𝑊 in dependence of a matrix
𝑭 = ∇𝝋 ∈ ℝ3×3 and its minors. However, by making use of the assumption of material frame indifference and isotropy,
many constitutive laws used in engineering are equivalently formulated with respect to invariants of the right Cauchy-
Green strain tensor 𝑪 ∶= 𝑭⊤𝑭 or with respect to the modified invariants introduced in Section 2, as it will also be the case
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in the numerical examples shown in Section 4. Then it is not obvious that constitutive laws given in this way also match
with the assumptions (36) of our existence theorem. This is why we will now take a closer look at densities given as func-
tions of the invariants 𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪) and at densities given as functions of themodified invariants𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪). In
the subsequent discussion we will neglect the dependence of the densities on the phase-field parameter; in other words,
the densities studied here play the role of𝑊1 and𝑊2 in (36a). For our further investigations we recall the notation

𝜄1(𝑪) ∶= tr 𝑪, 𝜄2(𝑪) ∶= tr cof 𝑪, 𝜄3(𝑪) ∶= det 𝑪, for 𝑪 ∶= 𝑭⊤𝑭, (85a)

𝑈(𝑪) = 𝜄
−1∕3
3 (𝑪)𝜄1(𝑪), 𝑉(𝑪) = 𝜄

−2∕3
3 (𝑪)𝜄2(𝑪). (85b)

Here, the expressions 𝜄𝑖 in (85a) are the invariants of the right Cauchy-Green strain tensor 𝑪 ∶= 𝑭⊤𝑭 and 𝑈,𝑉 in (85b)
denote the modified invariants of 𝑪. Using the relations

|𝑭|2 = 𝜄1(𝑭⊤𝑭), 𝜄2(𝑪) = tr (cof (𝑭⊤𝑭)) = | cof 𝑭|2, and det(𝑭⊤𝑭) = (det 𝑭)2 (85c)

the modified invariants 𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭) can also be reformulated directly in terms of 𝑭, i.e.,

𝑈(𝑭) = 𝜄
−2∕3
3 (𝑭)|𝑭|2 = 𝑈(𝑪), 𝑉(𝑭) = 𝜄−4∕33 (𝑭)| cof 𝑭|2 = 𝑉(𝑪). (85d)

As in Section 2 we may also set 𝑭 ∶= (det 𝑭)−1∕3𝑭 and𝑯 ∶= (det 𝑭)−2∕3 cof 𝑭 and find that

|𝑭|2 = 𝑈(𝑭) = 𝑈(𝑪) and |𝑯|2 = 𝑉(𝑭) = 𝑉(𝑪). (85e)

In accordance with (85), we subsequently assume that we are given densities𝑊,𝑊∙,𝑊, and𝑊, which satisfy the rela-
tion

𝑊(𝑭) = 𝑊∙(𝕄𝑭) = 𝑊(𝜄1(𝑭
⊤𝑭), 𝜄2(𝑭

⊤𝑭), 𝜄3(𝑭
⊤𝑭)) = 𝑊(𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭

⊤𝑭)) (86)

for all 𝑭 ∈ ℝ3×3 and𝕄𝑭 = (𝑭, cof 𝑭, det 𝑭). In (86), the density𝑊 ∶ ℝ × ℝ × ℝ → ℝ is a function of the invariants (85a)
of the matrix 𝑭⊤𝑭 and the density 𝑊 ∶ ℝ × ℝ × ℝ → ℝ is a function of the modified invariants (85b). The first Piola-
Kirchhoff stress tensor is determined as

𝑷 =
d𝑊(𝑭)

d𝑭
=
𝜕𝑊(𝜄1, 𝜄2, 𝜄3)

𝜕𝜄1

𝜕𝜄1(𝑭
⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝜄1, 𝜄2, 𝜄3)

𝜕𝜄2

𝜕𝜄2(𝑭
⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝜄1, 𝜄2, 𝜄3)

𝜕𝜄3

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭

=
𝜕𝑊(𝑈,𝑉, 𝜄3)

𝜕𝑈

𝜕𝑈(𝑭⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝑈,𝑉, 𝜄3)

𝜕𝑉

𝜕𝑉(𝑭⊤𝑭)

𝜕𝑭

+
𝜕𝑊(𝑈,𝑉, 𝜄3)

𝜕𝜄3

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭
,

(87)

with the expressions for the derivatives of the invariants gathered in the next lemma. We point out that (89) provides a
stress control for the invariant functions alike (36e), which, in view of (87), will be used lateron to formulate sufficient
conditions for the densities𝑊,𝑊 in order to guarantee the stress control (36e) for 𝑷.

Lemma 3.14 (Derivatives of the invariants). Let the relations (85) hold true. For a matrix 𝑭 ∈ ℝ3×3 with det 𝑭 > 0 it is

𝜕𝜄1(𝑭
⊤𝑭)

𝜕𝑭
= 2𝑭, (88a)

𝜕𝜄2(𝑭
⊤𝑭)

𝜕𝑭
= 2

(
𝜄2(𝑭

⊤𝑭)𝑭−⊤ − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1𝑭−⊤

)
, (88b)

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭
= 2𝜄3(𝑭

⊤𝑭)𝑭−⊤, (88c)
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𝜕𝑈(𝑭⊤𝑭)

𝜕𝑭
= 2𝜄

−1∕3
3 (𝑭⊤𝑭)

(
𝑭 −

1
3
𝜄1(𝑭

⊤𝑭)𝑭−⊤
)
, (88d)

𝜕𝑉(𝑭⊤𝑭)

𝜕𝑭
= 2𝜄

−2∕3
3 (𝑭⊤𝑭)

(
1
3
𝜄2(𝑭

⊤𝑭)𝑭−⊤ − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1𝑭−⊤

)
. (88e)

Moreover, let 𝐴 be a placeholder for the invariant functions 𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉 ∶ GL+(3) → ℝ. The invariant function 𝐴 satisfies
the following stress control estimate:

|||𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤||| ≤ 𝑐𝐴𝐴(𝑭⊤𝑭). (89)

The proof consists of a straight forward but lengthy application of the product and chain rule and we carry it out in
detail in A.1. There we also give the proof of the next lemma, which provides continuity estimates for the invariants and
their stresses in terms of moduli of continuity multiplied by the invariant, as required in the assumption (36f). Lateron,
they will be used to deduce similar continuity estimates for the first Piola-Kirchhoff stress.

Lemma3.15 (Continuity properties of the invariants). Let𝐴 be a placeholder for the invariant functions 𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉 ∶
GL+(3) → ℝ from (85a)& (85b). The invariant function𝐴 and its derivative 𝜕𝑭𝐴 ∶ GL

3
+ → GL3+ is continous.Moreover, there

exists a modulus of continuity 𝑜 ∶ [0,∞] → [0,∞], 𝛿 > 0, so that for all 𝑭 ∈ ℝ3×3 and all 𝐶 ∈ GL+(3) with |𝐶 − 𝟏𝟏| ≤ 𝛿 we
have

|𝐴((𝐶𝑭)⊤(𝐶𝑭)) − 𝐴(𝑭⊤𝑭)| ≤ 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭), (90a)

|𝜕𝑭𝐴((𝐶𝑭)⊤(𝐶𝑭))(𝐶𝑭)⊤ − 𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤| ≤ 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭), (90b)

again with 𝐴 ∈ {𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉}.

3.4.1 Discussion of well-known constitutive laws

In the following we investigate some material laws, which are widely used in nonlinear elasticity for their admissibility
with respect to assumptions (36). More precisely, we will take a closer look at the following isochoric energy densities:

Neo-Hooke [72]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶= 𝑐1(𝜄1(𝑪) − 3), (91a)

Mooney-Rivlin [73]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶= 𝑐1(𝜄1(𝑪) − 3) + 𝑐2(𝜄2(𝑪) − 3), (91b)

Arruda-Boyce [74]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶=
𝑚∑
𝑖=1

𝑐𝑖(𝜄1(𝑪)
𝑖 − 3𝑖) with 𝑐𝑖 > 0, (91c)

Rivlin [75]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶=
𝑚∑

𝑖,𝑗,𝑘=0

𝑐𝑖𝑗𝑘(𝜄1(𝑪) − 3)
𝑖(𝜄2(𝑪) − 3)

𝑗 × (𝜄3(𝑪) − 1)
𝑘, (91d)

Rivlin-Saunders [76]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶=
𝑚∑
𝑖,𝑗=0

𝑐𝑖𝑗(𝜄1(𝑪) − 3)
𝑖(𝜄2(𝑪) − 3)

𝑗, (91e)

Yeoh [77]: 𝑊(𝜄1(𝑪), 𝜄2(𝑪), 𝜄3(𝑪)) ∶=
3∑
𝑖=1

𝑐𝑖(𝜄1(𝑪) − 3)
𝑖. (91f)

In [76] it is set 𝑚 = ∞ in (91e). In particular, the Neo-Hooke and Mooney-Rivlin law can be obtained from the Rivlin–
Saunders law, the first by choosing 𝑐10 ≠ 0, but 𝑐𝑖𝑗 = 0 for any other combination of 𝑖 ∈ ℕ0, 𝑗 ∈ ℕ, the second by choosing
𝑐01 ≠ 0, 𝑐10 ≠ 0, but 𝑐𝑖𝑗 = 0 for any other 𝑖, 𝑗 ∈ ℕ. As explained in [76], the Neo-Hooke and Mooney–Rivlin law can be
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used as an approximation of (91e) valid if the deformations are sufficiently small so that higher order (product) terms are
negligibly small. The Arruda–Boyce law originates from a statistical model for rubber taking into account the orientation
of the polymer chains. The strain energy function is derived from the inverse Langevin function, cf. e.g. [78, Chapter 6], in
terms of a Taylor expansion, and therefore the coefficients 𝑐𝑖 > 0 in (91c) take a very specific form involving the parameters
of the polymer. The above material laws (91a), (91b), (91c), and (91f) can also be found in [79, Chapter 6.5].
We now discuss the properties of the constitutive laws (91). We refer to the works [53, 56, 80], where the polyconvexity

of some of (91) and many other constitutive laws, such as, e.g., Ogden’s materials, has been discussed. We here collect
statements on the polyconvexity of the constitutive laws (91):

Proposition 3.16 (Polyconvexity of the laws (91)). Assume that 𝑐𝑖 > 0, 𝑐𝑖𝑗 ≥ 0 in (91). Then the following statements
regarding polyconvexity assumption (36c) hold true:

1. The energy density of the Neo-Hooke material (91a) is polyconvex.
2. The energy density of the Mooney-Rivlin material (91b) is polyconvex.
3. The energy density of the Arruda-Boyce material (91c) is polyconvex.
4. None of the densities (91d), (91e) & (91f) is polyconvex.
5. The volumetric density 𝑭 ∈ ℝ3×3 ↦ 𝜄3(𝑭

⊤𝑭)−𝛾 for 𝛾 > 0 is polyconvex.

In view of (85c) we also have the following immediate results regarding the coercivity of the polyconvex constitutive
laws (91a)–(91c).

Proposition 3.17 (Coercivity of the densities (91)). Let 𝑐𝑖 > 0 in (91). Then, the following statements hold true:

1. The energy density (91a) of the Neo-Hooke material satisfies (36d) b1) with 𝑝 = 2.
2. The energy density (91b) of the Mooney–Rivlin material satisfies (36d) b2) with 𝑝 = 2 and 𝑝2 = 2.
3. The energy density of the Arruda-Boyce material satisfies (36d) a) with 𝑝 = 2𝑚 for𝑚 ≥ 2, and (36d) b1) otherwise.
In view of relations (87)–(90) for the derivatives of the invariant functions we are also in the position to make the

following statement regarding the assumtions on the stress control (36e) and the uniform continuity of the stresses (36f):

Proposition 3.18 (Stress control (36e) and uniform continuity of the stresses (36f)). Let the relations (85)–(87) hold
true.

1. Assume that there is a constant 𝐾 > 0 such that𝑊 ∶ ℝ × ℝ × ℝ → ℝ satisfies for all (𝜄1, 𝜄2, 𝜄3) ∈ ℝ3+ ∶

|𝜕𝜄1𝑊(𝜄1, 𝜄2, 𝜄3)𝜄1| + |𝜕𝜄2𝑊(𝜄1, 𝜄2, 𝜄3)𝜄2| + |𝜕𝜄3𝑊(𝜄1, 𝜄2, 𝜄3)𝜄3| ≤ 𝐾(𝑊(𝜄1, 𝜄2, 𝜄3) + 1). (92)

Then stress control (36e) is true.
2. Assume that there is a modulus of continuity 𝑜 ∶ [0,∞] → [0,∞], 𝛿>0, so that for all (𝑭, 𝑠) ∈ ℝ3×3 × ℝ and all 𝐶 ∈
GL+(3) with |𝐶−𝟏𝟏| ≤ 𝛿 we have

|||||
(
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄1

𝜕𝜄1((𝐶𝑭)
⊤(𝐶𝑭))

𝜕(𝐶𝑭)
+
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄2

𝜕𝜄2((𝐶𝑭)
⊤(𝐶𝑭))

𝜕(𝐶𝑭)
+
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄3

𝜕𝜄3((𝐶𝑭)
⊤(𝐶𝑭))

𝜕(𝐶𝑭)

)
(𝐶𝑭)⊤

−
(
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄1

𝜕𝜄1(𝑭
⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄2

𝜕𝜄2(𝑭
⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝜄1,𝜄2,𝜄3)

𝜕𝜄3

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭

)
𝑭⊤

|||||
≤ 𝑜(|𝐶−𝟏𝟏|)(𝑊(𝜄1, 𝜄2, 𝜄3) + 𝑐) = 𝑜(|𝐶−𝟏𝟏|)(𝑊(𝑭) + 𝑐).

