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ABSTRACT. We study bounded, monotone solutions of ∆u = W ′(u) in the
whole of Rn, where W is a double-well potential. We prove that under suitable
assumptions on the limit interface and on the energy growth, u is 1D.

In particular, differently from the previous literature, the solution is not as-
sumed to have minimal properties and the cases studied lie outside the range of
Γ-convergence methods.

We think that this approach could be fruitful in concrete situations, where one
can observe the phase separation at a large scale and whishes to deduce the values
of the state parameter in the vicinity of the interface.

As a simple example of the results obtained with this point of view, we mention
that monotone solutions with energy bounds, whose limit interface does not contain
a vertical line through the origin, are 1D, at least up to dimension 4.

CONTENTS

Notation 1
1. Introduction 2
2. Rigidity and symmetry from the limit level set 11
2.1. Geometric analysis of level sets 13
3. Rigidity and symmetry from the limit varifold 16
3.1. The limit varifold 16
3.2. Proof of the symmetry results from the behavior of the limit varifold 17
References 17

NOTATION

We take n > 2. A point x ∈ Rn will be often written as x = (x′, xn) ∈
Rn−1 × R.

For any 1 6 i 6 n, the partial derivatives with respect to xi will be denoted by

∂i = ∂xi =
∂

∂xi
.

Also, given an ambient domain Ω ⊆ Rn and a set F ⊆ Ω, we denote by χF its
characteristic function, i.e.

χF (x) :=
{

1 if x ∈ F ,
0 if x ∈ CF ,

where CF := Ω \ F is the complement of F in its ambient space.
We denote by W the classical “double-well potential” W (r) = (1− r2)2 (more

general type of double-well potentials may be treated in the same way), and we
will study solutions

u ∈ C2(Rn, [−1, 1]) of

∆u(x) = W ′(u(x)) for any x ∈ Rn
(1)

1
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under the monotonicity condition

(2)
∂u

∂xn
(x) > 0 for any x ∈ Rn.

After [DG79], condition (2) has become classical in the study of semilinear equa-
tions. From the variational point of view, it implies that

(3) u is a stable solution,

i.e. the second variation of the energy is nonnegative, see e.g. Corollary 4.3 in
[AC00].

For such u and any ε > 0, we define the rescaled solution

uε(x) := u(x/ε).

We observe that, by the Maximum Principle and (2), we have that |u(x)| < 1 for
every x ∈ Rn and so, in particular,

(4) uε(0) = u(0) ∈ (−1, 1).

Given a bounded open set Ω ⊂ Rn, we also consider the energy functional associ-
ated to (1), namely

E (u,Ω) :=
∫

Ω

|∇u(x)|2
2

+W (u(x)) dx.

We say that u is a (local) minimizer if, for any bounded open set Ω and any ϕ ∈
C∞0 (Ω), we have that

E (u,Ω) 6 E (u+ ϕ,Ω).

Similarly, one says that u is quasiminimal if, for some Q > 1, one has that

E (u,Ω) 6 QE (u+ ϕ,Ω)

for any bounded open set Ω and any ϕ ∈ C∞0 (Ω).

1. INTRODUCTION

The study of the PDE in (1) under the monotonicity assumption (2) is a clas-
sical topic in semilinear elliptic equations and it goes back, at least, to the study
of the Ginzburg-Landau-Allen-Cahn phase segregation model, in connection with
the theory of hypersurfaces with minimal perimeter. In particular, the following
striking problem was posed in [DG79]:

Question 1.1. Let u be a solution of (1) satisfying (2). Is it true that u is 1D, i.e.
that all the level sets of u are hyperplanes, at least if n 6 8?

We refer to [GG98, AC00] and also [BCN97, AAC01] for the proof that Ques-
tion 1.1 has a positive answer in dimension 2 6 n 6 3. See also [Sav09], where
it is shown that Question 1.1 also has a positive answer in dimension 4 6 n 6 8
provided that

(5) lim
xn→−∞

u(x′, xn) = −1 and lim
xn→+∞

u(x′, xn) = 1.
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When n > 9, an example of a solution u satisfying (1), (2) and (5) that is not 1D
was constructed in [dPKW11], showing that the dimensional constraint in Ques-
tion 1.1 cannot be removed.

See also [FV11] for some symmetry results that hold under conditions at infinity
which are weaker than (5). In particular, it is shown in [FV11] that condition (5)
can be relaxed to suitable symmetry assumptions on the asymptotic profiles

u(x′) := lim
xn→−∞

u(x′, xn),

u(x′) := lim
xn→+∞

u(x′, xn)..
(6)

More precisely, in [FV11] it is proved that solutions of (1) satisfying (2) are 1D if:
• 2 6 n 6 4 and at least one between u and u are 2D,
• 2 6 n 6 8 and both u and u are 2D.

