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A distributed control problem
for a fractional tumor growth model

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In this paper, we study the distributed optimal control of a system of three evolutionary equa-
tions involving fractional powers of three selfadjoint, monotone, unbounded linear operators hav-
ing compact resolvents. The system is a generalization of a Cahn–Hilliard type phase field system
modeling tumor growth that goes back to Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed.
Eng. 28 (2012), 3–24.) The aim of the control process, which could be realized by either ad-
ministering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control
while avoiding possible harm for the patient. In contrast to previous studies, in which the occur-
ring unbounded operators governing the diffusional regimes were all given by the Laplacian with
zero Neumann boundary conditions, the operators may in our case be different; more generally,
we consider systems with fractional powers of the type that were studied in the recent work Adv.
Math. Sci. Appl. 28 (2019), 343–375, by the present authors. In our analysis, we show the Fréchet
differentiability of the associated control-to-state operator, establish the existence of solutions to
the associated adjoint system, and derive the first-order necessary conditions of optimality for a
cost functional of tracking type.

1 Introduction

The recent paper [15] investigates the evolutionary system

α ∂tµ+ ∂tϕ+ A2ρµ = P (ϕ)(S − µ), (1.1)

β ∂tϕ+B2σϕ+ f(ϕ) = µ, (1.2)

∂tS + C2τS = −P (ϕ)(S − µ) + u, (1.3)

where the equations are understood to hold in Ω, a bounded, connected and smooth domain in R3,
and in the time interval (0, T ). In the above system, A2ρ, B2σ, and C2τ , with r > 0, σ > 0,
ρ > 0, denote fractional powers of the selfadjoint, monotone, and unbounded, linear operators A, B
and C , respectively, which are supposed to be densely defined in H := L2(Ω) and to have compact
resolvents. Moreover, α and β are positive real parameters.

The system (1.1)–(1.3) is a generalization of a diffuse interface model for tumor growth. Such models,
which are usually established in the framework of the Cahn–Hilliard model originating from the theory
of phase transitions, have drawn increasing attention in the past years among mathematicians and
applied scientists. We cite here just [19,20,38,39,42,48,49] as a sample of pioneering papers in this
direction. In this connection, ϕ stands for an order parameter that should attain its values in the inter-
val [−1, 1], where the values −1 and +1 indicate the healthy cell and tumor cell cases, respectively.
The variable S represents the nutrient extra-cellular water concentration, u stands for a source term
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P. Colli, G. Gilardi, J. Sprekels 2

that acts as a control to monitor the evolution of the tumor cell fraction ϕ, and the nonlinearity P oc-
curring in (1.1) and (1.3) is a nonnegative and smooth function modeling a proliferation rate. Finally, µ
represents the chemical potential, which acts as the driving thermodynamic force of the evolution and
is obtained as the variational derivative with respect to the order parameter ϕ of a suitable free energy
functional. In this connection, the nonlinearity f denotes the derivative of a double-well potential F
which plays the role of a specific local free energy and yields the main contribution to the total free
energy. Important examples for F are the so-called classical regular potential and the logarithmic
double-well potential , given by the formulas

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, and (1.4)

Flog(r) :=
(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c1r

2 , r ∈ (−1, 1), (1.5)

respectively. In (1.5), the constant c1 is larger than 1, so that Flog is nonconvex. Furthermore, the
function P in (1.1) and (1.3) is nonnegative and smooth. Finally, the datum u appearing in (1.3) is
given.

In the literature, the diffusional developments in the system have usually been modeled by the Lapla-
cian, that is, the case A2ρ = B2σ = C2τ = −∆, accompanied by zero Neumann boundary con-
ditions, was assumed, where two main classes of models were considered. The first class of models
regards the tumor and healthy cells as inertialess fluids; in such models special fluid effects can be
incorporated by postulating a Darcy or Stokes–Brinkman law, see, e.g., the works [21, 23, 27, 31–35,
37, 47, 48], where we also refer to [18, 22]. The other class of models, to which the model considered
here belongs, neglects the velocity. Typical contributions in this direction were given in [4,6,8–10,26],
to name just a few.

While the occurrence of more general diffusional regimes of fractional type has been studied for a
long time in the mathematical literature, it was only recently (see, e.g., [1, 2, 12–14, 16, 28–30]) that
fractional operators have been investigated in the framework of Cahn–Hilliard systems (for phase field
systems of Caginalp type, see also [5]), and the only investigations of tumor growth models involving
fractional diffusive regimes such as in the system (1.1)–(1.3) seem to be the recent papers [15,17] by
the present authors.

In particular, in the paper [15], under rather general assumptions on the operators and the potentials,
well-posedness and regularity results for the initial value problem for (1.1)–(1.3) were established in
the case u = 0, under the assumption that α > 0 and β > 0. However, some remarks on more
general cases including u ∈ L2(Q), where Q := Ω × (0, T ), have been given in [15]. In particular,
under suitable assumptions on the initial data, for every u ∈ L2(Q), there exists at least a solution
(µ, ϕ, S) in a proper functional space to a weak version of (1.1)–(1.3) (namely, (1.2) is replaced by
a variational inequality involving the convex part F1 of F rather than f , since F1 is not supposed to
be differentiable). Moreover, the solution is unique if the domains of the fractional operators Aρ and
Cτ satisfy suitable embeddings of Sobolev type. Finally, if B2σ behaves like the Laplace operator with
either Dirichlet or Neumann zero boundary conditions and f is single valued (like (1.4) and (1.5)), then
the solution solves equation (1.2) in a stronger sense, and it is even smoother under more restrictive
assumptions on the initial data.

In this paper, we first establish similar results for system (1.1)–(1.3) by assuming α = 0 and β > 0
(in fact, we take β = 1 without loss of generality). In particular, we extend some results shown for
this case in the recent paper [17]. Then, we discuss a distributed control problem for the modified
system. Namely, given nonnegative constants κi, i = 1, . . . , 5, and functions ϕQ, SQ ∈ L2(Q) and
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Optimal control of a fractional tumor growth model 3

ϕΩ, SΩ ∈ L2(Ω), we consider the problem of minimizing the cost functional

J(u, ϕ, S) :=
κ1

2

∫
Q

|ϕ− ϕQ|2 +
κ2

2

∫
Ω

|ϕ(T )− ϕΩ|2

+
κ3

2

∫
Q

|S − SQ|2 +
κ4

2

∫
Ω

|S(T )− SΩ|2 +
κ5

2

∫
Q

|u|2 ,

where ϕ and S are the components of the solution (µ, ϕ, S) corresponding to the control u, which is
supposed to vary under restrictions of the type umin ≤ u ≤ umax.

The choice of this tracking-type cost functional reflects the plan of a medical treatment via the appli-
cation of drugs over some finite time interval (0, T ) with the aim of monitoring the evolution of the
tumor fraction ϕ under the restriction that no harm be inflicted on the patient. We remark at this place
that it would be desirable to minimize the duration, i.e., the time T > 0, of the medical treatment as
well, in order to prevent that the tumor cells develop a resistance against the drug. However, such an
approach, which was possible (see, e.g., [4]) in the special case when A2ρ = B2σ = C2τ = −∆,
becomes very complicated in the situation considered here and was therefore not included.

The literature on optimal control problems for Cahn–Hilliard systems is still scarce. In this connection,
we refer the reader to [11, 13], where a number of references is given. Even less investigations have
been made on optimal control problems for tumor growth models. About that, let us refer to the works
[4, 7, 9, 24, 25, 36, 43–47], for various models involving the Laplacian. Concerning the optimal control
of Cahn–Hilliard systems with fractional operators, we just can cite [13, 14], and, to the authors’ best
knowledge, the present paper is the first contribution on the optimal control of the tumor growth model
with fractional operators.

The remainder of the paper is organized as follows. In the next section, we list our assumptions and
notations and present our results on the state system. The next Section 3 is devoted to the study of the
control-to-state mapping and of its Fréchet differentiability. In the last section we deal with the control
problem. Namely, the existence of an optimal control is proved and the first order necessary conditions
involving a proper adjoint system are derived.

2 The state system

In this section, we first introduce the notations and the assumptions needed for the analysis of the
state system. Then, we present our results. We closely follow [15]. First of all, the set Ω ⊂ R3 is
assumed to be bounded, connected and smooth, with volume |Ω| and outward unit normal vector field
ν on Γ := ∂Ω. Moreover, ∂ν stands for the corresponding normal derivative. We set

H := L2(Ω) (2.1)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product of H . As for the operators, we
first postulate that

A : D(A) ⊂ H → H, B : D(B) ⊂ H → H and C : D(C) ⊂ H → H are

unbounded monotone selfadjoint linear operators with compact resolvents. (2.2)

DOI 10.20347/WIAS.PREPRINT.2616 Berlin 2019



P. Colli, G. Gilardi, J. Sprekels 4

Therefore, there are sequences {λj}, {λ′j}, {λ′′j} and {ej}, {e′j}, {e′′j} of eigenvalues and of
corresponding eigenvectors satisfying

Aej = λjej, Be′j = λ′je
′
j, and Ce′′j = λ′′j e

′′
j ,

with (ei, ej) = (e′i, e
′
j) = (e′′i , e

′′
j ) = δij for i, j = 1, 2, . . . , (2.3)

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . and 0 ≤ λ′′1 ≤ λ′′2 ≤ . . . ,

with lim
j→∞

λj = lim
j→∞

λ′j = lim
j→∞

λ′′j = +∞, (2.4)

{ej}, {e′j} and {e′′j} are complete systems in H. (2.5)

As a consequence, we can define the powers of the above operators with arbitrary positive real expo-
nents. As far as the first one is concerned, we have, for ρ > 0,

V ρ
A := D(Aρ) =

{
v ∈ H :

∞∑
j=1

|λρj (v, ej)|2 < +∞
}

and (2.6)

Aρv =
∞∑
j=1

λρj (v, ej)ej for v ∈ V ρ
A , (2.7)

and we endow V ρ
A with the graph norm

‖v‖A, ρ :=
(
‖v‖2 + ‖Aρv‖2

)1/2
for every v ∈ V ρ

A . (2.8)

Similarly, we set
V σ
B := D(Bσ) and V τ

C := D(Cτ ), (2.9)

with the graph norms

‖v‖B, σ :=
(
‖v‖2 + ‖Bσv‖2

)1/2
and ‖v‖C, τ :=

(
‖v‖2 + ‖Cτv‖2

)1/2
,

for v ∈ V σ
B and v ∈ V τ

C , respectively. (2.10)

From now on, we assume:

ρ, σ and τ are fixed positive real numbers. (2.11)

However, we need the further assumptions we list at once. It is understood that all of the embeddings
below are assumed to be continuous.