(93)

Then the uniform continuity of the stresses (36f) is true.

Corollary 3.19 (Energy densities matching with Prop. 3.18). The densities (91a)–(91c) satisfy conditions (92) and (93).
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The proof exploits the form of the first Piola-Kirchhoff stress (87) and uses the stress control estimate (92) and the
continuity relation (93) for the invariant functions 𝜄𝑖 , 𝑖 = 1, 2, 3. For more details we point ahead to Appendix C.5, where
the calculations are carried out for𝑊 depending on the modified invariants.
As a result of Proposition 3.16, and Corollaries 3.17 and 3.19 we are in the position to conclude:

Corollary 3.20 (Energy densities satisfying assumptions (36)). The densities (91a)–(91c) satisfy all the assumptions
(36).

3.4.2 Assumptions (36) and the modified invariants

In the following we discuss the Assumptions (36) for a stored energy density that is a function of the modified invariants
introduced in Section 2. Quite often in literature, the density𝑊 is used and assumed to be a function of themodified invari-
ants𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪). In this spirit we will now consider the constitutive laws from (91) as functions of𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪),
i.e.

Neo-Hooke [72]: 𝑊(𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪)) ∶= 𝑐1(𝑈(𝑪) − 3), (94a)

Mooney–Rivlin [73]: 𝑊(𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪)) ∶= 𝑐1(𝑈(𝑪) − 3) + 𝑐2(𝑉(𝑪) − 3), (94b)

Arruda–Boyce [74]: 𝑊(𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪)) ∶=
𝑚∑
𝑖=1

𝑐𝑖(𝑈(𝑪)
𝑖 − 3𝑖) with 𝑐𝑖 > 0, (94c)

Yeoh [77]: 𝑊(𝑈(𝑪), 𝑉(𝑪), 𝜄3(𝑪)) ∶=
3∑
𝑖=1

𝑐𝑖(𝑈(𝑪) − 3)
𝑖, (94d)

and we will investigate how the above isochoric material laws match with assumptions (36).
In [55] the properties of the modified Neo-Hooke and Mooney–Rivlin material (94a) and (94b) have been analyzed. In

particular, it is shown that the term 𝑉(𝑭⊤𝑭) = | det 𝑭|−4∕3| cof 𝑭|2 is not polyconvex itself, so that the modified Mooney–
Rivlinmaterial (94b) cannot be polyconvex either. Moreover, in [55] optimal coercivity properties are derived for functions
of modified invariants, which guarantee the validity of Ball’s existence result [53, Thm. 6.2], see also the discussion in
Remark 3.6.
We now discuss the properties of the constitutive laws (94). Firstly, we refer to the works [56, 57], which investigate

the polyconvexity properties of the modified Arruda-Boyce model (94c) and of a modified Rivlin–Saunders-type model.
Amongst others, they also give the following polyconvexity result:

Lemma 3.21 [57, Cor. 2.3 & Table 3]. Let 𝑭 ∈ ℝ3×3. Then the following terms are polyconvex:

𝑭 ∈ ℝ3×3 ↦
(
𝑈(𝑭⊤𝑭)𝑖 − 3𝑖

)𝑘
, for 𝑖 ≥ 1, 𝑘 ≥ 1, (95a)

𝑭 ∈ ℝ3×3 ↦
(
𝑉(𝑭⊤𝑭)3𝑖∕2 − 33𝑖∕2

)𝑘
, for 𝑖 ≥ 1, 𝑘 ≥ 1, (95b)

𝑭 ∈ ℝ3×3 ↦
(
𝜄3(𝑭

⊤𝑭)1∕2 − 1
)𝑘
, for 𝑘 > 1. (95c)

In addition, we now gather the following statement on the polyconvexity of further energy terms depending onmodified
invariants:

Proposition 3.22 (Polyconvexity).

1. The function 𝑓 ∶ ℝ3×3 × ℝ+ → ℝ, 𝑓(𝐴, 𝜄) ∶= |𝐴|𝛼
𝜄𝛽

is polyconvex if 𝛽 > 0 and 𝛼 ≥ 𝛽 + 1.
2. The function𝑈 ∶ ℝ3×3 → ℝ,𝑈(𝑭) = 𝑈(𝑭⊤𝑭) = 𝜄3(𝑭⊤𝑭)−1∕3𝜄1(𝑭⊤𝑭) is polyconvex.
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3. The function 𝑉 ∶ ℝ3×3 → ℝ,𝑉(𝑭) = 𝑉(𝑭⊤𝑭) = 𝜄3(𝑭⊤𝑭)−2∕3𝜄2(𝑭⊤𝑭) is not polyconvex.
4. The energy density of the modified Arruda–Boyce material (94c) is polyconvex.
5. The energy density𝑊2 is polyconvex, where

𝑊2(𝑉(𝑭
⊤𝑭)) ∶=

𝑚∑
𝑖=2

𝑐𝑖(𝑉(𝑭
⊤𝑭)𝑖 − 3𝑖). (96a)

6. The energy density𝑊3 is polyconvex, where

𝑊3(𝜄3(𝑭
⊤𝑭)) ∶=

𝑚∑
𝑖=1

𝑐𝑖(𝜄3(𝑭
⊤𝑭)𝑖 − 1). (96b)

7. The energy density of the modified Yeoh material (94d) is polyconvex.

Remark 3.23. The results in [55, Lemma 2.2] show for the specific cases of interest

𝑈(𝑭)𝑞∕2 =
|𝑭|𝑞

(det 𝑭)𝑞∕3
, i.e., 𝛼 = 𝑞, 𝛽 = 𝑞∕3, (97a)

𝑉(𝑭)𝑞∕2 =
| cof 𝑭|𝑞
(det 𝑭)𝑞∕3

, i.e., 𝛼 = 𝑞, 𝛽 = 2𝑞∕3, (97b)

that the condition 𝛼 ≥ 𝛽 + 1 is not only sufficient but even necessary for polyconvexity. More precisely, they show that
𝑞 ≥ 3∕2 in (97a) and 𝑞 ≥ 3 in (97b) are necessary conditions.
Coercivity condition (36d) is formulated for the density𝑊 as a function of 𝑭. We now transfer (36d) into an analogous

condition for𝑊 as a function of 𝑈,𝑉, 𝜄3, resp. 𝑭,𝑯, det 𝑭, cf. (85).

Proposition 3.24 (Coercivity (36d) for the modified invariants). Assume that there are constants 𝑝, 𝑝2, 𝑝3,
𝑞, 𝑞2, 𝑞3, 𝑐1, 𝑐2, 𝑐3, 𝐶̃, such that

𝑞 > 𝑝 ≥ 2, 𝑞2 > 𝑝2 ≥ 𝑝

𝑝−1
and

either 𝑞3 ≥ max {𝑝3, 𝑝𝑞

3(𝑞−𝑝)
,
2𝑝2𝑞2

3(𝑞2−𝑝2)

}
> 1 if𝑊(𝑭) = 𝑊(|𝑭|, |𝑯|, det 𝑭),

or 𝑞3 ≥ max {𝑝3, 𝑝𝑞

3(𝑞−𝑝)

}
> 1 if𝑊(𝑭) = 𝑊(|𝑭|, det 𝑭), and such that

(98a)

𝑊(𝑭) = 𝑊(𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭
⊤𝑭)) = 𝑊(|𝑭|2, |𝑯|2, (det 𝑭)2)

≥ 𝑐1|𝑭|𝑞 + 𝑐2|𝑯|𝑞2 + 𝑐3| det 𝑭|𝑞3 + 𝐶̃
= 𝑐1|𝑈(𝑭⊤𝑭)|𝑞∕2 + 𝑐2|𝑉(𝑭⊤𝑭)|𝑞2∕2 + 𝑐3|𝜄3(𝑭⊤𝑭)|𝑞3∕2 + 𝐶̃.

(98b)

Then (36d) is satisfied with some constants 𝑐1, 𝑐2, 𝑐3, 𝐶, given that 𝑝, 𝑝2, 𝑝3, 𝑐1, 𝑐2, 𝑐3 match with one of the cases a), b), c) of
(36d).

Remark 3.25. If the modified invariants are used, the density𝑊 depends on 𝑈(𝑭⊤𝑭), hence at least on 𝑭 and on det 𝑭.
Therefore, the sub-cases (36d) b1) & b2) are irrelevant and the coercivity estimate has to feature the term | det 𝑭|𝑞3 with
a suitable power 𝑞3 satisfying (98a). An analogous observation holds true if the energy density also depends on 𝑉(𝑭⊤𝑭).
We further observe that, even if enriched by an additional summand involving the determinant, neither the modified

Neo-Hookematerial (94a) nor themodifiedMooney–Rivlinmaterial (94b) complieswith themodified coercivity condition
(98), since in both cases 𝑞 = 2, which does not allow for 𝑞 > 𝑝 ≥ 2. Yet, according to (98a), it is possible to find 𝑝 > 3∕2 for
𝑞3 large enough. Then our existence proofmay be carried out on the basis of [53, Thm. 6.1], at the price of the identification
of the distributional minors with the minors as a function, cf. also Remark 3.6.
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It remains to show that some of the energy densities (94)–(96) match with the modified coercivity condition (98). As
pointed out in the above Remark 3.25 the presence of a determinant term is of importance. Therefore, we give in Cor. 3.26
some exemplary combinations terms being functions of themodified invariants, but theymay be also combined differently.

Corollary 3.26 (Energy densities matching with coercivity condition (98)). Consider the densities

𝑊(𝑈, 𝜄3) =
2∑
𝑖=1

𝑐𝑖(𝑈 − 3)
𝑖 + 𝑑(det 𝑭 − 1)2 +

ℎ

𝜄
𝛾
3

, (99a)

𝑊(𝑈,𝑉, 𝜄3) =
3∑
𝑖=1

𝑐𝑖(𝑈 − 3)
𝑖
+ 𝑑(det 𝑭 − 1)2 + 𝑓

(
𝑉3∕2 − 33∕2

)
+
ℎ

𝜄
𝛾
3

, (99b)

𝑊(𝑈,𝑉, 𝜄3) =
𝑚1∑
𝑖=1

𝑐𝑖(𝑈
𝑖 − 3𝑖) +

𝑚2∑
𝑖=2

𝑓𝑖(𝑉
𝑖 − 3𝑖) +

𝑚3∑
𝑖=1

𝑑𝑖(𝜄
𝑖
3 − 1) +

ℎ

𝜄
𝛾
3

, (99c)

𝑊(𝑈,𝑉, 𝜄3) = 𝑐1(𝑈
𝛼1 − 3𝛼1)𝑟1 + 𝑐2(𝑉

3𝛼2∕2 − 33𝛼2∕2)𝑟2 + 𝑐3(𝜄
𝛼3
3 − 1)

𝑟3 +
ℎ

𝜄
𝛾
3

(99d)

with 𝑈 = 𝑈(𝑭⊤𝑭),𝑉 = 𝑉(𝑭⊤𝑭), and 𝜄3 = 𝜄3(𝑭⊤𝑭). Assume that all the coefficients are positive, i.e., 𝑑, 𝑓 > 0, ℎ ≥ 0 and
𝑐𝑖, 𝑑𝑖, 𝑓𝑖 > 0 for any 𝑖 ∈ ℕ and that the exponents satisfy 𝛾, 𝛼𝑖, 𝑟𝑖 ≥ 1, 𝑟𝑖 ∈ ℕ.
1. The density (99a) satisfies (98) with the exponents 𝑞 = 4 and 𝑞3 = 2. Moreover, (36d) b) is satisfied with the exponents
𝑝 = 12∕5 and 𝑝3 = 2.

2. The density (99b) satisfies (98) with the exponents 𝑞 = 6, 𝑞2 = 3, and 𝑞3 = 2. Indeed, (36d) b) holds true with the exponents
𝑝 = 3, 𝑝2 =

3

2
=

𝑝

𝑝−1
, and 𝑝3 = 2.

3. The density (99c) satisfies (98)with the exponents 𝑞 = 2𝑚1, 𝑞2 = 2𝑚2, and 𝑞3 = 2𝑚3.Moreover, (36d)a)holds truewith an
exponent 𝑝 = 6𝑚1𝑚3

𝑚1+3𝑚3
> 3 if𝑚1 ≥ 2 and𝑚3 > 𝑚1

2𝑚1−3
. Otherwise, (36d) b) holds true if 2 ≤ 𝑚1,𝑚3 ∈ ℕ and 2 ≤ 𝑚2 ∈ ℕ

with the exponents 𝑝 = 6𝑚1𝑚3

𝑚1+3𝑚3
≥ 2, 𝑝2 = 6𝑚2𝑚3

2𝑚2+3𝑚3
≥ 𝑝

𝑝−1
, and 𝑝3 = 2𝑚3.

