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Abstract. We consider here solutions of the nonlinear fractional Schrodinger equation
¥ (=A)°u+ V(z)u = u”.

We show that concentration points must be critical points for V. We also prove that, if the potential V is coercive and has a unique global
minimum, then ground states concentrate suitably at such minimal point as ¢ tends to zero. In addition, if the potential V' is radial, then the
minimizer is unique provided ¢ is small.

1. INTRODUCTION

In this paper we will study standing waves for a nonlinear differential equation driven by the fractional Laplacian.
We will focus on the so-called fractional Schrodinger equation

9y
ot

where h is the Planck constant, (x,t) € RY x (0,400), 0 < s < 1, and V: RY — R is an external potential
function. The operator (—A)?® is the fractional Laplacian of order s, which, for a function ¢ € CZ° (here and in
the sequel when omitting the space of definition we are meaning RY) may be defined via Fourier transform:

F(-Ayp() = [€73(¢)  for £ e RY,

where we used the standard notation

ih—— = W (=A)*) + V(z)p — vy (1.1)

(&) == 1 e T p(2)dx
ﬂ&~—f@MO=—@ﬂgL4N pla)d

for the Fourier transform of a function ¢ € L?. As customary, we will focus on the standing wave situation of

equation (1.1), namely on the case in which ¢(z,t) = u(x)eh with « > 0: under this further assumption (and
replacing V 4+ 1 with V' and % with the small parameter £ > 0), equation (1.1) reduces to

e%(=A)u+ V(x)u — uP = 0. (1.2)

This is the main equation studied in this paper and it will be set in the whole of RV, with N > 2s and p subcritical,
namely

N +2s
N —2s’
As for the potential V' in (1.2), we suppose that is smooth, positive, and bounded from zero, namely we assume
that

1<p< (1.3)

Ve < oo, V= inf V> 0. (1.4)
R
The weak formulation of the fractional Laplacian naturally leads to the study of the fractional Sobolev spaces
Hf = {u €L : / €% |al? d¢ < oo} : (1.5)
RN
endowed with the norm
lullfrs == llull7z + l[ulpes,

where [[w|2s.2 SZ/ 1%l de.
RN

Notice that all the functional spaces L2, H*® etc. are set in the whole of R™ unless explicitly mentioned. In this
functional setting, a weak solution of equation (1.2) is a function u. € H® such that

2 [ @R = [ (Vo) - @) o) do

for any ¢ € H®. For the existence of weak solutions for special cases of (1.2), see e.g. [4-6,10,12,14,15,23]: in this
circumstance, the solutions found are indeed positive, bounded and C*® (see Theorem 3.4 in [14] and Lemma 4.4

When N < 2s, one can say that p is subcritical when p € (1, +00).
1
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in [3]). In this case, equation (1.2) holds pointwise and the fractional Laplace of u at the point z € RY has the

integral representation

2u(zr) —u(r +y) —u(r —y)
Jy 2

(—A)°u(x) = ¢(n, s)/ dy (1.6)

RN
for a suitable ¢(n, s) > 0, see e.g. Proposition 3.3 in [9].

The first result that we provide characterizes the points at which solutions of (1.2) concentrate for small e,
stating that these points are critical for the potential. This is somehow an extension to the nonlocal setting of
Wang’s result, see [25]. To state this first result, given a sequence of positive solutions wu. for equation (1.2) in
the whole of R, we say that o € RY is a strong concentration point for this sequence (or that the sequence u.
strongly concentrates at ) if

for any § > 0 there exist £g and R > 0 such that, for any € € (0,¢9),
ue(z) < 6 for all z € RV \ B(xg,eR).
With this setting, the following result holds:

(1.7)

Theorem 1.1. Assume (1.4) and let u. € H® be a sequence of positive solutions of (1.2) in the whole of RN that
strongly concentrate at xg. Then VV (xg) = 0.

We remark that, if we perform a translation and a spacial dilation of factor 1/¢, equation (1.2) becomes
(=A)°u+ V(ex + zo)u — uP = 0. (1.8)
Thus, to study the concentration phenomena of this equation, it is convenient to define

Ve(z) = V(ex + o),
a2y = [ Vela) (o) do

lull2 := sz + ul2 v,
2
and v(V;):= inf %
w0 [|ul| 7o

Notice that these definitions also make sense when £ = 0, namely, one has

lulZy = V(zo) / W (z) da
RN

and so on. Moreover, we remark that if v is a minimizer for v(V;) then u.(z) := u((x — x¢)/¢) is a minimizer for

2 2 2
vyl /RN V(2) ud(z) dz
VE(V) :—¢ 1+p inf 5
u#0 JwllZp

In this setting, we can better determine the variational properties of the concentration point zy. Namely, while
we know from Theorem 1.1 that x( is a stationary point for the potential, now we give conditions under which it
is a minimum. For this scope, given a sequence of positive solutions u. for equation (1.2) in the whole of RY, we
say that xo € RY is a weak concentration point for this sequence (or that the sequence u. weakly concentrates
at xg) if there exists a sequence of points . — xg such that

for any § > 0 there exist ¢g and R > 0 such that, for any ¢ € (0, eg),

1.9
ue(z) < 6 for all z € RV \ B(x.,eR). (19)

By comparing (1.7) and (1.9), we notice that strong concentration implies weak concentration (by choosing z. :=
xg) for every e. Then, the following result holds:

Theorem 1.2. Suppose that V' has a unique global minimum point and that ue is a minimizer for v.(V). Assume
in addition that V' at infinity stays above such minimal value, i.e.

liminf V(z) > IﬁinV (1.10)

|z| =400

Then ue weakly concentrates at the global minimum point xo of V.. More precisely, the point x. in (1.9) is the
unique global maximum point of u..
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We emphasize that, in the above theorem, an additional complication is that the nonlocal operator (—A)* does
not “see” local maximum points. Namely if y. is a local maximum point for u., it is not necessarily true that
(—A)%us(y:) > 0 (and, as a matter of fact, the “local” behavior of “nonlocal” equations can be very wild: for
instance all functions are locally s-harmonic up to an arbitrarily small error, see [11]). This feature makes the proof
of the uniqueness of the global maximum point of u. more delicate than in the classical case. About characterization
of concentration sets for minimizers of singular perturbation problems we refer the reader to [1,7,19-22,25] and
some references therein.

