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Abstract. We consider here solutions of the nonlinear fractional Schrödinger equation

ε2s(−∆)su + V (x)u = up.

We show that concentration points must be critical points for V . We also prove that, if the potential V is coercive and has a unique global

minimum, then ground states concentrate suitably at such minimal point as ε tends to zero. In addition, if the potential V is radial, then the

minimizer is unique provided ε is small.

1. Introduction

In this paper we will study standing waves for a nonlinear differential equation driven by the fractional Laplacian.
We will focus on the so-called fractional Schrödinger equation

i~
∂ψ

∂t
= ~2s(−∆)sψ + V (x)ψ − |ψ|p−1 ψ (1.1)

where ~ is the Planck constant, (x, t) ∈ RN × (0,+∞), 0 < s < 1, and V : RN → R is an external potential
function. The operator (−∆)s is the fractional Laplacian of order s, which, for a function ϕ ∈ C∞c (here and in
the sequel when omitting the space of definition we are meaning RN ) may be defined via Fourier transform:

F(−∆)sϕ(ξ) = |ξ|2sϕ̂(ξ) for ξ ∈ RN ,

where we used the standard notation

ϕ̂(ξ) := F(ϕ)(ξ) :=
1

(2π)
N
2

∫

RN
e−ıξ·xϕ(x)dx

for the Fourier transform of a function ϕ ∈ L2. As customary, we will focus on the standing wave situation of
equation (1.1), namely on the case in which ψ(x, t) = u(x)e

it
~ , with u ≥ 0: under this further assumption (and

replacing V + 1 with V and ~ with the small parameter ε > 0), equation (1.1) reduces to

ε2s(−∆)su+ V (x)u− up = 0. (1.2)

This is the main equation studied in this paper and it will be set in the whole of RN , with N > 2s and p subcritical1,
namely

1 < p <
N + 2s
N − 2s

. (1.3)

As for the potential V in (1.2), we suppose that is smooth, positive, and bounded from zero, namely we assume
that

‖V ‖C2 <∞, V̄ = inf
RN

V > 0. (1.4)

The weak formulation of the fractional Laplacian naturally leads to the study of the fractional Sobolev spaces

Hs :=
{
u ∈ L2 :

∫

RN
|ξ|2s|û|2 dξ <∞

}
, (1.5)

endowed with the norm

‖u‖2Hs := ‖u‖2L2 + ‖u‖2Ds,2 ,

where ‖u‖2Ds,2 :=
∫

RN
|ξ|2s|û|2 dξ.

Notice that all the functional spaces L2, Hs etc. are set in the whole of Rn unless explicitly mentioned. In this
functional setting, a weak solution of equation (1.2) is a function uε ∈ Hs such that

ε2s
∫

RN
|ξ|2sûε(ξ)ϕ̂(ξ) dξ =

∫

RN

(
V (x)uε(x)− upε(x)

)
ϕ(x) dx

for any ϕ ∈ Hs. For the existence of weak solutions for special cases of (1.2), see e.g. [4–6,10,12,14,15,23]: in this
circumstance, the solutions found are indeed positive, bounded and C2,α (see Theorem 3.4 in [14] and Lemma 4.4

1When N ≤ 2s, one can say that p is subcritical when p ∈ (1, +∞).

1



2

in [3]). In this case, equation (1.2) holds pointwise and the fractional Laplace of u at the point x ∈ RN has the
integral representation

(−∆)su(x) = c(n, s)
∫

RN
2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy (1.6)

for a suitable c(n, s) > 0, see e.g. Proposition 3.3 in [9].
The first result that we provide characterizes the points at which solutions of (1.2) concentrate for small ε,

stating that these points are critical for the potential. This is somehow an extension to the nonlocal setting of
Wang’s result, see [25]. To state this first result, given a sequence of positive solutions uε for equation (1.2) in
the whole of RN , we say that x0 ∈ RN is a strong concentration point for this sequence (or that the sequence uε
strongly concentrates at x0) if

for any δ > 0 there exist ε0 and R > 0 such that, for any ε ∈ (0, ε0),

uε(x) ≤ δ for all x ∈ RN \B(x0, εR).
(1.7)

With this setting, the following result holds:

Theorem 1.1. Assume (1.4) and let uε ∈ Hs be a sequence of positive solutions of (1.2) in the whole of RN that
strongly concentrate at x0. Then ∇V (x0) = 0.

We remark that, if we perform a translation and a spacial dilation of factor 1/ε, equation (1.2) becomes

(−∆)su+ V (εx+ x0)u− up = 0. (1.8)

Thus, to study the concentration phenomena of this equation, it is convenient to define

Vε(x) := V (εx+ x0),

‖u‖2ε,V :=
∫

RN
Vε(x)u2(x) dx,

‖u‖2ε := ‖u‖2Ds,2 + ‖u‖2ε,V ,

and ν(Vε) := inf
u6=0

‖u‖2ε
‖u‖2

Lp+1

.

Notice that these definitions also make sense when ε = 0, namely, one has

‖u‖20,V := V (x0)
∫

RN
u2(x) dx

and so on. Moreover, we remark that if u is a minimizer for ν(Vε) then uε(x) := u((x− x0)/ε) is a minimizer for

νε(V ) := ε
N (1−p)

1+p inf
u6=0

ε2s‖u‖2Ds,2 +
∫

RN
V (x)u2(x) dx

‖u‖2
Lp+1

.

In this setting, we can better determine the variational properties of the concentration point x0. Namely, while
we know from Theorem 1.1 that x0 is a stationary point for the potential, now we give conditions under which it
is a minimum. For this scope, given a sequence of positive solutions uε for equation (1.2) in the whole of RN , we
say that x0 ∈ RN is a weak concentration point for this sequence (or that the sequence uε weakly concentrates
at x0) if there exists a sequence of points xε → x0 such that

for any δ > 0 there exist ε0 and R > 0 such that, for any ε ∈ (0, ε0),

uε(x) ≤ δ for all x ∈ RN \B(xε, εR).
(1.9)

By comparing (1.7) and (1.9), we notice that strong concentration implies weak concentration (by choosing xε :=
x0) for every ε. Then, the following result holds:

Theorem 1.2. Suppose that V has a unique global minimum point and that uε is a minimizer for νε(V ). Assume
in addition that V at infinity stays above such minimal value, i.e.

lim inf
|x|→+∞

V (x) > min
Rn

V. (1.10)

Then uε weakly concentrates at the global minimum point x0 of V . More precisely, the point xε in (1.9) is the
unique global maximum point of uε.
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We emphasize that, in the above theorem, an additional complication is that the nonlocal operator (−∆)s does
not “see” local maximum points. Namely if yε is a local maximum point for uε, it is not necessarily true that
(−∆)suε(yε) ≥ 0 (and, as a matter of fact, the “local” behavior of “nonlocal” equations can be very wild: for
instance all functions are locally s-harmonic up to an arbitrarily small error, see [11]). This feature makes the proof
of the uniqueness of the global maximum point of uε more delicate than in the classical case. About characterization
of concentration sets for minimizers of singular perturbation problems we refer the reader to [1, 7, 19–22, 25] and
some references therein.

Next result establishes a uniqueness property for the minimizers:

Theorem 1.3. Assume that V ∈ C1(RN ), with infRN V > 0 and it is radial. Let vε be a minimizer for νε(V ).
Then vε is unique, provided that ε small enough.

The rest of the paper is organized as follows. In Section 2 we study the concentration phenomena at given
points of the space and we prove Theorem 1.1. The proof of Theorem 1.2 requires some preliminary work, that is
carried out in Section 3. In particular, we obtain there an expansion of the minimizers of ν(Vε) as perturbation of
a suitable translation of the ground state (for this, no condition on the concentration point is required).

The proof of Theorem 1.2 is then completed in Section 4. Then, Section 5 contains the preliminaries needed for
the proof of Theorem 1.3, which, in turn, will be completed in Section 7.