4. The density (99d) satisfies (98) with the exponents 𝑞 = 2𝛼1𝑟1, 𝑞2 = 2𝛼2𝑟2, and 𝑞3 = 2𝛼3𝑟3. Moreover, with 𝑚𝑖 = 𝛼𝑖𝑟𝑖
for 𝑖 = 1, 2, 3, the exponents 𝑝, 𝑝2, 𝑝3 are determined by statement 3., and (36d) holds true under the constraints on 𝑚𝑖
from 3.

Relations (87)–(90) for the derivatives of the invariant functions allow us to give the following statement regarding the
assumtions on the stress control (36e) and the uniform continuity of the stresses (36f):

Proposition 3.27 (Stress control (36e) and uniform continuity of the stresses (36f)). Let the relations (85)–(87) hold
true.

1. Assume that there is a constant 𝐾 > 0 such that𝑊 ∶ ℝ × ℝ × ℝ → ℝ satisfies for all (𝑈, 𝑉, 𝜄3) ∈ ℝ3+ ∶

|𝜕𝑈𝑊(𝑈,𝑉, 𝜄3)𝑈| + |𝜕𝑉𝑊(𝑈,𝑉, 𝜄3)𝑉| + |𝜕𝜄3𝑊(𝑈,𝑉, 𝜄3)𝜄3| ≤ 𝐾(𝑊(𝑈,𝑉, 𝜄3) + 1). (100)

Then stress control (36e) is true. The assertion remains true if 𝜄3(𝑭⊤𝑭) is replaced by det 𝑭 in (100).
2. Assume that there is a modulus of continuity 𝑜 ∶ [0,∞] → [0,∞], 𝛿>0, so that for all (𝑭, 𝑠) ∈ ℝ3×3 × ℝ and all
𝐶 ∈ GL+(3) with |𝐶−𝟏𝟏| ≤ 𝛿 we have

|||
(
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝑈

𝜕𝑈((𝐶𝑭)⊤(𝐶𝑭))

𝜕(𝐶𝑭)
+
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝑉

𝜕𝑉((𝐶𝑭)⊤(𝐶𝑭))

𝜕(𝐶𝑭)
+
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝜄3

𝜕𝜄3((𝐶𝑭)
⊤(𝐶𝑭))

𝜕(𝐶𝑭)

)
(𝐶𝑭)⊤

−

(
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝑈

𝜕𝑈(𝑭⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝑉

𝜕𝑉(𝑭⊤𝑭)

𝜕𝑭
+
𝜕𝑊(𝑈,𝑉,𝜄3)

𝜕𝜄3

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭

)
𝑭⊤

|||
≤ 𝑜(|𝐶−𝟏𝟏|)(𝑊(𝑈,𝑉, 𝜄3) + 𝑐) = 𝑜(|𝐶−𝟏𝟏|)(𝑊(𝑭) + 𝑐).

(101)

Then the uniform continuity of the stresses (36f) is true.



34 of 51 THOMAS et al.

Corollary 3.28 (Energy densitiesmatchingwith Prop. 3.27). The densities (99) introduced in Cor. 3.26 satisfy conditions
(100) and (101).

Merging the results from Lemma 3.21, Proposition 3.22, and Corollaries 3.26 and 3.28 allows us to conclude:

Corollary 3.29 (Energy densities satisfying assumptions (36)). The densities (99a) & (99c) introduced in Cor. 3.26
satisfy all the assumptions (36).

Remark 3.30 (Assumptions (36) and the anisotropic split (16), resp. (24)). As explained in Section 2.2 we may apply the
anisotropic split (16) to the modified invariants in order to account for the anisotropy of damage. This neither affects
the polyconvexity nor the coercivity properties of the constitutive law. As we have seen in (23), the modified invari-
ants ensure the differentiability of the energy density in 𝟏𝟏 with 𝑷(𝟏𝟏, 𝑠) = 0. Thus, also the results on the stress con-
trol and the continuity of the stresses remain valid. If the anisotropic split is applied only to energy contributions
in (99) with positive powers (but not to 𝜄−𝛾3 ), then each of the anisotropically splitted energies (99) satisfies all the
assumptions (36).

4 NUMERICAL EXAMPLES

In this section we explain shortly the main equations for the discretization within the finite element framework and
we demonstrate the robustness of the proposed model and the analytical results by a series of numerical examples in a
next step.

4.1 Discretization

At first, the weak forms of the governing equations and the discretization are summarized. The elastic boundary value
problem is based on the balance of linear momentum (5) and the crack phase-field evolution (8). For fixed time, the weak
form of the coupled problem reads: Find 𝝋 ∶ 0 → ℝ3 and 𝑠 ∶ 0 → [0, 1] such that

∫
0
𝑷 ∶ ∇(𝛿𝝋) d𝑋 = ∫

0
𝒃 ⋅ 𝛿𝝋 d𝑋 + ∫

𝜕N0
𝒉 ⋅ 𝛿𝝋dΓ for all 𝛿𝝋 ∈ 𝐔0, (102)

and

∫
0

1
𝑀
𝑠̇ ⋅ 𝛿𝑠 d𝑋 + ∫

0

𝜕Ψ
𝜕𝑠
⋅ 𝛿𝑠 d𝑋 + 2𝑐𝑙𝑐 ∫

0
∇𝑠∇(𝛿𝑠)d𝑋 −

𝑐
2𝑙𝑐 ∫0

(1 − 𝑠) ⋅ 𝛿𝑠 d𝑋 = 0 for all 𝛿𝑠 ∈ 𝐗0. (103)

The term 𝜕Ψ

𝜕𝑠
in (103) basically serves as a driving force for the phase-field. Moreover, the spaces of admissible test func-

tions 𝐔0 and 𝐗0 are defined as 𝐔0 = {𝛿𝝋 ∈ 𝐻1(0; ℝ3) |𝛿𝝋 = 0 on 𝜕D0 }, where 𝐻1(0; ℝ3) denotes the Sobolev space
of square integrable functions with values in ℝ3 and with square integrable weak first derivatives. Correspondingly,
the space of admissible test functions for the phase-field equation can be formulated as 𝐗0 = 𝐻10(0) ∩ 𝐿∞(0) = {𝛿𝑠 ∈
𝐻1(0) ∩ 𝐿∞(0)|𝛿𝑠 = 0 on 𝜕0}.
To apply the finite element method, the domain 0 is subdivided into a finite set of non-overlapping elements

0 ≈ ℎ0 =
𝑛𝑒⋃
𝑒=1

0𝑒. (104)

For discretization we use Lagrangian polynomials for both fields. In particular, the ansatz functions for the mechanical
field are denoted by 𝑁𝑖 and the shape functions for the phase-field by 𝑁̃𝑖 . The values 𝝋̂(𝑖) and 𝑠(𝑖) are the nodal displace-
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F IGURE 6 Boundary conditions (left) of a mode-I-tension test and the related mesh based on a hierarchical refinement strategy (right)

ments and the nodal values of the phase-field.

𝝋 ≈ 𝝋ℎ =
𝑛𝑘∑
𝑖=1

𝑁𝑖𝝋̂
(𝑖), 𝛿𝝋ℎ =

𝑛𝑘∑
𝑖=1

𝑁𝑖𝛿𝝋̂
(𝑖), (105)

𝑠 ≈ 𝑠ℎ =
𝑛𝑘∑
𝑖=1

𝑁̃𝑖𝑠
(𝑖), 𝛿𝑠ℎ =

𝑛𝑘∑
𝑖=1

𝑁̃𝑖𝛿𝑠
(𝑖). (106)

Inserting the proposed approximations (105) and (106) into the weak formulations (102) and (103), gives, after a straight-
forward calculation, the final finite element system.
The time integration is based on an implicit Euler-backward scheme regarding the phase-field parameter 𝑠 , whereby

the time interval [0, 𝑇] is divided into pairwise disjoint equidistant subintervals with the time step△𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛. At
last, the system of equations is solved by making use of a direct solver. In general there exist two solution strategies for
the non-linear system (102) and (103), the monolithic and the staggered scheme. In the first the fully-coupled system is
solved in each time step. In the staggered scheme the solution is split for the phase-field 𝑠 and for the mechanical field 𝝋,
which means that in each time step both quantities are solved successively. Our analysis in Sect. 3 is based on the latter
approach and also for the numerical examples presented in the subsequent exposition we rely on the staggered scheme.
In [81] both solution strategies are discussed in more detail.

4.2 Mode-II-shear test in two dimensions

As a first numerical example we choose a simple mode-II-shear test in two dimensions and consider a squared plate with
horizontal notch. At the lower boundary of the plate the displacements are constrained in horizontal and vertical direction
and at the upper side prescribed displacements are applied incrementally in 𝑥-direction, see Figure 6. Furthermore, the
mesh presented in Figure 6 consists of 128 × 128 quadrilateral elements.
The following simulations use the non-linear Yeoh material model (99a) and the proposed anisotropic split (16) so that

the strain energy function can be formulated as

𝑊(𝑭, 𝑠) = 𝛽(𝑠)

(
2∑
𝑖=1

𝑐𝑖(𝑚
+
1 (𝐼1(𝑭

𝑇𝑭))𝑖 + 𝑑(𝑚+3 (𝑭
𝑇𝑭))2

)
+

2∑
𝑖=1

𝑐𝑖(𝑚
−
1 (𝐼1(𝑭

𝑇𝑭))𝑖 + 𝑑(𝑚−3 (𝑭
𝑇𝑭))2, (107)
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F IGURE 7 Phase-field snapshots of the mode-II-shear test at the different time-steps of the simulation 𝑡 ∈ {125, 160, 198}

F IGURE 8 Load-deflection curves for different time-step sizes

with positive coefficients 𝑐𝑖, 𝑑 > 0 for any 𝑖 ∈ {1, 2} and 𝛽(𝑠) defined in (17). The dimensionless material parameter are
chosen as 𝑐1 = 2.6923 × 1010, 𝑐2 = 1.3462 × 1010 and 𝑑 = 2.01923 × 1011. Refering to the SI unit system this corresponds
to a Young’s modulus of 𝐸 = 2.1 × 1011 N

m2
, a Possion’s ratio of 𝜈 = 0.3 and the critical energy release rate of 𝑐 = 2.7 ×

103
J
m2
. The mobility parameter is 𝑀 = 1 (Pa s)−1. The related length-scale parameter 𝑙𝑐 depends on the element size ℎ

and has to fullfill the inequality 𝑙𝑐 ≥ 2ℎ in general, cf. [82], which enables the approximation of a diffuse interface zone.
In this case using three unniform levels of refinement, the length scale parameter is set to 𝑙𝑐 = 2ℎmin = 7.8125 × 10−6 m.
The snapshots of the phase-field and the related crack propagation related to the shear test are shown in Figure 7.
In a next step the influence of the step-size of time is investigated in more detail. Therefore, the time step size is varied

such that a bigger and a smaller time step is applied. Within this assumption different time steps are examined and the
related load-deflection curves are shown inFigure 8. The results show the convergence to a solution of the time-continuous
formulation within decreasing stepsize.

4.3 Mode-I-tension test in three dimensions

In a next step we introduce an example in three dimensions. We consider a block with a horizontal notch which consists
of 10 × 4 × 10 elements before refinement. The geometry and the related boundary conditions can be found in Figure 9.
All the boundary conditions are realized by using Dirichlet boundary conditions. In Figure 9 also the mesh of the block
is shown after applying the hierarchical refinement strategy.
Also in this example we use the Yeoh material model (107) with positive coefficients 𝑐𝑖, 𝑑 > 0 for any 𝑖 ∈ {1, 2} and

𝛽(𝑠) defined in (17). The material parameter are chosen as 𝑐1 = 2.6923 × 1010, 𝑐2 = 1.3462 × 1010 and 𝑑 = 2.01923 × 1011
which are based on the relations given in [79] and correspond to the same material values as above. The length-scale
parameter depends on themesh size and is chosen as 𝑙𝑐 = 1.25 × 10−5m.Moreover, a time step ofΔ𝑡 = 0.01 sec is applied.
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F IGURE 9 Boundary conditions (left) of a mode-I-tension test and the related mesh based on a hierarchical refinement strategy (right)
in three dimensions

F IGURE 10 Phase-field snapshots of the mode-I-tension test at the different time-steps of the simulation 𝑡 ∈ {50, 70, 90}

F IGURE 11 Load-deflection curve
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In Figure 10 the crack growth during the simulation can be observed. The crack propagates within this loading along the
expected crack path.
The load deflection curves for different time step sizes are shown in Figure 11, the block is cracked completely at a

vertical displacement of 𝑢𝑦 ≈ 0.28 × 10−3 m.
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APPENDIX A: PROOF OF LEMMATA 3.14 AND 3.15 ON THE PROPERTIES OF THE INVARIANTS

A.1 Proof of Lemma 3.14 on the derivatives of the invariants and their stress control
The proof of relations (88a)–(88c) for the derivatives of 𝜄1, 𝜄2, 𝜄3 can be taken from [80, p. 154].
To find (88d) for the derivative of 𝑈 we calculate with the product rule and the chain rule

𝜕𝑈(𝑭⊤𝑭)

𝜕𝑭
= 𝜄

−1∕3
3 (𝑭⊤𝑭)

𝜕𝜄1(𝑭
⊤𝑭)

𝜕𝑭
+ 𝜄1(𝑭

⊤𝑭)

(
−
1

3
𝜄
−4∕3
3 (𝑭⊤𝑭)

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭

)
.