It is also proved in [FV11] that solutions of (1) that satisfy (2) are 1D if 2 6 n 6 8,
provided that at least one level set is a complete graph.

Other symmetry results are obtained in [FV11] for quasilinear equations and for
quasiminimal solutions.

We also refer to [FV09] for further motivation and a review on Question 1.1,
and to [JGV09] for its connection with an important problem posed by [Ban89].

In the light of the above mentioned results, we have that Question 1.1 is still
open in dimension 4 6 n 6 8, and our paper would like to be a further step
towards this direction.

In the literature, most of the research related to Question 1.1 heavily relies on the
analysis of minimizers of the energy functional. This approach was also inspired
by the classical Γ-convergence results (see e.g. [Mod87]), which established an
important link between the level sets of the solutions and the study of hypersurfaces
with minimal perimeter.

On the other hand, from the point of view of pure mathematics, it is interesting to
consider the case of solutions that do not necessarily have minimizing properties,
or whose minimizing properties are not completely known a-priori. As a matter
of fact, these solutions also appear in concrete situations, since there is numerical
evidence that some solutions show unstable patterns before settling down to more
stable configurations (see e.g. [GM88]).

Therefore, the scope of this paper is to investigate symmetry results without as-
suming any minimality condition on the solution, but only monotonicity assump-
tions, energy bounds and some geometric information on the limit interface.

For this, we will derive rigidity and symmetry results from either the behavior of
the limit level set or the one of the limit varifold, using some results in [HT00] in
order to introduce and describe the limit interface without minimizing assumptions
(notice that in this case the Γ-convergence theory cannot be applied).

More precisely, the cornerstone to describe the limit interface lies in the assump-
tion that u satisfies the following energy bound: for any R > 1,

(7) E (u,BR) 6 CRn−1,
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for some C > 0 independent of R. Such energy bound is a classical assumption
in the setting of semilinear elliptic equations (see e.g. [HT00]) and it is satisfied
by minimizers and monotone solutions with some conditions at infinity (see e.g.
Theorem 5.2 in [AC00]). As a matter of fact, it is valid for quasiminimal solutions
too (see Lemma 10 in [FV08]) and it is also implied by the weaker condition on
the potential energy ∫

BR

W (u(x)) dx 6 CRn−1,

see [Mod85]. By scaling, the energy bound in (7) implies that the rescaled energy
with density

ε|∇uε(x)|2
2

+
W (uε(x))

ε
dx

is locally bounded uniformly in ε > 0. Under this condition, and recalling (3), the
results of [HT00] come into play. First of all, we fix a domain (for convenience a
cylinder) and we look at the asymptotics of the rescaled level sets in such domain.
That is, given d > 0 and h > 0 we denote by C(d, h) the (open) cylinder of base
radius d and height 2h, i.e. we set

(8) C(d, h) := {x ∈ Rn s.t. |x′| < d and |xn| < h}.

Then we fix (once and for all in this paper) the quantities do, ho > 0 and (see
e.g. page 52 in [HT00]) we have that, up to a subsequence, uε converges a.e.
in C(do, ho) to ±1, i.e. we can define L− as the set of points p ∈ C(do, ho) such
that uε(p)→ −1, and then uε approaches a.e. the step function χCL− − χL− .

We observe that χCL− − χL− is a measurable function, since it is obtained
by limit of measurable (and, in fact, continuous) functions, and therefore L− is a
measurable set. Nevertheless, it is worth to point out that we do not identify L−
with the set of its points of Lebesgue density 1, since we have defined it directly
via the pointwise convergence of the rescaled solution uε.

It is also interesting to notice that

(9) 0 ∈ CL−,

thanks to (4).
In a symmetric way, we also define L+ as the set of points p ∈ C(do, ho) such

that uε(p)→ 1.

Having clearly stated the notion of the limit level set, now we introduce a more
general object which encodes further asymptotic and geometric properties of the
solution. Namely (see Theorem 1 and Proposition 4.2. of [HT00]) we have that
there exists a varifold V (which we will call “limit varifold” and whose geometric
support will be denoted by V as well) such that (up to subsequences):

• uε → ±1 uniformly on each connected compact subset of C(do, ho) \ V ;



5

• for any Ũ b C(do, ho) and for any c ∈ (−1, 1) the set {|u| 6 c} ∩ Ũ
converges uniformly to V ∩ Ũ , i.e., if we set

(10) Vδ :=
⋃

p∈V
Bδ(p),

then for any δ > 0 there exists εo > 0 such that for any ε ∈ (0, εo) we
have that

(11) {|uε| 6 c} ∩ Ũ ⊆ Vδ ∩ Ũ .