2. Concentrations occurring at critical points of V and proof of Theorem 1.1

In this section, we prove Theorem 1.1. We define

vε(x) := uε(εx+ x0).

By construction, vε is a positive solution of

(−∆)svε + V (εx+ x0)vε − vpε = 0 in RN . (2.1)

Roughly speaking, the idea is to take the derivative of (2.1), test it against vε, integrate by parts and hence
send ε→ 0, in order to see that ∇V (x0) = 0: but to do these steps, some uniform regularity and decay estimates
in ε are in order. To obtain these estimates, we define

mε := max
RN

vε = ‖uε‖L∞ .

We claim that
m := sup

ε∈(0,1)
mε < +∞. (2.2)

The proof is based on a classical contradiction and scaling arguments. Namely, suppose that

mε → +∞, (2.3)

up to a subsequence. Now we recall (1.4) and we use (1.7) with

δ := min

{
1,
(
V̄

2

) 1
p−1

}
.

Accordingly, we obtain that there exists R1 > 0 for which

uε(x) ≤ min

{
1,
(
V̄

2

) 1
p−1

}
for any y ∈ RN such that |y − x0| ≥ εR1, (2.4)

as long as ε is small enough. Now we notice that if x ∈ RN \ B(0, R1) then |(εx + x0) − x0| ≥ εR1: hence (2.4)
implies that

vε(x) ≤ min

{
1,
(
V̄

2

) 1
p−1

}
for any x ∈ RN \B(0, R1). (2.5)

From (2.3) and (2.5), we conclude that, for small ε,

1 < mε = max
B(0,R1)

vε,

and there exists
xε ∈ B(0, R1) (2.6)
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maximizing vε, that is
mε = max

RN
vε = vε(xε).

So, we set µε := m
1−p
2s
ε and wε(x) := m−1

ε vε(xε + εµεx). Then ‖wε‖L∞ = 1 = wε(0) and

(−∆)swε(x) =− µ2s
ε V (ε(xε + εµε))wε(x) + wpε(x). (2.7)

Notice that µε → 0 as ε → 0, thanks to (2.3). Therefore, by (2.7), we have that ‖(−∆)swε‖L∞ is bounded
uniformly in ε. As a consequence of this and of the regularity results (see e.g. Lemma 4.4 in [3], see also [24]), we
deduce that ‖wε‖C2,α is bounded uniformly in ε, for some α ∈ (0, 1). Hence, we can suppose that wε converges to
some function w0 in C2,α

loc , with
‖w0‖L∞ = 1 = w0(0). (2.8)

By passing to the limit in (2.7), we obtain that

(−∆)sw0 = wp0 in RN . (2.9)

Since the only non-negative and bounded solution of (2.9) with p subcritical (according to (1.3)) is the one
constantly equal to zero (see Remark 1.2 in [17] or Theorem 1.3 in [13]), we conclude that w0 vanishes identically,
in contradiction with (2.8).

This completes the proof of (2.2). As a consequence of (2.1), (2.2) and of the regularity results (see e.g.
Lemma 4.4 in [3]), we conclude that

‖vε‖C2,α is bounded uniformly in ε, (2.10)

hence we may suppose that
vε converges to some function v0 in C2,α

loc . (2.11)
Now, since xε maximizes vε, we have that

2vε(xε)− vε(xε + y)− vε(xε − y) ≥ 0 for any y ∈ RN ,

and so, using (1.6) and (2.1),

0 ≤ (−∆)svε(xε) = vpε(xε)− V (εxε + x0)vε(xε).

Accordingly,
V (εxε + x0) ≤ vp−1

ε (xε). (2.12)
Since |xε| is bounded uniformly in ε, in light of (2.6), we suppose, up to a subsequence, that xε → x̄, for
some x̄ ∈ B(0, R1), as ε→ 0. Thus, by taking the limit as ε→ 0 in (2.12), we obtain that

0 < V̄ ≤ V (x0) ≤ vp−1
0 (x̄).

In particular,
v0 is not identically zero. (2.13)

Next we claim that there exists ε0 > 0 such that

vε(x) ≤ Const

1 + |x|N+2s
∀ε ∈ (0, ε0). (2.14)

To prove this, we use Lemma 4.2 of [14], according to which there exists a function w̄ such that

0 ≤ w̄(x) ≤ Const

1 + |x|N+2s
(2.15)

and

(−∆)sw̄ +
V̄

2
w ≥ 0 in RN \B(0, R̃), (2.16)

for a suitable R̃ > 0. Now, we take
R2 := min{R1, R̃}, (2.17)

where R1 is the one in (2.5). Thanks to (1.7), we have that vε converges to zero as |x| → ∞ uniformly with respect
to ε. From (2.5), we obtain

(−∆)svε +
V̄

2
vε = (−∆)svε + V vε −

(
V − V̄

2

)
vε

= vpε −
(
V − V̄

2

)
vε ≤ vpε −

V̄

2
vε = vε

(
vp−1
ε − V̄

2

)
≤ 0.

(2.18)
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Now we set
b := inf

B(0,R2)
w̄ > 0 (2.19)

and
zε := (m+ 1)w̄ − bvε, (2.20)

where m is given in (2.2). Our goal is to show that

zε ≥ 0 in RN . (2.21)

For this we argue by contradiction and suppose that

0 > inf
RN

zε = lim
j→+∞

zε(xj,ε), (2.22)

for a suitable sequence xj,ε. Notice that
lim

|x|→+∞
w̄(x) = 0,

due to (2.15), and
lim

|x|→+∞
uε(x) = 0,

due to our integrability and continuity assumptions on uε, and therefore

lim
|x|→+∞

vε(x) = 0,

and so
lim

|x|→+∞
zε(x) = 0.

Consequently, the sequence xj,ε is bounded and therefore, up to subsequence, we suppose that xj,ε → x?,ε as j →
+∞, for some x?,ε ∈ RN . So (2.22) becomes

0 > min
RN

zε = zε(x?,ε). (2.23)

The minimality property of x?,ε and (1.6) give that

(−∆)szε(x?,ε) = c(n, s)
∫

RN

2zε(x?,ε)− zε(x?,ε + y)− zε(x?,ε − y)
|y|n+2s

dy ≤ 0. (2.24)

Now notice that, by (2.2) and (2.19),

zε ≥ mb+ w̄ − bm > 0 in B(0, R2).

Comparing this with (2.23), we see that
x?,ε ∈ RN \B(0, R2). (2.25)

Moreover, from (2.16), (2.17) and (2.18), we obtain that

(−∆)szε +
V̄

2
zε ≥ 0 in RN \B(0, R2). (2.26)

Thanks to (2.25), we can evaluate (2.26) at the point x?,ε: in this way, and recalling (2.23) and (2.24), we obtain
that

0 ≤ (−∆)szε(x?,ε) +
V̄

2
zε(x?,ε) < 0.

This is a contradiction, so (2.21) is established.
From (2.21), we deduce that vε ≤ (m+ 1)b−1w̄, which, together with (2.15), completes the proof of (2.14).
Using (2.11) and (2.14) and the dominated convergence theorem, we see that

lim
ε→0

∫

RN
∂iV (εx+ x0)v2

ε = ∂iV (x0)
∫

RN
v2
0, (2.27)

for any i ∈ {1, . . . , N}.
Now we show that

|∇vε| ∈ L2. (2.28)
For this, we write (2.1) as

(−∆)svε = −V (εx+ x0) vε + vpε =: ψε. (2.29)
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We know from (2.14) that

ψε(x) ≤ Const

1 + |x|N+2s
.

Thus we take the fundamental solution Γ of the operator in (2.29) and we obtain that

vε(x) = Const

∫

RN
ψε(y)

|x− y|N−2s
dy.

Therefore

|∇vε(x)| ≤ Const
∫

RN
|ψε(y)|

|x− y|N−2s+1
dy ≤

∫

RN
Const

(1 + |y|N+2s) |x− y|N−2s+1
dy.