In view of (88a) and (88c) we now conclude (88d).
Similarly, the product and chain rule yield for the derivative of 𝑉 that

𝜕𝑉(𝑭⊤𝑭)

𝜕𝑭
= 𝜄

−2∕3
3 (𝑭⊤𝑭)

𝜕𝜄2(𝑭
⊤𝑭)

𝜕𝑭
+ 𝜄2(𝑭

⊤𝑭)

(
−
2

3
𝜄
−5∕3
3 (𝑭⊤𝑭)

𝜕𝜄3(𝑭
⊤𝑭)

𝜕𝑭

)
,

which, in combination with (88b) and (88c), results in (88e).
To find the stress control (89) we use (88a)–(88e) and deduce

|𝜕𝑭𝜄1𝑭⊤| = |2𝑭𝑭⊤| ≤ 2|𝑭|2 = 2𝜄1 (A.1a)

|𝜕𝑭𝜄2𝑭⊤| = |||2(𝜄2𝑭−⊤ − 𝜄3𝑭−⊤𝑭−1𝑭−⊤)𝑭⊤||| = 2|||𝜄2𝟏𝟏 − 𝜄3𝑭−⊤𝑭−1||| ≤ 2(√3 + 1)𝜄2 (A.1b)

|𝜕𝑭𝜄3𝑭⊤| = |2𝜄3𝟏𝟏| ≤ 2√3𝜄3 ≤ 4𝜄3, (A.1c)
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|𝜕𝑭𝑈𝑭⊤| = |2𝜄−1∕33 (𝑭𝑭⊤ −
1

3
𝜄1𝟏𝟏)| ≤ |2𝜄−1∕33 |(|𝜄1| + 1√

3
|𝜄1|) ≤ 4𝑈, (A.1d)

|𝜕𝑭𝑉𝑭⊤| = |2𝜄−2∕33

(
1

3
𝜄2𝟏𝟏 − 𝜄3𝑭

−⊤𝑭−1
)| (A.1e)

≤ 2𝜄−2∕33

(|𝜄2| + 𝜄3|𝑭−⊤𝑭−1|) = 4𝜄−2∕33 𝜄2 = 4𝑉, (A.1f)

where we also used that |𝑭⊤𝑭| ≤ |𝑭|2 as well as the relations | cof 𝑭|2 = tr cof 𝑪 = 𝜄2(𝑪) and
| cof 𝑪|2 = (det 𝑭)4|||(𝑭⊤𝑭)−1|||2 ≤ (det 𝑭)4|𝑭−1|4 = | cof 𝑭|4 = 𝜄2(𝑪)2. (A.1g)

A.2 Proof of Lemma 3.15 on the continuity properties of the invariants
For shorter notation we set

𝐹1(𝐴) ∶= |𝐴((𝐶𝑭)⊤(𝐶𝑭)) − 𝐴(𝑭⊤𝑭)|
𝐹2(𝐴) ∶= |𝜕𝑭𝐴((𝐶𝑭)⊤(𝐶𝑭))(𝐶𝑭)⊤ − 𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤|,

for each invariant function 𝐴 ∈ {𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉} and we aim to show (90), which now reads

𝐹1(𝐴) ≤ 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭), (A.2a)

𝐹2(𝐴) ≤ 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭), (A.2b)

for each invariant function 𝐴 ∈ {𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉}. We start with 𝐹1(𝜄1). In view of (85c) we obtain

𝐹1(𝜄1) = |𝜄1((𝐶𝑭)⊤(𝐶𝑭)) − 𝜄1(𝑭⊤𝑭)| = ||||𝐶𝑭|2 − |𝑭|2||| = |||(𝐶 + 𝟏𝟏)𝑭 ∶ (𝐶 − 𝟏𝟏)𝑭|||
≤ (|𝐶| + 1)|𝑭|2 |𝐶 − 𝟏𝟏| ≤ (√3 + 2)𝜄1(𝑭⊤𝑭)|𝐶 − 𝟏𝟏| = 𝑐(𝐴.3𝑎)𝜄1(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|, (A.3a)

where we also used that |𝐶| ≤ |𝟏𝟏| + 𝛿 ≤ √
3 + 1. For 𝐹1(𝜄3) we have

𝐹1(𝜄3) = |𝜄3((𝐶𝑭)⊤(𝐶𝑭)) − 𝜄3(𝑭⊤𝑭)| = |||𝜄3(𝐶⊤𝐶) − 1|||𝜄3(𝑭⊤𝑭)
and we shall now determine a modulus of continuity 𝜄3 using the mean value theorem of differentiability and formula
(88c). In particular,

|𝜄3(𝐶⊤𝐶) − 𝜄3(𝟏𝟏)| ≤ |||2𝜄3(𝐶⊤𝐶)𝐶−⊤||| |𝐶 − 𝟏𝟏|,
where 𝐶 = 𝟏𝟏 + 𝑡(𝐶 − 𝟏𝟏) with 𝑡 ∈ [0, 1] suitably. In order to calculate 𝐶−1 we shall invoke [80, p. 11], which states that

(𝟏𝟏 + 𝐵𝐻)−1 = 𝟏𝟏 − 𝐵𝐻 + 𝑜(𝐻) for |𝐻| < |𝐵|−1. (A.3b)

This yields 𝐶−1 = (𝟏𝟏 + 𝑡(𝐶 − 𝟏𝟏))−1 = 𝟏𝟏 − 𝑡(𝐶 − 𝟏𝟏) + 𝑜(𝟏𝟏) for |𝟏𝟏| < |𝐶 − 𝟏𝟏|−1. Now we use that the map 𝑓 ∶ GL+(3) →
ℝ, 𝑓(𝐶) ∶= |2𝜄3(𝐶⊤𝐶)𝐶−⊤| is continuous, since it is the composition of continuous functions. Thus, by continuity, for any
0 < 𝜀 < 1 there is 0 < 𝛿 ≪ 1 such that for all 𝐶 ∈ GL+(3) with 𝑡|𝐶 − 𝟏𝟏| ≤ 𝛿 we have |𝑓(𝐶) − 𝑓(𝟏𝟏)| < 𝜀 < 1 and hence
𝑓(𝐶) < 1 + 2

√
3. In this way we conclude that

|𝜄3(𝐶⊤𝐶) − 𝜄3(𝟏𝟏)| ≤ |||2𝜄3(𝐶⊤𝐶)𝐶−⊤||| |𝐶 − 𝟏𝟏| ≤ (1 + 2√3)|𝐶 − 𝟏𝟏| = 𝑐(𝐴.3𝑐)|𝐶 − 𝟏𝟏|. (A.3c)

In the same fashion we can also show for powers 𝜄−𝛾∕33 with 𝛾 ∈ ℕ that

|𝜄3(𝐶⊤𝐶)−𝛾∕3 − 1| ≤ 𝑓(𝐶) |𝐶 − 𝟏𝟏| ≤ (1 + 2𝛾∕√3)|𝐶 − 𝟏𝟏| = 𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏|. (A.3d)
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More precisely, we deduce that |𝜄3(𝐶⊤𝐶)−𝛾∕3 − 1| ≤ 𝑓(𝐶)|𝐶 − 𝟏𝟏|, where
𝑓(𝐶) =

𝛾

3
|𝜄3(𝐶⊤𝐶̃)−(𝛾+3)∕32𝜄3(𝐶⊤𝐶)𝐶−⊤| ≤ |𝑓(𝟏𝟏)| + 1 for 𝑡|𝐶 − 𝟏𝟏| < 𝛿,

and 𝑓(𝟏𝟏) = 2𝛾∕
√
3. With the multiplicativity of cof , i.e. cof (𝑀1𝑀2) = cof 𝑀1 cof 𝑀2, cf. [80, p. 4], we obtain for 𝐹1(𝜄2)

that

𝐹1(𝜄2) = |𝜄2((𝐶𝑭)⊤(𝐶𝑭)) − 𝜄2(𝑭⊤𝑭)| = |||| cof (𝐶𝑭)|2 − | cof 𝑭|2|||
=
|||| cof 𝐶 cof 𝑭|2 − | cof 𝑭|2|||

=
|||(cof 𝐶 + 𝟏𝟏) cof 𝑭 ∶ (cof 𝐶 − 𝟏𝟏) cof 𝑭|||

≤ (| cof 𝐶| + 1)| cof 𝑭|2 | cof 𝐶 − 𝟏𝟏|
Using (A.3c) we further deduce that

| cof 𝐶 − 𝟏𝟏| = |(det 𝐶)𝐶−𝑇 − 𝟏𝟏| = |(det 𝐶 − 1)𝟏𝟏 + det 𝐶(𝐶−⊤ − 𝟏𝟏)|
≤ | det 𝐶 − 1| |𝟏𝟏| + | cof 𝐶| |𝐶 − 𝟏𝟏| ≤ (1 + 2√3)|𝐶 − 𝟏𝟏|√3 + | cof 𝐶| |𝐶 − 𝟏𝟏|

Furthermore, by continuity we obtain that | cof 𝐶| ≤ √
3 + 1 for |𝐶 − 𝟏𝟏| small. Hence we conclude

𝐹1(𝜄2) = |𝜄2((𝐶𝑭)⊤(𝐶𝑭)) − 𝜄2(𝑭⊤𝑭)|
≤ (√3 + 1)| cof 𝑭|2((1 + 2√3)|𝐶 − 𝟏𝟏|√3 + (√3 + 1)|𝐶 − 𝟏𝟏|)
= 𝑐(𝐴.3𝑒)𝜄2(𝑭

⊤𝑭)|𝐶 − 𝟏𝟏|
(A.3e)

Estimate (A.3d) with 𝛾 = 1 combined with (A.3a) is now used to determine a modulus of continuity for 𝐹1(𝑈):

𝐹1(𝑈) = |𝑈((𝐶𝑭)⊤(𝐶𝑭)) − 𝑈(𝑭⊤𝑭)|
=
|||𝜄3(𝐶⊤𝐶)−1∕3𝜄3(𝑭⊤𝑭)−1∕3|𝐶𝑭|2 − 𝜄3(𝑭⊤𝑭)−1∕3|𝑭|2|||

≤ |||𝜄3(𝐶⊤𝐶)−1∕3 − 1||| 𝜄3(𝑭⊤𝑭)−1∕3|𝑭|2 + 𝜄3(𝐶⊤𝐶)−1∕3𝜄3(𝑭⊤𝑭)−1∕3 ||||𝐶𝑭|2 − |𝑭|2|||
≤ (
𝑐(𝐴.3𝑑)𝑈(𝑭

⊤𝑭) +
(
𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏| + 1)𝜄3(𝑭⊤𝑭)−1∕3𝑐(𝐴.3𝑎)𝜄1(𝑭⊤𝑭))|𝐶 − 𝟏𝟏|

≤ 𝑐(𝐴.3𝑓)𝑈(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|.
(A.3f)

Similarly, estimate (A.3d) with 𝛾 = 2 in combination with (A.3e) also results in a modulus of continuity for 𝐹1(𝑉):

𝐹1(𝑉) = |𝑉((𝐶𝑭)⊤(𝐶𝑭)) − 𝑉(𝑭⊤𝑭)|
=
|||𝜄3(𝐶⊤𝐶)−2∕3𝜄3(𝑭⊤𝑭)−2∕3| cof 𝐶𝑭|2 − 𝜄3(𝑭⊤𝑭)−2∕3| cof 𝑭|2|||

≤ |||𝜄3(𝐶⊤𝐶)−2∕3 − 1||| 𝜄3(𝑭⊤𝑭)−2∕3| cof 𝑭|2
+ 𝜄3(𝐶

⊤𝐶)−2∕3𝜄3(𝑭
⊤𝑭)−2∕3

|||| cof (𝐶𝑭)|2 − | cof 𝑭|2|||
≤ 𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭) + (

𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏| + 1)𝜄3(𝑭⊤𝑭)−2∕3𝑐(𝐴.3𝑒)| cof 𝑭|2 |𝐶 − 𝟏𝟏|
≤ 𝑐(𝐴.3𝑔)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭).