Next result establishes a uniqueness property for the minimizers:

Theorem 1.3. Assume that V € C*(RY), with infgx V' > 0 and it is radial. Let v- be a minimizer for v-(V).
Then ve is unique, provided that € small enough.

The rest of the paper is organized as follows. In Section 2 we study the concentration phenomena at given
points of the space and we prove Theorem 1.1. The proof of Theorem 1.2 requires some preliminary work, that is
carried out in Section 3. In particular, we obtain there an expansion of the minimizers of v(V.) as perturbation of
a suitable translation of the ground state (for this, no condition on the concentration point is required).

The proof of Theorem 1.2 is then completed in Section 4. Then, Section 5 contains the preliminaries needed for
the proof of Theorem 1.3, which, in turn, will be completed in Section 7.

2. CONCENTRATIONS OCCURRING AT CRITICAL POINTS OF V AND PROOF OF THEOREM 1.1
In this section, we prove Theorem 1.1. We define
Ve(z) 1= uc(ex + o).
By construction, v, is a positive solution of
(—A)°v. + V(ex + xp)ve — 02 =0 in RV, (2.1)

Roughly speaking, the idea is to take the derivative of (2.1), test it against v., integrate by parts and hence
send € — 0, in order to see that VV (zg) = 0: but to do these steps, some uniform regularity and decay estimates
in € are in order. To obtain these estimates, we define

Me = Max v = || ue || oo
We claim that
m = sup me < +00. (2.2)
e€(0,1)

The proof is based on a classical contradiction and scaling arguments. Namely, suppose that
me — 400, (2.3)

up to a subsequence. Now we recall (1.4) and we use (1.7) with

(1))

Accordingly, we obtain that there exists R; > 0 for which
v\
Ue(x) <min < 1, <2) for any y € RV such that |y — zo| > eRy, (2.4)

as long as ¢ is small enough. Now we notice that if x € RY \ B(0, R;) then |(ex + z0) — 29| > eRy: hence (2.4)
implies that

ve(x) < min {1, (Z) pl} for any z € RV \ B(0, Ry). (2.5)

From (2.3) and (2.5), we conclude that, for small ¢,

1 <m.= max v,
B(O7Rl)

and there exists

Te € B(O,Rl) (2.6)
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maximizing v., that is
Me — MaxX Ve = Ve(Xe).
€ N € 6( E)

1-p
So, we set 1. :=m:> and we(r) := m- (2. + epew). Then ||we||f~ =1 = w-(0) and

(—A)'we(r) = = p2V (e(e + epe)) we(@) + wk(z). (2.7)

Notice that g — 0 as ¢ — 0, thanks to (2.3). Therefore, by (2.7), we have that ||[(—A)%w.|/r~ is bounded
uniformly in . As a consequence of this and of the regularity results (see e.g. Lemma 4.4 in [3], see also [24]), we
deduce that ||we||¢2.« is bounded uniformly in e, for some a € (0,1). Hence, we can suppose that w, converges to

some function wy in C}, with

||w0||Loo =1= wo(O) (28)
By passing to the limit in (2.7), we obtain that
(=A)°wy = wph in RV, (2.9)

Since the only non-negative and bounded solution of (2.9) with p subcritical (according to (1.3)) is the one
constantly equal to zero (see Remark 1.2 in [17] or Theorem 1.3 in [13]), we conclude that wg vanishes identically,
in contradiction with (2.8).

This completes the proof of (2.2). As a consequence of (2.1), (2.2) and of the regularity results (see e.g.
Lemma 4.4 in [3]), we conclude that

||ve||c2.e is bounded uniformly in €, (2.10)
hence we may suppose that

ve converges to some function vy in ;2. (2.11)

Now, since x. maximizes v., we have that
2. (2:) — ve(2e +y) —ve(ze —y) >0  for any y € RY,
and so, using (1.6) and (2.1),
0 < (=A)*ve(we) = v8(we) — V(exe + w0)ve(2e).

Accordingly,

V(exe + x0) < 0P (x.). (2.12)
Since |z.| is bounded uniformly in €, in light of (2.6), we suppose, up to a subsequence, that z. — Z, for
some Z € B(0, Ry), as ¢ — 0. Thus, by taking the limit as ¢ — 0 in (2.12), we obtain that

0<V < V(o) <ol (@)
In particular,
v is not identically zero. (2.13)

Next we claim that there exists eg > 0 such that
Const

'Ug(x) ~ W Ve € (O,EO). (214)

To prove this, we use Lemma 4.2 of [14], according to which there exists a function w such that
_ Const
and _
S, - Vv : N D

(—A)*w + S W >0 in R™ \ B(0, R), (2.16)

for a suitable R > 0. Now, we take ~
R2 = min{Rl, R}, (217)

where Ry is the one in (2.5). Thanks to (1.7), we have that v, converges to zero as |z| — oo uniformly with respect
to . From (2.5), we obtain

(2.18)



Now we set

b:= inf w>0 (2.19)
B(0,R2)
and
2e := (m+ 1)w — by, (2.20)
where m is given in (2.2). Our goal is to show that
ze >0 in RY, (2.21)
For this we argue by contradiction and suppose that
0>infz = li ), 2.22
%RHN Ze j—1>I—Poo 2e(j,e) ( )

for a suitable sequence z;.. Notice that

lim w(x) =0,
|z| =400

due to (2.15), and

lim w.(z) =0,
|| —+o00

due to our integrability and continuity assumptions on u., and therefore
lim v, (z) =0,
|| —+o0
and so

lim =z (z)=0.
|| =00

Consequently, the sequence ;. is bounded and therefore, up to subsequence, we suppose that x;. — .. as j —
+00, for some 74 . € RY. So (2.22) becomes

0> r[rélivn Ze = 2e(Tye). (2.23)

The minimality property of z, . and (1.6) give that

(-8 (i) = nes) [

RN

225@*,5) — Ze (37*,5 +y) — 2 (37*,5 -y)
|y|t2s

dy < 0. (2.24)

Now notice that, by (2.2) and (2.19),
ze >mb+w —bm >0 in B(0, Ry).
Comparing this with (2.23), we see that
T, € RV \ B(0, Ry). (2.25)
Moreover, from (2.16), (2.17) and (2.18), we obtain that

(=A)Pz + gzs >0 in RV \ B(0, Ry). (2.26)

Thanks to (2.25), we can evaluate (2.26) at the point x,.: in this way, and recalling (2.23) and (2.24), we obtain
that

0 < (=A)z(zyee) + gzs(x*yg) < 0.