So, fixing x ∈ RN \B(0, 2), we observe that
∫

B(x,1)

|ψε(y)|
|x− y|N−2s+1

dy ≤ Const

|x|N+2s

∫

B(0,1)

1
|ξ|N−2s+1

dξ ≤ Const

|x|N+2s
,

therefore we obtain that

|∇vε(x)| ≤ Const

[∫

RN\B(x,1)

1
(1 + |y|N+2s) |x− y|N−2s+1

dy +
1

|x|N+2s

]

≤ Const

[∫

RN\B(x,1)

1
(1 + |y|N+2s) (1 + |x− y|N−2s+1)

dy +
1

|x|N+2s

]
.

Accordingly, by the properties of the convolution of decaying kernels (see e.g. Lemma 5.1 in [8]), we obtain that

|∇vε(x)| ≤ Const

|x|κ , (2.30)

with κ := min{N + 2s, N − 2s+ 1}. Notice that

2κ = min{2N + 4s, N +N − 4s+ 2} > min{2N, 2s+N − 4s+ 2} > N,

hence (2.30) implies (2.28), as desired.
Now we perform some calculations on integrals that involve vε. For this, we let ei be the ith vector of the

standard Euclidean base, we fix R > 1 and we use the divergence theorem to see that, for any ∈ {1, . . . , N},
∫

B(0,R)
∂iv

p+1
ε =

∫

B(0,R)
div(vp+1

ε ei) =
∫

∂B(0,R)
vp+1
ε

xi
R
.

Thus, from (2.14), we have ∫

B(0,R)
∂iv

p+1
ε = O(RN−1−(p+1)(N+2s)). (2.31)

Similarly,
∫

B(0,R)
V (εx+ x0)∂iv2

ε =
∫

B(0,R)

[
div
(
V (εx+ x0)v2

εei

)
− ε∂iV (εx+ x0)v2

ε

]

=
∫

∂B(0,R)
V (εx+ x0)v2

ε

xi
R
− ε

∫

B(0,R)
∂iV (εx+ x0)v2

ε

which, together with (2.14), gives that
∫

B(0,R)
V (εx+ x0)∂iv2

ε = −ε
∫

B(0,R)
∂iV (εx+ x0)v2

ε +O(RN−1−2(N+2s)). (2.32)

We summarize the estimates in (2.31) and (2.32) by writing
∫

B(0,R)

(
ε∂iV (εx+ x0)v2

ε +
1
2
V (εx+ x0)∂iv2

ε −
p

p+ 1
∂iv

p+1
ε

)

=
ε

2

∫

B(0,R)
∂iV (εx+ x0)v2

ε +O(RN−1−2(N+2s)).
(2.33)
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Now, we point out that (−∆)svε is C2 and bounded, due to (1.4), (2.1), (2.2) and (2.10) (recall also (1.4),
therefore we can speak about ∂i(−∆)svε in the classical sense. Accordingly, we can take a derivative, say in the
ith coordinate direction, of (2.1): we get

∂i(−∆)svε + ε∂iV (εx+ x0)vε + V (εx+ x0)∂ivε − pvp−1
ε ∂ivε = 0. (2.34)

So, recalling (2.10), (2.14) and (2.28), we see that

∂i(−∆)svε ∈ L2. (2.35)

Consequently, by Plancherel theorem, we obtain
∫

RN
vε∂i(−∆)svε =

∫

RN
v̂εF(∂i(−∆)svε)

= −
∫

RN
ξiv̂εF((−∆)svε) = −

∫

RN
ξi|ξ|2s|v̂ε(ξ)|2

= −
∫

RN
ξi
∣∣F
(
(−∆)s/2vε

)∣∣2.

(2.36)

We remark that
(−∆)s/2vε ∈ L2. (2.37)

Indeed, since uε ∈ Hs (hence vε ∈ Hs), we have that
∫

RN
|ξ|2s|v̂ε|2 ≤

∫

RN
(1 + |ξ|2s)|v̂ε|2 < +∞,

therefore F((−∆)s/2vε) = |ξ|sv̂ε ∈ L2 and so (2.37) follows from the Plancherel theorem.
Also, for any g ∈ L2, we have that

the map ξ 7→ |ĝ(ξ)|2 is even. (2.38)

To check this, notice that

ĝ(ξ) =
∫

RN
g(x)e−ix·ξ dx =

∫

RN
g(x)eix·ξ dx = ĝ(−ξ)

and so
ĝ(−ξ) = ĝ(ξ).

As a consequence
|ĝ(−ξ)|2 = ĝ(−ξ)ĝ(−ξ) = ĝ(ξ)ĝ(ξ) = |ĝ(ξ)|2,

that proves (2.38).
So, from (2.37) and (2.38), we see that the map ξ 7→ ξi |F((−∆)s/2vε)|2 is odd, and therefore

∫

B(0,R)
ξi
∣∣F
(
(−∆)s/2vε

)∣∣2 = 0

for any R > 0. By plugging this into (2.36) and recalling (2.35) we obtain
∫

RN
vε∂i(−∆)svε = lim

R→+∞

∫

B(0,R)
vε∂i(−∆)svε = 0. (2.39)

Now we go back to (2.34) and we multiply this equation by vε: in this way we obtain that

0 = vε∂i(−∆)svε + ε∂iV (εx+ x0)v2
ε + V (εx+ x0)vε∂ivε − pvpε∂ivε

= vε∂i(−∆)svε + ε∂iV (εx+ x0)v2
ε +

1
2
V (εx+ x0)∂iv2

ε −
p

p+ 1
∂iv

p+1
ε .

We fix R > 1 and we integrate the above equation on B(0, R): thus, exploiting (2.33) we obtain
∫

B(0,R)
vε∂i(−∆)svε +

ε

2

∫

B(0,R)
∂iV (εx+ x0)v2

ε = O(RN−1−2(N+2s)).

So we send R→ +∞, recalling also (2.39) and we divide by ε, we get
∫

RN
∂iV (εx+ x0)v2

ε = 0.
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Now we send ε→ 0: recalling (2.27) we conclude that

∂iV (x0)
∫

RN
v2
0 = 0.

Therefore, by (2.13), we obtain that ∂iV (x0) = 0 for any i ∈ {1, . . . , N}, and this completes the proof of Theo-
rem 1.1.

3. Concentration points of ground-states: preliminary work for the proof of Theorem 1.2

In this section we discuss some basic concentration properties of the minimizers. For this, we recall that, for
any λ > 0 there exists a unique function Uλ that attains the following minimization problem

ν(λ) := inf
‖u‖Lp+1=1

‖u‖2Ds,2 + λ‖u‖2L2 .

In addition, such minimizer is unique radially symmetric and belongs to C∞ ∩ H2s+1(RN ) (we refer to [16] for
further details on this, see in particular Theorem 4 there). Thus, we will denote by Ũ the radially symmetric
function that attains

inf
‖u‖Lp+1=1

‖u‖2Ds,2 + Ṽ ‖u‖2L2 ,

where
Ṽ := inf

RN
V. (3.1)

With this notation, we provide an asymptotic expansion for the minimizers of ν(Vε). It is worth pointing out
that this expansion is valid without assuming any structural condition on the potential V (in particular the
point x0 ∈ Rn can be fixed, without assuming that is minimal or critical):

Lemma 3.1. Let vε be a positive minimizer for ν(Vε), with ‖vε‖Lp+1 = 1. Then there exists a sequence of points
aε, c ∈ RN such that, up to a subsequence,

vε(x+ aε) = Ũ(x− c) + ωε(x),
with ‖ωε‖Hs → 0 as ε→ 0.

