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Abstract

We study theoretically the dynamics of a multistripe laser array with an external cavity

formed by either a single or two off-axis feedback mirrors, which allow to select a single

lateral mode with transversely modulated intensity distribution. We derive and analyze a

reduced model of such an array based on a set of delay differential equations taking into

account transverse carrier grating in the semiconductor medium. With the help of the bi-

furcation analysis of the reduced model we show the existence of single and multimode

instabilities leading to periodic and irregular pulsations of the output intensity. In particular,

we observe a multimode instability leading to a periodic regime with anti-phase oscillating

intensities of the two counter-propagating waves in the external cavity. This is in agreement

with the result obtained earlier with the help of a 2+1 dimensional traveling wave model.

1 Introduction

During the last decades high power broad area laser diodes attracted much attention due to

their applications in different areas, such as medicine, spectroscopy, and material processing.

These lasers reach electro-optical efficiencies of more than 70% [13] and feature small phys-

ical sizes combined with high reliability. Moreover, these devices can exhibit output powers of

more than 20 W as single emitters [19] and several hundred Watts when they are combined

in laser bars [17]. However, because of transverse instabilities arising at sufficiently high pump

levels, broad area lasers usually demonstrate poor beam quality characterized by large far-field

divergence. Furthermore, in the absence of spectral filtering they usually operate in unwanted

dynamical periodic or chaotic states. Several approaches have been developed to improve the

beam quality and increase the brightness of high power broad area laser diodes. Promising

designs are distributed-feedback tapered master oscillator power amplifiers [21, 28] or DBR ta-

pered lasers [5, 6, 8]. They consist of a narrow ridge waveguide for lateral mode filtering and a

tapered amplifier integrated on a single chip. Another method to improve the output beam char-

acteristics is based on the use of multi-stripe laser arrays [2]. When all N stripes in the array are

synchronized in-phase the array emits a high quality beam with a single lobe in the far field and

power proportional to N2. Achievement of in-phase synchronization of the individual emitters

in a laser array is, however, a complicated task, which usually requires the presence of global

coupling between the emitters (see e.g. [14,15,25]). An alternative approach which utilizes anti-

phase synchronization of adjacent stripes in the array by means of an off-axis feedback from

an external cavity was used in [3, 7, 9, 11, 12, 16, 22, 29]. By a proper tilt of the feedback mirror

a single transverse supermode of the array characterized by a two-lobe far field pattern can be

selected. One of these lobes is reflected back from the feedback mirror and, hence, provides a

feedback mechanism necessary for laser generation, while the other one is used for output of

laser radiation.
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Figure 1: Schematic view of a BAL with off-axis feedback.

In the present work we perform a detailed theoretical investigation of the operation regimes in a

multistripe semiconductor laser array with off-axis filtered feedback [18] and extend our analysis

to the case of a broad area laser (BAL) with external V-shaped cavity. In Section 2 we introduce

mathematical models to study the dynamics of a multistripe laser with a single and two tilted

feedback mirrors, which are based on a set of delay differential equations for the electric field

envelopes, homogeneous component of the carrier density, and the transverse carrier grating.

Section 3 is devoted to numerical analysis of the model equations. For a laser array with a

single feedback mirror the bifurcation analysis shows the existence of single and multimode

instabilities leading to a periodic and irregular time dependence of the output intensity. In the

case of two feedback mirrors we report the formation of a periodic pattern resulting from the

interference of the two plane waves reflected from the feedback mirrors. Concluding remarks

are given in Section 4.

2 Reduced models of striped BAL with off-axis feedback

Schematic representation of the striped BAL under consideration is shown in Fig. 1. Here, κ1,

κ2, and κ3 describe the reflectivity of the left laser facet, feedback mirror, and optional second

feedback mirror, respectively; α is the angle of the tilt of the feedback mirror and L is the

distance from the right laser facet to this mirror. The distance L is assumed to be much larger

than the width w and the length l of the BAL, L � w, l. The time required for the light to travel

from the BAL to the feedback mirror and back is given by τ = 2L/c0, where c0 is the velocity

of light in vacuum.