This is a contradiction, so (2.21) is established.
From (2.21), we deduce that v. < (m + 1)b~ 1w, which, together with (2.15), completes the proof of (2.14).
Using (2.11) and (2.14) and the dominated convergence theorem, we see that

lim OV (ex + 20)v? = &-V(J:O)/ v, (2.27)
e—0 RN RN
for any 7 € {1,...,N}.
Now we show that
|Vo.| € L2 (2.28)
For this, we write (2.1) as
(—A)°v. = =V (ex + xo) ve + VL = 9).. (2.29)
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We know from (2.14) that

Const

Thus we take the fundamental solution I' of the operator in (2.29) and we obtain that

Ve(y)
= Const ————dy.
ve () ons /RN P— Yy
Therefore
|t (y)] Const
Ve ()] < Const /RN |z — y|N-2s+1 dy < v (14 [y[N+2s) [z — y[N-2s+1 dy.
So, fixing x € R \ B(0,2), we observe that
[ ()] Const / 1 Const
TN T WS TNt TN =2s71 % < N
/]3(1:,1) |$_y|N—2$+1 |$‘N+25 B(0,1) |§|N—25+1 |x|N+28

therefore we obtain that

1 1
Vus(z)] < Const / dy + ————
| 5( )l |: RN\B(Q:,I) (1 + |y’N+25) |.'E _ y|N—2S+1 |xN+2.Sj|

1 1
< Const / dy + )
[ RV\B(z,1) (14 [y[N+2) (1 + |z — y[V—2s+) xlN“s}

Accordingly, by the properties of the convolution of decaying kernels (see e.g. Lemma 5.1 in [8]), we obtain that

Const

x|

|Voe(z)] < (2.30)

with k£ := min{N + 2s, N — 2s + 1}. Notice that
2k = min{2N +4s, N + N —4s+ 2} > min{2N, 2s+ N —4s + 2} > N,

hence (2.30) implies (2.28), as desired.
Now we perform some calculations on integrals that involve v.. For this, we let e; be the ith vector of the
standard Euclidean base, we fix R > 1 and we use the divergence theorem to see that, for any € {1,..., N},

/ bt :/ div(vPTe;) :/ v?“ﬂ.
B(OR) B(0,R) 9B(0,R) R

/ 8ivg+1 _ O(RNflf(p+1)(N+23))‘ (231)
B(0,R)

Thus, from (2.14), we have

Similarly,

/ V(ex + x0) 02 = / [div (V(sx + mo)vgei) — eV (ex + xo)vg}
B(0,R) B(0,R)

24

= / V(ex 4+ xo)v:i— — e/ oV (ex + xo)v?
8B(0,R) R B(0,R)

which, together with (2.14), gives that

/ V(ex + x0)0v? = —8/ AV (ex + 20)v2 + O(RN172(N+29)y, (2.32)
B(0,R) B(0,R)

We summarize the estimates in (2.31) and (2.32) by writing

1
/ (a@iV(em + :cg)v? + §V(€x + a:o)aivg — %@vf*l)
B0.R) P (2.33)
=< / OV (ex + 0)v? + O(RN-1-2(N+25))
2 /B(o,R)
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Now, we point out that (—A)*v. is C? and bounded, due to (1.4), (2.1), (2.2) and (2.10) (recall also (1.4),
therefore we can speak about 9;(—A)®v. in the classical sense. Accordingly, we can take a derivative, say in the

ith coordinate direction, of (2.1): we get
Di(—A)*v. 4 ed;V(ex + x)ve + V(e + x0)Osv. — pvP 10w, = 0.
So, recalling (2.10), (2.14) and (2.28), we see that
i(—A)*v, € L2,

Consequently, by Plancherel theorem, we obtain

/v€a< Am_/R T F(O(~A) )

—— [ amr-are) = - [ elPlnoP
- _/ §z|~7:( 5/2 )} '
We remark that

(=A)* 20, € L2,
Indeed, since u. € H® (hence v. € H®), we have that

/ EFlap < / (1+ 2P < +oo,
RN

therefore F((—A)¥?v.) = |€|°0. € L? and so (2.37) follows from the Plancherel theorem.
Also, for any g € L?, we have that
the map & — [g(€)|? is even.

To check this, notice that

©= [ oletdo= [ o) de=g(-¢)

(=€) = 9(&)-

Q)

and so

Q)

As a consequence

9(=O)* = 9(=€)g(—€) = §(£)g(€) = [9(O),
that proves (2.38).
So, from (2.37) and (2.38), we see that the map & — & |F((—A)*/?v.)|? is odd, and therefore

[ alarm -0
B(0,R)

for any R > 0. By plugging this into (2.36) and recalling (2.35) we obtain

/ 00;(—A)%v. = lim v0i(—A)%v. =
RN R—+00 JB(0,R)

Now we go back to (2.34) and we multiply this equation by v.: in this way we obtain that
0 = v0i(—A)*ve +ediV(ex + x0)v? + V(ex + 20)v-0;0- — pvPIjue.