Also
lim
ε→0

ν(Vε) = ν(Ṽ )

and, for any x ∈ Rn,
lim
ε→0

V (εx+ εaε + x0) = Ṽ . (3.2)

Proof. We observe that
‖u‖2ε,V ∈

[
V̄ ‖u‖2L2 , ‖V ‖L∞‖u‖2L2

]

thanks to (1.4), and therefore ν(Vε) is bounded (and bounded from zero) uniformly in ε. Hence, up to a subse-
quence, we suppose that

ν(Vε)→ ν̃ (3.3)

as ε→ 0, for some ν̃ > 0.
Also, vε is bounded in Hs and, using Lemma 2.2 in [14], we have that there exists aε ∈ RN and positive real

numbers R and γ such that

lim inf
ε→0

∫

BR(aε)
vε(x) dx ≥ γ. (3.4)

Thus, setting wε(x) = vε(x + aε), we have that wε is bounded in Hs so it converges, up to a subsequence, to a
function w ∈ Hs weakly in Hs, strongly in Lp+1

loc and a.e.; furthermore, by (3.4), we have that w 6= 0.
We also notice that, by (1.4) and the theorem of Ascoli, there exists λ : RN → R such that, up to a subsequence,

lim
ε→0

V (εx+ εaε + x0) = λ(x). (3.5)

We set λ := λ(0) and we claim that
λ(x) = λ (3.6)
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for any x ∈ RN . Indeed, for any x ∈ RN ,

|λ(x)− λ| = lim
ε→0

∣∣V (εx+ εaε + x0)− V (εaε + x0)
∣∣

≤ Const lim
ε→0
|εx| = 0,

thanks to (1.4), and this proves (3.6).
By (3.5) and (3.6), we can write

lim
ε→0

V (εx+ εaε + x0) = λ. (3.7)

Since, by (2.1),

(−∆)swε + V (εx+ εaε + x0)wε = ν(Vε)wpε ,

we can pass to the limit and obtain

(−∆)sw + λw = ν̃wp. (3.8)

By testing (3.8) against w we obtain that

ν̃ =
‖w‖2Ds,2 + λ ‖w‖2L2

‖w‖2
Lp+1

≥ inf
u6=0

‖u‖2Ds,2 + λ ‖u‖2L2

‖u‖2
Lp+1

= ν(λ). (3.9)

On the other hand, by the dominated convergence theorem, we see that, for any u ∈ C∞c ,

lim
ε→0

∫

RN

∣∣V (εx+ εaε + x0)− λ
∣∣u2(x) dx = 0.

As a consequence, for any u ∈ C∞c , u 6= 0, we set ũε(x) := u(x− aε) and we observe that

ν̃ = lim
ε→0

ν(Vε)

≤
‖u‖2Ds,2 + ‖u‖2ε,V
‖u‖2

Lp+1

= lim
ε→0

‖ũε‖2Ds,2 +
∫

RN
V (εx+ x0) ũ2

ε(x) dx

‖ũε‖2Lp+1

= lim
ε→0

‖u‖2Ds,2 +
∫

RN
V (εx+ x0)u2(x− aε) dx

‖u‖2
Lp+1

= lim
ε→0

‖u‖2Ds,2 +
∫

RN
V (εx+ εaε + x0)u2(x) dx

‖u‖2
Lp+1

=
‖u‖2Ds,2 + λ‖u‖2L2

‖u‖2
Lp+1

.

By density, this is valid for any u ∈ Hs, and so, taking the infimum over u 6= 0, we obtain that ν̃ ≤ ν(λ). This
and (3.9) give that

ν̃ = ν(λ). (3.10)

This, (3.8) and the uniqueness of the ground state (see Theorem 4 in [16]) give that w is a translation of Uλ,
namely w(x) = Uλ(x− c), for some c ∈ RN .

Now we claim that

λ = Ṽ (3.11)



10

To prove this, let us fix p ∈ Rn. Then, for any u ∈ C∞c , we set uε(x) := u(x+ ε−1(x0 − p)) and we use the change
of variable y := x+ ε−1(p− x0) to obtain that

‖u‖2Ds,2 +
∫

RN
V (εx+ p)u2(x) dx

‖u‖2
Lp+1

=
‖u‖2Ds,2 +

∫

RN
V (εy + x0)u2(y + ε−1(x0 − p)) dy

‖u‖2
Lp+1

=
‖uε‖2Ds,2 +

∫

RN
V (εy + x0)u2

ε(y) dy

‖uε‖2Lp+1

=
‖uε‖2ε,V
‖uε‖2Lp+1

≥ ν(Vε).

So, by (3.3), (3.10) and the dominated convergence theorem, we obtain

‖u‖2Ds,2 + V (p)‖u‖2L2

‖u‖2
Lp+1

= lim
ε→0

‖u‖2Ds,2 +
∫

RN
V (εx+ p)u2(x) dx

‖u‖2
Lp+1

≥ lim
ε→0

ν(Vε) = ν̃ = ν(λ) =
‖Uλ‖2Ds,2 + λ‖Uλ‖2L2

‖Uλ‖2Lp+1

.

This is valid for any u ∈ C∞c and so, by density, also for Uλ. Thus we conclude that

‖Uλ‖2Ds,2 + V (p)‖Uλ‖2L2

‖Uλ‖2Lp+1

≥ ‖Uλ‖
2
Ds,2 + λ‖Uλ‖2L2

‖Uλ‖2Lp+1

and therefore
V (p) ≥ λ.

Now, this is valid for any p ∈ RN , thus, recalling (3.1), we obtain that

Ṽ = inf
p∈RN

V (p) ≥ λ.

The other inequality follows from (3.7), and so the proof of (3.11) is complete.
Then, (3.11) and the definition of Ũ give that Uλ = Ũ . Accordingly,

vε(x+ aε) = wε(x)→ w(x) = Uλ(x− c) = Ũ(x− c)
weakly in Hs, strongly in Lp+1

loc and a.e., so to complete the proof of Lemma 3.1 it only remains to show that
the convergence occurs strongly in Hs. To see this, we use the fact that w is a minimizer for the quotient
ν(Ṽ ) = ν(λ) = ν̃, hence

ν̃ =
‖w‖2Ds,2 + λ‖w‖2L2

‖w‖2
Lp+1

. (3.12)

On the other hand, by testing (3.8) against w, we obtain that

‖w‖2Ds,2 + λ‖w‖2L2 = ν̃ ‖w‖p+1
Lp+1 .

By comparing this with (3.12), we conclude that ‖w‖Lp+1 = 1. Therefore

‖wε‖2Ds,2 + λ‖wε‖2L2 = ‖vε‖2Ds,2 + λ‖vε‖2L2

= ‖vε‖2Ds,2 + λ‖vε‖2ε,V +
∫

RN

(
λ− V (εx+ x0)

)
vε(x) dx

= ν(Vε) +
∫

RN

(
λ− V (εx+ x0)

)
vε(x) dx.

Moreover, by (3.1) and (3.11),
λ = inf

RN
V ≤ V (εx+ x0),
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thus we obtain that
‖wε‖2Ds,2 + λ‖wε‖2L2 ≤ ν(Vε).

So, from the weak convergence and Fatou lemma, passing to the limit we obtain that

ν̃ = ‖w‖2Ds,2 + λ‖w‖2L2 ≤ lim inf
ε→0

‖wε‖2Ds,2 + λ‖wε‖2L2

≤ lim sup
ε→0

‖wε‖2Ds,2 + λ‖wε‖2L2 ≤ lim sup
ε→0

ν(Vε) = ν̃.

This gives that
lim
ε→0
‖wε‖2Ds,2 + λ‖wε‖2L2 = ‖w‖2Ds,2 + λ‖w‖2L2 .

By making use of this and of the weak convergence of wε, we infer that wε → w in the Hilbert norm
√
‖ · ‖2Ds,2 + λ‖ · ‖2

L2 .
Since this norm is equivalent to the one in Hs, we have proved that wε → w in Hs.

