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Abstract

We consider a system of two coupled elliptic equations, one defined on a bulk domain
and the other one on the boundary surface. Problems of this kind of problem are relevant for
applications in engineering, chemistry and in biology like e.g. biological signal transduction.
For the a posteriori error control of the coupled system, a residual error estimator is derived
which takes into account the approximation errors due to the finite element discretisation
in space as well as the polyhedral approximation of the surface. An adaptive refinement
algorithm controls the overall error. Numerical experiments illustrate the performance of the
a posteriori error estimator and the proposed adaptive algorithm with several benchmark
examples.

1 Introduction

Coupled reaction diffusion processes in the bulk and on the surface of some domain Ω ⊂
Rd, d ∈ {2, 3}, have recently attracted interest from an analytical point of view [ER13] and in
different application areas such as biology, see e.g. [NGC+07, RR12, GEW+15]. In all these
problems one has to simultaneously account for transport in normal as well as in tangential
direction to the boundary surface whereas most often either only normal or only tangential
phenomena are considered. We study a stationary prototype problem in a domain Ω with
piecewise smooth boundary Γ := ∂Ω which can be decomposed into a finite set of NΓ smooth
surface patches {Γi}NΓ

i=1. We seek the solution u : Ω → R and v : Γ → R of the stationary
coupled diffusion-reaction problem

−∆u+ u = f in Ω, (1.1a)

(αu− βv) + ∂nu = 0 on ∪NΓ
i=1 Γi, (1.1b)

−∆Γv + v + ∂nu = g on ∪NΓ
i=1 Γi, (1.1c)

∇Γv |Γi ·niΓ +∇Γv |Γj ·njΓ = 0 on ∂Γi ∩ ∂Γj . (1.1d)

For each point on a surface patch Γi, n is the outer normal of Ω and∇Γi and ∆Γ denote the
tangential gradient and the Laplace-Beltrami operator, respectively. In the compatibility condition
(1.1d), niΓ denotes the outer normal of the patch Γi. For each point in ∂Γi, it lies in the tangent
plane to Γi. The equation system (1.1) describes diffusive transport and reaction of a bulk
species u and a surface species v which are coupled by some binding–unbinding process that
transforms u to v by binding it to Γ and vice versa. For the sake of a convenient presentation,
the diffusion coefficients and reaction rates are assumed to be 1 while the binding and unbinding
rates are given by the positive constants α and β.
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Existence and uniqueness of the solution to (1.1) have been proved in [ER13] for globally
C2 boundaries. Moreover, optimal a priori error estimates for finite element approximations of
arbitrary order were derived for sufficiently smooth boundaries and data. For the time dependent
version of (1.1), convergence to equilibrium and a-priori error estimates were shown in [EFPT15].
In [BHLZ14] a CutFEM method that uses the same volume grid to discretise both the volume and
the surface equation is analysed. We complement the analysis of [ER13] by the derivation of an
a posteriori error estimator for the error e := (u− uh, v− vh) of a lowest order continuous FEM
approximation (uh, vh) of the solution (u, v) of (1.1) measured in the energy norm. For this, we
split the overall residual into an equilibration, a consistency and a data approximation residual.
We transfer the classical residual error estimators for volume domains and for surfaces to the
setting of the coupled system. While the a posteriori analyis for problems on polyhedral domains
is rather mature, see e.g. [AO00, BR78, Ver96] and a priori analysis for finite elements on curved
domains is well established, see e.g. [Sco73, Zlá73, Ber89] much less can be found for the a
posteriori analysis on curved domains. Most notably, in [DR98], the focus is set on a very coarse
domain approximation where large parts of the domain may not be discretised at all and the
refinement algorithm has to explore and detect the necessary parts of the domain which are
important for the discretisation. This is somehow opposite to the setting we are concerned with
since due to the coupling to the surface equation, we expect the complete domain to be required
for an accurate solution. Finite element methods on surfaces were analysed by [Dzi88] and
[DD07]. In [BCMN13] a convergent refinement algorithm for surface finite elements is derived
and quasi-optimality of the resulting discretisations is shown under certain assumptions. Our
error estimator extends some of these results for the bulk-surface coupled equations. One main
difficulty and contribution of this paper is the analysis of the geometry error of non-conformity
caused by the polyhedral approximation of the surface manifold.