The first eigenvalue λ1 of A is strictly positive. (2.12)

V 2ρ
A ⊂ L∞(Ω), V ρ

A ⊂ L4(Ω), V σ
B ⊂ L4(Ω), and V τ

C ⊂ L4(Ω). (2.13)

ψ(v) ∈ H and
(
B2σv, ψ(v)

)
≥ 0, for every v ∈ V 2σ

B and every monotone

and Lipschitz continuous function ψ : R→ R vanishing at the origin. (2.14)

Due to the continuus embeddings (2.13), there exists a constant C∗ > 0 such that

‖v‖∞ ≤ C∗‖v‖A,2ρ , ‖v‖4 ≤ C∗‖v‖A, ρ , ‖v‖4 ≤ C∗‖v‖B, σ , and ‖v‖4 ≤ C∗‖v‖C, τ ,
for every v ∈ V 2ρ

A , v ∈ V ρ
A , v ∈ V σ

B , and v ∈ V τ
C , respectively, (2.15)

where, for p ∈ [1,+∞], the symbol ‖ · ‖p denotes the norm in Lp(Ω). The same symbol will also be
used for the norm in Lp(Q) provided that no confusion can arise.
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Remark 2.1. We have to make some comments on (2.12)–(2.14). The first of these assumptions is
satisfied if A is, e.g., the Laplace operator −∆ with zero Dirichlet (or Robin) boundary conditions,
while the case of zero Neumann boundary conditions is excluded unless one adds to the Laplace
operator, e.g., some zero-order term ensuring coerciveness. However, it is clear that A could be a
much more general operator. By still considering the Laplace operator with (zero) Dirichlet boundary
conditions as A, we can also discuss the first two embeddings in (2.13). By noting that D(A) =
H2(Ω)∩H1

0 (Ω) and Ω is smooth, it results thatD(A2ρ) ⊂ H4ρ(Ω) andD(Aρ) ⊂ H2ρ(Ω). Hence,
both embeddings hold true if ρ ≥ 3/8, since Ω is three-dimensional. Finally, we make a comment
on (2.14). Assume, for instance, that B2σ = −∆ with zero Neumann boundary conditions. Then,
V 2σ
B = {v ∈ H2(Ω) : ∂νv = 0 on Γ} and, for every v ∈ V 2σ

B and ψ as in (2.14), we have that
ψ(v) ∈ H1(Ω) (since v ∈ H1(Ω)) and(

B2σv, ψ(v)
)

=

∫
Ω

(−∆v)ψ(v) =

∫
Ω

∇v · ∇ψ(v) =

∫
Ω

ψ′(v)|∇v|2 ≥ 0.

The same argument works if we take the Dirichlet boundary conditions instead of the Neumann ones,
since the functionsψ considered in (2.14) vanish at the origin. More generally,B2σ can be the principal
part of an elliptic operator in divergence form with smooth coefficients. In particular, even though some
restrictions on A, B, and C have to be imposed in order to fulfill the properties (2.12)–(2.14), no
relationship between them is needed, and the three operators can be completely independent from
each other.

Remark 2.2. Assumption (2.12) allows us to consider an equivalent norm in V ρ
A . Indeed, for every

v ∈ V ρ
A we have that

‖Aρv‖2 =
∞∑
j=1

|λρj (v, ej)|2 ≥ λ2ρ
1

∞∑
j=1

|(v, ej)|2 = λ2ρ
1 ‖v‖2. (2.16)

Hence, since λ1 > 0, we deduce that

‖v‖ ≤ λ−ρ1 ‖Aρv‖ for every v ∈ V ρ
A , (2.17)

so that the function v 7→ ‖Aρv‖ defines a norm in V ρ
A that is equivalent to the graph norm (2.8).

For the nonlinear functions entering our system, we postulate the following properties:

D(F ) is an open interval (a, b) of the real line with 0 ∈ (a, b). (2.18)

F := D(F )→ R is a C3 function. (2.19)

F (s) ≥ C1s
2 − C2 and F ′′(s) ≥ −C3

for some constants Ci > 0 and every s ∈ D(F ). (2.20)

f := F ′ satisfies lim
s↘a

f(s) = −∞ and lim
s↗b

f(s) = +∞ . (2.21)

P : R→ [0,+∞) is bounded and Lipschitz continuous on R
and of class C2 in D(F ). (2.22)

Clearly, (2.18)–(2.21) are fulfilled by the significant potentials (1.4) and (1.5).

Remark 2.3. The hypotheses (2.18)–(2.21) on F ensure that the conditions required in [15], i.e.,
F =

(
F̃1 + F̃2

)
|(a,b), where

F̃1 : R→ [0,+∞] is convex, proper, and l.s.c., with F̃1(0) = 0, (2.23)
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F̃2 : R→ R is of class C1 with a Lipschitz continuous first derivative, (2.24)

F̃ λ
1 (s) + F̃2(s) ≥ −C0 for some constant C0 and every s ∈ R, (2.25)

are satisfied, as we show at once. We first split F by defining, for s ∈ (a, b),

f1(s) :=

∫ s

0

(f ′(s′))+ ds′, F1(s) :=

∫ s

0

f1(s′) ds′ ,

f2(s) := F ′(0)−
∫ s

0

(f ′(s′))− ds′ and F2(s) = F (0) +

∫ s

0

f2(s′) ds′ .

Notice that F1 is nonnegative and convex and that F1(0) = 0. If (a, b) 6= R, we properly extend these
functions Fi to functions F̃i defined in the whole of R. One can preserve the mentioned properties of
F1, including its lower semicontinuity, by setting

F̃1(a) := lim
s↘a

F1(s), F̃1(b) := lim
s↗b

F1(s) and F̃1(s) := +∞ for s 6∈ [a, b].

Moreover, one can ensure that the derivative of the extension F̃2 is Lipschitz continuous, by noting
that F ′2 = f2 already is Lipschitz continuous in (a, b) since its derivative f ′2 = −(f ′)− is bounded
by the assumption (2.20) on F ′′. The last condition that we have to check is (2.25), where F̃ λ

1 is the
Moreau–Yosida approximation of F̃1 at the level λ. We notice that this condition is not equivalent to
an inequality of type F (s) ≥ −C2, which follows from (2.20) and looks rather natural in performing
formal a priori estimates. On the other hand, one can prove that the inequality we need is implied by
the full quadratic growth condition given in (2.20) (see [16, formula (3.1)] for some explanation). For
this reason, we have postulated the latter.

Although some of the results to be presented will not require the whole set of hypotheses made so
far, the statements will be greatly simplified if we do not each time recall the properties of the involved
operators, spaces, and nonlinearities; we therefore make the following general assumption:

All of the assumptions made above on the structure are in force from now on. (2.26)

As mentioned in the Introduction, we only deal with the case α = 0 and β > 0 of system (1.1)–(1.3).
Clearly, we can take β = 1 without loss of generality. Hence, the Cauchy problem forming the state
system under investigation reads as follows:

∂tϕ+ A2ρµ = P (ϕ)(S − µ) , (2.27)

∂tϕ+B2σϕ+ f(ϕ) = µ , (2.28)

∂tS + C2τS = −P (ϕ)(S − µ) + u , (2.29)

ϕ(0) = ϕ0 and S(0) = S0, (2.30)

where ϕ0 and S0 are prescribed initial data that are supposed to satisfy

ϕ0 ∈ V 2σ
B , S0 ∈ V τ

C , and a0 ≤ ϕ0 ≤ b0 a.e. in Ω

for some compact interval [a0 , b0] ⊂ (a, b). (2.31)

In fact, we could solve a weak form of the above problem under milder assumption on the initial data;
however, in order to guarantee a sufficient regularity level of the solution, we need the whole of (2.31).
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Given a final time T ∈ (0,+∞), the regularity we can ensure (besides some boundedness to be
discussed later on) is the following:

µ ∈ L∞(0, T ;V 2ρ
A ) , (2.32)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ) ∩ L∞(0, T ;V 2σ

B ) , (2.33)

f(ϕ) ∈ L∞(0, T ;H) , (2.34)

S ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ) , (2.35)

so that equations (2.27)–(2.29) are satisfied a.e. in Q, where we recall that

Q := Ω× (0, T ). (2.36)

We notice at once that the first embedding in (2.13) yields that

µ ∈ L∞(0, T ;V 2ρ
A ) implies that µ ∈ L∞(Q). (2.37)

At this point, we are ready to present our results. To this end, it is convenient to introduce the following
variational formulation of (2.27)–(2.29):(

∂tϕ(t), v
)

+ (Aρµ(t), Aρv) =
(
P (ϕ(t))(S(t)− µ(t)), v

)
for every v ∈ V ρ

A and for a.a. t ∈ (0, T ) , (2.38)(
∂tϕ(t), v

)
+
(
Bσϕ(t), Bσv

)
+
(
f(ϕ(t)), v

)
=
(
µ(t), v

)
for every v ∈ V σ

B and for a.a. t ∈ (0, T ) , (2.39)(
∂tS(t), v

)
+ (CτS(t), Cτv) = −

(
P (ϕ(t))(S(t)− µ(t)), v

)
+ (u(t), v)

for every v ∈ V τ
C and for a.a. t ∈ (0, T ). (2.40)

This is based on obvious properties of the powers of the operators A, B and C , like the Green type
formula (A2ρv, w) = (Aρv, Aρw) for every v ∈ V 2ρ

A and w ∈ V ρ
A .

Before stating our well-posedness theorem, we prove some auxiliary results. The first one is a sepa-
ration property enjoyed by any solution under our assumptions on the data.

Theorem 2.4. Assume (2.31) and u ∈ L2(0, T ;H), and let (µ, ϕ, S) be a solution to problem
(2.27)–(2.30) satisfying (2.32)–(2.35). Then it holds for every M > 0 that if ‖µ‖∞ < M , then there
exists a compact interval [aM , bM ] ⊂ (a, b) such that

aM ≤ ϕ ≤ bM a.e. in Q. (2.41)

This interval depends only on f , the initial datum ϕ0, and M .

Proof. Notice that µ is bounded thanks to (2.37). So, we fix a constant M and assume that ‖µ‖∞ <
M . By the assumptions (2.21) on f and (2.31) on ϕ0, we can choose aM ∈ (a, a0] and bM ∈ [b0, b)
such that

f(z) < −M for all z ∈ (a, aM) and f(z) > M for all z ∈ (bM , b).

Now, we notice that, for a.a. s ∈ (0, T ), the value ϕ(s) belongs to V 2σ
B by (2.33). Moreover, the

function z 7→ ψ(z) := (z − bM)+ is monotone and Lipschitz continuous on R and vanishes at

DOI 10.20347/WIAS.PREPRINT.2616 Berlin 2019
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the origin. Hence, we have that ψ(ϕ(s)) ∈ H by (2.14). So, we can multiply (2.28), written at the
time s, by ψ(ϕ(s)) and integrate over (0, t) with respect to s. By noting that ψ(ϕ0) = 0 (since
ϕ0 ≤ b0 ≤ bM a.e. in Ω), we obtain that

1

2
‖ψ(ϕ(t))‖2 +

∫ t

0

(
B2σϕ(s), ψ(ϕ(s))

)
ds =

∫ t

0

(
µ(s)− f(ϕ(s)), ψ(ϕ(s))

)
ds .

Thanks to the inequality (2.14), the second term on the left-hand side is nonnegative. Moreover, the
right-hand side is nonpositive since ψ(ϕ) = 0 where ϕ ≤ bM , and f(ϕ) ≥ µ whenever ϕ > bM .
Hence, we conclude that ψ(ϕ) = 0 a.e. in Q, i.e., that ϕ ≤ bM a.e. in Q. By the same argument,
with ψ(z) := −(z + aM)−, one obtains that ϕ ≥ aM a.e. in Q.

Theorem 2.5. Under the assumptions (2.31) on the initial data, problem (2.27)–(2.30) has at most one
solution satisfying (2.32)–(2.35). Moreover, if M > 0, ui ∈ L2(0, T ;H), i = 1, 2, and (µi, ϕi, Si)
are two corresponding solutions to (2.27)–(2.30) satisfying (2.32)–(2.35) and ‖µi‖∞ < M for i =
1, 2, then the estimate

‖µ1 − µ2‖L2(0,T ;V ρA) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V σB )

+ ‖S1 − S2‖L∞(0,T ;H)∩L2(0,T ;V τC ) ≤ KM ‖u1 − u2‖L2(0,T ;H) (2.42)

holds true with a constant KM that depends only on the structure of the system, the initial data, T
and M .

Proof. We show the uniqueness at the end and first prove the estimate (2.42), noting that the as-
sumption ‖µi‖∞ < M is meaningful since the functions µi are bounded due to (2.37). We apply
Theorem 2.4 and find a compact interval [aM , bM ] contained in (a, b) such that

aM ≤ ϕi ≤ bM a.e. in Q, for i = 1, 2.