(A.3g)

With estimates (A.3) we have obtained moduli of continuity for 𝐹1(𝐴) with 𝐴 ∈ {𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉} and thus verified (A.2a),
resp. (90a).
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Wenow aim to prove (90b) by deducingmoduli of continuity for𝐹2(𝐴).We start with𝐹2(𝜄1). In view of (88a) we deduce

𝐹2(𝜄1) = |𝜕𝑭𝜄1((𝐶𝑭)⊤(𝐶𝑭))(𝐶𝑭)⊤ − 𝜕𝑭𝜄1(𝑭⊤𝑭)𝑭⊤|
= 2|(𝐶𝑭)(𝐶𝑭)⊤ − 𝑭𝑭⊤| ≤ 2(|𝐶| + 1)|𝐶 − 𝟏𝟏| |𝑭𝑭⊤|
≤ 2(√3 + 2)|𝐶 − 𝟏𝟏| |𝑭|2 = 𝑐(𝐴.4𝑎)𝜄1(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|,

(A.4a)

where we used that |𝐶| < |𝟏𝟏| + 1 for |𝐶 − 𝟏𝟏| < 𝛿 < 1. For 𝐹2(𝜄3) we find via (88c) and (A.3c)
𝐹2(𝜄3) = |𝜕𝑭𝜄3((𝐶𝑭)⊤(𝐶𝑭))(𝐶𝑭)⊤ − 𝜕𝑭𝜄3(𝑭⊤𝑭)𝑭⊤|

= 2|𝜄3((𝐶𝑭)⊤(𝐶𝑭))𝟏𝟏 − 𝜄3(𝑭⊤𝑭)𝟏𝟏|
≤ 2√3𝜄3(𝑭⊤𝑭)|𝜄3(𝐶⊤𝐶) − 1| ≤ 2√3 𝑐(𝐴.3𝑐)𝜄3(𝑭⊤𝑭)|𝐶 − 𝟏𝟏| = 𝑐(𝐴.4𝑏)𝜄3(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|.

(A.4b)

We now turn to the estimates for 𝐹2(𝜄2), 𝐹2(𝑈) and 𝐹2(𝑉). For better readability we will here often use the short-hand
𝑮 = 𝐶𝑭. In view of (88b) the term 𝐹2(𝜄2) can be estimated as

𝐹2(𝜄2) = |𝜕𝑮𝜄2(𝑮⊤𝑮)𝑮⊤ − 𝜕𝑭𝜄2(𝑭⊤𝑭)𝑭⊤|
= 2

|||(𝜄2(𝑮⊤𝑮)𝑮−⊤𝑮⊤ − 𝜄3(𝑮⊤𝑮)𝑮−⊤𝑮−1𝑮−⊤𝑮⊤)
−
(
𝜄2(𝑭

⊤𝑭)𝑭−⊤𝑭⊤ − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1𝑭−⊤𝑭⊤

)|||
= 2

|||(𝜄2(𝑮⊤𝑮)𝟏𝟏 − 𝜄3(𝑮⊤𝑮)𝑮−⊤𝑮−1) − (
𝜄2(𝑭

⊤𝑭)𝟏𝟏 − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1

)|||
≤ 2√3|||𝜄2(𝑮⊤𝑮) − 𝜄2(𝑭⊤𝑭)||| + 2|||𝜄3(𝑮⊤𝑮)𝑮−⊤𝑮−1 − 𝜄3(𝑭⊤𝑭)𝑭−⊤𝑭−1|||
≤ 2√3|||𝜄2(𝑮⊤𝑮) − 𝜄2(𝑭⊤𝑭)|||
+ 2

|||𝜄3(𝑮⊤𝑮) − 𝜄3(𝑭⊤𝑭)||| |𝑭−⊤𝑭−1|
+ 2𝜄3((𝐶𝑭)

⊤(𝐶𝑭))
|||𝑮−⊤𝑮−1 − 𝑭−⊤𝑭−1|||

≤ (
2
√
3𝑐(𝐴.3𝑒)𝜄2(𝑭

⊤𝑭) + (𝑐(𝐴.3𝑐) + 𝑐(𝐴.4𝑑))𝜄3(𝑭
⊤𝑭)|𝑭−⊤𝑭−1|) |𝐶 − 𝟏𝟏|

= 𝑐(𝐴.4𝑐)𝜄2(𝑭
⊤𝑭) |𝐶 − 𝟏𝟏|.

(A.4c)

Here we also used (A.3e), (A.3c), and in analogy to (A.4a) we deduced|||𝑮−⊤𝑮−1 − 𝑭−⊤𝑭−1||| ≤ (|𝐶−1| + 1)|𝑭−⊤𝑭−1| |𝐶 − 𝟏𝟏||𝐶−1|
≤ (√3 + 2)2|𝑭−⊤𝑭−1| |𝐶 − 𝟏𝟏| = 𝑐(𝐴.4𝑑)|𝑭−⊤𝑭−1| |𝐶 − 𝟏𝟏|, (A.4d)

since again by (A.3b) it is 𝐶−1 = 𝟏𝟏 − (𝐶 − 𝟏𝟏) + 𝑜(𝐶 − 𝟏𝟏) and hence |𝐶−1| ≤ √
3 + |𝐶 − 𝟏𝟏| + 𝑜(|𝐶 − 𝟏𝟏|) ≤ √

3 + 1 for|𝐶 − 𝟏𝟏| sufficiently small.
For 𝐹2(𝑈) we apply (88d) as well as (A.3d) with 𝛾 = 1, (A.4a), (89), and (A.3a) to find

|𝐹2(𝑈)| = |||𝜕𝑮𝑈(𝑮⊤𝑮)𝑮⊤ − 𝜕𝑭𝑈(𝑭⊤𝑭)𝑭⊤|||
=

|||2𝜄3(𝑮⊤𝑮)−1∕3(𝑮 − 1

3
𝜄1(𝑮

⊤𝑮)𝑮−⊤
)
𝑮⊤ − 2𝜄3(𝑭

⊤𝑭)−1∕3
(
𝑭 −

1

3
𝜄1(𝑭

⊤𝑭)𝑭−⊤
)
𝑭⊤

|||
=

|||2𝜄3(𝑮⊤𝑮)−1∕3(𝑮𝑮⊤ − 1

3
𝜄1(𝑮

⊤𝑮)𝟏𝟏
)
− 2𝜄3(𝑭

⊤𝑭)−1∕3
(
𝑭𝑭⊤ −

1

3
𝜄1(𝑭

⊤𝑭)𝟏𝟏
)|||

= 2
|||(𝜄3(𝐶⊤𝐶)−1∕3 − 1)𝜄3(𝑭⊤𝑭)−1∕3(𝑭𝑭⊤ − 1

3
𝜄1(𝑭

⊤𝑭)𝟏𝟏
)
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+𝜄3(𝑮
⊤𝑮)−1∕3

(
𝑮𝑮⊤ − 𝑭𝑭⊤ −

1

3
(𝜄1(𝑮

⊤𝑮) − 𝜄1(𝑭
⊤𝑭))𝟏𝟏

)|||
≤ 2|𝜄3(𝐶⊤𝐶)−1∕3 − 1| |||𝜕𝑭𝑈(𝑭⊤𝑭)𝑭⊤|||
+2𝜄3(𝑮

⊤𝑮)−1∕3|𝑮𝑮⊤ − 𝑭𝑭⊤|
+
2√
3
𝜄3(𝑮

⊤𝑮)−1∕3|𝜄1(𝑮⊤𝑮) − 𝜄1(𝑭⊤𝑭))|
≤ 2𝑐(𝐴.3𝑑)4𝑈(𝑭⊤𝑭))|𝐶 − 𝟏𝟏|
+(𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏| + 1)𝜄3(𝑭⊤𝑭) 𝑐(𝐴.4𝑎)𝜄1(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|
+
2√
3
(𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏| + 1)𝜄3(𝑭⊤𝑭)𝑐(𝐴.3𝑎)𝜄1(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|

≤ 𝑐(𝐴.4𝑒)𝑈(𝑭⊤𝑭)|𝐶 − 𝟏𝟏|. (A.4e)

Similarly, we obtain a modulus of continuity for 𝐹2(𝑉) using (A.3g), (A.3d) with 𝛾 = 2, and (A.4d)

|𝐹2(𝑉)| = |||𝜕𝑮𝑉(𝑮⊤𝑮)𝑮⊤ − 𝜕𝑭𝑉(𝑭⊤𝑭)𝑭⊤|||
=
|||2𝜄3(𝑮⊤𝑮)−2∕3( 13 𝜄2(𝑮⊤𝑮)𝑮−⊤ − 𝜄3(𝑮⊤𝑮)𝑮−⊤𝑮−1𝑮−⊤)𝑮⊤
− 2𝜄3(𝑭

⊤𝑭)−2∕3
(
1

3
𝜄2(𝑭

⊤𝑭)𝑭−⊤ − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1𝑭−⊤

)
𝑭⊤

|||
= 2

|||𝜄3(𝑮⊤𝑮)−2∕3( 13 𝜄2(𝑮⊤𝑮)𝟏𝟏 − 𝜄3(𝑮⊤𝑮)𝑮−⊤𝑮−1)
− 𝜄3(𝑭

⊤𝑭)−2∕3
(
1

3
𝜄2(𝑭

⊤𝑭)𝟏𝟏 − 𝜄3(𝑭
⊤𝑭)𝑭−⊤𝑭−1

)|||
≤ 2√

3

|||𝜄3(𝑮⊤𝑮)−2∕3𝜄2(𝑮⊤𝑮) − 𝜄3(𝑭⊤𝑭)−2∕3𝜄2(𝑭⊤𝑭)|||
+ 2

|||𝜄3(𝐶⊤𝐶)−2∕3 − 1||| 𝜄3(𝑭⊤𝑭)−2∕3 |𝑭−⊤𝑭−1|
+ 2𝜄3(𝐶

⊤𝐶)−2∕3𝜄3(𝑭
⊤𝑭)−2∕3 |𝑮−⊤𝑮−1 − 𝑭−⊤𝑭−1|

≤ 2√
3
𝑐(𝐴.3𝑔)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭) + 2𝑐(𝐴.3𝑑)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭) + 2𝑐(𝐴.4𝑑)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭)

= 𝑐(𝐴.4𝑓)|𝐶 − 𝟏𝟏|𝑉(𝑭⊤𝑭).

(A.4f)

The collection of estimates (A.4) provides moduli of continuity for 𝐹2(𝐴) for 𝐴 = 𝜄1, 𝜄2, 𝜄3, 𝑈, 𝑉 and thus proves (A.2b),
resp. (90b). This concludes the proof of (90).

APPENDIX B: PROOFS OF THE STATEMENTS ON THE CONSTITUTIVE LAWS IN SECTION 3.4.1

B.1 Proof of Proposition 3.16: Polyconvexity of the laws (91)
The Proof of 1. and 2. is immediate thanks to the relations (85c), which show that the energy terms are quadratic expres-
sions in 𝑭 and cof 𝑭.
Proof of 3.: Once more by (85c) we rewrite the density of the Arruda–Boyce model as

𝑊(𝜄1(𝑭
⊤𝑭), 𝜄2(𝑭

⊤𝑭), 𝜄3(𝑭
⊤𝑭)) =

𝑚∑
𝑖=1

𝑐𝑖(𝜄1(𝑭
⊤𝑭)𝑖 − 3𝑖) =

3∑
𝑖=1

𝑐𝑖(|𝑭|2𝑖 − 3𝑖) = 𝑊(𝑭),
and we study the convexity of the function

𝑔𝑖 ∶ ℝ+ → ℝ, 𝑔𝑖(𝑥) ∶= (𝑥
2𝑖 − 3𝑖). (B.1)
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We see that D2𝑔𝑖(𝑥) = 2𝑖(2𝑖 − 1)𝑥2𝑖−2 ≥ 0 for all 𝑥 ∈ ℝ, given that 𝑖 ∈ ℕ. This shows that 𝑔𝑖 is convex. Moreover, 𝑔𝑖 is
non-decreasing. The density𝑊(𝑭) =

∑𝑚
𝑖=1 𝑔𝑖(|𝑭|) is the composition of the convex, non-decreasing function 𝑔𝑖 with the

convex function | ⋅ | ∶ ℝ3×3 → ℝ and hence it is convex.
Proof of 4.: Again by (85c) we rewrite the density of the Yeoh model as

𝑊(𝜄1(𝑭
⊤𝑭), 𝜄2(𝑭

⊤𝑭), 𝜄3(𝑭
⊤𝑭)) =

3∑
𝑖=1

𝑐𝑖(𝜄1(𝑭
⊤𝑭) − 3)𝑖 =

3∑
𝑖=1

𝑐𝑖(|𝑭|2 − 3)𝑖 = 𝑊(𝑭).
This expression is also a factor in the Rivlin and in the Rivlin–Saunders model. Convexity of𝑊 would equivalent to the
positive-definiteness of its Hessian D2𝑭𝑊(𝑭). To investigate this feature, we first study the convexity of the function

𝑓𝑖 ∶ ℝ+ → ℝ, 𝑓𝑖(𝑥) ∶= (𝑥
2 − 𝑎)𝑖 with constants 𝑎 ≥ 0, 𝑖 > 1. (B.2)

We obtain that D2𝑥𝑓𝑖(𝑥) = 4𝑖(𝑖 − 1)𝑥2(𝑥2 − 𝑎)𝑖−2 + 2𝑖(𝑥2 − 𝑎)𝑖−1. First let 𝑖 = 2. Then D2𝑥𝑓2(𝑥) = 12𝑥2 − 4𝑎. We find that
D2𝑥𝑓2(𝑥) < 0 for any 𝑥2 < 𝑎∕3. Let now 𝑖 = 3. Then D2𝑥𝑓3(𝑥) = 24𝑥2(𝑥2 − 𝑎) + 6(𝑥2 − 𝑎)2. Again, D2𝑥𝑓3(𝑥) < 0 for any
𝑥2 ∈ (𝑎∕5, 𝑎). Hence, the 𝑓𝑖 is not convex and therefore the Yeoh model cannot be polyconvex. Since the term (B.2) also
occurs in the Rivlin and in the Rivlin-Saunders model, also their polyconvexity is disproved.
Proof of 5.:We study the convexity of the function 𝑓(𝑥) = 𝑥−2𝛾. We calculate that 𝑓′′(𝑥) = 𝛾(2𝛾 + 1)𝑥−2(𝛾+1) > 0 for

all 𝑥 > 0.