When the tilt angle α of the external mirror is properly adjusted, so that the adjacent stripes

are syncronized anti-phase, the array emits a double lobed far field pattern with a pronounced

output lobe at the angle α and a slightly suppressed feedback lobe at the opposite angle −α.
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This behavior was observed experimentally [10] and reproduced in numerical simulations using

a 2+1 dimensional traveling wave model [18]. Based on this observation we assume that the

amplitude of the electric field in the laser cavity can be written as a superposition of four traveling

waves with slowly varying envelopes a(t, z), b(t, z), c(t, z), and d(t, z), see Fig. 1,

E = aeikz+iβx + ce−ikz+iβx + be−ikz−iβx + deikz−iβx. (1)

Here k is the longitudinal wavevector and the transverse wavevector β is proportional to sinα.

The equation for the carrier density n(t, z, x) can be written in the form

∂tn = N(x)− γn− n|E|2, (2)

where N(x) ≥ 0 describes the transverse distribution of the pump current in the semiconductor

medium, γ is the carrier relaxation rate and the electric field amplitude E is defined by Eq. (1).

Substituting n = n0+n2e
−2iβx+n∗

2e
2iβx+ ... into the carrier equation (2) and neglecting fast

oscillating terms by assuming that the corresponding coefficients decrease with increasing β
(|n2| � |n0|), we obtain the following equations for the homogeneous component of the carrier

density n0 and transverse carrier grating n2:

∂tn0 = N0 − γn0 −
(

n0(|a|
2 + |b|2 + |c|2 + |d|2)+

n2cb
∗ + n∗

2c
∗b+ n2ad

∗ + n∗

2a
∗d
)

,
(3)

∂tn2 = N2 − γn2 −
(

n2(|a|
2 + |b|2 + |c|2 + |d|2) + n0c

∗b+ n0a
∗d
)

, (4)

where N0 =
∫ w

0
N(x)dx and N2 =

∫ w

0
N(x)e2iβxdx.

For the space-time evolution of the amplitudes a, b, c, and d we write the following system of

equations

∂ta− v0∂za =
g(1− iαH)

2
(n0a+ n∗

2d) , (5)

∂td− v0∂zd =
g(1− iαH)

2
(n0d+ n2a) , (6)

∂tc+ v0∂zc =
g(1− iαH)

2
(n0c+ n∗

2b) , (7)

∂tb+ v0∂zb =
g(1− iαH)

2
(n0b+ n2c) , (8)

where αH is the linewidth enhancement factor, g is the differential gain parameter, and v0 is the

group velocity of light in semiconductor medium.

The boundary conditions for the laser with a single and two external feedback mirrors are given

by

d(t, l) = 0, b(t, 0) = κ1d(t, 0), c(t, 0) = κ1a(t, 0),

a(t, l) = κ2Γ

∫ t

0

e−Γ(t−s)b(s−
2L

c0
, l)ds,

(9)
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and

d(t, l) = κ3Γ

∫ t

0

e−Γ(t−s)c(s−
2L

c0
, l)ds, b(t, 0) = κ1d(t, 0),

a(t, l) = κ2Γ

∫ t

0

e−Γ(t−s)b(s−
2L

c0
, l)ds, c(t, 0) = κ1a(t, 0),

(10)

respectively. Here we have assumed that Lorentzian spectral filters with the bandwidth Γ are

located at the external mirrors.