We remark that the limit set L− and the limit varifold V that we have discussed
here have a simple geometric explanation in terms of the physical interpretation of
the Allen-Cahn equation: namely, they represent the limit interface that separate
two coexisting phase states.

Using the setting mentioned above, the first result that we present deals with
the rigidity properties of the solutions which are inherited from the structure of the
limit level set L−:

Theorem 1.2. Let u be a solution of (1) satisfying (2) and (7). Suppose that there
exist d ∈ (0, do], and K, K ∈ (0, ho], with K > K, such that

(12) L− ∩ C(d,K) 6= ∅, L+ ∩ C(d,K) 6= ∅,

and

(13)
(

(∂L−) ∪ (∂L+)
)
∩ C(d,K) ⊆ {|xn| < K}.

Then:

(i) The limits in (5) hold true,
(ii) The solution u is a local minimizer,

(iii) If 2 6 n 6 8, then u is 1D.

We observe that condition (12) is quite natural, since it is consistent with the
physical interpretation of the model describing the coexistence of two phases sepa-
rated by an interface. Moreover, it is always satisfied if the solution u is minimal or,
more generally, quasiminimal: indeed, in this case, it follows from (4) and Corol-
lary 13 in [FV08] that min{|Bδ ∩ L−|, |Bδ ∩ L+|} > cδn, for a suitable c > 0.

We also point out that condition (12) is also directly implied by (2) and suitable
geometric constraints on the zero level sets of the solution (for instance, by the
condition that {u = 0} ⊆ {|xn| 6 κ} for some κ > 0).

The geometric restriction on the limit level set L− in (13) is depicted in Figure 1
(the picture also remarks that, in principle, condition (13) allows ∂L− to have
vertical parts outside the origin, though, of course, some further restrictions on L−
are imposed by (2)).
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Figure 1. The trapping condition on the set L− (which is the colored region) given by (13).

As a matter of fact, we will derive Theorem 1.2 from the following more general
result, in which the asymptotic profiles of the solutions are determined only by a
one-side constraint on the limit level set:

Theorem 1.3. Let u be a solution of (1) satisfying (2) and (7). Suppose that there
exist d ∈ (0, do], and K, K ∈ (0, ho], with K > K, such that

(14) L− ∩ C(d,K) 6= ∅

and

(15) (∂L−) ∩ C(d,K) ⊆ {xn > −K}.
Then

(16) lim
xn→−∞

u(x′, xn) = −1.

Moreover, if 2 6 n 6 4, then u is 1D.

Similarly, if

(17) L+ ∩ C(d,K) 6= ∅

and

(18) (∂L+) ∩ C(d,K) ⊆ {xn < K},
then

lim
xn→+∞

u(x′, xn) = 1.

Moreover, if 2 6 n 6 4, then u is 1D.

It is worth to point out that condition (14) is quite natural: indeed, we already
know from (9) that CL− ∩ C(d,K) 6= ∅, thus condition (14) may be seen as the
symmetric counterpart of it. Also, by (9), we have that (14) is equivalent to

(∂L−) ∩ C(d,K) 6= ∅.
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We also observe that Theorem 1.3 (and so Theorem 1.2) possesses a measure
theoretic version, in which one is allowed to modify L− or L+ by sets of measure
zero. We give a detailed statement for completeness:

Theorem 1.4. Let u be a solution of (1) satisfying (2) and (7). Suppose that there
exist d ∈ (0, do], and K, K ∈ (0, ho], with K > K, and a set Λ− ⊆ L− such that

(19) |L− \ Λ−| = 0,

(20) |Λ− ∩ C(d,K)| > 0

and

(21) (∂Λ−) ∩ C(d,K) ⊆ {xn > −K}.
Then

(22) lim
xn→−∞

u(x′, xn) = −1.

Moreover, if 2 6 n 6 4, then u is 1D.

Similarly, if there exists a set Λ+ ⊆ L+ such that

(23) |L+ \ Λ+| = 0,

(24) |Λ+ ∩ C(d,K)| > 0

and

(25) (∂Λ+) ∩ C(d,K) ⊆ {xn < K},
then

lim
xn→+∞

u(x′, xn) = 1.

Moreover, if 2 6 n 6 4, then u is 1D.

In particular, if there are sets Λ− ⊆ L− and Λ+ ⊆ L+ satisfying (19), (20),
(21), (23), (24) and (25), then

(i) The limits in (5) hold true,
(ii) The solution u is a local minimizer,

(iii) If 2 6 n 6 8, then u is 1D.

The reader may compare (20) with (14) and (21) with (15).