The outline of the paper is as follows: In Section 2, some notation regarding the involved domains
and their approximations is introduced. Moreover, assumptions on the coefficients are clarified
and the weak formulation and FEM discretisation of the problem is presented. In Section 3,
we recall basic results from differential geometry which include integral transformations used
later on. In particular, non-conformity estimates are derived which provide bounds for the error
caused by the domain approximations. Section 4 is dedicated to the derivation of the residual a
posteriori error estimator for the overall error which is the main result of this paper. It consists of a
discretisation part and a geometric non-conformity part which both can be controlled a posteriori
by computable indicators. Numerical experiments in Section 5 illustrate the performance of the
derived a posteriori error estimator with several benchmark problems.

In order to simplify notation, we write a . b if a ≤ C b with some mesh-independent positive
constant C . Moreover, the common notation for Lebesgue and Sobolev spaces is employed.

2 Problem Formulation

We first introduce the weak formulation of (1.1) for some domain Ω and then formulate the
corresponding discrete problem for a polyhedral domain Ωh with a triangulation that interpolates
Ω.
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2.1 Weak formulation of the continuous problem

Let Ω ⊆ Rd be a Lipschitz domain and Γ = ∂Ω. Suppose Γ can be decomposed into

Γ =
⋃NΓ

i=1 Γ
i
, where {Γi} is a set of pairwise disjoint C2 surfaces. Each boundary patch Γi is

assumed to have a Lipschitz boundary ∂Γi. We introduce the spaces

U := H1(Ω), (2.1a)

V := {v ∈ L2(Γ) : ∇Γv |Γi∈ L2(Γi), v |Γi= v |Γj on ∂Γi ∩ ∂Γj} (2.1b)

and denote their dual spaces by U∗ and V ∗, respectively. Moreover, we define the weak form of
the Laplace-Beltrami operator −∆Γ : V → R such that for each v ∈ V it holds∫

Γ

−ψ∆Γv ds :=

∫
Γ

∇Γψ · ∇Γv ds−
NΓ∑

Γi=1

∫
∂Γi

ψ∇Γv · niΓ dσ for all ψ ∈ V. (2.2)

Note that in general the sum in (2.2) does not vanish because on Γ̄i ∩ Γ̄j (i 6= j) the normal
vectors niΓ and njΓ are not parallel unless Γ is a global C1 surface. Therefore, the additional
condition (1.1d) is necessary to recover from (2.2) the strong form of the Laplace-Beltrami
operator for piecewise C2 surfaces.

The weak form of (1.1) reads: Given f ∈ U∗ and g ∈ V ∗, find (u, v) ∈ U × V such that, for all
(φ, ψ) ∈ U × V , ∫

Ω

∇φ · ∇u+ φu dx+

∫
Γ

φ (αu− βv) ds =

∫
Ω

φ f dx, (2.3a)∫
Γ

∇Γψ · ∇Γv + v ψ ds−
∫

Γ

ψ (αu− βv) ds =

∫
Γ

ψ g ds. (2.3b)

This can also be written in the standard variational form

a((u, v), (φ, ψ)) = `((φ, ψ)) for all (φ, ψ) ∈ U × V, (2.4)

with the bilinear and linear forms

a((u, v), (φ, ψ)) := α

∫
Ω

∇φ · ∇u+ φu dx+ β

∫
Γ

∇Γψ · ∇Γv + ψ v ds (2.5a)

+

∫
Γ

(αφ− βψ)(αu− βv) ds,

`((ψ, φ)) := α

∫
Ω

φ f dx+ β

∫
Γ

ψ g ds. (2.5b)