B.2 Proof of Proposition 3.18: Stress control and uniform continuity of the stresses
Proof of 1.: From (87) we infer that

|𝜕𝑭𝑊(𝑭)𝑭⊤| ≤ |||𝜕𝜄1𝑊(𝜄1, 𝜄2, 𝜄3)||| |𝜕𝑭𝜄1𝑭⊤| + |||𝜕𝜄2𝑊(𝜄1, 𝜄2, 𝜄3)||| |𝜕𝑭𝜄2𝑭⊤|
+
|||𝜕𝜄3𝑊(𝜄1, 𝜄2, 𝜄3)||| |𝜕𝑭𝜄3𝑭⊤|,

with 𝜄1 = 𝜄1(𝑭⊤𝑭), 𝜄2 = 𝜄2(𝑭⊤𝑭), and 𝜄3 = 𝜄3(𝑭⊤𝑭). The stress control estimate for the invariant functions (89) and assump-
tion (92) now allow us to conclude that

|𝜕𝑭𝑊(𝑭)𝑭⊤| ≤ 𝑐𝜄1 |𝜕𝑈𝑊(𝜄1, 𝜄2, 𝜄3) 𝜄1| + 𝑐𝜄2 |𝜕𝑉𝑊(𝜄1, 𝜄2, 𝜄3) 𝜄2| + 𝑐𝜄3 |𝜕𝜄3𝑊(𝜄1, 𝜄2, 𝜄3) 𝜄3|
≤ 𝐾(𝑊(𝜄1, 𝜄2, 𝜄3) + 1) = 𝐾(𝑊(𝑭) + 1),

which is stress control (36e).
Proof of 2.: The condition on the continuity of the stresses (36f) formulated for the density𝑊 directly follows from (93)

using that𝑊(𝑭) = 𝑊(𝜄1(𝑭⊤𝑭), 𝜄2(𝑭⊤𝑭), 𝜄3(𝑭⊤𝑭)), cf. (86), and (87) for the first Piola-Kirchhoff stress.

APPENDIX C: PROOFS OF THE STATEMENTS ON THEMODIFIED CONSTITUTIVE LAWS IN
SECTION 3.4.2

C.1 Proof of Proposition 3.22: Polyconvexity of the modified laws (94)
Proof of 1.: In order to deduce polyconvexity relations for 𝑓 we first study the convexity properties of the function 𝑓 ∶
ℝ+ × ℝ+ → ℝ, 𝑓(𝑥, 𝑦) = 𝑥𝛼

𝑦𝛽
with 𝛼, 𝛽 > 0. Its Hessian takes the form

D2𝑓(𝑥, 𝑦) ∶=
⎛⎜⎜⎝
𝛼(𝛼 − 1)

𝑥𝛼−2

𝑦𝛽
−𝛼𝛽

𝑥𝛼−1

𝑦𝛽+1

−𝛼𝛽
𝑥𝛼−1

𝑦𝛽+1
𝛽(𝛽 + 1)

𝑥𝛼

𝑦𝛽+2

⎞⎟⎟⎠
and its positive semidefiniteness is given if tr D2𝑓(𝑥, 𝑦) ≥ 0 together with detD2𝑓(𝑥, 𝑦) ≥ 0. It is tr D2𝑓(𝑥, 𝑦) = 𝛼(𝛼 −
1)
𝑥𝛼−2

𝑦𝛽
+ 𝛽(𝛽 + 1)

𝑥𝛼

𝑦𝛽+2
. For 𝑥, 𝑦 > 0 the condition tr D2𝑓(𝑥, 𝑦) ≥ 0 is equivalent to 𝛽(𝛽 + 1)𝑥2

𝑦2
≥ 𝛼(1 − 𝛼), which holds

true for any 𝛼 ≥ 1 and 𝛽 > 0.
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It is detD2𝑓(𝑥, 𝑦) = 𝛼𝛽(𝛼 − 𝛽 − 1)𝑥
2𝛼−2

𝑦2𝛽+2
. For any 𝑥, 𝑦, 𝛼, 𝛽 > 0 the condition detD2𝑓(𝑥, 𝑦) ≥ 0 is satisfied if 𝛼 ≥ 𝛽 + 1.

Hence, 𝑓 is convex if 𝛽 > 0 and 𝛼 ≥ 𝛽 + 1. Since 𝑓(⋅, 𝑦) is non-decreasing we now conclude the convexity of 𝑓:

𝑓(𝜆𝐴 + (1 − 𝜆)𝐵, 𝜆𝑦 + (1 − 𝜆)𝑧) = 𝑓(|𝜆𝐴 + (1 − 𝜆)𝐵|, 𝜆𝑦 + (1 − 𝜆)𝑧)
≤ 𝑓(𝜆|𝐴| + (1 − 𝜆)|𝐵|, 𝜆𝑦 + (1 − 𝜆)𝑧)
≤ 𝜆𝑓(|𝐴|, 𝑦) + (1 − 𝜆)𝑓(|𝐵|, 𝑧) = 𝜆𝑓(𝐴, 𝑦) + (1 − 𝜆)𝑓(𝐵, 𝑧).

Proof of 2.: Since 𝑈(𝑭⊤𝑭) = (det 𝑭)−2∕3|𝑭|2, hence 𝛼 = 2 ≥ 𝛽 + 1 = 2∕3 + 1. Thus the findings of Item 1. ensure the
polyconvexity of 𝑈.
Proof of 3.: It is𝑉(𝑭⊤𝑭) = (det 𝑭)−4∕3| cof 𝑭|2, i.e., 𝛼 = 2 and 𝛽 = 4∕3, so that here 𝛼 < 𝛽 + 1. In other words, here the

exponents do not belong to the regime of Item 1.However, Item 1 just gives a sufficient condition on the exponents to ensure
polyconvexity. Since polyconvexity implies rank-one convexity, polyconvexity of𝑉 is disproved, if we succeed to show that
𝑉 is not rank-one convex. For this, as done in [57, Lemma 2.4] we consider the deformation gradient 𝑭 = diag(0.1, 10, 𝑡),
which can be rewritten as 𝑭(𝑡) = 𝑨 + 𝑡𝑎 ⊗ 𝑎 with 𝑨 = diag(0.1, 10, 0) and 𝑎 = (0, 0, 1). We have 𝑓(𝑡) = 𝑉(𝑭(𝑡)⊤𝑭(𝑡)) =
100.1𝑡2∕3 + 𝑡−4∕3 with 𝑓′′(𝑡) = −200.2

9
𝑡−4∕3 +

28

9
𝑡−10∕3. Now, if 𝑉 were rank-one convex, then 𝑓 were convex and thus

𝑓′′(𝑡) ≥ 0 for any 𝑡 ∈ ℝ. But, e.g. for 𝑡 = 1 we find that 𝑓′′(1) = −200.2
9
+
28

9
< 0. Thus, 𝑉 is not rank-one convex, hence

not polyconvex.
Proof of 4.: To verify the polyconvexity of the modified Arruda-Boyce law we check that 𝑖𝛼 ≥ 𝑖𝛽 + 1 for 𝛼 = 2, 𝛽 = 2∕3

and all 𝑖 ∈ ℕ. This is indeed true, because 𝑖 ≥ 1 > 3∕4. Thus, Item 1 ensures polyconvexity.
Proof of 5.: To find that the density𝑊2(𝑉(𝑭

⊤𝑭)) ∶=
∑𝑚
𝑖=2 𝑐𝑖(𝑉(𝑭

⊤𝑭)𝑖 − 3𝑖) is polyconvex, we check that 𝑖𝛼 ≥ 𝑖𝛽 + 1
for 𝛼 = 2, 𝛽 = 4∕3 and all 𝑖 ∈ ℕ with 𝑖 ≥ 2. Indeed, 𝑖 ≥ 2 > 3∕2 and hence, Item 1 yields polyconvexity. We remark that
this result can also be retrieved from (95b).
Proof of 6.: The polyconvexity of𝑊3 is immediate, since𝑊3(𝑥) =

∑𝑚
𝑖=1 𝑐𝑖(𝑥

𝑖 − 1) for 𝑥 > 0 is composed as the sum of
terms being convex in 𝑥 > 0.
Proof of 7.: The polyconvexity of the modified Yeoh material (94d) directly follows from the polyconvexity of the term

(95a) with 𝑖 = 1 and 𝑘 = 1, 2, 3.

C.2 Proof of Proposition 3.24: Coercivity of the modified invariants
From (85) we recall that 𝑭 ∶= (det 𝑭)−1∕3𝑭 and𝑯 ∶= (det 𝑭)−2∕3 cof 𝑭. Hence, it is

𝑐1|𝑭|𝑝 = 𝑐1|(det 𝑭)−1∕3𝑭|𝑝| det 𝑭|𝑝∕3 = 𝑐1|𝑭|𝑝| det 𝑭|𝑝∕3
≤ 𝑐1𝑝

𝑞
|𝑭|𝑞 + 𝑐1(𝑞−𝑝)

𝑞
| det 𝑭|𝑝𝑞∕(3(𝑞−𝑝))

=
𝑐1𝑝

𝑞
|𝑈(𝑭⊤𝑭)|𝑞∕2 + 𝑐1(𝑞−𝑝)

𝑞
|𝜄3(𝑭⊤𝑭)|𝑝𝑞∕(6(𝑞−𝑝))

thanks to Young’s inequality |𝑥𝑦| ≤ 1

𝑎
|𝑥|𝑎 + 1

𝑎′
|𝑦|𝑎′ with the exponents 𝑎 = 𝑞∕𝑝 and 𝑎′ = 𝑎

𝑎−1
= 𝑞∕(𝑞 − 𝑝), which

imposes the constraint

𝑞 > 𝑝 ≥ 2. (C.1a)

With the same reasoning we additionally find that

𝑐2| cof 𝑭|𝑝2 = 𝑐2|(det 𝑭)−2∕3 cof 𝑭|𝑝2 | det 𝑭|2𝑝2∕3 = 𝑐2|𝑯|𝑝2 | det 𝑭|2𝑝2∕3
≤ 𝑐2𝑝2

𝑞2
|𝑯|𝑞2 + 𝑐2(𝑞2−𝑝2)

𝑞2
| det 𝑭|2𝑝2𝑞2∕(3(𝑞2−𝑝2))

=
𝑐2𝑝2

𝑞2
|𝑉(𝑭⊤𝑭)|𝑞2∕2 + 𝑐2(𝑞2−𝑝2)

𝑞2
|𝜄3(𝑭⊤𝑭)|𝑝2𝑞2∕(3(𝑞2−𝑝2)),
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thanks to Young’s inequality |𝑥𝑦| ≤ 1

𝑎
|𝑥|𝑎 + 1

𝑎′
|𝑦|𝑎′ with the exponents 𝑎 = 𝑞2∕𝑝2 and 𝑎′ = 𝑎

𝑎−1
=

𝑞2

𝑞2−𝑝2
, which results

in the constraint

𝑞2 > 𝑝2 ≥ 𝑝

𝑝−1
. (C.1b)

The determinant terms can be further estimated using that 𝑎𝛼 ≤ (𝑎 + 1)𝛼 ≤ (𝑎 + 1)𝛽 ≤ 2𝛽−1(𝑎𝛽 + 1) for 𝑎 > 0, 0 ≤ 𝛼 ≤
𝛽 and 𝛽 ≥ 1. In this way, we find

𝑐3| det 𝑭|𝑝3 + 𝑐1(𝑞−𝑝)

𝑞
| det 𝑭|𝑝𝑞∕(3(𝑞−𝑝)) + 𝑐2(𝑞2−𝑝2)

𝑞2
| det 𝑭|2𝑝2𝑞2∕(3(𝑞2−𝑝2))

≤ 𝑐3(| det 𝑭| + 1)𝑝3 + 𝑐1(𝑞−𝑝)

𝑞
(| det 𝑭| + 1)𝑝𝑞∕(3(𝑞−𝑝)) + 𝑐2(𝑞2−𝑝2)

𝑞2
(| det 𝑭| + 1)2𝑝2𝑞2∕(3(𝑞2−𝑝2))

≤ (
𝑐3 +

𝑐1(𝑞−𝑝)

𝑞
+
𝑐2(𝑞2−𝑝2)

𝑞2

)
(| det 𝑭| + 1)𝑞3

≤ 2𝑞3−1(𝑐3 + 𝑐1(𝑞−𝑝)

𝑞
+
𝑐2(𝑞2−𝑝2)

𝑞2

)
(| det 𝑭|𝑞3 + 1),

given that

𝑞3 ≥ max {𝑝3, 𝑝𝑞

3(𝑞−𝑝)
,

𝑝2𝑞2

3(𝑞2−𝑝2)

}
> 1 if𝑊(𝑭) = 𝑊(|𝑭|, |𝑯|, det 𝑭),

𝑞3 ≥ max {𝑝3, 𝑝𝑞

3(𝑞−𝑝)