Next we use the approach that we developed in [FV11], in which symmetry
results and qualitative properties of the solutions to the considered problem are
obtained when at least one level set of the solution is a complete graph. More
precisely, we have the following results:

Theorem 1.5. Let u be a solution of (1) satisfying (2) and (7). Suppose that there
exist d ∈ (0, do] and K ∈ (0, ho] such that

(26) L− ∩ C(d,K) 6= ∅ and L+ ∩ C(d,K) 6= ∅.
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Suppose also that there exist K ∈ (0,K), a set Λ ⊆ C(d0, h0) and a value c ∈
(−1, 1) such that

(27) the level set {uε = c} ∩ C(d,K) converges uniformly to ∂Λ

and

(28) (∂Λ) ∩ C(d,K) ⊆ {|xn| < K}.
Then:

(i) The level set {u = c} is a complete graph in the vertical direction (i.e., for
any x′ ∈ Rn−1 there exists a unique xn(x′) such that u(x′, xn(x′)) = c),

(ii) The limits in (5) hold true,
(iii) The solution u is a local minimizer,
(iv) If 2 6 n 6 8, then u is 1D.

We observe that condition (27) is somehow natural. For instance, if u is a quasi-
minimal solution, condition (27) is satisfied by choosing a set Λ which differs from
L− by a set of measure zero (cf. Corollary 2 in [FV08]). The same remark applies
to the next Theorem 1.6

A variant of Theorem 1.5 that replaces assumption (26) with some measure
theoretic conditions on the set Λ goes as follows:

Theorem 1.6. Let u be a solution of (1) satisfying (2) and (7). Suppose that there
exist d ∈ (0, do], K, K ∈ (0, ho], with K > K, and a set Λ ⊆ C(d0, h0) such that

(29) |Λ \ L−| = |L− \ Λ| = 0,

(30) |Λ ∩ C(d,K)| > 0, |(C Λ) ∩ C(d,K)| > 0,

for some c ∈ (−1, 1)

the level set {uε = c} ∩ C(d,K) converges uniformly to ∂Λ,

and

(31) (∂Λ) ∩ C(d,K) ⊆ {|xn| < K}.
Then:

(i) The level set {u = c} is a complete graph in the vertical direction,
(ii) The limits in (5) hold true,

(iii) The solution u is a local minimizer,
(iv) If 2 6 n 6 8, then u is 1D.

We notice that the difference between Theorems 1.5 and 1.6 is that assump-
tion (26), which involves the sets L− and L+, is replaced by assumptions (29)
and (30), which are similar but only involve the set Λ. Also, in Theorem 1.5, one
does not need to assume a-priori that the set Λ coincides with L− up to sets of
measure zero.

We also remark that assumption (29) may be replaced by the similar one that
involves L+ instead of L−, namely

|Λ \ L+| = |L+ \ Λ| = 0.
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Now we present further rigidity and symmetry results that follow, at least in
dimension 4, under the assumption that the level set {u = 0} is confined below (or
above) a complete graph. We emphasize that no energy assumption is needed in
this case. Indeed (6), in this case, is a byproduct of the other hypotheses. Namely,
we have the following result:

Theorem 1.7. Let u be a solution of (1) satisfying (2).
Suppose that {u = 0} is confined below a complete graph, i.e. suppose that

there exists γ ∈ C(Rn−1) such that

(32) {u = 0} ⊆ {xn 6 γ(x′)}.
Then

(33) lim
xn→+∞

u(x′, xn) = 1.

Similarly, if {u = 0} is confined above a complete graph, then

lim
xn→−∞

u(x′, xn) = −1.

In any case, the energy bound in (7) holds true.
Moreover, if 2 6 n 6 4, then u is 1D.

While in Theorem 1.2, 1.3, 1.4 and 1.7 we have deduced symmetry results from
the structure of the limit level set L−, now we will prove further rigidity results
under some geometric control on the limit varifold V :

Theorem 1.8. Let u be a solution of (1) satisfying (2) and (7) and let V be the
associated limit varifold.

Suppose that there exist two points x = (0, . . . , 0, xn) and x = (0, . . . , 0, xn)
that do not belong to V , with

ho > xn > 0 > xn > −ho.
Then:

(i) The limits in (5) hold true,
(ii) The solution u is a local minimizer,

(iii) If 2 6 n 6 8, then u is 1D.

Concerning the assumptions of Theorem 1.2 and 1.8, it is worth to remark that,
in general, condition (2) is not enough to imply (13), nor the existence of the
points x and x in Theorem 1.8. The reason is, roughly speaking, that the limit
interface could be “vertical”. For instance, let

u(x1, x2) := − 2
π

arctg (x1 − arctg x2).