Since f is (at least) a C1 function on (a, b), it is Lipschitz continuous on [aM , bM ]. Let L be the cor-
responding Lipschitz constant. After this preparation, we can start the proof. We set, for convenience,
u := u1−u2, µ := µ1−µ2, ϕ := ϕ1−ϕ2, and S := S1−S2, write (2.27)–(2.29) for both solutions
and multiply the differences by µ, ∂tϕ, and S, respectively, in the inner product ofH . Then, we sum up
and integrate with respect to time over (0, t). By noting that the terms involving (µ, ∂tϕ) cancel each
other, and adding the same contributions (1/2)‖ϕ(t)‖2 =

∫ t
0
(ϕ(s), ∂tϕ(s)) ds and

∫ t
0
‖S(s)‖2 ds

to both sides, we obtain the equation∫ t

0

‖Aρµ(s)‖2 ds+

∫ t

0

‖∂tϕ(s)‖2 +
1

2
‖ϕ(t)‖2 +

1

2
‖Bσϕ(t)‖2

+
1

2
‖S(t)‖2 +

∫ t

0

‖S(s)‖2 ds+

∫ t

0

‖CτS(s)‖2 ds

=

∫ t

0

(
P (ϕ1(s))(S1(s)− µ1(s))− P (ϕ2(s))(S2(s)− µ2(s)), µ(s)− S(s)

)
ds

−
∫ t

0

(
f(ϕ1(s))− f(ϕ2(s)), ∂tϕ(s)

)
ds

+

∫ t

0

(
ϕ(s), ∂tϕ(s)

)
ds+

∫ t

0

(
u(s), S(s)

)
ds+

∫ t

0

‖S(s)‖2 ds .
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Optimal control of a fractional tumor growth model 9

If we term I the first integral on the right-hand side, apply the Young inequality to the next three terms,
use the Lipschitz continuity of f , and rearrange, we deduce that∫ t

0

‖Aρµ(s)‖2 ds+
1

2

∫ t

0

‖∂tϕ(s)‖2 +
1

2
‖ϕ(t)‖2

B, σ +
1

2
‖S(t)‖2 +

∫ t

0

‖S(s)‖2
C, τ ds

≤ I + (L2 + 1)

∫ t

0

‖ϕ(s)‖2 ds+
1

2

∫ t

0

‖u(s)‖2 +
3

2

∫ t

0

‖S(s)‖2 ds .

Now, we rewrite I as the sum of two terms. The first of these is nonpositive, since P is nonnegative,
and we estimate the other one recalling that P ′ is bounded, because P is Lipschitz continuous. By
applying the Hölder inequality, and recalling (2.15), we have for every δ > 0 that

I =

∫ t

0

(
P (ϕ1(s))(S(s)− µ(s)), µ(s)− S(s)

)
ds

+

∫ t

0

(
(P (ϕ1(s)))− P (ϕ2(s)))(S2(s)− µ2(s)), µ(s)− S(s)

)
ds

≤ sup |P ′|
∫ t

0

‖ϕ(s)‖4 ‖S2(s)− µ2(s)‖4 ‖S(s)− µ(s)‖ ds

≤ δ

∫ t

0

(
‖S(s)‖+ ‖µ(s)‖

)2
ds

+
sup |P ′|2C4

∗
4δ

∫ t

0

(
‖S2(s)‖C, τ + ‖µ2(s)‖A, ρ

)2‖ϕ(s)‖2
B, σ ds .

We notice that the function s 7→
(
‖S2(s)‖C, τ + ‖µ2(s)‖A, ρ

)2
belongs to L∞(0, T ), thanks to

the regularity (2.32) and (2.35) of µ2 and S2, respectively. Therefore, by choosing δ > 0 small
enough, and applying the Gronwall lemma, we obtain the estimate (2.42) with a constant KM whose
dependence on the data agrees with that specified in the statement.

We now come back to uniqueness. As both ui ∈ L2(0, T ;H) and the corresponding solutions
(µi, ϕi, Si) are arbitrary in the above argument (since no restriction on M is made), we conclude
that (µ1, ϕ1, S1) = (µ2, ϕ2, S2) if u1 = u2, which shows the uniqueness for the solution to problem
(2.27)–(2.30). With this, the proof is complete.

Finally, we can state our well-posedness and stability result. Here, and later on in this paper, we use
the notation

BR := {u ∈ L2(0, T ;H) : ‖u‖L2(0,T ;H) < R}, (2.43)

where R is a positive real parameter.

Theorem 2.6. Under the assumptions (2.31) on the initial data ϕ0 and S0, problem (2.27)–(2.30)
has for every u ∈ L2(0, T ;H) a unique solution (µ, ϕ, S) that satisfies (2.32)–(2.35). In particular,
µ is bounded. Moreover, for every R > 0, there exist a constant K1(R) and a compact interval
[aR, bR] ⊂ (a, b), which depend only on the structure of the system, the initial data, T and R, such
that both the estimate

‖µ‖L∞(0,T ;V 2ρ
A ) + ‖µ‖∞ + ‖P (ϕ)(S − µ)‖L2(0,T ;H)

+ ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V σB )∩L2(0,T ;V 2σ
B ) + ‖f(ϕ)‖L∞(0,T ;H)

+ ‖S‖H1(0,T ;H)∩L∞(0,T ;V τC )∩L2(0,T ;V 2τ
C )

≤ K1(R) (2.44)
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and the separation property
aR ≤ ϕ ≤ bR a.e. in Q (2.45)

hold true for every u ∈ BR and the corresponding solution (µ, ϕ, S). Finally, if R > 0, ui ∈ BR,
i = 1, 2, and (µi, ϕi, Si) are the corresponding solutions, then the estimate

‖µ1 − µ2‖L2(0,T ;V ρA) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V σB )

+ ‖S1 − S2‖L∞(0,T ;H)∩L2(0,T ;V τC ) ≤ K2(R) ‖u1 − u2‖L2(0,T ;H) (2.46)

holds true with a constant K2(R) that depends only on the structure of the system, the initial data, T ,
and R.

Proof. Uniqueness follows from Theorem 2.5. Let us come to the existence of a solution and to the
estimates (2.44) and (2.46). However, we do not give a complete proof. Indeed, one can adapt the
arguments of [15] on account of Remark 2.3, and we briefly explain the reason for this. The procedure
used there is based on the Yosida regularization of the nonlinearity f , a time discretization of the reg-
ularized system, and the derivation of suitable a priori estimates, and the same line of argumentation
can be followed in our situation. Here is the main remark: in [15], some estimates for µ have been
derived from estimates of ∂tµ, and this term is missing in (2.27), in contrast to (1.1). In the present
case, an estimate of the norm of µ, e.g., in L2(0, T ;H), can be deduced from an estimate of Aρµ in
the same space as shown in Remark 2.2, by using the assumption (2.12) on the first eigenvalue λ1

of A. Hence, we do not repeat the arguments of [15] with the corresponding modifications. However,
for the reader’s convenience, we sketch the formal proofs of the estimates that would be obtained step
by step in the rigorous procedure in order to prove the existence of a solution. We assume u ∈ BR

from the very beginning, so that these estimates eventually lead to (2.44) as well.

In order to simplify notation, we use the same symbol c without any subscript for possibly different con-
stants that depend only on the structure of our system, the initial data and T , but neither on u nor on
R . Moreover, the symbol cR stands for (possibly different) constants that depend on the constant R,
in addition, but still not on u. So, it is understood that the actual values of such constants may vary
from line to line and even in the same chain of inequalities. Notice that the notations used for constants
we want to refer to (like, e.g., those used in (2.20)) are different.

First a priori estimate. We test (2.38), (2.39) and (2.40), written at the time s, by µ(s), ∂tϕ(s),
and S(s), respectively, in the scalar product of H . Then we sum up and integrate over (0, t), where
t ∈ (0, T ) is arbitrary, noting that the terms involving the product µ ∂tϕ cancel each other. By also
adding |Ω|C2 to both sides (see (2.20)), we obtain the identity∫ t

0

‖Aρµ(s)‖2 ds+

∫ t

0

‖∂tϕ(s)‖2 ds+
1

2
‖Bσϕ(t)‖2 +

∫
Ω

(F (ϕ(t)) + C2)

+
1

2
‖S(t)‖2 +

∫ t

0

‖CτS(s)‖2 ds+

∫
Qt

P (ϕ)(S − µ)2

=
1

2
‖Bσϕ0‖2 +

∫
Ω

(F (ϕ0) + C2) +
1

2
‖S0‖2 +

∫ t

0

(
u(s), S(s)

)
ds .

Recalling the consequence (2.17) of (2.12), taking (2.20) into account and applying the Gronwall
lemma, we conclude that

‖µ‖L2(0,T ;V ρA) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V σB )

+ ‖S‖L∞(0,T ;H)∩L2(0,T ;V τC ) + ‖P 1/2(ϕ)(S − µ)‖L2(0,T ;H) ≤ cR . (2.47)
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Consequence. We can also infer that

‖P (ϕ)(S − µ)‖2
L2(0,T ;H) + ‖F (ϕ)‖L∞(0,T ;L1(Ω)) ≤ cR .

Indeed, the estimate is right for the first term, since P is bounded by (2.22); for the bound of the
second term, we can argue as in [15, Section 4.4].

Second a priori estimate. We would like to test (2.38) by ∂tµ even though ∂tµ does not appear in
the equation (in contrast to (1.1)). In fact, the estimate we derive here by a formal procedure should
be performed rigorously at the level of the discete scheme, which can contain that time derivative
multiplied by a viscosity coefficient that tends to zero at some point of the procedure. So, we test
(2.27) and (2.29) formally by ∂tµ and ∂tS, respectively. At the same time, we formally differentiate
(2.28) with respect to time and test the resulting equality by ∂tϕ. Then, we sum up and integrate with
respect to time, as usual. Since the terms involving the product ∂tµ ∂tϕ cancel each other, we obtain
the identity

1

2
‖Aρµ(t)‖2 +

1

2
‖∂tϕ(t)‖2 +

∫ t

0

‖Bσ∂tϕ(s)‖2 ds

+

∫ t

0

‖∂tS(s)‖2 ds+
1

2
‖CτS(t)‖2

=
1

2
‖Aρµ(0)‖2 +

1

2
‖∂tϕ(0)‖2 +

1

2
‖CτS0‖2

+

∫ t

0

(
u(s), ∂tS(s)

)
ds−

∫ t

0

(
f ′(s)∂tϕ(s), ∂tϕ(s)

)
ds

+

∫ t

0

(
P (ϕ(s))(S(s)− µ(s)), ∂tµ(s)− ∂tS(s)

)
ds . (2.48)

The integral containing u can be handled using Young’s inequality, and the one involving f ′ is easily
treated using the second inequality in (2.20) and (2.47). We postpone the estimate of the last integral
and first deal with the initial values appearing on the right-hand side of (2.48). By using the initial
conditions for ϕ and S, we write (2.27) and (2.28) at the time t = 0 in the following way:(

A2ρ + P (ϕ0)
)
µ(0) = P (ϕ0)S0 and ∂tϕ(0) = µ(0)−B2σϕ0 − f(ϕ0) . (2.49)

Since P is nonnegative, by multiplying the first identity in (2.49) by µ(0), we have that (see (2.17))(
P (ϕ0)S0, µ(0)

)
=
(
(A2ρ + P (ϕ0))µ(0), µ(0)

)
≥ ‖Aρµ(0)‖2 ≥ λ2ρ

1 ‖µ(0)‖2 ,

whence

‖µ(0)‖ ≤ λ−2ρ
1 ‖P (ϕ0)S0‖ ≤ c, ‖Aρµ(0)‖2 ≤ ‖µ(0)‖ ‖P (ϕ0)S0‖ ≤ c (2.50)

and, on account of (2.31), we also deduce from the second identity in (2.49) that

‖∂tϕ(0)‖ ≤ c+ ‖B2σϕ0‖+ ‖f(ϕ0)‖ ≤ c .