1
= 00;(—A)%v; + €0,V (ex + mg)v? + §V(€x + xo)aivg i 18 UPH

We fix R > 1 and we integrate the above equation on B(0, R): thus, exploiting (2.33) we obtain
/ ve0;(—A)%ve + = / AV (ex + z)v? = O(RNTI172(N+29)y,
B(0,R) 2 JB(o.R)
So we send R — +o00, recalling also (2.39) and we divide by ¢, we get

OV (ex + zo)v? = 0.
RN

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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Now we send € — 0: recalling (2.27) we conclude that

&-V(:):g)/ 1)8 =0.
RN

Therefore, by (2.13), we obtain that 9;V (xg) = 0 for any ¢ € {1,..., N}, and this completes the proof of Theo-
rem 1.1. ]

3. CONCENTRATION POINTS OF GROUND-STATES: PRELIMINARY WORK FOR THE PROOF OF THEOREM 1.2

In this section we discuss some basic concentration properties of the minimizers. For this, we recall that, for
any A > 0 there exists a unique function U, that attains the following minimization problem
v(A) = inf(fullpes + Al Ze
llull ppr1=
In addition, such minimizer is unique radially symmetric and belongs to C°° N H?TH(RY) (we refer to [16] for
further details on this, see in particular Theorem 4 there). Thus, we will denote by U the radially symmetric
function that attains
. 2 7 2
inf e + 7 s,
lull pt1=1
where
V :=inf V. (3.1)
RN
With this notation, we provide an asymptotic expansion for the minimizers of v(V;). It is worth pointing out
that this expansion is valid without assuming any structural condition on the potential V' (in particular the
point zg € R™ can be fixed, without assuming that is minimal or critical):

Lemma 3.1. Let v, be a positive minimizer for v(V:), with ||ve||p+1 = 1. Then there exists a sequence of points
ae,c € RY such that, up to a subsequence,

ve(x 4+ ae) = U(x — ¢) + we(x),

with lwellgs — 0 as e — 0.
Also
lim v(V2) = v(V)
e—0
and, for any r € R™,
;i_ri% V(ex +eac. +x0) = V. (3.2)

Proof. We observe that
ll2y € [V lluliZa, 1V Il lul:]
thanks to (1.4), and therefore (V) is bounded (and bounded from zero) uniformly in e. Hence, up to a subse-
quence, we suppose that
V(Ve) = (3.3)
as € — 0, for some v > 0.

Also, v. is bounded in H® and, using Lemma 2.2 in [14], we have that there exists a. € RY and positive real
numbers R and v such that

lim inf/ ve(z) dx > . (3.4)
Br(ac)

e—0

Thus, setting w.(z) = ve(z + a.), we have that w. is bounded in H?® so it converges, up to a subsequence, to a
function w € H® weakly in H*®, strongly in Lf;gl and a.e.; furthermore, by (3.4), we have that w # 0.
We also notice that, by (1.4) and the theorem of Ascoli, there exists A : RN — R such that, up to a subsequence,

liH(lJ V(ex + eae + x9) = A(x). (3.5)
E—

We set A := A\(0) and we claim that
M) = A (3.6)



for any = € RY. Indeed, for any 2 € RV,
IANz) — A = liH(l) |V (ex + eaz + x0) — V(eac + x0)|
E—>
< Const lim |ex| = 0,
e—0

thanks to (1.4), and this proves (3.6).
By (3.5) and (3.6), we can write

lir% V(ex + eas + z9) = A. (3.7)
E—

Since, by (2.1),
(—A)’we + V(ex + ea. + zo)we = v(Vo)w?,

we can pass to the limit and obtain

(—A)Y’w + lw = vwP. (3.8)
By testing (3.8) against w we obtain that
_ Nwllfez A lwlZe o ullBee + A ullZe
v= 5 > 5 =v()). (3.9)
[[w][7 541 wt0 [l gpn

On the other hand, by the dominated convergence theorem, we see that, for any u € Cg°,

lim |V (ex + ea. + z9) — M| v*(z) dz = 0.

e—0 RN

As a consequence, for any u € C°, u # 0, we set u.(x) := u(r — a-) and we observe that

v = limv(V;)
e—0

[ullBee + llully

<
N ||u||%p+1

flfyes + [ Vieo+a0)a2a) da
= lim K

e—0 ||a5‘|%p+1

||u||2D5,2 -I—/ V(ex 4 o) u*(z — a.) d
RN

= lim
e—0 [ ul|7 st

w22 + /RN V(ex + cae + x0) u*(z) dz:

= lim
e—0 [Jl|F o4

[ullBee + AMullZ:

[ullF s
By density, this is valid for any v € H®, and so, taking the infimum over u # 0, we obtain that 7 < (). This
and (3.9) give that

v=uv(A). (3.10)
This, (3.8) and the uniqueness of the ground state (see Theorem 4 in [16]) give that w is a translation of Uy,

namely w(z) = Uy(z — ¢), for some ¢ € RY.
Now we claim that

A=V (3.11)
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To prove this, let us fix p € R”. Then, for any u € C°, we set u. () := u(z + & (zo — p)) and we use the change
of variable y := x + e~ (p — o) to obtain that

lull?z + / V(ex +p)ud(z) do
RN

Hu”%p—o—l

Jullyes + [ Viey+a0)ay -+ = —p) dy
R

Hu”%zﬂrl

s+ [ View+a0) ) dy

N [
”EEHE,V

||@5||%p+1
> v(Vo).

So, by (3.3), (3.10) and the dominated convergence theorem, we obtain
ul|3, +/ Vex + p) u?(z) dx
ot VOlullgs _ lellpas + | V(Ez+p)ui(e)

[ull =0 ullF s

Unl12..2 + M U2
> lim (V2) = 7 = p(x) = 1AIDe2 AT
=0 1OA 701

|

This is valid for any v € C2° and so, by density, also for Uy. Thus we conclude that
[OMBs2 + VOIOAIE: U Ds + AIUMZ
IUAZ 541 - [repy (i

and therefore
Vi(p) > A
Now, this is valid for any p € RY, thus, recalling (3.1), we obtain that

V= inf V(p)> A
nf Vip) 2

The other inequality follows from (3.7), and so the proof of (3.11) is complete.
Then, (3.11) and the definition of U give that Uy = U. Accordingly,

Ve(z + a:) = we(z) = w(x) =Ux(z —c) =U(x — ¢)

weakly in H®, strongly in L} Otl and a.e., so to complete the proof of Lemma 3.1 it only remains to show that

the convergence occurs strongly in H®. To see this, we use the fact that w is a minimizer for the quotient

v(V) = v(\) = 7, hence

Il + Nwl,
w3541

On the other hand, by testing (3.8) against w, we obtain that

(3.12)

~ +1
ol 7e.2 + AlwllF2 = [|wl|F,: .

By comparing this with (3.12), we conclude that ||w| ;»+1 = 1. Therefore
[welfs.2 + Allwe |72 = [|vell Doz + Allvel|72

- ||v5||2D5,2 + )\vasz + /N (/\ —Viex + 330)) ve(x) dx
R

=v(Vo) + /RN (A= V(ex + z0)) ve () da.