Since the derivative of the function t 7→ arctg t is strictly positive, one readily
checks that ∂x2u > 0, hence condition (2) is satisfied. Nevertheless, we have that

uε(x1, x2) = − 2
π

arctg
(x1

ε
− arctg

x2

ε

)
,
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therefore, for any c ∈ (−1, 1),

{uε = c} =
{
x1 = ε

[
arctg

x2

ε
− tg

c π

2

]}
.

Accordingly, {uε = c} approaches {x2 = 0}, which shows that the geometric
condition in Theorem 1.8 is not satisfied in this case.

In dimension n 6 4, Theorem 1.8 can be strengthened: namely, it is enough that
the limit varifold does not contain the vertical line in order to deduce symmetry
properties, as stated in next result:

Theorem 1.9. Let 2 6 n 6 4 and u be a solution of (1) satisfying (2) and (7) and
let V be the associated limit varifold.

Suppose that there is a point of the vertical line r? := {(0, . . . , 0, t), t ∈ R}
which is not contained in V .

Then u is 1D.

We remark that the results obtained are valid also for more general bistable
nonlinearities than the classical Allen-Cahn equation (as a matter of fact, only in
Theorem 1.7 one needs the nonlinearity to grow linearly at the origin, in order to
exploit the results of [Far99, Far03]).

Also, it is worth to point out that Theorems 1.2, 1.3, 1.4 and 1.7 do not use the
limit varifold V , but only the limit level sets L− and L+.

We also observe that the assumptions used in this paper are geometric and re-
lated to the asymptotic behavior of the interface of the problem: we think that these
kind of hypotheses are somehow natural from the viewpoint of the physical appli-
cations and they may be easier to check in concrete cases than the usual variational
assumptions (such as the one requiring minimality of the solution).

Furthermore, conditions on the limit interface are perhaps more feasible to be
checked in concrete applications, when one “sees” in practice the interface, and
then can deduce from the symmetry results of the theory that the phase state de-
pends, at a large scale, only on the distance from the phase separation.

In this, spirit, as a final observation, we point out that the symmetry of the solu-
tion is, in the end, somehow equivalent to the flatness of its interface, according to
the following result:

Corollary 1.10. Let u be a solution of (1) satisfying (2) and (7). Then u is 1D if
and only if ∂L− = ∂L+ is a non-vertical hyperplane containing the origin.

The rest of the paper is organized as follows. In Section 2 we prove the rigidity
results based on the geometric behavior of the limit set L− (namely, one after the
other, Theorems 1.3, 1.2, 1.4, 1.7, 1.5 and 1.6, as well as Corollary 1.10, which
follows from Theorem 1.2). Then, in Section 3 we deal with the rigidity results
coming from the geometric behavior of the limit varifold V (namely Theorems 1.8
and 1.9). More precisely, in Subsection 3.1 we describe the influence of the limit
varifold on the asymptotic behavior of the solution, and Theorems 1.8 and 1.9 will
be proved in Subsection 3.2.
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2. RIGIDITY AND SYMMETRY FROM THE LIMIT LEVEL SET

Here we prove the rigidity results that rely on the geometric structure of the limit
sets L− and L+ (namely, Theorems 1.3, 1.2, 1.4 and 1.7).

Proof of Theorem 1.3. We prove only the first part of Theorem 1.3 since the second
part follows from the first one by replacing u = u(x) with −u(x′,−xn).

We start by showing that, if (14) and (15) holds true, then the limit in (16) holds
true as well. For this scope, we let

Q+ := {|x′| < d} × {xn ∈ [K,K)}
and Q− := {|x′| < d} × {xn ∈ (−K,−K]}.

(34)

Notice that

(35) C(d,K) = Q− ∪Q+ ∪ C(d,K).

We claim that

(36) either Q− ∩ L− = ∅ or Q− \ L− = ∅ .

To prove it, we notice that if (36) were false, the set Q− would have to contain a
point of the boundary of L−. This gives a contradiction with (15) and so we have
proved (36).

Now we improve (36) by showing that

(37) Q− ⊆ L−.
Suppose not. Then (36) implies that Q− ∩ L− = ∅, hence for any x ∈ Q− we
have that uε(x) 6→ −1 as ε→ 0+. Then, fix any point y ∈ C(d,K) and recall (35)
to find a point ỹ ∈ Q− such that ỹ′ = y′ and ỹn 6 yn. From (2), we know
that ∂xnuε > 0. By collecting these pieces of information, we see that

uε(y) > uε(ỹ) 6→ −1

as ε → 0+. In particular we have that uε(y) 6→ −1, that is y 6∈ L−. Since this
is valid for any y ∈ C(d,K), we have shown that C(d,K) ∩ L− = ∅. This is in
contradiction with (14) and so the proof of (37) is complete.