Finally, we deal with the last integral on the right-hand side of (2.48), which we term I for brevity.
We perform an integration by parts in time, recall that P ′ is bounded by (2.22), and invoke (2.50). By
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recalling that ‖ · ‖p denotes the norm in Lp(Ω), we then have

I = −
∫ t

0

∫
Ω

P (ϕ)(S − µ)∂t(S − µ)

= −1

2

∫
Ω

P (ϕ(t))
(
S(t)− µ(t)

)2
+

1

2

∫
Ω

P (ϕ0)
(
S0 − µ(0)

)2

+
1

2

∫ t

0

∫
Ω

P ′(ϕ)∂tϕ(S − µ)2

≤ c+ c

∫ t

0

‖∂tϕ(s)‖2

(
‖S(s)‖2

4 + ‖µ(s)‖2
4

)
ds .

Finally, we notice that ∫ T

0

(
‖S(s)‖2

4 + ‖µ(s)‖2
4

)
ds ≤ cR ,

by (2.47) and some of the embeddings in (2.13). This allows us to apply Gronwall’s lemma, whence
we conclude that

‖µ‖L∞(0,T ;V ρA) + ‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;V σB ) + ‖S‖H1(0,T ;H)∩L∞(0,T ;V τC ) ≤ cR . (2.51)

Third a priori estimate. By taking v = µ(t) in (2.38) and recalling that P is nonnegative and
bounded, we obtain the following inequality for a.a. t ∈ (0, T )

‖Aρµ(t)‖2 ≤
(
P (ϕ(t))S(t)− ∂tϕ(t), µ(t)

)
≤ c

(
‖S‖L∞(0,T ;H) + ‖∂tϕ‖L∞(0,T ;H)

)
‖µ(t)‖ .

By accounting for Remark 2.2, we deduce that

‖µ‖L∞(0,T ;V ρA) ≤ cR . (2.52)

In particular, the norm of µ in L∞(0, T ;H) is bounded by some constant cR. Since the same holds
for S due to (2.47), we infer that

‖P (ϕ)(S − µ)‖L∞(0,T ;H) ≤ cR . (2.53)

Consequence. By comparison in (2.27), we deduce that

‖A2ρµ‖L∞(0,T ;H) ≤ ‖P (ϕ)(S − µ)‖L∞(0,T ;H) + ‖∂tϕ‖L∞(0,T ;H).

Combining this with (2.53) and (2.51), we conclude that

‖µ‖L∞(0,T ;V 2ρ
A ) ≤ cR . (2.54)

Then, the first embedding in (2.13) yields that µ is bounded (as claimed in the statement) and that

‖µ‖∞ ≤ cR . (2.55)

By comparison in (2.29), we also deduce that

‖S‖L2(0,T ;V 2τ
C ) ≤ cR . (2.56)
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No better estimate for S is available, since u ∈ L2(0, T ;H), only.

Fourth a priori estimate. We recall that Remark 2.3 provides a splitting of f as f1 + f2, with
f1 monotone and vanishing at the origin and f2 Lipschitz continuous. So, we can write (2.28) for
a.a. t ∈ (0, T ) in the form

B2σϕ(t) + f1(ϕ(t)) = µ(t)− ∂tϕ(t)− f2(ϕ(t)),

and test this identity by f1(ϕ(t)). More precisely, in the correct argument f1 is replaced by its Yosida
regularization, which is monotone and Lipschitz continuous and vanishes at the origin, and the equa-
tion itself is replaced by a scheme, which is obtained by discretizing time differentiation and for which
the analogue of ϕ(t) belongs to V 2σ

B . Hence, assumption (2.14) can actually be applied. Here, we
formally apply it to the above identity with v = ϕ(t) and ψ = f1. We obtain that

‖f1(ϕ(t))‖2 ≤
(
B2σϕ(t) + f1(ϕ(t)), f1(ϕ(t))

)
=
(
µ(t)− ∂tϕ(t)− f2(ϕ(t)), f1(ϕ(t))

)
≤ ‖µ− ∂tϕ− f2(ϕ)‖L∞(0,T ;H) ‖f1(ϕ(t))‖ .

On account of the previous estimates, and by a comparison in (2.28), we conclude that

‖f1(ϕ)‖L∞(0,T ;H) + ‖ϕ‖L∞(0,T ;V 2σ
B ) ≤ cR . (2.57)

Conclusion. This concludes the formal proof of the existence part of Theorem 2.6 and of esti-
mate (2.44). As already said, in the rigorous argument the above bounds are established for the
solution to an approximating problem, and one has to perform some limiting procedure. The estimates
provide convergence of weak and weak-star type. However, even strong convergence in L2(0, T ;H)
for the approximations of ϕ and S is obtained. Indeed, the embeddings V σ

B ⊂ H and V τ
C ⊂ H are

compact due to (2.2), so that one can apply the Aubin–Lions lemma (see, e.g., [40, Thm. 5.1, p. 58]).
Therefore, the nonlinear terms can be correctly managed.

Separation. Let us come to estimate (2.45). This is a trivial consequence of the above estimate and
Theorem 2.4. Indeed, this theorem can be applied with M := cR + 1, where cR is the constant that
appears in (2.55). The corresponding compact interval [aR, bR] of the statement is nothing but the
interval [aM , bM ] considered in (2.41), which depends only on the structure of the system, the initial
data, T , and R.

Continuous dependence. Also (2.46) is a trivial consequence of a fact already proved, namely, of
Theorem 2.5. Indeed, if ui ∈ BR, i = 1, 2, then the L∞ bound for the corresponding µi is ensured
by (2.44), and Theorem 2.5 can be applied withM = K1(R) + 1. Hence, we can take asK2(R) the
constant KM that appears in (2.42). Also this constant depends only on the structure of the system,
the initial data, T and R.

Remark 2.7. The existence part of Theorem 2.6 is closely connected to the existence result proved
in [17, Theorem 3.4], where, however, no statement concerning separation or uniqueness was proved.
For purposes of control theory, however, it is indispensable to have uniqueness, since otherwise no
control-to-state operator can be defined, and this seems to be available only under the assumptions
made here.
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3 The control-to-state mapping

The results of the previous section ensure that we can correctly define a control-to-state mapping
to be used in the control problem under investigation. Taking into account that the cost functional to
be minimized depends only on the components ϕ and S of the solution corresponding to a given u,
we set

Y1 := L2(0, T ;V ρ
A), Y2 := H1(0, T ;H) ∩ L∞(0, T ;V σ

B ),

Y3 := C0([0, T ];H) ∩ L2(0, T ;V τ
C ), and Y := Y2 × Y3, (3.1)

and define

Si : L2(0, T ;H)→ Yi , i = 1, 2, 3, and S : L2(0, T ;H)→ Y,

by setting, for u ∈ L2(0, T ;H),

S1(u) := µ, S2(u) := ϕ, S3(u) := S, and S(u) := (ϕ, S),

where (µ, ϕ, S) is the solution to (2.27)–(2.30) corresponding to u. (3.2)

More precisely, we need to consider the restriction of these maps to BR for any given radius R > 0.
The choice of the space Y mainly is due to the following fact: the inequality (2.46) implies that

‖S(u1)− S(u2)‖Y ≤ K2(R) ‖u1 − u2‖L2(0,T ;H) for every u1 , u2 ∈ BR . (3.3)

A very important consequence of the separation property (2.45) and of the regularity of f ensured by
(2.19) is the following global boundedness condition:

‖f (k)(S2(u))‖∞ ≤ K3(R) for k = 0, 1, 2, and every u ∈ BR, (3.4)

where K3(R) depends only on the structure of the system, the initial data, T , and R.

The Fréchet differentiability of the maps S is strictly related to the properties of the linearized problem
we introduce now. To this end, we fix u ∈ L2(0, T ;H). The linearized system associated with u and
the variation h ∈ L2(0, T ;H) is the following:

∂tξ + A2ρη = P (ϕ)(ζ − η) + P ′(ϕ) ξ (S − µ) , (3.5)

∂tξ +B2σξ + f ′(ϕ) ξ = η , (3.6)

∂tζ + C2τζ = −P (ϕ)(ζ − η)− P ′(ϕ) ξ (S − µ) + h , (3.7)

ξ(0) = 0 and ζ(0) = 0 , (3.8)

where µ := S1(u), ϕ := S2(u), and S := S3(u). We also write the weak formulation of (3.5)–(3.7):
the identities (

∂tξ(t), v
)

+
(
Aρη(t), Aρv

)
=
(
P (ϕ(t))(ζ(t)− η(t)), v

)
+
(
P ′(ϕ(t)) ξ(t) (S(t)− µ(t)), v

)
, (3.9)(

∂tξ(t), v
)

+
(
Bσξ(t), Bσv

)
+
(
f ′(ϕ(t)) ξ(t), v

)
=
(
η(t), v

)
, (3.10)(

∂tζ(t), v
)

+
(
Cτζ(t), Cτv

)
= −

(
P (ϕ(t))(ζ(t)− η(t)), v

)
−
(
P ′(ϕ(t)) ξ(t) (S(t)− µ(t)), v

)
+
(
h(t), v

)
, (3.11)
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have to hold true for every v ∈ V ρ
A , v ∈ V σ

B , and v ∈ V τ
C , respectively, and for a.a. t ∈ (0, T ). We

have the following results.

Theorem 3.1. Suppose that the assumptions (2.31) on the initial data of problem (2.27)–(2.30) are
fulfilled, and let u ∈ L2(0, T ;H) and h ∈ L2(0, T ;H). Then the linearized problem (3.5)–(3.8) has
a unique solution (η, ξ, ζ) satisfying the regularity requirements

η ∈ L2(0, T ;V 2ρ
A ) , (3.12)

ξ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ) , (3.13)

ζ ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ). (3.14)

Moreover, if R > 0 and u ∈ BR, then this solution satisfies the estimate

‖(ξ, ζ)‖Y ≤ K4(R) ‖h‖L2(0,T ;H) , (3.15)

where the constant K4(R) depends only on the structure of the system (2.27)–(2.29), the initial data
ϕ0 and S0, T , and R.

Proof. We notice that the coefficients P (ϕ), P ′(ϕ), f ′(ϕ), as well as µ, are bounded functions.
Moreover, if u belongs to some BR, then the L∞ bounds are uniform, i.e., they just depend on R and
not on u. On the contrary, S might be unbounded. However, as stated in Theorem 2.6, it is smooth.
So, the linear system is not worse than the nonlinear one and can be solved by the same argument
(which we do not repeat here) based on time discretization that has been used in [15] (see also [13] for
the linearized system associated with the Cahn–Hilliard equations). This first leads to a solution to the
variational problem (3.9)–(3.11) and then to the strong formulation (3.5)–(3.7). However, we perform
at least some formal estimates that can justify both the regularity asserted in the statement and the
validity of estimate (3.15). To this end, we fix R > 0 and assume that u ∈ BR at once.

Also in this section, i.e., in this proof and later on, we adopt a convention on the constants similar to
the one used in the previous section: c stands for possibly different constants depending only on the
structure, the data, and T , while the notation cR indicates an additional dependence on R.