Moreover, by (3.1) and (3.11),
A=infV < V(ex + o),
R
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thus we obtain that
[we o2 + Allwe][72 < v (V).
So, from the weak convergence and Fatou lemma, passing to the limit we obtain that

7 = ol + Mwl3s < liminf . + A2
—

< limsup ||we||Bs2 + Mwe|[32 < limsupv(Vz) = 7.

e—0 e—0

This gives that
lim [lwe 2 + Alwe|[ 72 = wlpez + Allw]Z.

By making use of this and of the weak convergence of w,, we infer that w. — w in the Hilbert norm \/H . H%s.z + Al - H%Q

Since this norm is equivalent to the one in H®, we have proved that w. — w in H?. L]

4. COMPLETION OF THE PROOF OF THEOREM 1.2

Now we finish the proof of Theorem 1.2. For this, we suppose that V has a unique global minimum point at zq
Let u. be a minimizer for v.(V). Then v.(z) := us(xo + £x) is a minimizer for v(V;). By Lemma 3.1, there are
points a.,c € RY such that, up to a subsequence,

we () :=ve(z + a:) = U(x — ¢) + we (),

where ||w. s+ — 0, the function U is a minimizer for v(V), and, comparing (3.1) and (3.2), we have that

lim V (eaz + z0) = V = min V(z) = V(z0). (4.1)
e—0 z€RN
Now we prove that
liI% ea. = 0. (4.2)
£—

Suppose not, say |ea:| > ag for some ap > 0 and an infinitesimal sequence of £’s. Then |ea.| remains bounded,
otherwise, by (1.10), the limit in (4.1) would be strictly larger than V' (zo).

Accordingly, there exists an infinitesimal sequence of ¢’s for which ea. — «, for some a € RY with |a| > ag > 0.
From this and (4.1), we obtain that

V(zo) = glir[lJ V(eas + xo) = V(v + o).

This contradicts the uniqueness of the minimal point for V', and so it proves (4.2).
Now we claim that

sup/ widr —0 as R— oo, (4.3)
|lz[>R

€

with? r = NQiVQS To see this, we can assume by contradiction that there exists ¢ positive and a sequence of

R,, — oo such that

£

sup/ widr >6  asn— oo,
|z|>Rn
This implies that for a sequence of £, — 0, we have

/ wl dr>¢6 asn— oo.
|z|> Ry

Because w,, converges strongly in L", we have (see e.g. [2, Theorem 4.9]) that there exists h € L" and a subsequence,
still denoted by &, such that w,, < h a.e. in RY. But then

0<5§/ wgnd:pg/ h"dx — 0 as n — oo.
|z|> Ry [z]> Ry

This leads to a contradiction. We thus have proved (4.3).

Next we observe that (—A)*w, — v(Vo)w? 'w. < 0 in RN, Since w?™' € LI for some ¢ >
from [17, Proposition 2.6] that for any compact set K, we have

N

55, we deduce

maxw, < C [ wldx,
K K

2fN < 2s, the above definition of r can be replaced by just fixing r € (1, +00).
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where r is as above. We therefore conclude from (4.3) that

supwg(x) — 0 as |z| — oc.
€

This together with Lemma C.2 in [16] also imply that

Const

—_— . 4.4
— 1—|—|.CU|N+25 ( )

we ()

By scaling back, we obtain

T — X T — Xy — Eas Const eNt2s
Ue(x) =V =w < . 4.5
o) = (T o (PR ) < (45)

It is then clear that u. concentrates at z( in the sense of (1.9).

Now to prove the last statement of the theorem (u. has a unique global maximum point), we observe that

Ue € C’lzof and by (4.5), we have ‘ l‘im ue(x) = 0 for every fixed and positive e. We can therefore let u(z.) = max te.
T|—00 R

Then (—A)%uc(x.) > 0 and thus from (1.2) (recalling (1.4)), we deduce that

u(we) > <V(Vv))pl =: Cp.

Hence by (4.5), we get

Const eN+t2s
Co< ~m N+2

eN+2s |z, — ;g — eae|NT28
so that

|xe — 29 — cac| < Che. (4.6)
From this we conclude, provided |z — z.| > eR > 2¢C1, that

Const Const
ue ()

<
“1+4R-Cy ~ 1+R/2
and this completes the proof of concentration of u. at z.
We now prove the uniqueness of x.. Indeed, we observe that
(—A)we = (~A)w. — (—AU(- — ¢) = V(ex + cac + 20)[U(- — ¢) — we] + [V (20) — V(ex + eac + x0)]U(- — ¢)
+ (V) = w(V (@o))Jw? + v(V (x0)[w? — UP(- —c)].

We rewrite this as

(—A)’we + Be(z)we = [V(20) = V(ex + cac + 20)|U(- — ) + [(Ve) — v(V (20))]w?,
where we have set _
v(V (o)) [we — UP(- — ¢)]
we —U(-—¢) .
By (4.4), we have |w? — UP(- — ¢)| < C|lw. — U(- — ¢)| and thus |8.(x)| < Const.. Applying [17, Proposition 2.6],
we deduce that w. — 0 in C’IOO’S‘(RN ) for some a € (0,1). Now by a bootstrap argument and using Proposition
2.1.8 in [24], we conclude that w. = w. — U(- — ¢) — 0 in C2*(RY) for some o € (0,1).

loc
We now set we(r) = w.(x + Z.) with Z. = #==*2==%=. We notice that 0 is the global maximum point of w. and so
we have

ﬁe(l') = V(ax +ea. + 370) _

0 = V. (0) = VU(Z. — ¢) + Ve (Z2).
Recalling that U is symmetric decreasing with respect to the origin, that has a unique critical point and also
we —0€ CZQO’? (RY). Therefore from (4.6) we deduce that
|Ze —c| — 0.
It is clear that any other global maximum point of w. must stay in a neighborhood of c¢. We then observe that
we(x) = U(x) + @ (x),
where @, (z) = [U(z + Z. — ¢) — U(x)] + we(z). Since U € C=(RY), we obtain @, — 0 € C>*. Now using Lemma

loc
4.2 in [20], we conclude that the only critical point for w, is the origin. 0
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Remark 4.1. We remark that from the above proof, the minimizers u. for v.(V) has the following precise form:

e (e + ) = U(x) 4 @o(z),

where @. — 0 in H*(RV) N C'ZQO’S‘(]RN) N L®(RY) with x. the unique global maximizer for u. and z. converges to

xo which is the global minimum point for V. Also U is the unique minimizer for v(V (zo)).