}
> 1 if𝑊(𝑭) = 𝑊(|𝑭|, det 𝑭). (C.1c)

Thus, under the validity of the constraints (C.1), we are in the position to conclude

𝑐1|𝑭|𝑝 + 𝑐2| cof 𝑭|𝑝2 + 𝑐3| det 𝑭|𝑝3
≤ 𝑐1𝑝

𝑞
|𝑭|𝑞 + 𝑐2𝑝2

𝑞2
|𝑯|𝑞2 + 2𝑞3−1(𝑐3 + 𝑐1(𝑞−𝑝)

𝑞
+
𝑐2(𝑞2−𝑝2)

𝑞2

)
(| det 𝑭|𝑞3 + 1)

=
𝑐1𝑝

𝑞
|𝜄1(𝑭⊤𝑭)|𝑞∕2 + 𝑐2𝑝2

𝑞2
|𝜄2(𝑭⊤𝑭)|𝑞2∕2 + 2𝑞3−1(𝑐3 + 𝑐1(𝑞−𝑝)

𝑞
+
𝑐2(𝑞2−𝑝2)

𝑞2

)(|𝜄3(𝑭⊤𝑭)|𝑞3∕2 + 1)
This proves (98b) with the constants 𝑐1 =

𝑐1𝑝

𝑞
,𝑐2 =

𝑐2𝑝2

𝑞2
, 𝑐3 = 𝐶̃ = 2𝑞3−1(𝑐3 +

𝑐1(𝑞−𝑝)

𝑞
+
𝑐2(𝑞2−𝑝2)

𝑞2
). □

C.3 Proof of Corollary 3.26: Energy densities matching with (98)
We first note that the volumetric energy term ℎ∕𝜄𝛾3 is positive. Hence, it can be neglected when deducting the forthcoming
coercivity estimates for each of the energy densities (99).
Proof of 1.: Firstly, we estimate the determinant term with Young’s inequality as follows

𝑑(det 𝑭 − 1)2 = 𝑑((det 𝑭)2 − 2 det 𝑭 + 1) ≥ 𝑑(1
2
(det 𝑭)2 − 1). (C.2)

Using that 𝑈(𝑭⊤𝑭) = |𝑭|2 we find, again via Young’s inequality with the exponent 𝑎 = 𝑎′ = 2,
2∑
𝑖=1

𝑐𝑖(𝑈(𝑭
⊤𝑭) − 3)𝑖 = 𝑐2

(|𝑭|4 − 6|𝑭|2 + 9) + 𝑐1(|𝑭|2 − 3) = 𝑐2|𝑭|4 + (𝑐1 − 6𝑐2)|𝑭|2
+ 9𝑐2 − 3𝑐1

≥ 𝑐2

2
|𝑭|4 − (𝑐1−6𝑐2)

2

2𝑐2
+ 9𝑐2 − 3𝑐1

(C.3)
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Similarly as in the proof of Prop. 3.24 we now estimate that

𝑐2

2
|𝑭|4 + 𝑑

4
(det 𝑭)2 +

𝑑

4
(det 𝑭)2 ≥ (

𝑐2

2

6

6−𝑝

)(6−𝑝)∕6|𝑭|𝑝(𝑑
4

6

𝑝

)𝑝∕6| det 𝑭|𝑝∕3 + 𝑑

4
(det 𝑭)2

=
(
𝑐2

2

6

6−𝑝

)(6−𝑝)∕6(
𝑑

4

6

𝑝

)𝑝∕6|𝑭|𝑝 + 𝑑

4
(det 𝑭)2,

(C.4)

where we used Young’s inequality with the exponents 𝑎 = 6∕𝑝 > 1 and 𝑎′ = 𝑎

𝑎−1
=

6

6−𝑝
. The first choice implies 𝑝 < 6

and for 𝑎′ we require that 𝑎′𝑝 = 6𝑝

6−𝑝

!
= 4, which settles the exponent 𝑝 = 12∕5 ∈ (2, 3).

Proof of 2.:We estimate the term with power 3 as follows

𝑐3(|𝑭|2 − 3)3 = 𝑐3(|𝑭|6 − 9|𝑭|4 + 27|𝑭|2 − 81) ≥ 𝑐3

3
|𝑭|6 − 𝐶.

Here we estimated the quadratic term from below by 0 and for the negative quartic term we used Young’s inequality with
the exponents 𝑎 = 6∕4 and 𝑎′ = 𝑎

𝑎−1
= 3. We also recall that 𝑓(𝑉(𝑭⊤𝑭)3∕2 − 33∕2) = 𝑓(|𝑯|3 − 33∕2) and combine this and

the above estimate with the findings from (C.2) & (C.3), i.e.,

𝑐3

3
|𝑭|6 + 𝑐2

2
|𝑭|4 + 𝑑

4
(det 𝑭)2 + 𝑓|𝑯|3 + 𝑑

8
(det 𝑭)2 +

𝑑

8
(det 𝑭)2 − 𝐶

≥ 𝑐3

3
|𝑭|6 + 𝑑

4
(det 𝑭)2 + 𝑓|𝑯|3 + 𝑑

8
(det 𝑭)2 +

𝑑

8
(det 𝑭)2 − 𝐶

≥ (
6

6−𝑝

𝑐3

3

)(6−𝑝)∕6|𝑭|𝑝( 6𝑑
4𝑝

)𝑝∕6| det 𝑭|𝑝∕3 + (
3𝑓

3−𝑝2

)(3−𝑝2)∕3|𝑯|𝑝2( 3𝑑
8𝑝2

)𝑝2∕3| det 𝑭|2𝑝2∕3
+
𝑑

8
(det 𝑭)2 − 𝐶

=
(
6

6−𝑝

𝑐3

3

)(6−𝑝)∕6(
6𝑑

4𝑝

)𝑝∕6|𝑭|𝑝 + (
3𝑓

3−𝑝2

)(3−𝑝2)∕3( 3𝑑
8𝑝2

)𝑝2∕3| cof 𝑭|𝑝2 + 𝑑

8
(det 𝑭)2 − 𝐶.

To get from the second to third line, we applied Young’s inequality with the exponents 𝑎 = 6∕𝑝 > 1 and 𝑎′ = 6

6−𝑝
to

the first two summands. Again we find the constraint 𝑝 < 6 and additionally require that 𝑎′𝑝 = 6𝑝

6−𝑝

!
= 6. This yields

𝑝 = 3. Moreover, to the third and the fourth summand we also applied Young’s inequality with the exponents 𝑏 = 3∕𝑝2
and 𝑏′ = 𝑏

𝑏−1
=

3

3−𝑝2
and we have to ensure that 𝑏′𝑝2

!
= 3. This yields 𝑝2 = 3∕2. For 𝑝 = 3 we now check that indeed

𝑝2 = 3∕2 ≥ 𝑝

𝑝−1
= 3∕2.

Proof of 3.: Since all the coefficients are positive, gathering all the constants in 𝐶 > 0, we can estimate

𝑊(𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭
⊤𝑭)) > 𝑐𝑚1𝑈(𝑭

⊤𝑭)𝑚1 + 𝑓𝑚2𝑉(𝑭
⊤𝑭)𝑚2 + 𝑑𝑚3𝜄3(𝑭

⊤𝑭)𝑚3 − 𝐶

= 𝑐𝑚1 |𝑭|2𝑚1 + 𝑓𝑚2 |𝑯|2𝑚2 + 𝑑𝑚3(det 𝑭)2𝑚3 − 𝐶
≥ 𝑐𝑚1 |𝑭|2𝑚1 + 𝑑𝑚3

8
(det 𝑭)2𝑚3 + 𝑓𝑚2 |𝑯|2𝑚2 + 𝑑𝑚3

8
(det 𝑭)2𝑚3 +

𝑑𝑚3
4
(det 𝑭)2𝑚3 − 𝐶

≥ (
2𝑚1𝑐𝑚1
𝑝

)𝑝∕(2𝑚1)|𝑭|𝑝( 2𝑚1𝑑𝑚3
8(2𝑚1−𝑝)

)(2𝑚1−𝑝)∕(2𝑚1)| det 𝑭|𝑝∕3
+
(
2𝑚2𝑓𝑚2
𝑝2

)𝑝2∕(2𝑚2)|𝑯|𝑝2( 2𝑚2

2𝑚2−𝑝2

𝑑𝑚3
8

)(2𝑚2−𝑝2)∕(2𝑚2)| det 𝑭|2𝑝2∕3 + 𝑑𝑚3
4
(det 𝑭)2𝑚3

(C.5)

Here we used the relations (85) to arrive at the second line. To get from the third to the fourth line we applied Young’s
inequality to the first and the second term with the exponents 𝑎 = 2𝑚1

𝑝
and 𝑎′ = 𝑎

𝑎−1
=

2𝑚1

2𝑚1−𝑝
. We have to ensure that



THOMAS et al. 49 of 51

𝑎′𝑝∕3
!
= 2𝑚3. This yields 𝑝 =

6𝑚1𝑚3

𝑚1+3𝑚3
and we have to make sure that 𝑝 ≥ 2. This gives the constraint 𝑚3 ≥ 𝑚1

3(𝑚1−1)
,

which holds true for any 1 < 𝑚1 ∈ ℕ and 1 < 𝑚3 ∈ ℕ. Moreover, we applied Young’s inequality to the third and the
fourth summand with the exponents 𝑏 = 2𝑚2

𝑝2
and 𝑏′ = 𝑏

𝑏−1
=

2𝑚2

2𝑚2−𝑝2
. Here we have to make sure that 𝑏′ 2𝑝2

3

!
= 2𝑚3,

which yields 𝑝2 =
6𝑚2𝑚3

2𝑚2+3𝑚3
. We now check that 𝑝2 ≥ 𝑝

𝑝−1
. Using our findings for 𝑝 and 𝑝2, this amounts to the constraint

𝑚2 ≥ 𝑚1𝑚3

2𝑚1𝑚3−𝑚1−𝑚3
. We note that 2𝑚1𝑚3 − 𝑚1 − 𝑚3 > 0 for any𝑚3 >

𝑚1

2𝑚1−1
, where 𝑚1

2𝑚1−1
< 1 for any 1 < 𝑚1 ∈ ℕ. More-

over, we observe that 𝑚1𝑚3

2𝑚1𝑚3−𝑚1−𝑚3
≤ 1, which is equivalent to the constraint𝑚3 ≥ 𝑚1

𝑚1−1
, which indeed is satisfied by any

2 ≤ 𝑚1,𝑚3 ∈ ℕ.
Proof of 4.: The density (99d) is composed of polynomial terms 𝑃(𝐴) = 𝐶(𝐴𝛼 − 𝑐𝛼)𝑟 with 𝐴 a placeholder for 𝜄3, 𝑈, 𝑉.

Using the polynomial expansion with binomial coefficients 𝑏𝑖 we find

𝑃(𝐴) = 𝐶
𝑟∑
𝑖=0

𝑏𝑖(𝐴
𝛼)𝑟−𝑖(−𝑐𝛼)𝑖 ≥ 𝐶𝑏0𝐴𝛼𝑟 − 𝐶

𝑟∑
𝑖=1

𝑏𝑖(𝐴
𝛼)𝑟−𝑖(𝑐𝛼)𝑖 ≥ 𝐶𝑏𝑟

2
𝐴𝛼𝑟 − 𝐵, (C.6)

where we applied Young’s inequality with the exponents 𝑎 = 𝑟∕(𝑟 − 𝑖) > 1 for 𝑖 > 1 and 𝑎′ = 𝑟∕𝑖 to estimate the lower
order terms as follows

𝑏𝑖(𝐴
𝛼)𝑟−𝑖(𝑐𝛼)𝑖 =

(
𝑏0𝑟

2(𝑟−1)(𝑟−𝑖)

)(𝑟−𝑖)∕𝑟
(𝐴𝛼)𝑟−𝑖(𝑐𝛼)𝑖𝑏𝑖

(
2(𝑟−1)(𝑟−𝑖)

𝑏0𝑟

)(𝑟−𝑖)∕𝑟
≤ (

𝑏0

2(𝑟−1)

)
(𝐴𝛼)𝑟 +

𝑖

𝑟

(
(𝑐𝛼)𝑖𝑏𝑖

(
2(𝑟−1)(𝑟−𝑖)

𝑏0𝑟

)(𝑟−𝑖)∕𝑟)𝑟∕𝑖
.