First a priori estimate. We formally test (3.9)–(3.11) by η, ∂tξ, and ζ , respectively, sum up and
integrate over (0, t). Moreover, we add the same quantities (1/2)‖ξ(t)‖2 =

∫ t
0
(ξ(s), ∂tξ(s)) ds

and
∫ t

0
‖ζ(s)‖2 to both sides of the resulting identity, in order to recover the full norms in V σ

B and V τ
C

on the left-hand side. Also in this case a cancellation occurs, and we have that∫ t

0

‖Aρη(s)‖2 ds+

∫ t

0

‖∂tξ(s)‖2 ds+
1

2
‖ξ(t)‖2

B, σ +
1

2
‖ζ(t)‖2 +

∫ t

0

‖ζ(s)‖2
C, τ ds

=

∫ t

0

(
P (ϕ(s))(ζ(s)− η(s)), η(s)− ζ(s)

)
ds

+

∫ t

0

(
P ′(ϕ(s)) ξ(s) (S(s)− µ(s)), η(s)− ζ(s)

)
ds

+

∫ t

0

(
ξ(s)− f ′(ϕ(s)) ξ(s), ∂tξ(s)

)
ds+

∫ t

0

(
h(s) + ζ(s), ζ(s)

)
ds . (3.16)

The first integral on the right-hand side is nonpositive, while the next one, which we term I , needs
some treatment. By using the Hölder inequality, two of the inequalities (2.15), Remark 2.2, and the
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Young inequality, we obtain that

I ≤ c

∫ t

0

‖ξ(s)‖2 ‖S(s)− µ(s)‖4 ‖η(s)− ζ(s)‖4 ds

≤ c

∫ t

0

‖ξ(s)‖
(
‖S(s)‖C, τ + ‖µ(s)‖A, ρ

) (
‖η(s)‖A, ρ + ‖ζ(s)‖C, τ

)
ds

≤ 1

2

∫ t

0

‖Aρη(s)‖2 ds+
1

2

∫ t

0

‖ζ(s)‖2
C, τ ds+ c

∫ t

0

(
‖S(s)‖2

C, τ + ‖µ(s)‖2
A, ρ

)
‖ξ(s)‖2 ds ,

where we notice that the function s 7→ ‖S(s)‖2
C, τ + ‖µ(s)‖2

A, ρ belongs to L∞(0, T ) and that
its norm is bounded by a constant like in (2.44), due to Theorem 2.6 applied to u. By treating the
last terms of (3.16) using the Schwarz and Young inequalities, and applying Gronwall’s lemma, we
conclude that

‖η‖L2(0,T ;V ρA) + ‖ξ‖H1(0,T ;H)∩L∞(0,T ;V σB ) + ‖ζ‖L∞(0,T ;H)∩L2(0,T ;V τC )

≤ cR ‖h‖L2(0,T ;H) . (3.17)

Second a priori estimate. We estimate the right-hand side of (3.5). On account of the embed-
dings (2.13), we have a.e. in (0, T ) that

‖P (ϕ)(ζ − η) + P ′(ϕ) ξ (S − µ)‖ ≤ c
(
‖ζ‖+ ‖η‖

)
+ c ‖ξ‖4 ‖S − µ‖4

≤ c
(
‖ζ‖+ ‖η‖

)
+ c ‖ξ‖B, σ

(
‖S‖C, τ + ‖µ‖A, ρ

)
.

On account of (3.17), we conclude that

‖P (ϕ)(ζ − η) + P ′(ϕ) ξ (S − µ)‖L2(0,T ;H) ≤ cR ‖h‖L2(0,T ;H) . (3.18)

Since (3.17) also yields an estimate for ∂tξ, a (formal) comparison in (3.5) allows us to conclude that

‖A2ρη‖L2(0,T ;H) ≤ cR ‖h‖L2(0,T ;H) , i.e., ‖η‖L2(0,T ;V 2ρ
A ) ≤ cR ‖h‖L2(0,T ;H) . (3.19)

Third a priori estimate. We test (3.7) by ∂tζ and integrate in time, as usual. On account of (3.18)
and the Young inequality, we obtain that∫ t

0

‖∂tζ(s)‖2 ds+
1

2
‖Cτζ(t)‖2 ≤ 1

2

∫ t

0

‖∂tζ(s)‖2 ds+ cR ‖h‖2
L2(0,T ;H) .

We thus deduce that

‖∂tζ‖L2(0,T ;H) + ‖ζ‖L∞(0,T ;V τC ) ≤ cR ‖h‖L2(0,T ;H) . (3.20)

Now that ∂tζ is estimated, a comparison in (3.7) provides a bound for C2τζ . Hence, we conclude that

‖ζ‖H1(0,T ;H)∩L∞(0,T ;V τC )∩L2(0,T ;V 2τ
C ) ≤ cR ‖h‖L2(0,T ;H) . (3.21)

This ends the list of the formal estimates and formally leads to a strong solution satisfying (3.15).
Even though uniqueness formally follows by taking h = 0, we remark that it can be proved rigorously.
Indeed, by assuming the regularity (3.12)–(3.14), the procedure used to obtain the above estimates is
justified.
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Theorem 3.2. Assume (2.31) for the initial data of problem (2.27)–(2.30). Then the control-to-state
mapping S defined in (3.2) is Fréchet differentiable at every point in L2(0, T ;H). More precisely,
if u ∈ L2(0, T ;H) and h ∈ L2(0, T ;H), then the value (DS)(u)[h] of the Fréchet derivative
(DS)(u) in the direction h is given by the pair (ξ, ζ), where (η, ξ, ζ) is the solution to the linearized
problem (3.5)–(3.8) associated with u and h.

Proof. Fix any u ∈ L2(0, T ;H), and let (µ, ϕ, S) be the corresponding state. For every h ∈
L2(0, T ;H), let (µh, ϕh, Sh) be the state corresponding to u + h. Finally, let (η, ξ, ζ) be the so-
lution to the linearized problem (3.5)–(3.8) associated with u and h. We set, for convenience,

ηh := µh − µ− η , ξh := ϕh − ϕ− ξ and ζh := Sh − S − ζ . (3.22)

According to the definitions of differentiability and derivative in the sense of Fréchet, we have to prove
that the (linear) map h 7→ (ξ, ζ) is continuous from L2(0, T ;H) into Y and that there exist a real
number h > 0 and a function Λ : (0, h)→ R satisfying

‖(ξh, ζh)‖Y ≤ Λ(‖h‖L2(0,T ;H)) and lim
s↘0

Λ(s)

s
= 0 . (3.23)

The first fact is ensured by (3.15) once R is chosen larger than ‖u‖L∞(0,T ;H). Hence, we fix R >

‖u‖L2(0,T ;H) once and for all. As for the construction of Λ, we set h := R − ‖u‖L2(0,T ;H), and we
assume that ‖h‖L2(0,T ;H) < h. This implies that u and u + h belong to BR, so that Theorem 2.6
can be applied to both of them. We thus derive uniform estimates for the corresponding states, hence
for the coefficients of the corresponding linearized systems. This entails uniform estimates for the cor-
responding solutions. In order to establish (3.23), we observe that (ηh, ξh, ζh) satisfies the regularity
properties

ηh ∈ L∞(0, T ;V 2ρ
A ) ,

ξh ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ) ,

ζh ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ) ,

and solves the problem (in a strong form, i.e., the equations are satisfied a.e. in Q, since all the
contributions are L2 functions)

∂tξ
h + A2ρηh = Qh

1 , (3.24)

∂tξ
h +B2σξh +Qh

2 = ηh , (3.25)

∂tζ
h + C2τζh = −Qh

1 , (3.26)

ηh(0) = 0 , ξh(0) = 0 , and ζh(0) = 0 , (3.27)

where Qh
1 and Qh

2 are defined by

Qh
1 := P (ϕh)(Sh − µh)− P (ϕ)(S − µ)− P (ϕ)(ζ − η)− P ′(ϕ) ξ (S − µ) ,

Qh
2 := f(ϕh)− f(ϕ)− f ′(ϕ) ξ .

It is convenient to rewrite the functions Qh
i by accounting for the Taylor expansions of P and f . Usig

the formula with integral remainder, it is immediately checked that

Qh
2 = f ′(ϕ)ξh +Rh

2 (ϕh − ϕ)2, where Rh
2 :=

∫ 1

0

(1− θ)f ′′(ϕ+ θ(ϕh − ϕ)) dθ , (3.28)
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while it is more complicated to find a convenient representation of Qh
1 . However, simple algebraic

manipulations show that

Qh
1 = P (ϕ)(ζh − ηh) + (P (ϕh)− P (ϕ))[(Sh − S)− (µh − µ)]

+ P ′(ϕ)(S − µ) ξh + (S − µ)Rh
1 (ϕh − ϕ)2 , (3.29)

where

Rh
1 :=

∫ 1

0

(1− θ)P ′′(ϕ+ θ(ϕh − ϕ)) dθ .

Notice that, by (3.4), both Rh
1 and Rh

2 are bounded uniformly with respect to h:

‖Rh
1‖∞ + ‖Rh

2‖∞ ≤ cR . (3.30)

After this preparation, we start estimating. To this end, we test (3.24), (3.25), and (3.26), by ηh, ∂tξh,
and ζh, respectively. Then, we sum up and integrate in time. There is a usual cancellation. By adding
the same contributions to both sides similarly as in the previous proof, we obtain

∫ t

0

‖Aρηh(s)‖2 ds+

∫ t

0

‖∂tξh(s)‖2 ds+
1

2
‖ξh(t)‖2

B, σ

+
1

2
‖ζh(t)‖2 +

∫ t

0

‖ζh(s)‖2
C, τ ds

=

∫ t

0

(
Qh

1(s), ηh(s)− ζh(s)
)
ds−

∫ t

0

(
Qh

2(s), ∂tξ
h(s)

)
ds

+

∫ t

0

(
ξh(s), ∂tξ

h(s)
)
ds+

∫ t

0

‖ζh(s)‖2 ds . (3.31)

We have to estimate only the integrals involving Qh
1 and Qh

2 . The first term produces four integrals,
termed Ij for j = 1, . . . , 4 for brevity, which correspond to the four summands, in that order, of (3.29).
Clearly, I1 is nonpositive. As for I2, we use the Hölder inequality and the embeddings (2.13) as well as
the estimate (2.46) applied with u1 = u+h and u2 = u. Hence, by omitting the integration variable s
to shorten the lines, we have for every δ > 0

I2 ≤ c

∫ t

0

‖ϕh − ϕ‖4

(
‖Sh − S‖+ ‖µh − µ‖

) (
‖ηh‖4 + ‖ζh‖4

)
ds

≤ c

∫ t

0

‖ϕh − ϕ‖B, σ
(
‖Sh − S‖+ ‖µh − µ‖

) (
‖ηh‖A, ρ + ‖ζh‖C, τ

)
ds

≤ δ

∫ t

0

(
‖ηh‖2

A, ρ + ‖ζh‖2
C, τ

)
ds

+
c

δ
‖ϕh − ϕ‖2

L∞(0,T ;V σB )

(
‖Sh − S‖2

L2(0,T ;H) + ‖µh − µ‖2
L2(0,T ;H)

)
≤ δ

∫ t

0

(
‖ηh‖2

A, ρ + ‖ζh)‖2
C, τ

)
ds+

cR
δ
‖h‖4

L2(0,T ;H) .
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Next, by also accounting for (2.44) applied to µ and S, we similarly have that

I3 ≤ c

∫ t

0

‖S − µ‖4 ‖ξh‖4

(
‖ηh‖+ ‖ζh‖

)
ds

≤ c

∫ t

0

(
‖S‖C, τ + ‖µ‖A, ρ

)
‖ξh‖B, σ

(
‖ηh‖+ ‖ζh‖

)
ds

≤ δ

∫ t

0

‖ηh‖2 ds+ cR
(
1 + δ−1

) ∫ t

0

(
‖ξh‖2

B,σ + ‖ζh‖2
)
ds

and for the fourth contribution, thanks to (3.30), we obtain that

I4 ≤ cR

∫ t

0

‖S − µ‖4 ‖ϕh − ϕ‖2
4 ‖ηh − ζh‖4 ds

≤ cR

∫ t

0

(
‖S‖C, τ + ‖µ‖A, ρ

)
‖ϕh − ϕ‖2

B, σ

(
‖ηh‖A, ρ + ‖ζh‖C, τ

)
ds

≤ δ

∫ t

0

(
‖ηh‖2

A, ρ + ‖ζh‖2
C, τ

)
ds+

cR
δ
‖h‖4

L2(0,T ;H) .