5. NON-DEGENERACY AND UNIQUENESS: PRELIMINARIES FOR THE PROOF OF THEOREM 1.3

Now we will deal with the functional
1 v(Ve
Tl V)) = gl = 255 [l 6.1
and we will consider the scalar products that induce the norms of the fractional spaces used in this paper, namely
we set

(1, 0) s = / € Pa de,
RN

(), = /R View + w0 u(e) o(x) dr,
and (u,v), = (U, V)ps2 + (U, V) y-

The Hilbert space associated with (-, -), will be denoted by H¢ and, as usual, we say that u L. v whenever (u,v), =
0. One simple, but important feature, is that the radially symmetric minimizer U for v(Vp) is perpendicular in H
(that is Hf with e = 0) to its derivatives, and the derivatives themselves are perpendicular to each other, according
to the following result:

Lemma 5.1. For any i € {1,..., N}, we have that

<U7 aZUv>O =0
5.2
and / UPo,U = 0. (52)
RN
Moreover, for any i, j € {1,..., N}, with i # j, we have that
/ Urto,U0;U =0 (5.3)
RN
and
(0;U,0;U), = 0. (5.4)
Proof. By construction
(=AU +V(0)U =U? (5.5)
and so, taking derivatives,
(=A)(0;U) + V(0)0,U = pUP~ ;U (5.6)

We multiply (5.5) by 9;U and (5.6) by U and integrate: we obtain, respectively,

w.00), - |

RN
By comparing these two equations we obtain that

p/ UP&U:/ UP o;U,
RN RN

(U, 8,0}, = / UP 0,U = 0,
RN

Upé)iU and <U,8Z'U>O —p/ Upé)iU.
RN

and so

that proves (5.2). ) B
Now we use the rotational invariance of U to write U(x) = U(|z|), for some U : R — R. Then we have
that O;U(x) = U'(|z|) |z|~! 2; and so, by symmetry

/Up_l(x)aiU(x)ajU(x)dx:/ Ur=—(|=|) }U’(\x|)|2]a:\_2xixjdx20.
RN RN

This establishes (5.3). Then, formula (5.4) follows multiplying (5.6) by 0;U and integrating over R¥. ]
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Our next result is of coercivity type. It is stronger than what we will need in the following of the paper we
expose it here because we believe that it might be of interest.

We also mention that in the rest of the paper, the regularity assumption can be relaxed to V € C*(RY).

Given the radially symmetric minimizer U for v(Vp) and a € RV, we define U,(x) := U(z — a) and
We = {v €eH st.vl.U,andv L. 0;U, forany j=1,... ,N}. (5.7)

With this, we can bound the second derivative of J.(U,,v.) from below as follows:

Lemma 5.2. Let J. be as in (5.1). There ezists g > 0 such that for any € € (0,e9p), for any v € W, and for
any a € RN
T (Uay v(V2))[v, 0] > Const ||v]2.

The Const above does not depend on a.

Proof. Up to translations, we can suppose that xg = 0. We consider y € C°(R¥,(0,2)) such that y = 1 in By
and xy = 0 in RV \ By. Also we take R > 1, to be chosen suitably large in the sequel. We define

XR(Z) =X (a+ E) ,

R
Xr :=1—Xr,
U1 := XRY,
V2 = XRY,
wi e [ T R,
RaN |z — y|NT2s
First we prove that
(01, 02) ps.2| < R(V), (5.8)
with nr(v) not depending on € and such that
lim 7ng(v) =0, (5.9)

R—+400
for v fixed. To this goal, we compute

(v1(2) — v1(y)) (v2(z) — v2(y))
= (v@xa(@) — vw)xa®)) (v@)xa() ~ v(©)XRW))

(v(@) (xr(@) = xr®)) + xr(w) (v@) = (1))

= (v(@) (xr(@) ~ X&) + X&) (v(@) — (1))
- (%r@) (v(@) = v@) = o) (xr(@) - X&)
X

Therefore

‘<U1,’U2>»Ds,2 < I 4+ Const (J1 + J2) (5.10)

with

ai= [ 0@ ) (xale) - xa) dute. )

Jai= [ @) o) = olo)] [xrte) - xe()| dutz. ) (511)
R2N

and du(z,y) =z —y|"V "% dx dy.



15

Now we observe that | Vxg||L~ < Const R™1, and so
IXr(x) — Xr(y)| < Const min {1, R~z —y|}. (5.12)

Therefore, for any z € RV,

/ Ixr(z) — xr()|? dy

|(I} _ y|N+23

Rz —yf 1
Y R
/B(O,R) |z — y| N2 RN\ B(0,R) |T — y| VT2

= Const R™2.

< Const

Using this and the Hélder inequality we obtain

o < \// )2 xr(@) — xrly)? dulz,y) - \// ()2 dp(z, y)

\/C’onstR—25 /]RN [o(z)|?dz - ||v]|ps.2 (5.13)

Const R™% ||v]|r2 - ||v]|ps.2
Const R™* ||UH§

IN

AN

Now we define
RN .= {(z,y) € RV s.t. |z —y| < R}
and Vi={(z,y) € R?Y s.t. |v(z)] > lv(y)l}.

By symmetry

[ @lelle -~ s duep <2 [ jole)P o - o duta,y)
R RNV

< 2/ |’U({I))|2 |:/ |l' - y|2*N723 dy:| dr < COnstRQQS/ |’U(£L‘)|2 dx (514)
RN B(x,R) .
= Const R>™? ||v||%2
Similarly,
Sy Pt <2 | o(@)2 di(,9)
(R2ZN\RZN) (R2N\RZV)NY

< 2/ lv(z)|? / |z —y| N2 dy| do < Const R™% lv(z)|* da
RN RN\ B(0,R) RN

= Const R ||v|)3,.

We use the latter inequality together with (5.12) and (5.14) to conclude that

J1 < Const

B2 [ @l el =yt + [ @)l w) dm,y)]

RZN\]RZN

IN

Const R™% ||v||3..