Summation over 𝑖 thus yields (C.6) by gathering all the constants in𝐵. Nowwemay invoke the previously proved assertion
3. using that

𝑊(𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭
⊤𝑭)) >

𝑐1𝑏𝑟1
2
𝑈(𝑭⊤𝑭)𝛼1𝑟1 +

𝑐2𝑏𝑟2
2
𝑉(𝑭⊤𝑭)𝛼2𝑟2

𝑐3𝑏𝑟3
2
𝜄3(𝑭

⊤𝑭)𝛼3𝑟3 − 𝐵

=
𝑐1𝑏𝑟1
2

|𝑭|2𝛼1𝑟1 + 𝑐2𝑏𝑟2
2

|𝑯|2𝛼2𝑟2 + 𝑐3𝑏𝑟3
2

|(det 𝑭)|2𝛼3𝑟3 − 𝐵
= 𝑐𝑚1 |𝑭|2𝑚1 + 𝑓𝑚2 |𝑯|2𝑚2 + 𝑑𝑚3(det 𝑭)2𝑚3 − 𝐶,

i.e., we set𝑚𝑖 = 𝛼𝑖𝑟𝑖 for 𝑖 = 1, 2, 3 and now continue in (C.5). In this way we find the desired coercivity estimate and the
exponents 𝑝 = 6𝑚1𝑚3

𝑚1+3𝑚3
=

6𝛼1𝑟1𝛼3𝑟3

𝛼1𝑟1+3𝛼3𝑟3
,𝑝2 =

6𝑚2𝑚3

2𝑚2+3𝑚3
=

6𝛼2𝑟2𝛼3𝑟3

2𝛼2𝑟2+3𝛼3𝑟3
and𝑚3 = 𝛼3𝑟3 ≥ 𝑚1

𝑚1−1
=

𝛼1𝑟1

𝛼1𝑟1−1
. □

C.4 Proof of Propostion 3.27: Stress control and uniform continuity of the stresses
Proof of 1.: From (87) we infer that

|𝜕𝑭𝑊(𝑭)𝑭⊤| ≤ |||𝜕𝑈𝑊(𝑈,𝑉, 𝜄3)||| |𝜕𝑭𝑈𝑭⊤| + |||𝜕𝑉𝑊(𝑈,𝑉, 𝜄3)||| |𝜕𝑭𝑉𝑭⊤|
+
|||𝜕𝜄3𝑊(𝑈,𝑉, 𝜄3)||| |𝜕𝑭𝜄3𝑭⊤|,

with 𝑈 = 𝑈(𝑭⊤𝑭), 𝑉 = 𝑉(𝑭⊤𝑭), and 𝜄3 = 𝜄3(𝑭⊤𝑭). The stress control estimate for the invariant functions (89) and
assumption (100) now allow us to conclude that

|𝜕𝑭𝑊(𝑭)𝑭⊤| ≤ 𝑐𝑈|𝜕𝑈𝑊(𝑈,𝑉, 𝜄3)𝑈| + 𝑐𝑉|𝜕𝑉𝑊(𝑈,𝑉, 𝜄3)𝑉| + 𝑐𝜄3 |𝜕𝜄3𝑊(𝑈,𝑉, 𝜄3)𝜄3|
≤ 𝑐𝐾(𝑊(𝑈,𝑉, 𝜄3) + 1) = 𝑐𝐾(𝑊(𝑭) + 1),

which is stress control (36e).
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Proof of 2.: The condition on continuity of the stresses (36f) formulated for the density𝑊, directly follows from (101)
using that𝑊(𝑭) = 𝑊(𝑈(𝑭⊤𝑭), 𝑉(𝑭⊤𝑭), 𝜄3(𝑭⊤𝑭)) and (87) for the first Piola-Kirchhoff stress. □

C.5 Proof of Corollary 3.28: Energy densities matching with Prop. 3.27
Apart from the quadratic term (det 𝑭 − 1)2, all the other terms contributing to the energy densities𝑊 from Cor. 3.26 are
power laws wrt. the modified invariants. More precisely, these terms take the form 𝑃(𝐴) = 𝐶(𝐴𝛼 − 𝑐𝛼)𝑟 − 𝐵, where 𝐴 is
a placeholder for a modified invariant 𝐴(𝑭⊤𝑭) ≥ 0, cf. (85c), with 𝐴 = 𝜄3, 𝑈, 𝑉 and with 𝑐 = 𝐴(𝟏𝟏) and 𝐵 = 𝐶𝐴(𝟏𝟏). Thus,
we may restrict the analysis of 𝑃 to the following scenario

𝐴 ≥ 0, 𝑐 ≥ 1, 𝐵 ≥ 0, 𝐶 > 0, 𝛼 ≥ 1, 𝑟 > 1. (C.7)

and it is

𝑃′(𝐴) = 𝐶𝑟𝛼𝐴𝛼−1(𝐴𝛼 − 𝑐𝛼)𝑟−1. (C.8)

To (100): In view of (C.8) we have

|𝑃′(𝐴)𝐴| = |𝐶𝑟𝛼𝐴𝛼(𝐴𝛼 − 𝑐𝛼)𝑟−1| ≤ 𝐶𝑟𝛼(|(𝐴𝛼 − 𝑐𝛼)𝑟| + |𝑐𝛼(𝐴𝛼 − 𝑐𝛼)𝑟−1|). (C.9)

We now estimate the first term on the right-hand side. For 𝐴𝛼 − 𝑐𝛼 ≥ 0 it is |(𝐴𝛼 − 𝑐𝛼)𝑟| ≤ (𝐴𝛼 − 𝑐𝛼)𝑟. For 𝐴𝛼 − 𝑐𝛼 < 0
we use (C.7) to see that 𝐴𝛼 − 𝑐𝛼 > −𝑐𝛼, so that |(𝐴𝛼 − 𝑐𝛼)𝑟| ≤ 2𝑐𝛼𝑟 + (𝐴𝛼 − 𝑐𝛼)𝑟. Hence, by combining the two cases we
find

|(𝐴𝛼 − 𝑐𝛼)𝑟| ≤ 2𝑐𝛼𝑟 + (𝐴𝛼 − 𝑐𝛼)𝑟. (C.10)

We now estimate the second term on the right-hand side of (C.9). Here wemay use Young’s inequality with the exponents
𝑎 = 𝑟∕(𝑟 − 1), 𝑎′ = 𝑟, to find |𝐴𝛼 − 𝑐𝛼|𝑟−1 ≤ 𝑟−1

𝑟
|𝐴𝛼 − 𝑐𝛼|𝑟 + 1

𝑟
, which can be further processed by (C.10). By combining

the estimates for the two terms, then adding and subtracting 𝐵, we indeed find a constant 𝐾′ > 0 such that

|𝑃′(𝐴)𝐴| ≤ 𝐾′(𝑃(𝐴) + 1). (C.11)

Moreover, we may check that the quadratic term (det 𝑭 − 1)2 and its derivative can be estimated also in the form of (C.11)
by applying Young’s inequality with the exponent 𝑎 = 𝑎′ = 2 directly in (C.9). We also note that the above arguments
remain true for 𝑃(𝐴) = 𝐴−𝛾, i.e., −𝛾 = 𝛼𝑟 and 𝑐𝛼 = 0, which shows the stress control for the volumetric term ℎ∕𝜄𝛾3 . This
finishes the proof of (100).
To (101):Againwe consider a function of the form𝑃(𝐴) = 𝐶(𝐴𝛼 − 𝑐𝛼)𝑟 − 𝐵with the properties (C.7) and first derivative

𝑃′ from (C.8). Revisiting the proof of estimate (C.11) we see that the second derivative 𝑃′′(𝐴) = 𝑐𝛼𝑟((𝛼 − 1)𝐴𝛼−2(𝐴𝛼 −
𝑐𝛼)𝑟−1 + (𝑟 − 1)(𝐴𝛼 − 𝑐𝛼)𝑟−2𝐴𝛼−1) satisfies an analogous estimate, more precisely, with a constant 𝐾′′ > 0 we have

|𝑃′′(𝐴)𝐴| ≤ 𝐾′′(𝑃′(𝐴) + 1). (C.12)

This will be used to show that

|𝜕𝑭𝑃(𝐴((𝐶𝑭)⊤(𝐶𝑭)))(𝐶𝑭)⊤ − 𝜕𝑭𝑃(𝐴(𝑭⊤𝑭))𝑭⊤| ≤ 𝑜(|𝐶 − 𝟏𝟏|)(𝑃(𝐴(𝑭⊤𝑭)) + 𝑐). (C.13)

For brevity we now set 𝑮 ∶= 𝐶𝑭 to find

|𝜕𝑭𝑃(𝐴(𝑮⊤𝑮))𝑮⊤ − 𝜕𝑭𝑃(𝐴(𝑭⊤𝑭))𝑭⊤|
=
|||𝑃′(𝐴(𝑮⊤𝑮))(𝜕𝑮𝐴(𝑮⊤𝑮))𝑮⊤ − 𝑃′(𝐴(𝑭⊤𝑭))(𝜕𝑭𝐴(𝑭⊤𝑭))𝑭⊤|||

≤ |𝑃′(𝐴(𝑮⊤𝑮)) − 𝑃′(𝐴(𝑭⊤𝑭))| |||𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤|||
+ |𝑃′(𝐴(𝑮⊤𝑮))| |||𝜕𝑮𝐴(𝑮⊤𝑮)𝑮⊤ − 𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤|||

(C.14)
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In order to further process the terms on the right-hand side of (C.14) we recall from [80, p. 11] that 𝐶−1 = (𝟏𝟏 + (𝐶 −
𝟏𝟏)𝟏𝟏)−1 = 𝟏𝟏 − (𝐶 − 𝟏𝟏) + 𝑜(|𝐶 − 𝟏𝟏|) for the inverse of the matrix 𝐶 with |𝐶 − 𝟏𝟏| < 𝛿. Hence also |𝐶−1 − 𝟏𝟏| < 𝛿̂ < 1 for|𝐶 − 𝟏𝟏| < 𝛿 sufficiently small. Thus we may equivalently apply the continuity properties of the invariants (90) for the
matrices 𝑮 and 𝐶−1𝑭.
In this way, also in view of (C.11), we further estimate the second term in (C.14) as follows

|𝑃′(𝐴(𝑮⊤𝑮))| |||𝜕𝑮𝐴(𝑮⊤𝑮)𝑮⊤ − 𝜕𝑭𝐴(𝑭⊤𝑭)𝑭⊤|||
≤ |𝑃′(𝐴(𝑮⊤𝑮))| 𝑜̃(|𝐶−1 − 𝟏𝟏|)𝐴(𝑮⊤𝑮)
≤ |𝑃′(𝐴(𝑮⊤𝑮))𝐴(𝑮⊤𝑮)| 𝑜(|𝐶 − 𝟏𝟏|)
≤ 𝐾′(𝑃(𝐴(𝑮⊤𝑮)) + 1)𝑜(|𝐶 − 𝟏𝟏|)
≤ 𝐾′(𝑃(𝐴(𝑭⊤𝑭)) + 2)𝑜(|𝐶 − 𝟏𝟏|).

(C.15)

Here we used continuity estimate (90b) for𝑮 and𝐶−1𝑭 to get to the first estimate. The second estimate ist due to the above
explained relation between𝐶−1 and𝐶 close to 𝟏𝟏. The third estimate follows by (C.11) and the fourth is due to the continuity
of 𝑃 implying that 𝑃(𝐴(𝑮⊤𝑮)) ≤ 𝑃(𝐴(𝑭⊤𝑭)) + 1, for |𝐴(𝑮⊤𝑮) − 𝐴(𝑭⊤𝑭)| ≤ 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭) sufficiently small.
For the first term in (C.14) we apply the stress control for the invariant (89) and (C.12) for 𝑃′, together with the continuity

of the invariant (90a) and deduce

|𝑃′(𝐴(𝑮⊤𝑮)) − 𝑃′(𝐴(𝑭⊤𝑭))| |||𝜕𝑭𝐴(𝑭⊤𝑭)|||
≤ 𝐴(𝑭⊤𝑭)|𝑃′′(𝐴(𝑭⊤𝑭) + 𝑡(𝐴(𝑮⊤𝑮) − 𝐴(𝑭⊤𝑭)))| |𝐴(𝑮⊤𝑮) − 𝐴(𝑭⊤𝑭)|
≤ |𝑃′′(𝐴(𝑭⊤𝑭) + 𝑡(𝐴(𝑮⊤𝑮) − 𝐴(𝑭⊤𝑭)))|𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭)
≤ |𝑃′′(𝐴(𝑭⊤𝑭)) + 1| 𝑜(|𝐶 − 𝟏𝟏|)𝐴(𝑭⊤𝑭)2
≤ (
(𝐾′′(𝑃′(𝐴(𝑭⊤𝑭) + 1)𝐴(𝑭⊤𝑭) + 𝐴(𝑭⊤𝑭)2

)
𝑜(|𝐶 − 𝟏𝟏|)

≤ (
𝐾′′

(
𝐾′(𝑃(𝐴(𝑭⊤𝑭)) + 1) + 𝐴(𝑭⊤𝑭)

)
+ 𝐴(𝑭⊤𝑭)2

)
𝑜(|𝐶 − 𝟏𝟏|)

≤ 𝐾(𝑃(𝐴(𝑭⊤𝑭)) + 1) 𝑜(|𝐶 − 𝟏𝟏|),

(C.16)

where we used Young’s inequality and the strategy of the above proof of (100) to obtain an estimate for the linear term
𝐴(𝑭⊤𝑭) and the quadratic term 𝐴(𝑭⊤𝑭)2 in terms of 𝑃(𝐴(𝑭⊤𝑭)). The combination of (C.15) and (C.16) further estimates
(C.14) and (101) yields an estimate of the desired form (101). Finally we note that the quadratic term (det 𝑭 − 1)2 can be
estimated in a similar manner using the strategy from (A.3c) ahead and the continuity estimate for ℎ∕𝜄𝛾3 is due to (A.3d)
ahead. This finishes the proof of (101).
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