Finally, we estimate the term involving Qh
2 by accounting for (3.28) and (3.30) in this way:

−
∫ t

0

(Qh
2 , ∂tξ

h) ds = −
∫ t

0

(
f ′(ϕ)ξh +Rh

2 (ϕh − ϕ)2, ∂tξ
h
)
ds

≤ cR

∫ t

0

‖ξh‖ ‖∂tξh‖ ds+ cR

∫ t

0

‖ϕh − ϕ‖2
4 ‖∂tξh‖ ds

≤ δ

∫ t

0

‖∂tξh‖2 ds+
cR
δ

∫ t

0

‖ξh‖2 ds+
cR
δ
‖h‖4

L2(0,T ;H) .

By treating the last two terms of (3.31) in a trivial way, recalling all the inequalities derived above,
choosing δ > 0 small enough, and applying the Gronwall lemma, we conclude that

‖ηh‖L2(0,T ;V ρA) + ‖ξh‖H1(0,T ;H)∩L∞(0,T ;V σB ) + ‖ζh‖L∞(0,T ;H)∩L2(0,T ;V τC ) ≤ cR ‖h‖2
L2(0,T ;H) .

If we term CR the value of the constant cR of the last inequality, then we obtain (3.23) with Λ defined
on (0, h) by Λ(s) := CR s

2. This completes the proof.

4 The control problem

As announced in the Introduction, the main aim of this paper is the discussion of a control problem for
the state system studied in the previous sections. For this problem, we assume that

κi ≥ 0, for i = 1, . . . , 5, ϕQ , SQ ∈ L2(Q), and ϕΩ , SΩ ∈ L2(Ω) , (4.1)

umin , umax ∈ L∞(Q), and umin ≤ umax a.e. in Q. (4.2)

Then, the cost functional J and the set Uad of the admissible controls are defined by

J(u, ϕ, S) :=
κ1

2

∫
Q

|ϕ− ϕQ|2 +
κ2

2

∫
Ω

|ϕ(T )− ϕΩ|2

+
κ3

2

∫
Q

|S − SQ|2 +
κ4

2

∫
Ω

|S(T )− SΩ|2 +
κ5

2

∫
Q

|u|2 , (4.3)

Uad := {u ∈ L2(0, T ;H) : umin ≤ u ≤ umax a.e. in Q} , (4.4)
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and the control problem is the following:

Minimize J(u, ϕ, S) under the constraints that u ∈ Uad and

(µ, ϕ, S) is the solution to (2.27)–(2.30) corresponding to u. (4.5)

For the above problem, we prove the existence of an optimal control, and we derive the first-order nec-
essary conditions for optimality. This involves an adjoint problem for which we prove a well-posedness
result. We recall that the control-to-state mapping S is defined in (3.2) and state our first result.

Theorem 4.1. Under the assumptions (4.1)–(4.2), the control problem has at least one solution,
that is, there is some u ∈ Uad satisfying the following condition: for every v ∈ Uad we have that
J(u, ϕ, S) ≤ J(v, ϕ, S), where (ϕ, S) = S(u) and (ϕ, S) = S(v).

Proof. Since Uad is nonempty, the infimum of J under the constraints given in (4.5) is a well-defined
real number d ≥ 0, and we can pick a minimizing sequence {un} ⊂ Uad. Hence, denoting by
(µn, ϕn, Sn) the state corresponding to un for n ∈ N, we have that J(un, ϕn, Sn)→ d as n→∞.
Since Uad is bounded and closed in L2(0, T ;H) (in fact, it is even bounded and closed in L∞(Q)),
we can assume that

un → u weakly in L2(0, T ;H) (4.6)

for some u ∈ Uad. Moreover, we can choose some R > 0 such that Uad ⊂ BR. Therefore, we
can apply Theorem 2.6 to un and deduce that (µn, ϕn, Sn) satisfies the estimate (2.44), as well
as the separation and global boundedness properties (2.45) and (3.4), for all n ∈ N. Hence, for a
subsequence indexed again by n, we have that

µn → µ weakly star in L∞(0, T ;V 2ρ
A ) , (4.7)

ϕn → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ) , (4.8)

Sn → S weakly star in H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ) . (4.9)

It follows that the initial conditions (2.30) are satisfied by the limiting pair (ϕ, S). Moreover, thanks
to the compact embedding V σ

B ⊂ H ensured by (2.2), and consequently of H1(0, T ;V σ
B ) into

L2(0, T ;H), we deduce that

ϕn → ϕ strongly in L2(0, T ;H).

Since f and P are Lipschitz continuous in [aR, bR], we also infer that

f(ϕn)→ f(ϕ) and P (ϕn)→ P (ϕ), strongly in L2(0, T ;H).

It follows that (µ, ϕ) solves (2.28). From the above strong convergence and the weak convergence of
{µn} and {Sn} at least in L2(0, T ;H), we deduce that {P (ϕn)(Sn−µn)} converges to P (ϕ)(S−
µ) weakly in L1(Q). Hence, the limiting triplet (µ, ϕ, S) satisfies equations (2.27) and (2.29) as well,
i.e., (µ, ϕ, S) is the state corresponding to the control u. On the other hand, we have that

J(u, ϕ, S) ≤ lim inf
n↗∞

J(un, ϕn, Sn) = d ,

by semicontinuity. We conclude that u is an optimal control.
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The rest of the section is devoted to the derivation of the first-order necessary conditions for optimality.
Hence, we fix an optimal control u ∈ Uad and the corresponding (µ, ϕ, S) once and for all. If we
introduce the so-called reduced cost functional J̃ by setting

J̃(u) := J(u, S2(u), S3(u)) for u ∈ L2(0, T ;H) ,

we immediately find from the convexity of Uad that the Fréchet derivative (DJ̃)(u) ∈ L(L2(0, T ;H);
R) must satisfy

(DJ̃)(u)[v − u] ≥ 0 for every v ∈ Uad,

provided that it exists. But this is the case due to the obvious differentiability of the quadratic functional
J and the differentiability of the operator S, which takes its values in Y ⊂ (C0([0, T ];H))2. Hence,
by accounting for the full statement of Theorem 3.2, we can even apply the chain rule and rewrite the
above inequality as

κ1

∫
Q

(ϕ− ϕQ)ξ + κ2

∫
Ω

(ϕ(T )− ϕΩ)ξ(T ) + κ3

∫
Q

(S − SQ)ζ

+ κ4

∫
Ω

(S(T )− SΩ)ζ(T ) + κ5

∫
Q

u(v − u) ≥ 0 for every v ∈ Uad, (4.10)

where ξ and ζ are the components of the solution (η, ξ, ζ) to the linearized system (3.5)–(3.8) asso-
ciated with u and h = v − u.

As usual in control problems, a condition of this sort is not satisfactory, since it requires to solve the
linearized problem for infinitely many choices of h ∈ L2(0, T ;H), because v is arbitrary in Uad.
Therefore, we have to eliminate ξ and ζ from (4.10), which can be done by introducing and solving a
proper adjoint problem. This is a backward-in-time problem for the adjoint state variables (q, p, r) that
formally reads as follows:

A2ρq − p+ P (ϕ)(q − r) = 0 , (4.11)

− ∂t(q + p) +B2σp+ f ′(ϕ) p− P ′(ϕ)(S − µ)(q − r) = κ1(ϕ− ϕQ) , (4.12)

− ∂tr + C2τr − P (ϕ)(q − r) = κ3(S − SQ) , (4.13)

(q + p)(T ) = κ2(ϕ(T )− ϕΩ) and r(T ) = κ4(S(T )− SΩ) . (4.14)

However, in order to give this system a proper meaning according to the regularity that we will prove,
we need some preliminaries. First, due to the density of V σ

B in H , we can identify H with a subspace
of the dual space V −σB := (V σ

B )∗ of V σ
B in such a way that 〈v, w〉 = (v, w) for every v ∈ H

and w ∈ V σ
B , where 〈 · , · 〉 denotes the duality pairing between V −σB and V σ

B . Now, thanks to the
obvious formula (B2σv, w) = (Bσv,Bσw), which holds for every v ∈ V 2σ

B and w ∈ V σ
B and, owing

to the above identification, can also be read in the form 〈B2σv, w〉 = (Bσv,Bσw), one can extend
the operator B2σ : V 2σ

B → H to a continuous linear operator, still termed B2σ, from V σ
B to V −σB by

means of the above formula, namely,

〈B2σv, w〉 = (Bσv,Bσw) for every v, w ∈ V σ
B . (4.15)

At this point, it is meaningful to postulate the following regularity for the adjoint variables:

q ∈ L∞(0, T ;V 2ρ
A ) , (4.16)

p ∈ L2(0, T ;V σ
B ) and ∂t(q + p) ∈ L2(0, T ;V −σB ) , (4.17)

r ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ) . (4.18)
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Indeed, then all of the equations, as well as the final conditions, have a precise meaning, by also ac-
counting for the properties of the other ingredients which we recall for the reader’s convenience: P (ϕ),
P ′(ϕ), f ′(ϕ), and µ are bounded, and S ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ

B ), whence, in particular,
S ∈ L∞(0, T ;L4(Ω)). However, we also consider a variational formulation of the adjoint system,
which makes sense in a much weaker regularity setting for (q, p, r), namely,

q ∈ L∞(0, T ;V ρ
A), p ∈ L2(0, T ;V σ

B ), and r ∈ H1(0, T ;H) ∩ L2(0, T ;V τ
C ). (4.19)

We require that∫ T

0

{(
Aρq, Aρv

)
− (p, v) +

(
P (ϕ)(q − r), v)

}
ds = 0

for every v ∈ L2(0, T ;V ρ
A), (4.20)∫ T

0

{
(q + p, ∂tv) + (Bσp,Bσv) +

(
f ′(ϕ) p− P ′(ϕ)(S − µ)(q − r), v

)}
ds

=

∫ T

0

(g1, v) ds+
(
g2, v(T )

)
for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) vanishing at t = 0, (4.21)∫ T

0

{
(−∂tr, v) + (Cτr, Cτv)−

(
P (ϕ)(q − r), v

)}
ds

=

∫ T

0

(g3, v) ds for every v ∈ L2(0, T ;V τ
C ), (4.22)

r(T ) = g4, (4.23)

where we have introduced the abbreviating notation

g1 := κ1(ϕ−ϕQ), g2 := κ2(ϕ(T )−ϕΩ), g3 := κ3(S − SQ), g4 := κ4(S(T )− SΩ). (4.24)

Also for brevity, and in order to shorten the exposition, we have omitted the integration time variable
termed s. We will do the same in the following.

Clearly, (4.16)–(4.18) and (4.11)–(4.14) imply (4.19) and (4.20)–(4.23). In fact, these problems are
equivalent. The proof given below makes use of the Leibniz rule proved in [12, Lem. 4.5] (and well
known under slightly different assumptions), which we here state as a lemma.

Lemma 4.2. Let (V,H,V∗) be a Hilbert triplet, and assume that

y ∈ H1(0, T ;H) ∩ L2(0, T ;V) and z ∈ H1(0, T ;V∗) ∩ L2(0, T ;H) . (4.25)

Then the function t 7→ (y(t), z(t))H is absolutely continuous on [0, T ], and its derivative is given by

d

dt
(y, z)H = (y′, z)H + V∗〈z′, y〉V a.e. in (0, T ), (4.26)

where ( · , · )H and V∗〈 · , · 〉V denote the inner product in H and the dual pairing between V∗ and V,
respectively.

Lemma 4.3. Assume that (4.19) and (4.20)–(4.23) are valid. Then (4.16)–(4.18) and (4.11)–(4.14)
hold true as well.
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Proof. We first notice that (4.20) implies the pointwise variational inequality(
Aρq, Aρv

)
=
(
p− P (ϕ)(q − r), v

)
for every v ∈ V ρ

A and a.e. in (0, T ).