In an analogous way to [ER13], we easily verify that a(·, ·) is a continuous and coercive bilinear
form on U × V . Hence, the Lax-Milgram Theorem provides existence of a unique solution to
(2.4).
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2.2 Discrete Problem

Let Ωh ⊂ Rd be a polyhedral domain with the boundary Γh = ∂Ωh and let Th be a regular
partition of Ωh into simplices that interpolates Ω. For d = 3, we denote the sets of nodes, edges
and faces of the triangulation Th byNh, Eh and Fh, respectively. If d = 2 we let Fh denote the
set of edges and let Eh coincide withNh. The subset F∂h := {Fh ∈ Fh : Fh ⊂ Γh} defines a
triangulation of Γh into (d− 1) dimensional simplices. Analogously to the volume, we introduce
the sets of boundary edges and boundary nodes, denoted by E∂h andN ∂

h . For each Th ∈ Th,
Fh ∈ Fh, Eh ∈ Eh, we set hT = diam(Th), hF = diam(Fh), hE = diam(Eh) and define
by this the (global) mesh-size functions hT , hF , hE . The jump of some (piecewise) function
v ∈ L2(Ω;Rd) over a face F ∈ Fh is defined by [v]F := v ·n+ + v ·n− where n+, n− denote
the outer normals on F = T+ ∩ T− with respect to the elements T+, T− ∈ Th. If the normals
are not continuous along faces, we use the notation [[v]]F to indicate this. Analogous definitions
are assumed for jumps [v]E over edges E ∈ Eh.

We introduce the spaces of continuous finite element functions

Uh :=
{
uh ∈ C(Ωh) : uh|Th ∈ P1(Th) ∀Th ∈ Th

}
, (2.6a)

Vh :=
{
vh ∈ C(Γh) : vh|Fh

∈ P1(Fh) ∀Fh ∈ F∂h
}
, (2.6b)

where P1 is the space of piecewise polynomials of maximal degree one.

The discrete variational problem reads: Given fh ∈ Uh and gh ∈ Vh, find (uh, vh) ∈ Uh × Vh
such that

ah((uh, vh), (φh, ψh)) = `h((φh, ψh)) for all (φh, ψh) ∈ Uh × Vh (2.7)

with the discrete bilinear and linear forms

ah((uh, vh), (φh, ψh)) := α

∫
Ωh

∇φh · ∇uh + φhuh dx+ β

∫
Γh

∇Γhψh · ∇Γhvh + ψhvh ds

(2.8a)

+

∫
Γh

(αφh − βψh)(αuh − βvh) ds,

`h((φh, ψh)) := α

∫
Ωh

φh fh dx+ β

∫
Γh

ψh gh ds. (2.8b)

Existence and uniqueness of solutions to (2.7) can be proven by the Lax-Milgram Theorem, cf.
[ER13]. Note that the finite element method defined above is non-conforming since Uh and Vh,
in general are not subspaces of U and V . Moreover ah and `h differ from a and ` since the
integrals are defined over different domains.

3 Domain Approximation

When Ω is a curved domain, a triangulation Th can not match the domain exactly. Instead, we
require Th to interpolate the boundary Γ and thereby to define an approximating polyhedral
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domain Ωh. Then, by application of some deformation which maps Ωh to Ω, one can define an
exact triangulation T of Ω consisting of curved elements such that Γ = ∂Ω is matched exactly.
To refine Th, we apply a bisection of the volume elements with a subsequent projection of the
new boundary nodes to Γ. For the construction of the exact triangulation to be well defined and
for the analysis below, we need the following assumptions on the triangulation

(A1) Th interpolates Γ, i.e. the set of boundary nodes satisfiesN ∂
h ⊂ Γ.

(A2) Th is sufficiently fine such that each boundary face Fh ∈ F∂h or boundary edge Eh ∈ E∂h
is completely inside a narrow band wherein a nearest point projection to a boundary patch
Γi is well defined.

(A3) The non-smooth parts of Γ are mapped to boundary edges of Th, i.e. if Eh ∈ E∂h then
there is some i ∈ {1, . . . , NΓ} with Nh ∈ ∂Γi for all nodes Nh ∈ N ∂

h ∩ Eh.