Now, we set ϑ := (K +K)/2 and P := (0, . . . , 0,−ϑ). We have that P ∈ Q−,
thus, by (37), we conclude that P ∈ L− and so

−1 = lim
ε→0+

uε(P ) = lim
ε→0+

u

(
0, . . . , 0,−ϑ

ε

)
= u(0).

This and the Maximum Principle implies that u is constantly equal to −1, which
establishes (16).

Then, if additionally 2 6 n 6 4, using (16) and Theorem 1.2 of [FV11], we
obtain that u is 1D. �

Proof of Theorem 1.2. We remark that (12) implies both (14) and (17). Moreover,
condition (13) implies both (15) and (18). Accordingly, we can use Theorem 1.3
and obtain claim (i) of Theorem 1.2. Then, claims (ii) and (iii) follow from Theo-
rem 1.3 of [FV11]. �
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Proof of Corollary 1.10. Suppose that u is 1D. Then there exist ω ∈ Sn−1 and a
function of one variable uo such that u(x) = uo(ω · x) for every x ∈ Rn. By
solving the ODE satisfied by uo we obtain that

lim
t→±∞

uo(t) = ±1.

We claim that

(38) L− = {ω · x < 0} and L+ = {ω · x > 0}.
Indeed,

lim
ε→0+

uε(x) = lim
ε→0+

u
(x
ε

)
= lim

ε→0+
uo

(ω · x
ε

)
=





1 if ω · x > 0,
uo(0) if ω · x = 0,
−1 if ω · x < 0.

This and (4) prove (38). From (38), it follows that ∂L− = ∂L+ = {ω · x = 0},
which is a non-vertical hyperplane containing the origin.

Viceversa, let us now suppose that ∂L− = ∂L+ is a non-vertical hyperplane
containing the origin. Then conditions (12) and (13) are satisfied and we infer
from Theorem 1.2 that u is a minimizer. In particular, we can use Corollary 7
in [FV08] and obtain that u is 1D, without any restriction on the dimension of the
ambient space. �

Proof of Theorem 1.4. The proof is a modification of the one Theorem 1.3, accord-
ing to these lines. First, one replaces L− with Λ− in (36), i.e. instead of (36) one
proves that

(39) either Q− ∩ Λ− = ∅ or Q− \ Λ− = ∅ .

This follows easily from (21). Then, one replaces L− with Λ− in (37), i.e. one
shows that

(40) Q− ⊆ Λ−.

The proof is similar to the one of (37), but it makes use of (19) and (20). Namely,
if (40) were false, we would deduce from (39) that Q− ∩ Λ− = ∅. In particular,
from (19), we obtain that for almost every x ∈ Q− we have that uε(x) 6→ −1.
Thus, (2) implies uε(y) 6→ −1, for almost every y ∈ C(d,K). Hence |Λ− ∩
C(d,K)| = 0, which is in contradiction with (20).

Having established (40), we use it to see that P := (0, . . . , 0,−ϑ) ∈ Λ− ⊆ L−,
where ϑ := (K +K)/2, and so

−1 = lim
ε→0+

uε(P ) = u(0),

which, by Maximum Principle implies that u is constantly equal to −1, which
establishes (22). This and Theorem 1.2 of [FV11], we also obtain that u is 1D
if 2 6 n 6 4.

This proves the first statement in Theorem 1.4. The second follows from the first,
applied to the function −u(x′,−xn). The third statement is then a combination of
the first two ones: more precisely, claim (i) in the last statement of Theorem 1.4
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follows from the previous two statements, and then this implies claims (ii) and (iii),
by Theorem 1.3 of [FV11]. �

Proof of Theorem 1.7. Let us suppose that {u = 0} is confined below a complete
graph (the case in which it is confined above being analogous). We notice that

(41) {u = 0} 6= ∅.

To prove it, we argue by contradiction and we suppose that u > 0 in the whole
of Rn (the case in which u < 0 is analogous). Then, by Theorem 2.1 in [Far03],
we have that u is identically equal to 1. This is in contradiction with (2) and so (41)
is proved.

From (41) and (2) we obtain that

{u > 0} ∩ {xn > γ(x′)} 6= ∅.

Using this, (32) and the fact that the set {xn > γ(x′)} is open and path-connected,
we conclude that

if xn > γ(x′) then u(x′, xn) > 0.

From this, we deduce that u > 0. So we can apply once more Theorem 2.1
in [Far03] (this time to the solution u in Rn−1) and deduce that u is identical to 1.
This establishes (33).