4. Completion of the proof of Theorem 1.2

Now we finish the proof of Theorem 1.2. For this, we suppose that V has a unique global minimum point at x0

Let uε be a minimizer for νε(V ). Then vε(x) := uε(x0 + εx) is a minimizer for ν(Vε). By Lemma 3.1, there are
points aε, c ∈ RN such that, up to a subsequence,

wε(x) := vε(x+ aε) = Ũ(x− c) + ωε(x),

where ‖ωε‖Hs → 0, the function Ũ is a minimizer for ν(Ṽ ), and, comparing (3.1) and (3.2), we have that

lim
ε→0

V (εaε + x0) = Ṽ = min
x∈RN

V (x) = V (x0). (4.1)

Now we prove that
lim
ε→0

εaε = 0. (4.2)

Suppose not, say |εaε| ≥ a0 for some a0 > 0 and an infinitesimal sequence of ε’s. Then |εaε| remains bounded,
otherwise, by (1.10), the limit in (4.1) would be strictly larger than V (x0).

Accordingly, there exists an infinitesimal sequence of ε’s for which εaε → α, for some α ∈ RN with |α| ≥ a0 > 0.
From this and (4.1), we obtain that

V (x0) = lim
ε→0

V (εaε + x0) = V (α+ x0).

This contradicts the uniqueness of the minimal point for V , and so it proves (4.2).
Now we claim that

sup
ε

∫

|x|≥R
wrε dx→ 0 as R→∞, (4.3)

with2 r := 2N
N−2s . To see this, we can assume by contradiction that there exists δ positive and a sequence of

Rn →∞ such that

sup
ε

∫

|x|≥Rn
wrε dx ≥ δ as n→∞,

This implies that for a sequence of εn → 0, we have∫

|x|≥Rn
wrεn dx ≥ δ as n→∞.

Because wεn converges strongly in Lr, we have (see e.g. [2, Theorem 4.9]) that there exists h ∈ Lr and a subsequence,
still denoted by εn such that wεn ≤ h a.e. in RN . But then

0 < δ ≤
∫

|x|≥Rn
wrεn dx ≤

∫

|x|≥Rn
hr dx→ 0 as n→∞.

This leads to a contradiction. We thus have proved (4.3).
Next we observe that (−∆)swε − ν(Ṽε)w

p−1
ε wε ≤ 0 in RN . Since wp−1

ε ∈ Lqloc for some q > N
2s , we deduce

from [17, Proposition 2.6] that for any compact set K, we have

max
K

wε ≤ C
∫

K
wrε dx,

2If N ≤ 2s, the above definition of r can be replaced by just fixing r ∈ (1, +∞).
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where r is as above. We therefore conclude from (4.3) that

sup
ε
wε(x)→ 0 as |x| → ∞.

This together with Lemma C.2 in [16] also imply that

wε(x) ≤ Const

1 + |x|N+2s
. (4.4)

By scaling back, we obtain

uε(x) = vε

(
x− x0

ε

)
= wε

(
x− x0 − εaε

ε

)
≤ Const εN+2s

εN+2s + |x− x0 − εaε|N+2s
. (4.5)

It is then clear that uε concentrates at x0 in the sense of (1.9).

Now to prove the last statement of the theorem (uε has a unique global maximum point), we observe that
uε ∈ C2,α

loc and by (4.5), we have lim
|x|→∞

uε(x) = 0 for every fixed and positive ε. We can therefore let u(xε) = max
RN

uε.

Then (−∆)suε(xε) ≥ 0 and thus from (1.2) (recalling (1.4)), we deduce that

u(xε) ≥
(

V̄

ν(V )

) 1
p−1

=: C0.

Hence by (4.5), we get

C0 ≤
Const εN+2s

εN+2s + |xε − x0 − εaε|N+2s

so that
|xε − x0 − εaε| ≤ C1ε. (4.6)

From this we conclude, provided |x− xε| ≥ εR ≥ 2εC1, that

uε(x) ≤ Const

1 +R− C1
≤ Const

1 +R/2
and this completes the proof of concentration of uε at x0.
We now prove the uniqueness of xε. Indeed, we observe that

(−∆)sωε = (−∆)swε − (−∆)sŨ(· − c) = V (εx+ εaε + x0)[Ũ(· − c)− wε] + [V (x0)− V (εx+ εaε + x0)]Ũ(· − c)
+ [ν(Vε)− ν(V (x0))]wpε + ν(V (x0))[wpε − Ũp(· − c)].

We rewrite this as

(−∆)sωε + βε(x)ωε = [V (x0)− V (εx+ εaε + x0)]Ũ(· − c) + [ν(Vε)− ν(V (x0))]wpε ,

where we have set

βε(x) = V (εx+ εaε + x0)− ν(V (x0))[wpε − Ũp(· − c)]
wε − Ũ(· − c)

.

By (4.4), we have |wpε − Ũp(· − c)| ≤ C|wε − Ũ(· − c)| and thus |βε(x)| ≤ Const.. Applying [17, Proposition 2.6],
we deduce that ωε → 0 in C0,α

loc (RN ) for some α ∈ (0, 1). Now by a bootstrap argument and using Proposition
2.1.8 in [24], we conclude that ωε = wε − Ũ(· − c)→ 0 in C2,α

loc (RN ) for some α ∈ (0, 1).
We now set w̄ε(x) = wε(x+ x̄ε) with x̄ε = xε−x0−εaε

ε . We notice that 0 is the global maximum point of w̄ε and so
we have

0 = ∇w̄ε(0) = ∇Ũ(x̄ε − c) +∇ωε(x̄ε).
Recalling that Ũ is symmetric decreasing with respect to the origin, that has a unique critical point and also
ωε → 0 ∈ C2,α

loc (RN ). Therefore from (4.6) we deduce that

|x̄ε − c| → 0.

It is clear that any other global maximum point of w̄ε must stay in a neighborhood of c. We then observe that

w̄ε(x) = Ũ(x) + ω̄ε(x),

where ω̄ε(x) = [Ũ(x+ x̄ε − c)− Ũ(x)] + ωε(x). Since Ũ ∈ C∞(RN ), we obtain ω̄ε → 0 ∈ C2,α
loc . Now using Lemma

4.2 in [20], we conclude that the only critical point for w̄ε is the origin.
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Remark 4.1. We remark that from the above proof, the minimizers uε for νε(V ) has the following precise form:

uε(εx+ xε) = Ũ(x) + ω̄ε(x),

where ω̄ε → 0 in Hs(RN ) ∩ C2,α
loc (RN ) ∩ L∞(RN ) with xε the unique global maximizer for uε and xε converges to

x0 which is the global minimum point for V . Also Ũ is the unique minimizer for ν(V (x0)).

5. Non-degeneracy and uniqueness: preliminaries for the proof of Theorem 1.3

Now we will deal with the functional

Jε(u, ν(Vε)) :=
1
2
‖u‖2ε −

ν(Vε)
p+ 1

∫

RN
|u|p+1 dx (5.1)

and we will consider the scalar products that induce the norms of the fractional spaces used in this paper, namely
we set

〈u, v〉Ds,2 :=
∫

RN
|ξ|2sû v̂ dξ,

〈u, v〉ε,V :=
∫

RN
V (εx+ x0)u(x) v(x) dx,

and 〈u, v〉ε := 〈u, v〉Ds,2 + 〈u, v〉ε,V .
The Hilbert space associated with 〈·, ·〉ε will be denoted by Hs

ε and, as usual, we say that u ⊥ε v whenever 〈u, v〉ε =
0. One simple, but important feature, is that the radially symmetric minimizer U for ν(V0) is perpendicular in Hs

0

(that is Hs
ε with ε = 0) to its derivatives, and the derivatives themselves are perpendicular to each other, according

to the following result:

Lemma 5.1. For any i ∈ {1, . . . , N}, we have that

〈U, ∂iU〉0 = 0

and
∫

RN
Up∂iU = 0.