(A4) Each element Th ∈ Th has at most one boundary face Fh ⊆ ∂Ωh ∩ ∂Th.

(A5) All refinements of Th by bisection lead to a shape regular family of triangulations.

On polyhedral volume domains it is known that appropriate bisection algorithms guarantee the
shape regularity and thus assumption (A5) is not necessary in this case. For the case of finite
elements on curved surfaces we refer to the discussion in [DD07] and [BCMN13]. In the following
sections, we always consider Th as some refinement of a macro-triangulation without indicating
the refinement level.

3.1 Approximation of curved elements

Given a curved element T ∈ T , let Th ∈ Th be the simplex that interpolates the corner nodes
of T . Let T̂ denote the d-dimensional unit simplex. For each simplex Th ∈ Th there is an
affine reference transformation which we refer to by J : T̂ → Th. The nonlinear reference
transformation to T is denoted by X . After rescaling to the unit simplex, the global bi-Lipschitz
regularity of Γ implies that there is a constant L > 0 such that

hL−1 |z| ≤ ‖∇̂X z‖L2(Th) ≤ hL |z| for all z ∈ Rd. (3.1)

Due to the shape regularity assumption (A5), there is a constant Lh > 0 such that

hL−1
h |z| ≤ ‖∇̂J z‖L2(Th) ≤ hLh |z| for all z ∈ Rd. (3.2)

The domain Ω itself does not determine X in a unique way. In the literature, there are different
appropriate constructions suggested, cf. [Sco73, Ber89, Dub90, ER13]. The basic concept is to
describe the deformation of a flat surface or edge to the curved boundary and then extend this
deformation into the volume.

For the construction of X we assume that if Th has one boundary face Fh ⊂ F∂h then J is such
that F̂ := {x̂ ∈ T̂ : x̂d = 0} is mapped to the boundary segment Fh as depicted in Fig. 1.
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T̂

X

n

Th

F̂

x̂1

x̂3

x̂2

Fh

F

J

Figure 1: Transformation from reference element T̂ to piecewise approximation Γh by Fh and to
parametric representation Γ by P and X i := P ◦ Fh.

Analogously, if Th ∩ Γh consists only of one boundary edge Eh, we assume that Eh := J(Ê),
where Ê := {x̂ ∈ T̂ : x̂d = x̂d−1 = 0}. Let P i denote the nearest point projection from Γih to
Γi. By (A4) and (A2), P i is well defined, and since each patch Γi is assumed to be C2, we have
that P i is C1(Γih) [BCMN13]. Then, we define for all x̂ ∈ T̂

X (x̂) = J(x̂) +

{[
P i(J(x̂1, . . . , x̂d−1, 0))− J(x̂1, . . . , x̂d−1, 0)

]
ρF̂ (x̂d) if T ∩ Γ = F,[

P i(J(x̂1, . . . , x̂d−2, 0, 0))− J(x̂1, . . . , x̂d−2, 0, 0)
]
ρÊ(x̂d−1, x̂d) if T ∩ Γ = E.

(3.3)

with ρF̂ , ρÊ ∈ C1(Ω) and 0 ≤ ρF̂ , ρÊ ≤ 1. The simplest choice for the extension of the
boundary deformation into the element is ρF̂ (xd) = 1− x̂d and ρÊ(xd−1, xd) = 1− x̂d−1− x̂d.
By this approach, X is a C1-diffeomorphism and without loss of generality we can assume that
the Jacobi matrix ∇̂X is positive definite. Note that by the above construction a curved element
T ∈ T can have more than one curved face if d = 3.

To quantify the deviation of a curved boundary face or edge from the polygonal interpolation, we
define the geometric element indicator

λΓ(Th) := h−1

{
‖∇̂F̂ (X − J)‖L∞(F̂ ) if T ∩ Γ = F,

‖∇̂Ê(X − J)‖L∞(Ê) if T ∩ Γ = E,
(3.4)

where ∇̂F̂Φ denotes the tangential gradient of Φ in F̂ given by the first d− 1 partial derivatives.