Hence, by (5.10) and (5.13),
|(v1,v2) pe2| < I + Const (R + R™%)||v|)2. (5.15)
Now we estimate ;. For this we observe that the function xrYg is supported in B(a,2R) \ B(a, R), hence

(vl) v )? )

ne
Y= S Blasr)\Bar) xRy |7 — YN
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Since v is a fixed function of H*, we have that

(v) o) 0

lim |z — y|V+2s

R—+co J(B(a,2R)\B(a,R)) xRN

These considerations and (5.15) imply (5.8), as desired.
From (5.8), we obtain that

[0l = lor +v2lpee = lo1llBez + [v21Be2 + 2(v1, v2) e

< ok + llvallpe + 20(0). (10
Moreover
2y = lonllZy + [lo2lZy + /RN V(ex)vi(x) va(x) d
< Const ([lvi]|2y + [[v2IZ )
This and (5.16) yield that
[v]|2 < Const (||v1]|2 + [lv2|2 + nr(v)). (5.17)

On the other hand, v1v2 = XrXRv?, therefore v1vo > 0 and it is supported in B(a,2R)\ B(a, R). In this domain U,
is of the order R~(V+25) therefore

/ UP~Yuy vy < Const R~P~HINF29) [v|?> < Const R~(P~1D(N+29) [v]|22.
RN B(a,2R)\B(a,R)
From this and (5.8) we infer that

J! (Ua,v(V2))[v1,v2] = (v1,02)pe2 + N V(ex)vivg — pr(Vz) /N Ufl’_lvlvg
R R

> — Const R~ ||v]|2 + 0 — Const R~P~D(N+2s) [v]|32 (5.18)
> — Const R77 ||v||?,
up to renaming constants, where v := min{s, (p — 1)(N + 2s)} > 0 (here we have also used Lemma 3.1 to
bound v(V;) uniformly in ). Similarly, ve is supported outside B(0, R), hence
/ Ur2 < Const R~P~1D(N+29) v?
RN B RN
and therefore
I (Uas v(Ve)) vz, v2] = [|v2]2 —PV(Ve)/ UL~'v5 > |log2 = Const ™D |7, (5.19)
RN

Next we estimate J (U, v(Vz))[v1,v1]. To this goal, we project v1 along the space spanned by U, and its derivatives,
i.e. we set

1 1
w = 7<’Ul, Ua> Ua + 7(”1761'[](1) aiUm
1Uall3 ° 10:Uall3 ’
where the repeated indices convention is used, and w := v; — . Therefore
I Ua, v(Ve))[or, v1] = T (Ua, v(Ve)) [w, w] + JZ (Ua, v(Ve)) [0, ¥ + 2J7 (Ua, v(Ve)) [w, 9] (5.20)
We observe that the norms || - ||p and || - || are comparable, thanks to (1.4). Therefore
[v1lo [vilo
< U, + 0;U,| < Const ||lv U, + |0;Uq| ), 5.21
ST AT Jonlle (U + 0.0 (5:21)

hence

/RN(I + |z))y? < Const ||Jv1|2.
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Using this, the fact that |V (ex) — V(0)| < Conste|z|, and that vy is supported in B(a, R), we conclude that
[ V) - v
RN

- / Vi(ex) — V(O) o + / Vi(ex) — V(0)] 0 — 2 / IV (ex) — V(0) | 019
B(a,R) RN RN (5.22)

/ |V (ex) = V(0)] v} +/ |V (ex) — V(O)W)ﬂ
B(a,R) RN

Conste (R + |a]) |Jv1]?.

IN

Const

IN

Now we remark that w is orthogonal in H§ (i.e. in H? with ¢ = 0) to any element of the basis {U,, 01U, ..., OnUa},
thanks to Lemma 5.1. Hence, from [16], we have that

JY(Uq, 1) [w, w] > Const HwH% > C’onst||w||§.

As a consequence,

T (U (V) [, 10] = T2 (U, (Vi) o, ] + /

[V(ex) = V(0)Jw? — p(v(Vz) — V(VO))/ Uy w?
RN RN

Y

Const Jwll; + /R WV(ew) = V(O)lw? — p(u(Ve) = v(V0)) /R Ut (5:23)

V

Const ||w||g — Conste (R + |al) ||v1||§ — Const |v(Vz) —v(Vo)] |lv1]le,
where both (5.22) and (5.21) were used in the last inequality.

Furthermore, since v L. U,, we have

(v1,Ua)g = (v1,Uq), + /]RN [V(0) — V(ex)]n U,

= (0.0, = (.U + [ VO =Vl

= —(v2,Uq), —|—/ [V(0) = V(ex)]vn1U,

RN

= —(v2,Ug)ps2 — /]RN V(ex)voUy + /]RN [V(0) — V(ex)vU,

_ /R (AT, - /R Vierpala+ /R V() - V() Uy
= _ /RN vo[=V (0)U, + 1oUP] — /]RN V(ex)voUy, + /]RN [V(0) — V(ex)|vuiU,

- /]RN [V (0) — V(ex)|oU, — 1/0/ Ubvy

RN
thus, since vy is supported outside B(a, R),
\@1, Ua>0‘ < Const (a (R+ |a]) [[v]| 2 + R_(p_l)(N+25)||v||L2). (5.24)
In a similar way, since also v 1. 9;U,, we have that

’(Ul,Oan>0 < Const (5 (R+ a]) o]l 2 + R*<P*1><N+2S>||v||p). (5.25)

We deduce from (5.24) and (5.25) that
léllo < Const (|(v1, Uaby| + | (v1,0:Ua)o|) < Const (e(R+lal) vl 2 + RPN o) )
and so, since the two norms are comparable,
il < Const (=(R + lal) llo] 2 + R0 *2) ] 1 ).
So, we use the fact that
20{un, 0).] = 20(o0/2, 20),] < 18 gy
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to conclude that
w2 = vl + [¥lI2 — 2(v1, ¥).
3 (o
levlllg— Const (e(R+ |a]) + R~ DINF29)2 112,

Y

Exploiting this and (5.23) we obtain
JE (U, (Vo)) [w, w] > Const [jor||2 = Const (e(R + |a]) + R~ F29)2 o],