In the following analysis we assume that the variables n0, n2, and E are slowly varying func-

tions of time t inside the active medium (l � L). Therefore, using an approach similar to that

proposed in [23, 26, 27] we can reduce the model equations (3)-(8) to a set of delay differential

equations (DDE). In the case of BAL with a single feedback mirror we integrate equations (5)-(8)

along the characteristics and use the boundary conditions (9). Then, assuming that arg n2(t, z)
changes very slowly within the active medium, we obtain the following reduced DDE model for

a laser array with a single feedback mirror (see Appendix):

Γ−1∂tA+ A = (1− iαH)κ1κ2e
(1−iαH )GTHTAT , (11)

∂tG = G0 − γG− |A|2(eG − 1)(1 + κ2
1e

G). (12)

∂tH = H0 − γH − |A|2H

(

1− iαH

2
eG(κ2

1(2e
G − 1) + 1)+

1 + iαH

2

eG − 1

G
(κ2

1e
G + 1)

)

,

(13)

where A(t) = a(t, l), φ(t) = arg n2(t − l/(2v0), l/2), G(t) =
∫ l

0
n0(t − l/(2v0), z)dζ ,

|H(t)| =
∫ l

0
|n2(t − l/(2v0), z)|dz, and H(t) = eiφ(t)|H(t)|. The subscript T denotes

delayed argument, φT = φ(t − T ), HT = H(t − T ), and GT = G(t − T ). The delay

time is T = 2(L/c0 + l/v0). In the derivation of (11)-(13) we have used approximations

|n2| � 1 and |A| � 1, which are valid when the array operates sufficiently close to the

lasing threshold and/or the transverse grating in the active medium is sufficiently weak, see

Appendix and Ref. [20]. It will be shown below that despite the above mentioned approximations,

the results obtained with our DDE models are in a good qualitative agreement with those of

numerical simulations with the 2+1 dimensional traveling wave model [18].

In the case of a BAL with V-shaped external cavity we use a similar procedure and the boundary

conditions (10) to obtain the following DDE model

Γ−1∂tA + A = κ2κ1e
(1−iαH )GT ((1− iαH)HTAT +DT ), (14)

Γ−1∂tD +D = κ3κ1e
(1−iαH )GT ((1 + iαH)H

∗

TDT + AT ), (15)

∂tG = G0 − γG− (|A|2 + |D|2)(eG − 1)(1 + κ2
1e

G), (16)

∂tH = H0 −DA∗(eG − 1)(κ2
1e

G + 1)− γH. (17)
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Figure 2: Dependence of the ratio κH = |H0|/G0 on the tilt angle α. The main peaks are

located at α ≈ 2.8, 5.6, 8.4 degrees.

where A(t) = a(t, l) and D = d(t, l). In our numerical simulations we have used the following

values of the parameters of Eqs. (11)-(13) and Eqs. (14)-(17),

T = 2.5, γ = 0.065, Γ = 2/T, κ1 = 0.95, κ2 = 0.9,

which are in agreement with those used in the simulations of the 2+1 dimensional traveling wave

model in [18].

The parameters H0 and G0 in the model equations (11)-(13) and (14)-(17) act as pump pa-

rameters for the homogeneous component of the carrier density G and the carrier grating H ,

respectively. They are proportional to the laser injection current: G0 = lN0 = l
∫ w

0
N(x)dx

and H0 = lN2 = l
∫ w

0
N(x)e2iβxdx. Therefore, the ratio H0/G0 = κHe

iφH , where κH ≤ 1
and φH are real amplitude and phase, respectively, must be independent of this current. On the

other hand, as it is seen from Fig. 2, due to the strong dependence of H0 on the mirror tilt angle

α the quantity κH also depends strongly on α. The data shown in this figure were calculated

assuming a stepwise dependence of the carrier density on the transverse coordinate x in the ar-

ray, i.e., N(x) = 1 inside the stripes (x ∈ [jds, jds +ws]) and N(x) = 0 between the stripes

(x ∈ [jds + ws, (j + 1)ds]), where ds, ws, and j is the transverse period of the array, stripe

width, and stripe number respectively. The value of H0 was evaluated with β = 2π sinα/λ0

using the parameters of the real device [10], array width w = 400 µm, array period ds = 10
µm, stripe width ws = 4 µm, and wavelength of light λ0 = 976 nm. It is seen from Fig. 2 that

the quantity κH reaches its maximums at the resonant angles α ≈ jλ0/2ds (κH ≈ 0.8 for

j = 1). However, small changes in the tilt angle from a resonant value can lead to a significant

decrease of κH down to 10−3.