Likewise, ∇̂ÊΦ is the tangential gradient in Ê subject to the first d−2 partial derivatives. Although
λΓ(Th) is only defined on a boundary face or edge by (3.4), it in fact already characterises the
difference between T and Th completely:
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Lemma 3.1. For Th ∈ Th and T ∈ T the corresponding curved element, let X be defined
according to (3.3). Suppose there is one face F ∈ F∂ or edge E ∈ E∂h such that T ∩ Γ = F
or T ∩ Γ = E, respectively. There holds

‖∇̂(X − J)‖L∞(T̂ ) . hλΓ(Th). (3.5)

Proof. We assume T ∩ Γ = F . The other case follows from analogous arguments. With the
abbreviation Φ(x̂F̂ ) := P i(J(x̂F̂ )− J(x̂F̂ ) for all x̂F̂ ∈ F̂ , we write

∇̂(X − J) =
(
ρF̂ ∇̂F̂Φ, ρ′

F̂
(x̂d)Φ

)
. (3.6)

By the triangle inequality and since 0 ≤ ρF̂ ≤ 1, we infer

‖∇̂(X − J)‖L∞(T̂ ) ≤ ‖∇̂F̂Φ‖L∞(F̂ ) + max
x̂∈T̂
|ρ′
F̂

(x̂)| ‖Φ‖L∞(F̂ ). (3.7)

Because Th interpolates T , i.e. Φ(0) = 0, and using that Φ(x̂F̂ ) =
∫ 1

0
∇̂F̂Φ · x̂F̂ ds, we

conclude ‖Φ‖L∞(F̂ ) ≤ ‖∇̂F̂Φ‖L∞(F̂ ) to confirm the assertion.

3.2 Basic differential geometry

For each boundary element T ∈ T or Th ∈ Th, the partial derivatives of X or J with respect to
x̂1, . . . , x̂d build a complete set of linear independent tangential vectors to Γ or Γh, respectively.
For x̂ ∈ F̂ we define

T(x̂) := ∇̂F̂X (x̂) = [∂̂1X (x̂), · · · , ∂̂d−1X (x̂)], (3.8a)

Th(x̂) := ∇̂F̂J = [∂̂1J, · · · , ∂̂d−1J ]. (3.8b)

Then, the first fundamental form of Γ and Γh is given by the symmetric positive definite matrix

G = TTT and Gh = TThTh, (3.9)

respectively. Given x̂ ∈ T̂ and u ∈ U , we set û(x̂) := u◦X (x̂) = u(x). Likewise, for x̂F̂ ∈ F̂
and v ∈ V , we set v̂(x̂F̂ ) := v ◦ X (x̂F̂ ) = v(xF ). The gradients on T̂ and F̂ are related to
respective gradients on Ω and Γ by

∇̂û = ∇u ∇̂X and ∇̂F̂ v̂ = ∇Γv T. (3.10)

With the change of variables formulas∫
T̂

û det(∇X ) dx̂ =

∫
X (T̂ )

u dx and

∫
F̂

v̂
√

det(G) dŝ =

∫
X (F̂ )

v ds (3.11)

we get the identities∫
T̂

∇̂û · ∇̂X−1∇̂X−T ∇̂û det(∇X ) dx̂ =

∫
X (T̂ )

∇u · ∇u dx, (3.12a)∫
F̂

∇̂F̂ v̂ ·G
−1∇̂F̂ v̂

√
det(G) dŝ =

∫
X (F̂ )

∇Γv · ∇Γv ds. (3.12b)

Next, we want to get bounds for the perturbation of the transformation in terms of the geometric
element indicator.
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Lemma 3.2. Let Th ∈ Th and T ∈ T be the corresponding curved element. Let X , T, G, and
J , Th, Gh be defined as above. Suppose there is one face F ∈ F∂ with T ∩ Γ = F . Then,