(5.2)

Moreover, for any i, j ∈ {1, . . . , N}, with i 6= j, we have that
∫

RN
Up−1 ∂iU ∂jU = 0 (5.3)

and
〈∂iU, ∂jU〉0 = 0. (5.4)

Proof. By construction
(−∆)sU + V (0)U = Up (5.5)

and so, taking derivatives,
(−∆)s(∂iU) + V (0)∂iU = pUp−1∂iU. (5.6)

We multiply (5.5) by ∂iU and (5.6) by U and integrate: we obtain, respectively,

〈U, ∂iU〉0 =
∫

RN
Up ∂iU and 〈U, ∂iU〉0 = p

∫

RN
Up ∂iU.

By comparing these two equations we obtain that

p

∫

RN
Up ∂iU =

∫

RN
Up ∂iU,

and so
〈U, ∂iU〉0 =

∫

RN
Up ∂iU = 0,

that proves (5.2).
Now we use the rotational invariance of U to write U(x) = Ū(|x|), for some Ū : R → R. Then we have

that ∂iU(x) = Ū ′(|x|) |x|−1 xi and so, by symmetry
∫

RN
Up−1(x) ∂iU(x) ∂jU(x) dx =

∫

RN
Ūp−1(|x|)

∣∣Ū ′(|x|)
∣∣2 |x|−2 xixj dx = 0.

This establishes (5.3). Then, formula (5.4) follows multiplying (5.6) by ∂jU and integrating over RN .
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Our next result is of coercivity type. It is stronger than what we will need in the following of the paper we
expose it here because we believe that it might be of interest.

We also mention that in the rest of the paper, the regularity assumption can be relaxed to V ∈ C1(RN ).

Given the radially symmetric minimizer U for ν(V0) and a ∈ RN , we define Ua(x) := U(x− a) and

Wε :=
{
v ∈ Hs s.t. v ⊥ε Ua and v ⊥ε ∂jUa for any j = 1, . . . , N

}
. (5.7)

With this, we can bound the second derivative of Jε(Ua, νε) from below as follows:

Lemma 5.2. Let Jε be as in (5.1). There exists ε0 > 0 such that for any ε ∈ (0, ε0), for any v ∈ Wε and for
any a ∈ RN

J ′′ε (Ua, ν(Vε))[v, v] ≥ Const ‖v‖2ε.
The Const above does not depend on a.

Proof. Up to translations, we can suppose that x0 = 0. We consider χ ∈ C∞c (RN , (0, 2)) such that χ = 1 in B1

and χ = 0 in RN \B2. Also we take R > 1, to be chosen suitably large in the sequel. We define

χR(x) = χ
(
a+

x

R

)
,

χ̄R := 1− χR,
v1 := χRv,

v2 := χ̄Rv,

and I1 :=
∫

R2N

χR(x) χ̄R(x) (v(x)− v(y))2

|x− y|N+2s
dx dy.

First we prove that ∣∣〈v1, v2〉Ds,2
∣∣ ≤ ηR(v), (5.8)

with ηR(v) not depending on ε and such that

lim
R→+∞

ηR(v) = 0, (5.9)

for v fixed. To this goal, we compute

(v1(x)− v1(y)) (v2(x)− v2(y))

=
(
v(x)χR(x)− v(y)χR(y)

)(
v(x)χ̄R(x)− v(y)χ̄R(y)

)

=
(
v(x)

(
χR(x)− χR(y)

)
+ χR(y)

(
v(x)− v(y)

))

·
(
χ̄R(x)

(
v(x)− v(y)

)
+ v(y)

(
χ̄R(x)− χ̄R(y)

))

=
(
v(x)

(
χR(x)− χR(y)

)
+ χR(y)

(
v(x)− v(y)

))

·
(
χ̄R(x)

(
v(x)− v(y)

)
− v(y)

(
χR(x)− χR(y)

))

= −v(x) v(y)
(
χR(x)− χR(y)

)2
+ χR(x) χ̄R(x)

(
v(x)− v(y)

)2

+v(x) χ̄R(x)
(
v(x)− v(y)

)(
χR(x)− χR(y)

)

−v(y)χR(y)
(
v(x)− v(y)

)(
χR(x)− χR(y)

)
.

Therefore ∣∣〈v1, v2〉Ds,2
∣∣ ≤ I1 + Const (J1 + J2) (5.10)

with

J1 :=
∫

R2N

|v(x)| |v(y)|
(
χR(x)− χR(y)

)2
dµ(x, y),

J2 :=
∫

R2N

|v(x)| |v(x)− v(y)| |χR(x)− χR(y)| dµ(x, y),

and dµ(x, y) :=|x− y|−N−2s dx dy.

(5.11)
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Now we observe that ‖∇χR‖L∞ ≤ ConstR−1, and so

|χR(x)− χR(y)| ≤ Const min
{

1, R−1|x− y|
}
. (5.12)

Therefore, for any x ∈ RN ,
∫

Rn
|χR(x)− χR(y)|2
|x− y|N+2s

dy

≤ Const

[∫

B(0,R)

R−2 |x− y|2
|x− y|N+2s

dy +
∫

RN\B(0,R)

1
|x− y|N+2s

dy

]

= ConstR−2s.

Using this and the Hölder inequality we obtain

J2 ≤
√∫

R2N

|v(x)|2 |χR(x)− χR(y)|2 dµ(x, y) ·
√∫

R2N

|v(x)− v(y)|2 dµ(x, y)

≤
√
ConstR−2s

∫

RN
|v(x)|2 dx · ‖v‖Ds,2

≤ ConstR−s ‖v‖L2 · ‖v‖Ds,2
≤ ConstR−s ‖v‖2ε.

(5.13)

Now we define

R2N
R :=

{
(x, y) ∈ R2N s.t. |x− y| < R

}

and V :=
{

(x, y) ∈ R2N s.t. |v(x)| ≥ |v(y)|
}
.

By symmetry
∫

R2N
R

|v(x)| |v(y)| |x− y|2 dµ(x, y) ≤ 2
∫

R2N
R ∩V

|v(x)|2 |x− y|2 dµ(x, y)

≤ 2
∫

RN
|v(x)|2

[∫

B(x,R)
|x− y|2−N−2s dy

]
dx ≤ ConstR2−2s

∫

RN
|v(x)|2 dx

= ConstR2−2s ‖v‖2L2 .

(5.14)

Similarly,
∫

(R2N\R2N
R )
|v(x)| |v(y)| dµ(x, y) ≤ 2

∫

(R2N\R2N
R )∩V

|v(x)|2 dµ(x, y)

≤ 2
∫

RN
|v(x)|2

[∫

RN\B(0,R)
|x− y|−N−2s dy

]
dx ≤ ConstR−2s

∫

RN
|v(x)|2 dx

= ConstR−2s ‖v‖2L2 .

We use the latter inequality together with (5.12) and (5.14) to conclude that

J1 ≤ Const

[
R−2

∫

R2N
R

|v(x)| |v(y)| |x− y|2 dµ(x, y) +
∫

R2N\R2N
R

|v(x)| |v(y)| dµ(x, y)

]

≤ ConstR−2s ‖v‖2L2 .

Hence, by (5.10) and (5.13), ∣∣〈v1, v2〉Ds,2
∣∣ ≤ I1 + Const (R−2s +R−s)‖v‖2ε. (5.15)

Now we estimate I1. For this we observe that the function χRχ̄R is supported in B(a, 2R) \B(a,R), hence

I1 ≤
∫

(B(a,2R)\B(a,R))×RN
(v(x)− v(y))2

|x− y|N+2s
dx dy.



16

Since v is a fixed function of Hs, we have that

lim
R→+∞

∫

(B(a,2R)\B(a,R))×RN
(v(x)− v(y))2

|x− y|N+2s
dx dy = 0.