On the other hand, the conditions w ∈ V ρ
A , g ∈ H , and (Aρw,Aρv) = (g, v) for every v ∈ V ρ

A ,
imply that w ∈ V 2ρ

A and A2ρw = g, as one immediately sees by using the spectral representation.
Hence, we obtain (4.16) and (4.11). The same argument can be used to deduce that r belongs to
L2(0, T ;V 2τ

C ) and solves (4.13), since even ∂tr belongs to L2(0, T ;H) by assumption. The last
condition r ∈ L∞(0, T ;V τ

C ) in (4.18) then follows from interpolation.

Much more work has to be done for the second equations. First, for the same test functions v as
in (4.21), we deduce that∫ T

0

{
(q + p, ∂tv) + 〈B2σp, v〉

}
ds =

∫ T

0

(g, v) ds+
(
g2, v(T )

)
, (4.27)

where, for brevity, we have set

g := g1 − f ′(ϕ) p+ P ′(ϕ)(S − µ)(q − r) .

We immediately infer that∣∣∣∣∫ T

0

(
q + p, ∂tv

)
ds

∣∣∣∣ ≤ ‖p‖L2(0,T ;V σB ) ‖v‖L2(0,T ;V σB )

+ ‖g‖L2(0,T ;H) ‖v‖L2(0,T ;H) + ‖g2‖ ‖v(T )‖ .

In particular, we have for some constant c > 0 that∣∣∣∣∫ T

0

(
q + p, ∂tv

)
ds

∣∣∣∣ ≤ c ‖v‖L2(0,T ;V σB ) for every v ∈ C∞c (0, T ;V σ
B ).

This exactly means that ∂t(q + p) ∈ (L2(0, T ;V σ
B ))∗ = L2(0, T ;V −σB ). Thus, we can replace

the expression (q + p, ∂tv) by −〈∂t(q + p), v〉 in (4.27), provided that v ∈ C∞c (0, T ;V σ
B ). The

variational equation we obtain is just (4.12) understood in the sense of V −σB .

It remains to derive the first of the final conditions (4.14). To this end, we also assume that v(0) = 0
and exploit (4.27) once more. Moreover, we can apply Lemma 4.2 with V = V σ

B , H = H , y = v, and
z = q + p, since v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) and q + p ∈ H1(0, T ;V −σB ) ∩ L2(0, T ;H).
Finally, we account for the already proved equation (4.12). We then obtain that∫ T

0

(g, v) ds+
(
g2, v(T )

)
=

∫ T

0

(q + p, ∂tv) ds+

∫ T

0

(Bσp,Bσv) ds

=

∫ T

0

{
−〈∂t(q + p), v〉+ 〈B2σp, v〉

}
ds+ 〈(q + p)(T ), v(T )〉

=

∫ T

0

(g, v) ds+ 〈(q + p)(T ), v(T )〉 .

Therefore, we have that
(
(q + p)(T ), v(T )

)
=
(
g2, v(T )

)
for every v with the required properties,

and the desired final condition obviously follows.
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So, we can choose between the strong form (4.11)–(4.14) and the weak formulation (4.20)–(4.23), ac-
cording to our convenience, in proving a well-posedness result, which is our next goal. We prepare the
existence part by introducing a Faedo–Galerkin scheme with viscosity that looks like an approximation
of (4.11)–(4.14). We recall (2.3) on the eigenvalues and the eigenvectors of the operators and set, for
every integer n > 1,

V
(n)
A := span{e1, . . . , en}, V

(n)
B := span{e′1, . . . , e′n}, and V

(n)
C := span{e′′1, . . . , e′′n} .

Then, we look for a triplet (qn, pn, rn) satisfying

qn ∈ H1(0, T ;V
(n)
A ), pn ∈ H1(0, T ;V

(n)
B ), and rn ∈ H1(0, T ;V

(n)
C ), (4.28)

and solving the system

(
− 1
n
∂tq

n + A2ρqn − pn + P (ϕ)(qn − rn), v
)

= 0 for every v ∈ V (n)
A and a.e. in (0, T ), (4.29)(

−∂t(qn + pn) +
(
B2σpn + f ′(ϕ)pn − P ′(ϕ)(S − µ)(qn − rn), v

)
= (g1, v) for every v ∈ V (n)

B and a.e. in (0, T ), (4.30)(
−∂trn + C2τrn − P (ϕ)(qn − rn), v

)
= (g3, v) for every v ∈ V (n)

C and a.e. in (0, T ), (4.31)

as well as the final conditions

(
qn(T ), v

)
= 0,

(
(qn + pn)(T ), v

)
=
(
g2, v

)
, and

(
rn(T ), v

)
=
(
g4, v

)
,

for every v ∈ V (n)
A , v ∈ V (n)

B , and v ∈ V (n)
C , respectively. (4.32)

The following result holds true.

Proposition 4.4. The system (4.29)–(4.32) has a unique solution (qn, pn, rn) satisfying the conditions
(4.28).

Proof. The requirements (4.28) mean that

qn(t) =
n∑
j=1

qnj (t) ej , pn(t) =
n∑
j=1

pnj (t) e′j , and rn(t) =
n∑
j=1

rnj (t) e′′j ,

for a.a. t ∈ (0, T ) and some functions qnj , p
n
j , r

n
j ∈ H1(0, T ). Moreover, an equivalent system

is obtained by taking for i = 1, . . . , n just v = ei , v = e′i , and v = e′′i , in the three variational
equations, respectively. Hence, (4.29)–(4.31) becomes an ODE system having the column vectors
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qn := (qnj ), pn := (pnj ), and rn := (rnj ), as unknowns. This system reads as follows:

n∑
j=1

{
− 1

n
(ej, ei)

d

dt
qnj + λ2ρ

j (ej, ei)q
n
j − (e′j, ei)p

n
j

+
(
P (ϕ)ej, ei

)
qnj −

(
P (ϕ)e′′j , ei

)
rnj

}
= 0 ,

n∑
j=1

{
−(ej, e

′
i)
d

dt
qnj − (e′j, e

′
i)
d

dt
pnj + (λ′j)

2σ(e′j, e
′
i)p

n
j +

(
f ′(ϕ)e′j, e

′
i

)
pnj

−
(
P ′(ϕ)(S − µ)ej, e

′
i

)
qnj +

(
P ′(ϕ)(S − µ)e′′j , e

′
i

)
rnj

}
= (g1, e

′
i) ,

n∑
j=1

{
−(e′′j , e

′′
i )
d

dt
rnj + (λ′′j )

2τ (e′′j , e
′′
i )r

n
j

−
(
P (ϕ)ej, e

′′
i

)
qnj +

(
P (ϕ)e′′j , e

′′
i

)
rnj

}
= (g3, e

′′
i ) ,

where the index i runs over {1, . . . , n} in all of the equations, which are understood to hold a.e.
in (0, T ). Thus, thanks to the orthogonality conditions in (2.3), it takes the form

− 1

n
q′n +M1 qn +M2 pn +M3 rn = 0 ,

M4 q
′
n − p′n +M5 qn +M6 pn +M7 rn = b′n ,

− r′n +M8 qn +M9 rn = b′′n ,

for some (possibly time dependent, but bounded) (n × n) matrices Mk, k = 1, . . . , 9, and column
vectors b′n , b

′′
n ∈ L2(0, T ;Rn). Therefore, one can solve the first equation for q′n and replace q′n in

the second one by the resulting expression. At the same time, one multiplies the first equation by n and
keeps the third one as it is. This procedure leads to an equivalent system of the form −y′+My = b
for some matrix M ∈ L∞(0, T ;R3n×3n) and some vector b ∈ L2(0, T ;R3n) in the unknown
y ∈ H1(0, T ;R3n) obtained by rearranging the triplet (qn , pn , rn) as a 3n-column vector. On the
other hand, the final conditions (4.32) provide a final condition for y. Hence, standard results for ODEs
show the unique solvability.

At this point, we are ready to solve the adjoint problem. We need, however, the following additional
compatibility condition:

It holds κ4 SΩ ∈ V τ
C . (4.33)

Remark 4.5. The compatibility condition (4.33) is satisfied if either κ4 = 0 or SΩ ∈ V τ
C . Obviously,

κ4 = 0 means that we do not have a tracking of the solution variable S at the final time T ; while this
is not desirable, it is not too much of a restriction, since one is rather interested in monitoring the final
tumor fraction ϕ(T ) than S(T ). On the other hand, the assumption SΩ ∈ V τ

C is not overly restrictive
in view of the fact that S ∈ H1(0, T ;H)∩L2(0, T ;V 2τ

C ), whence it follows that S ∈ C0([0, T ];V τ
C )

by continuous embedding, and thus S(T ) ∈ V τ
C ; assuming the same regularity for SΩ is certainly not

unreasonable.

We have the following result.

Theorem 4.6. Suppose that also (4.33) is fulfilled. Then the adjoint system (4.11)–(4.14) has a unique
solution satisfying the regularity conditions (4.16)–(4.18).
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Proof. In order to prove the existence of a solution, we start from the finite-dimensional problem
(4.29)–(4.32), perform an a priori estimate, and let n tend to infinity. Also in this section, we simplify
the notation as far as constants are concerned and use the same symbol c for different constants
that can depend only on the structure, the data, T , the optimal control u, and the corresponding state
(µ, ϕ, S).

A priori estimate. We write the equations (4.29)–(4.31) at the time s and test them by −∂tqn(s),
pn(s), and −∂trn(s), respectively. Then, we sum up, integrate over (t, T ) with respect to s, and
notice that the terms involving the product pn∂tqn cancel each other. Moreover, we add the same
quantities

∫ T
t
‖pn‖2 ds and (1/2)‖rn(t)‖2 =

∫ T
t

(rn, ∂tr
n) ds to both sides in order to recover the

full norms in the spaces V σ
B and V τ

C . We then obtain the identity

1

n

∫ T

t

‖∂tqn‖2 ds+
1

2
‖Aρqn(t)‖2 +

1

2
‖pn(t)‖2 +

∫ T

t

‖pn‖2
B, σ ds

+

∫ T

t

‖∂trn‖2 ds+
1

2
‖rn(t)‖2

C, τ

=

∫ T

t

(
P (ϕ)(qn − rn)∂t(q

n − rn)
)
ds+

∫ T

t

(
P ′(ϕ)(S − µ)(qn − rn), pn

)
ds

−
∫ T

t

(
f ′(ϕ)pn, pn

)
ds+

∫ T

t

(g1, p
n) ds−

∫ T

t

(g3, ∂tr
n) ds

+
1

2
‖Aρqn(T )‖2 +

1

2
‖pn(T )‖2 +

1

2
‖rn(T )‖2

C, τ

+

∫ T

t

‖pn‖2 ds+

∫ T

t

(rn, ∂tr
n) ds . (4.34)

At first, we exploit the endpoint conditions (4.32). Obviously, qn(T ) = 0, which entails thatAρqn(T ) =

0, as well as (pn(T ), v) = (g2, v) for all v ∈ V (n)
B . The latter identity just means that pn(T ) is the

H-orthogonal projection of g2 onto V (n)
B , which implies that ‖pn(T )‖ ≤ ‖g2‖ for all n ∈ N. By the

same token, we can infer that ‖rn(T )‖ ≤ ‖g4‖ for all n ∈ N. Finally, we insert v = C2τrn(T ) ∈
V

(n)
C in the last identity in (4.32). Recalling that S ∈ C0([0, T ];V τ

C ), and by virtue of (4.33), we infer
that g4 ∈ V τ

C . We thus find that∥∥Cτrn(T )
∥∥2

=
(
rn(T ), C2τrn(T )

)
=
(
g4, C

2τrn(T )
)

=
(
Cτg4, C

τrn(T )
)
,

whence we infer that ‖Cτrn(T )‖ ≤ ‖Cτg4‖. In conclusion, we have shown the estimate
‖rn(T )‖C,τ ≤ ‖g4‖C,τ for all n ∈ N.