) (5.26)
— Conste (R + |a|) [|v1]|2 — Const |v(Ve) — v(Vo)] ||vie-
Notice now that
T Ua,v(Vo) v, v] = T (Ua, v(Ve))[v1, v1] + T2 (Ua, v(Ve)) [v2, va2] + 2J7 (U, v(Ve)) [v1, 02]-
Thus, by collecting (5.18), (5.19) and (5.26), we obtain
T (Ua, v(Ve))[o,0] = Const ([Jor||2 + oz [2)
— Const (e(R+ |a|) + R77) |[v||?, — Const R=P~DWN+29) )2,
— Conste (R+ al) o1 |2 — Const [o(V2) — (Vo) Jun I
Now, recalling (5.17) and (5.9), and sending first € — 0 and then R — +o00, we get the desired result. O

6. UNIQUENESS OF RADIAL SOLUTIONS

In this section we assume that V' is radial and we consider the functional in (5.1). We denote by H? the subspace
of H* of radially symmetric function. We will make use of the minimizer U for v(V}), normalized with ||U|| p+1 = 1,
which is a solution of

(U,v)ps2 + V(0)(U,v) 2 = v(W) /]RN UP(x)v(x)de, (6.1)

for every v € H”.
We also define I as the restriction of u +— J.(u,v(V:)) on HS. Next, we define the operator ®. : H — HE by
g/
e

O (w) =1, (U+w). (6.2)

By (6.2), we mean: for all w € H}
(Pe(w), w) = IL(U + w) [w]. (6.3)
Lemma 6.1. There exists 6 > 0 sufficiently small such that: if ®(wy) = P.(wz) for some wy, wy € HE

with |Jwi || + ||welle <0, then wy = ws.

Proof. The proof is a consequence of Lemma 5.2. The details go as follows. First we fix the following notation:
given f € H? we define

<f7 U>E rs
cf = and f:=f—csU.
I !
Notice that f is radial, since so are f and U, and that (f,U). = 0. As a matter of fact, since both f and U are
radial, a direct computation based on odd symmetry shows that also (f,9;U). = 0, that is

few,, (6.4)

according to the definition in (5.7).
Notice that f = f + cyU. We also consider the reflection of f with respect to U, namely

f* = f— U (6.5)
Now we observe that
Jo (U, v(Vo))[U,v] = (1 — p) v(Vh) /RN UP(z) v(z) dx (6.6)
for any v € H;. Indeed, for any v € H?,
JoU,v(Vo)lU,v] = (U, v)psz + V(0) (U, )12 — pr(Vo) /RN U~ (a) U(z) v(z) do

= (1-prW) /RN UP(z) v(z) dz,
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thanks to (6.1), and this establishes (6.6).
Furthermore

TV, o) = BOAVU] = [ (V(ea) = VOIU@o(o) do = pluVe) = o(V0) [ U7(a) o(a)da

This, combined with (6.6) gives that
JU,v(Vo)[U,v] = / (V(ex) = V(0)U(z)v(x)dx — c. / UP(z)v(x)dx,
RN RN
where
= (1 =p)v(Vo) —p(w(Ve) —v(W)).
Notice that ¢ — (1 — p)v(Vp) > 0 as € — 0, due to Lemma 3.1. In particular
Jé/(Uv V(‘/;))[Uv U] = MNe — Ce,
with

ni= [ (Vieo) = VO)UA(a) dz 0,
RN
as € — 0, by dominated convergence theorem. We conclude that
JUVU.U < -5 (6.7)

for small €. Now, for any v, w € H?, we set

Ne)[w] = @c(v)[w] = @< (0)[w] — (DL(0)[v], w)
= LU +v)[w] = ILU)[w] = II(U)[v, w]

= v(Ve) (—/ |U—|—vadx+/ UPwdx + p Uplwdx>.
RN RN

RN
Referring to page 128 in [1], we obtain
IN=(v1) = Ne(u2)|| < Const ([[oalle + [[orll27F + [foz]le + loz][2H)]or — vale. (6.8)
Now we take w := w; —ws and we use the notation in (6.5) and the assumption that ®.(w;) = ®.(w2) to compute:
0 = c(wi)[w] — Pe(w)[w]
= Ne(wi)[w"] + @:(0)[w*] + (@L(0)[w1], w*) — Ne(w2)[w*] — = (0)[w*] — (PL(0)[w2], w*)
(@L(0)[wi], w*) — (22(0)[wa], w*) + Ne(wr)[w”] — N (w2)[w?]
= JI(U,v(Ve))[w, w*] + Nz(wr) [w*] — Ne(we) [w”].
Thus, we write w = w + ¢,U and w* = w — ¢,U, and we exploit (6.8) and (6.7), to see that
0 TU (Vo)) [@, @) — ¢, J/ (U, (Vo) [U, U] = Const ™02~ || [|w*||.

Y

V

2 .
T U Vo), @] + =52 — Const 6™ ] |

Now, thanks to (6.4), we can make use of Lemma 5.2 and write that J(U,v(V:))[w,w] > Const ||w||?. So we
obtain that
0> Const (||w||§ —l—c?ﬂ) — Const 8™~ ||| [ (6.9)

Also, by (6.4),

[wl|2 = @112 + U +2(@, U)e = [[@]2 + U2
and, similarly,

15112 = [@]Z + ¢, U2,

In particular, ||w||?2 < Const (|w||2 + ¢2) and (6.9) becomes

0 > Const (H@HE —|—ci> — Const 6™ 21} |14y 2

> (Const — Const 5min{171)*1})||w||§,

which implies that ||w||: = 0 if ¢ is small enough. O
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7. COMPLETENESS OF THE PROOF OF THEOREM 1.3

Now we complete the proof of Theorem 1.3. For this, let v! be a minimizer for v(VZ), with i = 1,2. Since
V is radial then using symmetric decreasing arguments of the moving plane argument, we have that v! is radial
(or using the minimization in the space HS and the compactness in [18]). Then by Lemma 3.1, provided ¢ is
sufficiently small, we have

vi(z) =U +w! with  [|w|: =0 as & —0.
It turns out that ®.(w?) = I.(vl) = 0, so we conclude that w! = w?, due to Lemma 6.1. O
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