‖G−Gh‖ . h2λΓ(Th), (3.13a)

| det(G)− det(Gh)| . h2d−2λΓ(Th) (3.13b)

where ‖ · ‖ denotes a compatible matrix norm. Moreover, there holds∥∥∥∥∥
√

det(G)√
det(Gh)

− 1

∥∥∥∥∥
L∞(F̂ )

. λΓ(Th), (3.13c)∥∥∥∥∥Th
( √

detG√
detGh

G−1 −G−1
h

)
TTh

∥∥∥∥∥
L∞(F̂ )

. λΓ(Th). (3.13d)

Proof. For any z ∈ Rd it holds zTGz = ‖∇̂F̂X z‖ and hence the eigenvalues of G are
bounded by h−2L−2|z|2 ≤ zTGz ≤ h−2L2|z|2 due to (3.1). Analogously, we conclude
that the eigenvalues of Gh lie in [hL−1

h , hLh]. We thus infer ‖T‖L2(F̂ ), ‖Th‖L2(F̂ ) . h and

det(G), det(Gh) . h2d−2. By the definition of G, Gh and λΓ(Th), we obtain

‖G−Gh‖ = ‖(T− Th)TT + TTh (T− Th)‖
≤ hλΓ(Th)(‖T‖+ ‖Th‖, (3.14)

which yields the first assertion. We use a Taylor expansion to deduce that there exists 0 ≤ θ ≤ 1
such that

det(G)− det(Gh) = θ
(
D det(Gh)

)
(G−Gh) (3.15)

= θ det(Gh) trace
(
G−1
h (G−Gh)

)
. (3.16)

By Hölder’s inequality we conclude that

| det(G)− det(Gh)| . | det(Gh)| ‖G−1
h ‖ ‖G−Gh‖ (3.17)

to infer (3.13b). For (3.13c), we note that√
det(G)−

√
det(Gh) =

det(G)− det(Gh)√
det(G) +

√
det(Gh)

(3.18)

and that all powers of h cancel after division by det(Gh). Finally, using the abbreviations
q :=

√
det(G) and qh :=

√
det(Gh) leads to

Th
(
q

qh
G−1 −G−1

h

)
TTh = Th

(
q − qh
qh

G−1 +G−1(Gh −G)G−1
h

)
TTh . (3.19)

The application of (3.13a) and (3.13c) now concludes the proof.
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Corollary 3.3. Let Th ∈ Th and T ∈ T be the corresponding curved element. Let X and J be
defined as above. We set A := ∇̂X T ∇̂X and Ah := ∇̂JT ∇̂J . Suppose there is one face
F ∈ F∂ or edge E ∈ E∂h such that T ∩ Γ = F or T ∩ Γ = E, respectively. Then,∥∥∥∥∥det(∇̂X )

det(∇̂J)
− 1

∥∥∥∥∥
L∞(T̂ )

. λΓ(Th), (3.20a)∥∥∥∥∥∇̂J
(
| det ∇̂X |
| det ∇̂J |

A−1 − A−1
h

)
∇̂JT

∥∥∥∥∥
L∞(T̂ )

. λΓ(Th). (3.20b)

Proof. With Lemma (3.1), the assertions follow from the same arguments as in Lemma 3.2.

3.3 Lifts and geometric non-conformity estimates

We first define the lifting of functions defined on the curved domain or surface onto their corre-
sponding polyhedral or polygonal discretisation and vice versa.

Definition 3.4. For functions uh : Ωh → R and u : Ω→ R we define the lift and inverse lift by

u`h(X ◦ J−1(x)) := uh(x) and u−`(x) := uh(X ◦ J−1(x)) for x ∈ Ωh. (3.21)

Likewise, for vh : Γh → R and v : Γ→ R, we define

v`h(X ◦ J−1(x)) := vh(x) and v−`(x) := v(X ◦ J−1(x)) for x ∈ Γh. (3.22)

Next, we estimate the error which incurs due to integration on perturbed domains in order to
compare functions on the curved domain and on its polyhedral approximation.