These considerations and (5.15) imply (5.8), as desired.
From (5.8), we obtain that

‖v‖2Ds,2 = ‖v1 + v2‖2Ds,2 = ‖v1‖2Ds,2 + ‖v2‖2Ds,2 + 2〈v1, v2〉Ds,2
≤ ‖v1‖Ds,2 + ‖v2‖Ds,2 + 2ηR(v).

(5.16)

Moreover

‖v‖2ε,V = ‖v1‖2ε,V + ‖v2‖2ε,V +
∫

RN
V (εx) v1(x) v2(x) dx

≤ Const
(
‖v1‖2ε,V + ‖v2‖2ε,V

)
.

This and (5.16) yield that

‖v‖2ε ≤ Const
(
‖v1‖2ε + ‖v2‖2ε + ηR(v)

)
. (5.17)

On the other hand, v1v2 = χRχ̄Rv
2, therefore v1v2 ≥ 0 and it is supported in B(a, 2R)\B(a,R). In this domain Ua

is of the order R−(N+2s), therefore
∫

RN
Up−1
a v1 v2 ≤ ConstR−(p−1)(N+2s)

∫

B(a,2R)\B(a,R)
|v|2 ≤ ConstR−(p−1)(N+2s) ‖v‖2L2 .

From this and (5.8) we infer that

J ′′ε (Ua, ν(Vε))[v1, v2] = 〈v1, v2〉Ds,2 +
∫

RN
V (εx)v1v2 − pν(Vε)

∫

RN
Up−1
a v1v2

≥ −ConstR−s ‖v‖2ε + 0− ConstR−(p−1)(N+2s) ‖v‖2L2

≥ −ConstR−γ ‖v‖2ε,

(5.18)

up to renaming constants, where γ := min{s, (p − 1)(N + 2s)} > 0 (here we have also used Lemma 3.1 to
bound ν(Vε) uniformly in ε). Similarly, v2 is supported outside B(0, R), hence

∫

RN
Up−1
a v2

2 ≤ ConstR−(p−1)(N+2s)

∫

RN
v2,

and therefore

J ′′ε (Ua, ν(Vε))[v2, v2] = ‖v2‖2ε − pν(Vε)
∫

RN
Up−1
a v2

2 ≥ ‖v2‖2ε − ConstR−(p−1)(N+2s) ‖v‖2L2 . (5.19)

Next we estimate J ′′ε (Ua, ν(Vε))[v1, v1]. To this goal, we project v1 along the space spanned by Ua and its derivatives,
i.e. we set

ψ :=
1

‖Ua‖20
〈v1, Ua〉0Ua +

1
‖∂iUa‖20

〈v1, ∂iUa〉0∂iUa,

where the repeated indices convention is used, and w := v1 − ψ. Therefore

J ′′ε (Ua, ν(Vε))[v1, v1] = J ′′ε (Ua, ν(Vε))[w,w] + J ′′ε (Ua, ν(Vε))[ψ,ψ] + 2J ′′ε (Ua, ν(Vε))[w,ψ]. (5.20)

We observe that the norms ‖ · ‖0 and ‖ · ‖ε are comparable, thanks to (1.4). Therefore

|ψ| ≤ ‖v1‖0‖U‖0
Ua +

‖v1‖0
‖∂iUa‖0

|∂iUa| ≤ Const ‖v1‖ε
(
Ua + |∂iUa|

)
, (5.21)

hence ∫

RN
(1 + |x|)ψ2 ≤ Const ‖v1‖2ε.
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Using this, the fact that |V (εx)− V (0)| ≤ Const ε |x|, and that v1 is supported in B(a,R), we conclude that
∫

RN
|V (εx)− V (0)|w2

=
∫

B(a,R)
|V (εx)− V (0)| v2

1 +
∫

RN
|V (εx)− V (0)|ψ2 − 2

∫

RN
|V (εx)− V (0)| v1ψ

≤ Const

[∫

B(a,R)
|V (εx)− V (0)| v2

1 +
∫

RN
|V (εx)− V (0)|ψ2

]

≤ Const ε (R+ |a|) ‖v1‖2ε.

(5.22)

Now we remark that w is orthogonal inHs
0 (i.e. inHs

ε with ε = 0) to any element of the basis {Ua, ∂1Ua, . . . , ∂NUa},
thanks to Lemma 5.1. Hence, from [16], we have that

J ′′0 (Ua, ν0)[w,w] ≥ Const ‖w‖20 ≥ Const ‖w‖2ε.
As a consequence,

J ′′ε (Ua, ν(Vε))[w,w] = J ′′0 (Ua, ν(V0))[w,w] +
∫

RN
[V (εx)− V (0)]w2 − p(ν(Vε)− ν(V0))

∫

RN
Up−1
a w2

≥ Const ‖w‖2ε +
∫

RN
[V (εx)− V (0)]w2 − p(ν(Vε)− ν(V0))

∫

RN
Up−1w2

≥ Const ‖w‖2ε − Const ε (R+ |a|) ‖v1‖2ε − Const |ν(Vε)− ν(V0)| ‖v1‖ε,

(5.23)

where both (5.22) and (5.21) were used in the last inequality.
Furthermore, since v ⊥ε Ua, we have

〈v1, Ua〉0 = 〈v1, Ua〉ε +
∫

RN
[V (0)− V (εx)]v1Ua

= 〈v, Ua〉ε − 〈v2, Ua〉ε +
∫

RN
[V (0)− V (εx)]v1Ua

= −〈v2, Ua〉ε +
∫

RN
[V (0)− V (εx)]v1Ua

= −〈v2, Ua〉Ds,2 −
∫

RN
V (εx)v2Ua +

∫

RN
[V (0)− V (εx)]v1Ua

= −
∫

RN
v2(−∆)sUa −

∫

RN
V (εx)v2Ua +

∫

RN
[V (0)− V (εx)]v1Ua

= −
∫

RN
v2[−V (0)Ua + ν0U

p
a ]−

∫

RN
V (εx)v2Ua +

∫

RN
[V (0)− V (εx)]v1Ua

=
∫

RN
[V (0)− V (εx)]vUa − ν0

∫

RN
Upav2

thus, since v2 is supported outside B(a,R),
∣∣∣〈v1, Ua〉0

∣∣∣ ≤ Const
(
ε (R+ |a|) ‖v‖L2 +R−(p−1)(N+2s)‖v‖L2

)
. (5.24)

In a similar way, since also v ⊥ε ∂iUa, we have that
∣∣∣〈v1, ∂iUa〉0

∣∣∣ ≤ Const
(
ε (R+ |a|) ‖v‖L2 +R−(p−1)(N+2s)‖v‖L2

)
. (5.25)

We deduce from (5.24) and (5.25) that

‖ψ‖0 ≤ Const
(∣∣∣〈v1, Ua〉0

∣∣∣+
∣∣∣〈v1, ∂iUa〉0

∣∣∣
)
≤ Const

(
ε(R+ |a|) ‖v‖L2 +R−(p−1)(N+2s)‖v‖L2

)

and so, since the two norms are comparable,

‖ψ‖ε ≤ Const
(
ε(R+ |a|) ‖v‖L2 +R−(p−1)(N+2s)‖v‖L2

)
.

So, we use the fact that

2|〈v1, ψ〉ε| = 2|〈v1/2, 2ψ〉ε| ≤
‖v1‖ε

4
+ 4‖ψ‖ε
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to conclude that

‖w‖2ε = ‖v1‖2ε + ‖ψ‖2ε − 2〈v1, ψ〉ε
≥ 3

4
‖v1‖2ε − Const (ε(R+ |a|) +R−(p−1)(N+2s))2 ‖v‖2L2 .