Next, we consider the first two terms on the right-hand side, which we denote by Y1 and Y2. We only
need to estimate these terms, since the remaining other ones can easily be handled using Young’s
inequality and, eventually, Gronwall’s lemma. As for Y1, we first integrate by parts, and one of the
important terms we obtain is nonpositive. Then, we account for the Hölder and Youngs inequalities,
the equivalence of norms in V ρ

A related to (2.17), and the embeddings (2.13) as follows:

Y1 =
1

2

∫ T

t

∫
Ω

P (ϕ) ∂t|qn − rn|2 dx ds =
1

2

∫
Ω

P (ϕ(T )) |qn(T )− rn(T )|2

− 1

2

∫
Ω

P (ϕ(t)) |qn(t)− rn(t)|2 −
∫ T

t

∫
Ω

P ′(ϕ) ∂tϕ |qn − rn|2

≤ c+ c

∫ T

t

‖∂tϕ‖4 (‖qn‖4 + ‖rn‖4)2 ds ≤ c+ c

∫ T

t

(
‖Aρqn‖2 + ‖rn‖2

C, τ

)
ds .
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Concerning Y2, we have that

Y2 ≤ c

∫ T

t

‖S − µ‖4 ‖qn − rn‖4 ‖pn‖4 ds

≤ 1

2

∫ T

t

‖pn‖2
B, σ ds+ c

∫ T

t

(
‖Aρqn‖2 + ‖rn‖2

C, τ

)
ds .

By treating the remaining terms on the right-hand side of (4.34) as announced before, and applying
the Gronwall lemma, we conclude that

1√
n
‖∂tqn‖2

L2(0,T ;H) + ‖qn‖L∞(0,T ;V ρA)

+ ‖pn‖L∞(0,T ;H)∩L2(0,T ;V σB ) + ‖rn‖H1(0,T ;H)∩L∞(0,T ;V τC ) ≤ c . (4.35)

Existence. The above estimate ensures that, for a subsequence again indexed by n,

1

n
∂tq

n → 0 strongly in L2(0, T ;H), (4.36)

qn → q weakly star in L∞(0, T ;V ρ
A), (4.37)

pn → p weakly star in L∞(0, T ;H) ∩ L2(0, T ;V σ
B ), (4.38)

rn → r weakly star in H1(0, T ;H) ∩ L∞(0, T ;V τ
C ). (4.39)

We aim at proving that (q, p, r) is the desired solution to the weak form (4.20)–(4.23) of the adjoint
problem. Clearly, (4.23) is satisfied, and we have to prove that the variational equations are satisfied
as well. We confine ourselves to the second equation, which is the most complicated one. To this end,
we write an integrated version of (4.30). We fix any integer m > 1, take any v ∈ H1(0, T ;H) ∩
L2(0, T ;V

(m)
B ) vanishing at t = 0, and assume that n ≥ m. Then V

(m)
A ⊂ V

(n)
A , so that v(s)

is admissible in (4.30) written at the time s, and we can test the equation in the inner product of H .
Moreover, we replace (B2σpn(s), v(s)) by (Bσpn(s), Bσv(s)). Then, we integrate over (0, T ) with
respect to s. Now, we observe that v(T ) is admissible in the second identity of (4.32). So, by an
integration by parts, we obtain that∫ T

0

{
(qn + pn, ∂tv) + (Bσpn, Bσv) +

(
f ′(ϕ) pn − P ′(ϕ)(S − µ)(qn − rn), v

)}
ds

=

∫ T

0

(g1, v) ds+
(
g2, v(T )

)
.

Since n ≥ m is arbitrary, we can let n tend to infinity by using (4.37)–(4.39). Concerning, e.g., the
worst term, we recall that S and µ belong to L∞(0, T ;L4(Ω)) and observe that qn and rn converge
to q and r, respectively, also weakly in L2(0, T ;L4(Ω)). Hence, we have that

P ′(ϕ)(S − µ)(qn − rn)→ P ′(ϕ)(S − µ)(q − r) weakly in L2(0, T ;H).

As the other terms are easier, we conclude that (4.21) holds for such a function v. At this point, we fix
any v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) vanishing at t = 0 and define vm by setting

vm(t) :=
m∑
j=1

(v(t), e′j)e
′
j for t ∈ [0, T ].
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Then, vm belongs to H1(0, T ;H) ∩ L2(0, T ;V
(m)
A ) and vanishes at t = 0. Hence, we can use it

in the equality just obtained. As m is arbitrary, we can take the limit as m → ∞. By noting that vm
converges even strongly to v in H1(0, T ;H) ∩ L2(0, T ;V σ

B ), we conclude that (4.21) is satisfied for
such a v. By similarly reasoning for the other equations, we can conclude. Hence, the existence part
of the statement is proved.

Uniqueness. By linearity, we can assume that all the right-hand sides of the strong formulation
(4.11)–(4.14) vanish, so that the problem becomes

A2ρq − p+ P (ϕ)(q − r) = 0 , (4.40)

− ∂t(q + p) +B2σp+ f ′(ϕ) p− P ′(ϕ)(S − µ)(q − r) = 0 , (4.41)

− ∂tr + C2τr − P (ϕ)(q − r) = 0 , (4.42)

(q + p)(T ) = 0 and r(T ) = 0 . (4.43)

We cannot adapt the argument used to arrive at (4.35), since no information for ∂tq is available now.
So, we proceed in a different way. With the notation

(1 ∗ v)(t) :=

∫ T

t

v(s) ds for a.a. t ∈ (0, T ) and every v ∈ L1(0, T ;H) ,

we integrate (for a.a. t ∈ (0, T )) (4.41) over (t, T ) and obtain a.e. in (0, T )

q + p+B2σ(1 ∗ p) = 1 ∗
(
P ′(ϕ)(S − µ)(q − r)

)
− 1 ∗

(
f ′(ϕ) p

)
. (4.44)

At this point, we test (4.40) by q, (4.44) by p, and (4.42) by r, sum up, and integrate over (t, T ).
The terms involving the product p q cancel each other. We also add the same quantities (1/2)‖(1 ∗
p)(t)‖2 =

∫ T
t
p(1 ∗ p) ds and

∫ T
t
‖r‖2 ds to both sides and obtain∫ T

t

‖Aρq‖2 ds+

∫ T

t

(
P (ϕ)(q − r), q − r

)
ds+

∫ T

t

‖p‖2 ds+
1

2
‖(1 ∗ p)(t)‖2

B, σ

+
1

2
‖r(t)‖2 +

∫ T

t

‖r‖2
C, τ ds

=

∫ T

t

(
1 ∗
(
P ′(ϕ)(S − µ)(q − r)− f ′(ϕ) p

)
, p
)
ds

+

∫ T

t

p(1 ∗ p) ds+

∫ T

t

‖r‖2 ds . (4.45)

All of the terms on the left-hand side are nonnegative. Now, we treat the first integral on the right-hand
side, which we term Y . We first integrate by parts. Then, we owe to Young’s inequality and to the
obvious inequality ‖(1∗ v)(t)‖2 ≤ T

∫ T
t
‖v(s)‖2 ds, which holds true for every t ∈ [0, T ] and every

v ∈ L2(0, T ;H). We set, for brevity, w := P ′(ϕ)(S − µ)(q − r)− f ′(ϕ)p and observe that

Y ≤ 1

4

∫ T

t

‖p‖2 ds+

∫ T

t

‖1 ∗ w‖2 ds

≤ 1

4

∫ T

t

‖p‖2 ds+

∫ T

t

T

∫ T

s

‖w‖2ds′ ds.
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On the other hand, we recall (2.13), (2.17) and the regularity L∞(0, T ;L4(Ω)) of S and µ. We thus
deduce that∫ T

s

‖w‖2ds′ ≤ ‖P ′(ϕ)‖2
∞

∫ T

s

‖S − µ‖2
4 ‖q − r‖2

4ds
′ + ‖f ′(ϕ)‖2

∞

∫ T

s

‖p‖2ds′

≤ c

∫ T

s

(
‖Aρq‖2 + ‖r‖2

C, τ + ‖p‖2
)
ds′ ,

whence

Y ≤ 1

4

∫ T

t

‖p‖2 ds+

∫ T

t

c

(∫ T

s

(
‖Aρq‖2 + ‖p‖2 + ‖r‖2

C, τ

)
ds′
)
ds. (4.46)

Therefore, coming back to (4.45) and estimating the second integral on the right-hand side as∫ T

t

p(1 ∗ p) ds ≤ 1

4

∫ T

t

‖p‖2 ds+

∫ T

t

‖1 ∗ p‖2 ds

and then applying the Gronwall lemma, we easily conclude that (q, p, r) = (0, 0, 0).

Now that the adjoint problem is solved, we can rewrite the variational inequality (4.10) in a much better
form. Indeed, we have the following result.

Theorem 4.7. Under the assumptions (4.1)–(4.2) and (4.33), let u ∈ Uad be an optimal control, and
let (q, p, r) be the solution to the associated adjoint problem (4.11)–(4.14). Then it holds∫

Q

(r + κ5u)(v − u) ≥ 0 for every v ∈ Uad. (4.47)

In particular, if κ5 > 0, then u is the projection of −r/κ5 on Uad in the sense of the space L2(Q)
with its standard inner product. That is, it is given by

u = min{umax,max{umin,−r/κ5}} a.e. in Q .

Proof. We fix v ∈ Uad and consider the linearized system with h = v − u. Now, we observe that
the regularity (4.16)–(4.18) is suitable for integrating over (0, T ) the equations (3.5), (3.6), and (3.7),
tested by q(t), p(t), and r(t), respectively. By doing this, rearranging and summing up, we obtain
(as before in this section, we omit the integration variable, which we term s for uniformity)∫ T

0

{(
∂tξ, q

)
+
(
Aρη, Aρq

)
−
(
P (ϕ)(ζ − η), q

)
−
(
P ′(ϕ) ξ (S − µ), q

)}
ds

+

∫ T

0

{(
∂tξ, p

)
+
(
Bσξ, Bσp

)
+
(
f ′(ϕ) ξ, p

)
−
(
η, p
)}
ds

+

∫ T

0

{(
∂tζ, r

)
+
(
Cτζ, Cτr

)
+
(
P (ϕ)(ζ − η), r

)
+
(
P ′(ϕ) ξ (S − µ), r

)}
ds

=

∫ T

0

(
v − u, r

)
ds .
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At the same time, we take v = −η in (4.20), v = −ξ in (4.21), v = −ζ in (4.22), respectively, and
note that all the three test functions are admissible in their equations. Then, we sum up, rearrange,
and get∫ T

0

{
−
(
Aρq, Aρη

)
+ (p, η)−

(
P (ϕ)(q − r), η)

}
ds

+

∫ T

0

{
−(q + p, ∂tξ)− (Bσp,Bσξ)−

(
f ′(ϕ) p− P ′(ϕ)(S − µ)(q − r), ξ

)}
ds

+

∫ T

0

{
(∂tr, ζ)− (Cτr, Cτζ) +

(
P (ϕ)(q − r), ζ

)}
ds

= −
∫ T

0

(g1, ξ) ds−
(
g2, ξ(T )

)
−
∫ T

0

(g3, ζ) ds .

Next, we add the identities just obtained to each other. Several cancellations occur, and what remains
is just the following identity:∫ T

0

{(∂tζ, r) + (∂tr, ζ)} ds =

∫ T

0

(
v − u, r

)
ds−

∫ T

0

(g1, ξ) ds−
(
g2, ξ(T )

)
−
∫ T

0

(g3, ζ) ds .

At this point, we observe that the left-hand side equals (g4, ζ(T )) by (4.23), so that the above identity
becomes∫ T

0

(g1, ξ) ds+
(
g2, ξ(T )

)
+

∫ T

0

(g3, ζ) ds+
(
g4, ζ(T )

)
=

∫ T

0

(
v − u, r

)
ds .

Hence, by recalling the notation (4.24), and comparing with (4.10), we obtain (4.47).
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