Now assume in addition that 2 6 n 6 4. Then (33) and Theorem 1.2 of [FV11]
give that u is 1D. �

2.1. Geometric analysis of level sets. Here we collect some auxiliary geometric
results of somehow elementary nature that will be useful for the proof of Theo-
rems 1.5 and 1.6. For this, we use the following additional notation. Given x′ ∈
Rn−1, we denote by r(x′) the vertical straight line through x′, i.e.

r(x′) := {(x′, t), t ∈ R}.
Also, for any p ∈ Rn−1 and r > 0, we denote byBn−1

r (p) the (n−1)-dimensional
ball of radius r centered at p and Bn−1

r := Bn−1
r (0). Also, when no confusion

arises, we implicitly identify Rn−1×{0} and Rn−1 (i.e. points of the form (x′, 0) ∈
Rn−1 × {0} and points of the form x′ ∈ Rn−1).

Lemma 2.1. Let d > 0, Ψ ⊂ Rn and Z be the projection of Ψ onto Rn−1, that is

(42) Z := {x′ ∈ Bn−1
d s.t. r(x′) ∩Ψ 6= ∅}.

Suppose that

(43) Ψ ∩ {x ∈ Rn s.t. |x′| 6 d} is compact.

Then Z is closed.

Proof. The geometric situation of Lemma 2.1 is described in Figure 2.
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d

Z
Ψ

Figure 2. The sets of Lemma 2.1.

The proof of Lemma 2.1 goes as follows. Let x′k ∈ Z be a sequence approaching
some x′? ∈ Rn−1. Then, there exists tk such that (x′k, tk) ∈ r(x′k) ∩ Ψ. By (43),
we can take a converging subsequence, that is we can write

lim
j→+∞

(x′kj
, tkj

) = (x′?, t?) ∈ Ψ ∩ {x ∈ Rn s.t. |x′| 6 d}..

That is (x′?, t?) ∈ r(x′?)∩Ψ and so r(x′?)∩Ψ 6= ∅. This implies that x′? ∈ Z, and
so Z is closed. �

Corollary 2.2. Let c ∈ R, d > 0, K > K > 0, η := (K −K)/4, v ∈ C1(Rn),

(44) Γ ⊆ C(d,K)

and

(45) Z? :=
{
x′ ∈ Bn−1

d s.t. r(x′) ∩ {v = c} 6= ∅
}
.

Suppose that

(46) {v = c} ∩ C(d,K) 6= ∅,

that

(47) {v = c} ∩ C(d,K) ⊆ Γη :=
⋃

p∈Γ

Bη(p)

and that

(48) ∂nv(x) > 0 for any x ∈ Rn.

Then, Z? = Bn−1
d .

Proof. The geometric situation of Corollary 2.2 is described in Figure 3.
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{v=c}

Γ

d

K
_

Figure 3. The sets in Corollary 2.2.

Its proof goes as follows. We set Ψ := {v = c} ∩ {|xn| 6 K} and we observe
that Ψ is closed since v is continuous. We take Z := {x′ ∈ Bn−1

d s.t. r(x′) ∩Ψ 6=
∅}. Notice that this definition is coherent with (42) and that

(49) Z 6= ∅,

thanks to (46).
Accordingly, by Lemma 2.1, we have that

(50) Z is closed.

On the other hand, by (44) and (47),

Ψ ∩ {|x′| 6 d} = {v = c} ∩ C(d,K)

⊆ Γη ∩ C(d,K) ⊆ C(d,K + η).
(51)

Now let p′ ∈ Z. Then, there exists t ∈ R such that (p′, t) ∈ Ψ, hence v(p′, t) = c
and, by (51), we have that |t| 6 K + η. Thus, by (48) and the Implicit Function
Theorem, there exist δ1 > 0 and δ2 > 0 such that for any q′ ∈ Bn−1

δ1
(p′) ∩ Bn−1

d

there exists t(q′) ∈ (t−δ2, t+δ2) for which v(q′, t(q′)) = c. By possibly taking δ1

smaller, we may and do suppose that δ2 < η, therefore |t(q′)| 6 |t| + δ2 <
K + 2η 6 K, which gives that q′ ∈ Z. This says that

(52) Z is also open in Bn−1
d .

Accordingly, by (50), (52) and (49), we have that Z = Bn−1
d . As a consequence,

using (42) and (45), we obtain

Bn−1
d = Z = {x′ ∈ Bn−1

d s.t. r(x′) ∩Ψ 6= ∅}
⊆ {x′ ∈ Bn−1

d s.t. r(x′) ∩ {v = c} 6= ∅} = Z? ⊆ Bn−1
d ,

hence we have proved the desired result. �

With this, we can now prove Theorems 1.5 and 1.6:



16

Proof of Theorem 1.5. We will show that, given c ∈ (−1, 1) as in the statement of
Theorem 1.5,

the level set {u = c} is a complete graph, i.e.

for any fixed x′o ∈ Rn−1, we have that r(x′o) ∩ {u = c} 6= ∅.
(53)

For this, we take c−, c+ ∈ R such that

−1 < c− < c < c+ < 1.