3 Numerical results

Numerical analysis of the model equations (11)-(13) and (14)-(17) has been performed using

the routines for direct numerical integration of the delay differential equations and the software

package DDE-Biftool [4] for bifurcation analysis of delay differential equations.
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Figure 3: Bifurcation tree obtained by numerical integration of the model equations (11)-(13)

(a) and with help of DDE-biftool software package (b). Linewidth enhancement factor α acts as

a bifurcation parameter. Solid black line: stable CW solution. Dashed black line: unstable CW

solution. Solid gray line: stable periodic solution. Solid dashed line: unstable periodic solution. H
indicates an Andronov-Hopf bifurcation point. Other parameter values are: T = 2.5, γ = 0.065,

Γ = 2/T , κ1 = 0.95, κ2 = 0.9, G0 = 0.07, and κH = 0.8.

3.1 Striped BAL with a single off-axis feedback

In this Section we perform numerical analysis of Eqs. (11)-(13) obtained for the case of external

cavity formed by a single feedback mirror. For zero linewidth enhancement factor, αH = 0,

we observe only CW regimes with time independent output intensity. On the other hand, when

αH > 0, more complicated dynamical regimes can develop in the laser. First, we fix G0 = 0.07
and κH = 0.8, and use the linewidth enhancement factor αH as a bifurcation parameter. Fig.

3(a) shows the maxima of the time trace of the field amplitude |A(t)| vs parameter αH within the

interval αH ∈ (0, 10). It is seen that the field amplitude increases with the parameter αH . This

result can be understood by noticing, that in addition to carrier grating a refractive index grating

is created in the semiconductor medium due to the presence of the linewidth enhancement

factor. Both these gratings enhance the coupling between the counter-propagating waves a and

b (c and d), see Fig. 1, and, hence, lead to a decrease of the cavity losses. Formally the increase

of the field amplitude with αH is related to the presence of the factor 1− iαH in the right hand

side of Eq. (11). A CW regime looses stability at αH ≈ 7 via an Andronov-Hopf bifurcation H

giving birth to a solution P1 with periodically oscillating laser intensity. The oscillation period is

approximately 4 times larger than the external cavity round trip time T , see Fig. 4(a). Therefore,

these oscillations appearing due to the presence of transverse grating in the semiconductor

medium involve only a single longitudinal mode of the external cavity.

Figure 3(b) shows two branches of CW regimes, CW1 and CW2, corresponding to two dif-

ferent longitudinal modes of the BAL with external feedback. These branches were calculated

using the software package DDE-biftool. With the increase of αH the solution CW1 looses

and the solution CW2 gains stability via subcritical Andronov-Hopf bifurcations giving rise to

a branch of unstable periodic solutions. Bistability between the two CW solutions is observed

within a certain range inside the interval αH ∈ (4, 6). At αH ≈ 7 the solution CW2 becomes

unstable again via a supercritical Andronov-Hopf bifurcation leading to the appearance of stable
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Figure 4: Field amplitude time traces for different regimes. P1: periodic regime with one peak,

G0 = 0.07, κH = 0.8, and αH = 8. P2: periodic regime with two peaks, G0 = 1, κH =
0.001, and αH = 2.2. A: aperiodic regime, G0 = 1, κH = 0.001, and αH = 3.2. PM:

multimode periodic regime, G0 = 1, κH = 0.001, and αH = 4.6. Other parameter values are

as in Fig. 3.

periodic solution P1, see Fig 4(b).