Exploiting this and (5.23) we obtain

J ′′ε (Ua, ν(Vε))[w,w] ≥ Const ‖v1‖2ε − Const (ε(R+ |a|) +R−(p−1)(N+2s))2 ‖v‖2L2

− Const ε (R+ |a|) ‖v1‖2ε − Const |ν(Vε)− ν(V0)| ‖v1‖ε.
(5.26)

Notice now that

J ′′ε (Ua, ν(Vε))[v, v] = J ′′ε (Ua, ν(Vε))[v1, v1] + J ′′ε (Ua, ν(Vε))[v2, v2] + 2J ′′ε (Ua, ν(Vε))[v1, v2].

Thus, by collecting (5.18), (5.19) and (5.26), we obtain

J ′′ε (Ua, ν(Vε))[v, v] ≥ Const (‖v1‖2ε + ‖v2‖2ε)
− Const (ε(R+ |a|) +R−γ) ‖v‖2ε,−ConstR−(p−1)(N+2s) ‖v‖2L2

− Const ε (R+ |a|) ‖v1‖2ε − Const |ν(Vε)− ν(V0)| ‖v1‖ε
Now, recalling (5.17) and (5.9), and sending first ε→ 0 and then R→ +∞, we get the desired result.

6. Uniqueness of radial solutions

In this section we assume that V is radial and we consider the functional in (5.1). We denote by Hs
r the subspace

of Hs of radially symmetric function. We will make use of the minimizer U for ν(V0), normalized with ‖U‖Lp+1 = 1,
which is a solution of

〈U, v〉Ds,2 + V (0) 〈U, v〉L2 = ν(V0)
∫

RN
Up(x) v(x) dx, (6.1)

for every v ∈ Hs.
We also define Iε as the restriction of u 7→ Jε(u, ν(Vε)) on Hs

r . Next, we define the operator Φε : Hs
r → Hs

r by

Φε(ω) := I ′ε (U + ω) . (6.2)

By (6.2), we mean: for all w ∈ Hs
r

〈Φε(ω), w〉 = I ′ε (U + ω) [w]. (6.3)

Lemma 6.1. There exists δ > 0 sufficiently small such that: if Φε(w1) = Φε(w2) for some w1, w2 ∈ Hs
r

with ‖w1‖ε + ‖w2‖ε ≤ δ, then w1 = w2.

Proof. The proof is a consequence of Lemma 5.2. The details go as follows. First we fix the following notation:
given f ∈ Hs

r , we define

cf :=
〈f, U〉ε
‖U‖2ε

and f̃ := f − cfU.

Notice that f̃ is radial, since so are f and U , and that 〈f̃ , U〉ε = 0. As a matter of fact, since both f̃ and U are
radial, a direct computation based on odd symmetry shows that also 〈f̃ , ∂iU〉ε = 0, that is

f̃ ∈Wε, (6.4)

according to the definition in (5.7).
Notice that f = f̃ + cfU . We also consider the reflection of f with respect to U , namely

f? := f̃ − cfU. (6.5)

Now we observe that
J ′′0 (U, ν(V0))[U, v] = (1− p) ν(V0)

∫

RN
Up(x) v(x) dx (6.6)

for any v ∈ Hs
r . Indeed, for any v ∈ Hs,

J ′′0 (U, ν(V0))[U, v] = 〈U, v〉Ds,2 + V (0) 〈U, v〉L2 − pν(V0)
∫

RN
Up−1(x)U(x) v(x) dx

= (1− p) ν(V0)
∫

RN
Up(x) v(x) dx,



19

thanks to (6.1), and this establishes (6.6).
Furthermore

J ′′ε (U, ν(Vε))[U, v]− J ′′0 (U, ν(V0))[U, v] =
∫

RN
(V (εx)− V (0))U(x)v(x) dx− p(ν(Vε)− ν(V0))

∫

RN
Up(x) v(x) dx.

This, combined with (6.6) gives that

J ′′ε (U, ν(Vε))[U, v] =
∫

RN
(V (εx)− V (0))U(x)v(x) dx− cε

∫

RN
Up(x) v(x) dx,

where
cε := (1− p) ν(V0)− p(ν(Vε)− ν(V0)).

Notice that cε → (1− p) ν(V0) > 0 as ε→ 0, due to Lemma 3.1. In particular

J ′′ε (U, ν(Vε))[U,U ] = ηε − cε,
with

ηε :=
∫

RN
(V (εx)− V (0))U2(x) dx→ 0,

as ε→ 0, by dominated convergence theorem. We conclude that

J ′′ε (U, ν(Vε))[U,U ] ≤ −cε
2

(6.7)

for small ε. Now, for any v, w ∈ Hs
r , we set

Nε(v)[w] := Φε(v)[w]− Φε(0)[w]− 〈Φ′ε(0)[v], w〉
= I ′ε(U + v)[w]− I ′ε(U)[w]− I ′′ε (U)[v, w]

= ν(Vε)
(
−
∫

RN
|U + v|pw dx+

∫

RN
Upw dx+ p

∫

RN
Up−1w dx

)
.

Referring to page 128 in [1], we obtain

‖Nε(v1)−Nε(v2)‖ ≤ Const (‖v1‖ε + ‖v1‖p−1
ε + ‖v2‖ε + ‖v2‖p−1

ε )‖v1 − v2‖ε. (6.8)

Now we take w := w1−w2 and we use the notation in (6.5) and the assumption that Φε(w1) = Φε(w2) to compute:

0 = Φε(w1)[w?]− Φε(w2)[w?]
= Nε(w1)[w?] + Φε(0)[w?] + 〈Φ′ε(0)[w1], w?〉 − Nε(w2)[w?]− Φε(0)[w?]− 〈Φ′ε(0)[w2], w?〉
= 〈Φ′ε(0)[w1], w?〉 − 〈Φ′ε(0)[w2], w?〉+Nε(w1)[w?]−Nε(w2)[w?]
= J ′′ε (U, ν(Vε))[w,w?] +Nε(w1)[w?]−Nε(w2)[w?].

Thus, we write w = w̃ + cwU and w? = w̃ − cwU , and we exploit (6.8) and (6.7), to see that

0 ≥ J ′′ε (U, ν(Vε))[w̃, w̃]− c2wJ ′′ε (U, ν(Vε))[U,U ]− Const δmin{1,p−1}‖w‖ε‖w?‖ε

≥ J ′′ε (U, ν(Vε))[w̃, w̃] +
cεc

2
w

2
− Const δmin{1,p−1}‖w‖ε‖w?‖ε.

Now, thanks to (6.4), we can make use of Lemma 5.2 and write that J ′′ε (U, ν(Vε))[w̃, w̃] ≥ Const ‖w̃‖2ε. So we
obtain that

0 ≥ Const
(
‖w̃‖2ε + c2w

)
− Const δmin{1,p−1}‖w‖ε‖w?‖ε. (6.9)

Also, by (6.4),
‖w‖2ε = ‖w̃‖2ε + c2w‖U‖2ε + 2〈w̃, U〉ε = ‖w̃‖2ε + c2w‖U‖2ε

and, similarly,
‖w̃‖2ε = ‖w̃‖2ε + c2w‖U‖2ε.

In particular, ‖w‖2ε ≤ Const
(
‖w̃‖2ε + c2w

)
and (6.9) becomes

0 ≥ Const
(
‖w̃‖2ε + c2w

)
− Const δmin{1,p−1}‖w‖2ε

≥
(
Const − Const δmin{1,p−1})‖w‖2ε,

which implies that ‖w‖ε = 0 if δ is small enough.
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7. Completeness of the proof of Theorem 1.3

Now we complete the proof of Theorem 1.3. For this, let viε be a minimizer for ν(Vε), with i = 1, 2. Since
V is radial then using symmetric decreasing arguments of the moving plane argument, we have that viε is radial
(or using the minimization in the space Hs

r and the compactness in [18]). Then by Lemma 3.1, provided ε is
sufficiently small, we have

viε(x) = U + wiε with ‖wεi ‖ε → 0 as ε→ 0.
It turns out that Φε(wiε) = I ′ε(v

i
ε) = 0, so we conclude that w1

ε = w2
ε , due to Lemma 6.1.
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