From (26) we know that there exist p ∈ L−∩C(d,K) and q ∈ L+∩C(d,K) such
that uε(p) approaches 1 and uε(q) approaches −1 as ε → 0+. In particular, if ε
is suitably small, uε(p) > c+ and uε(q) < c−. Since C(d,K) is convex and uε
continuous, this gives that there exists x(ε) ∈ C(d,K) such that uε(x(ε)) = c,
that is

{uε = c} ∩ C(d,K) 6= ∅.
We remark that this implies (46) with v := uε, while, with this setting, condi-
tion (48) comes from (2).

Furthermore, if we take Γ := (∂Λ) ∩ C(d,K), we have that (28) implies (44),
and that (27) implies (47). Consequently, we can apply Corollary 2.2 with v := uε
and Γ := (∂Λ) ∩ C(d,K), and we conclude that, for small ε,

εx′o ∈ Bn−1
d =

{
x′ ∈ Bn−1

d s.t. r(x′) ∩ {uε = c} 6= ∅
}
.

That is, r(εx′o) ∩ {uε = c} 6= ∅. This, by the definition of uε, proves (53) and
claim (i) of Theorem 1.5.

Then, claims (ii)-(iv) of Theorem 1.5 follow from claim (i) and Theorem 1.3
of [FV11]. �

Proof of Theorem 1.6. Both Λ∩C(d,K) and (C Λ)∩C(d,K) have positive mea-
sure by (30), hence using (29) and the a.e. convergence of uε, we conclude that
both L− ∩ C(d,K) and L+ ∩ C(d,K) have positive measure. In particular, they
are non-empty and (26) is satisfied. With this, Theorem 1.6 is now a direct conse-
quence of Theorem 1.5. �

3. RIGIDITY AND SYMMETRY FROM THE LIMIT VARIFOLD

In this section we investigate the structure of the limit varifold, with the aim of
proving Theorems 1.8 and 1.9.

3.1. The limit varifold. Here we relate the structure of the limit varifold with the
asymptotic properties of the solutions.

Lemma 3.1. Let u be a solution of (1) satisfying (2) and (7) and let V be the
associated limit varifold. Assume that there exists x = (0, . . . , 0, xn) with xn ∈
(0, ho) that does not belong to V . Then

(54) lim
xn→+∞

u(x′, xn) = 1.
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Similarly, if there exists x = (0, . . . , 0, xn) with xn ∈ (−ho, 0) that does not
belong to V , then

lim
xn→−∞

u(x′, xn) = −1.

Proof. We prove the first claim since the second one is alike. Since V is closed
in C(do, ho), the distance from x to V is strictly positive, therefore there exists δ >
0 such that Bδ(x) ⊆ C(do, ho) and

(55) Bδ(x) ∩ Vδ = ∅,
where the notation in (10) has been used. Using the uniform convergence of uε on
each connected compact subset of C(do, ho) \ V we immediately infer that either

0 = lim
ε→0+

|uε(x)− 1| = lim
ε→0+

∣∣∣∣u
(

0, . . . , 0,
xn
ε

)
− 1
∣∣∣∣ = |u(0)− 1|

or

0 = lim
ε→0+

|uε(x) + 1| = lim
ε→0+

∣∣∣∣u
(

0, . . . , 0,
xn
ε

)
+ 1
∣∣∣∣ = |u(0) + 1|,

where the notation in (6) and the assumption that xn > 0 have been used. Hence
either u(0) = 1 or u(0) = −1. This and the Maximum Principle implies that u is
constantly equal to either 1 or −1.

On the other hand, u cannot be constantly equal to−1 (otherwise, by (2), also u
would be constantly equal to −1, thus contradicting (2) itself). This says that u is
constantly equal to 1, which is (54). �
3.2. Proof of the symmetry results from the behavior of the limit varifold.
Now we are ready to complete the proof of Theorems 1.8 and 1.9.

Proof of Theorem 1.8. By Lemma 3.1, we have that

lim
xn→+∞

u(x′, xn) = 1 and lim
xn→−∞

u(x′, xn) = −1,

which is (i). Then, claims (ii) and (iii) follow from [Sav09]. �
Proof of Theorem 1.9. Let x̃ = (0, . . . , x̃n) ∈ r? \ V . We observe that x̃n 6= 0,
since, by (4) and (11), we know that 0 ∈ V .

Combining this with Lemma 3.1, we see that

either lim
xn→+∞

u(x′, xn) = 1 or lim
xn→−∞

u(x′, xn) = −1.

This and Theorem 1.2 of [FV11] give that u is 1D. �
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