At G0 = 1 and H0 = 0.001 the dynamical behavior of the system is even more compli-

cated, see Fig. 5(a). When the αH factor is increased, CW regimes start to alternate with the

pulsed ones labeled by P2 in Fig. 4(b). The periods of these regimes are close to 2T . With

further increase of the parameter αH periodic pulsations are transformed into aperiodic ones

(A), see Fig. 4(c), but still remain single mode. Multimode pulsations PM with the period close

to T appear only at αH ≈ 4.6, see Fig. 4(d). A bifurcation diagram obtained using the soft-

ware package DDE-biftool is presented in Fig. 5(b). It is seen that, when the parameter αH is

increased, CW solutions corresponding to different longitudinal modes gain and lose stability

via Andronov-Hopf bifurcations. Similarly to the diagram shown in Fig. 3(b) at sufficiently small

αH all these bifurcations are subcritical giving rise to unstable periodic solutions connecting

different CW branches. When the linewidth enhancement factor is further increased supercriti-

cal Andronov-Hopf bifurcations appear, leading to branches of stable periodic solutions. As it is

seen from Fig. 3(b), these periodic branches can have one or more stable parts limited by dif-

ferent bifurcations: Andronov-Hopf bifurcation H, limit cycle fold bifurcation U, torus bifurcation

T, and period doubling bifurcation P.

High-power CW operation in BALs is attractive from application point of view. Therefore, it is

instructive to look at the stability domains of CW regimes in the plane of two parameters, the

linewidth enhancement factor αH and the pump parameter G0. According to Figs. 3 and 5, for
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Figure 5: Bifurcation diagrams obtained by direct numerical integration of Eqs. (11)-(13) (a) and

with the help of the software package DDE-biftool. G0 = 1, and κH = 0.001. Notations are

the same as in Fig. 3. U : fold bifurcation of a limit cycle. T : torus bifurcation. P : period-doubling

bifurcation. Other parameter values are as in Fig. 3.

smaller κH = |H0|/G0 the instability of CW states appears at lower values of the linewidth

enhancement factor αH . This is in agreement with the diagram in Fig. 6(a), where the domains

of stable CW operation obtained by direct numerical integration of (11)-(13) are shown for two

different values of parameter κH , κH = 0.8 (solid line) and κH = 0.1 (dashed line). We see

that for almost all values of the pump parameter G0 the instability of a CW solution corresponds

to smaller values of the linewidth enhancement factor at κH = 0.1 than at κH = 0.8. This

suggests that at moderate values of αH the stability domains of CW regimes can be enlarged

by a proper adjustment of the mirror tilt angle α. For κH = 0.1 instead of a single stability

domain we observe three disconnected stability domains of CW solutions corresponding to

different longitudinal modes of the external cavity formed by the feedback mirror and carrier

grating in the laser medium, see Fig. 6(a). Figure 7 presents a diagram similar to that shown

in Fig. 6(a), but corresponds to a larger interval of pump parameters G0. In this figure different

values of the CW field amplitude are shown by different levels of gray color. For κH = 0.1 the

first and second stability domains persist for high values of G0 ≤ 20, whereas the third domain

exists only for G0 < 5, see Fig. 7(b). It follows from the figure that the maximal values of the

the laser output power can be achieved at moderate values of the linewidth enhancement factor

close to the instability boundary of the CW regime.

3.2 BAL with two feedbacks

Let us consider the case of a BAL with two feedback mirrors forming a V-shaped external cavity

(see Fig. 1). In this case the transverse carrier grating n2 is induced by interference of two waves

with opposite transverse wavenumbers reflected from the feedback mirrors and, therefore, the

laser generation is possible even with the pump distributed homogeneously in the lateral direc-

tion (H0 = 0 in Eqs. (14)-(17)). Similarly to a bidirectional laser and a laser operating in several

transverse modes, see e.g. [24], [1], this carrier grating can be responsible for the destabilization

of CW states and appearance of non-stationary regimes of operation.
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In particular, it was shown in Ref. [18], using a 2+1 dimensional traveling wave model, that a

homogeneously pumped BAL with two feedback mirrors can exhibit a regime characterized by

2T -periodic anti-phase pulsations of the amplitudes of two counter-propagating waves, |A(t)|
and |D(t)|. This regime assumes the generation of more than one longitudinal mode of the

external cavity. A similar anti-phase multi-mode regime obtained by numerical integration of the

DDE model (14)-(17) is presented in Fig. 8, which demonstrates good agreement with the

results reported in [18].

4 Conclusion

We have studied the dynamics of broad area lasers with a single tilted feedback mirror and a

V-shaped external cavity formed by two off-axis feedback mirrors. Starting from traveling wave

equations we have derived reduced DDE models for the amplitudes of the plane waves propa-

gating in the cavity, transversely homogeneous component of the carrier density, and transverse

carrier grating in the semiconductor medium. Bifurcation analysis of the reduced model indicates

that at sufficiently large values of the injection current and the linewidth enhancement factor dif-

ferent instabilities of CW regimes can develop in the system. In particular, an Andronov-Hopf

bifurcations are responsible for the destabilization of CW regimes and appearance of single

mode and multimode pulsations. Periodic anti-phase pulsation of the output intensities of sev-

eral longitudinal modes of the external cavity observed earlier in numerical simulations of the

traveling wave model [18] are well reproduced with the help of the reduced model. Finally, pa-

rameter scans show that the stability domain of CW operation in a multistripe laser array with a

single feedback mirror can be enlarged by proper adjustment of the tilt angle of this mirror.

5 Appendix

Here we describe shortly the derivation of (11)-(13). We suppose that argn2(t, z) varies slowly

in t and z. Then integrating Eqs. (5)-(8) along the characteristics we obtain from the following

approximate relations between the field amplitudes at the left (z = 0) and right (z = l) laser

facets:

a(t, 0) ≈ eG
−

α

[

a(t− l/v0, l) coshH
−

α + e−iφd(t− l/v0, 0) sinhH
−

α

]

, (18)

d(t, 0) ≈ eG
−

α

[

d(t− l/v0, l) coshH
−

α + eiφa(t− l/v0, l) sinhH
−

α

]

, (19)

b(t, l) ≈ eG
+
α

[

b(t− l/v0, 0) coshH
+
α + eiφc(t− l/v0, 0) sinhH

+
α

]

, (20)

c(t, l) ≈ eG
+
α

[

c(t− l/v0, 0) coshH
+
α + e−iφb(t− l/v0, 0) sinhH

+
α

]

, (21)

where G+(t) =
∫ l

0
n0(t − z/v0, z)dz, G−(t) =

∫ l

0
n0(t − (l − z)/v0, z)dz,

H+(t) =
∫ l

0
|n2(t − z/v0, z)|dz, H−(t) =

∫ l

0
|n2(t − (l − z)/v0, z)|dζ , and the subscript

α indicates that the term is multiplied by (1− iαH)/2.
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By differentiating the last relation in the boundary conditions (9) we obtain

Γ−1∂τa(t, l) + a(t, l) = κ2b(t− 2L/c0, l).

Using Eqs. (18)-(21) and boundary conditions Eqs. (9) we can write the following equation for

A(t) ≡ a(t, l)

Γ−1∂tA+ A = κ1κ2e
1−iα

2
(G+

T
+G−

T
)eiφTAT×

{

sinh
1− iα

2
H−

T cosh
1− iα

2
H+

T +

cosh
1− iα

2
H−

T sinh
1− iα

2
H+

T

}

,

(22)

where φT = φ(t− T ), H±

T = H±(t− T ), G±

T = G±(t− T ), and T = 2(L/c0 + l/v0).

Assuming that the the variables n0, n2, and A are slowly varying functions of t and using the

fact that the active medium length is much smaller than the external cavity length, l � L, we

get the following relations:

G+ ≈ G− ≈ G, H+ ≈ H− ≈ |H|.

Substituting these relations into (22) and assuming that the absolute value of n2 is small

we obtain Eq. (11). The equation (12) for the variable G is derived by integrating Eq. (3)

over the active medium length l and using (18)-(21) together with the approximate relations

H(t− l/v0) ≈ H(t) and G(t− l/v0) ≈ G(t). The equation (13) for H = |H|eiφ is obtained

in a similar way by integrating Eq. (4) with additional approximation |A| � 1. More details on

the derivation of Eqs. (11)-(13) and Eqs. (14)-(17) can be found in [20].
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