Lemma 3.5. For u`h, φ ∈ U it holds∣∣∣∣∫
Ω

u`h φ dx−
∫

Ωh

uh φ
−` dx

∣∣∣∣ . ∑
Th∈Th

λΓ(Th) ‖uh‖L2(Th) ‖φ−`‖L2(Th),

(3.23a)∣∣∣∣∫
Ω

∇u`h · ∇φ dx−
∫

Ωh

∇uh · ∇φ−` dx

∣∣∣∣ . ∑
Th∈Th

λΓ(Th) ‖∇uh‖L2(Th) ‖∇φ−`‖L2(Th).

(3.23b)

Likewise, for v`h, ψ ∈ V it holds∣∣∣∣∫
Γ

v`h ψ ds−
∫

Γh

vh ψ
−` ds

∣∣∣∣ . ∑
Th∈Th

λΓ(Th) ‖vh‖L2(Fh) ‖ψ−`‖L2(Fh),

(3.23c)∣∣∣∣∫
Γ

∇Γv
`
h · ∇Γψ ds−

∫
Γh

∇Γhvh · ∇Γhψ
−` ds

∣∣∣∣ . ∑
Th∈Th

λΓ(Th) ‖∇Γvh‖L2(Fh) ‖∇Γψ
−`‖L2(Fh).

(3.23d)
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Proof. The identities follow from transformation to the reference domain and a pull-back. We
start with the L2 cases. By a localisation to elements and with (3.11) we derive∫

T

u`h φ dx−
∫
Th

uh φ
−` dx =

∑
T i
h∈Th

∫
T̂

ûh (| det ∇̂X i| − | det ∇̂J i|) φ̂ dx̂

=
∑
T i
h∈Th

∫
T i
h

uh

(
| det ∇̂X i|
| det ∇̂J i|

− 1

)
φ−` dx.

Application of (3.20a) yields the assertions (3.23a). A similar argument and (3.13c) can be
employed with the surface integral to get (3.23c). One can proceed in an analogous way for the
H1 cases. With (3.11) and (3.12), we obtain∫
T

∇u`h · ∇φ dx−
∫
Th

∇uh · ∇φ−` dx

=
∑
T i
h∈Th

∫
T̂

∇̂ûh
(

(Ai)−1 | det ∇̂X i| − (Aih)
−1 | det ∇̂J i|

)
· ∇̂φ̂ dx̂

=
∑
T i
h∈Th

∫
T i
h

∇uh ∇̂J i
(
| det ∇̂X |
| det ∇̂J |

(Ai)−1 − (Aih)
−1

)
(∇̂J i)T · ∇φ−` dx.

Application of (3.20b) yields the assertions (3.23b) and again similar arguments and (3.13d) can
be employed with the surface integrals to get (3.23d).

For sufficiently fine triangulations it is known that there is a norm equivalence for the lifting of
functions in the volume, cf. [ER13] and on the surface, see [Dzi88, Dem09]. Here, we can get
the equivalence from Lemma 3.5.

Lemma 3.6. Assume the triangulation Th is sufficiently fine such that the global geometry
estimator satisfies

λΓ := max
Th∈Th

λΓ(Th) ≤ λ0 < 1.

For u ∈ H1(Ω) and v ∈ H1(Γ), it holds

‖u‖L2(Ω) ≈
∥∥u−`∥∥

L2(Ωh)
, ‖∇u‖L2(Ω) ≈

∥∥∇u−`∥∥
L2(Ωh)

, (3.24a)

‖v‖L2(Γ) ≈
∥∥v−`∥∥

L2(Γh)
, ‖∇Γv‖L2(Γ) ≈

∥∥∇Γhv
−`∥∥

L2(Γh)
, (3.24b)

where a ≈ b means a . b and b . a.

Proof. Choosing φ = u`h in Lemma 3.5 yields∣∣∣‖u`h‖2
L2(Ω) − ‖uh‖2

L2(Ωh)

∣∣∣ . λΓ ‖uh‖2
L2(Ωh). (3.25)

It follows ‖u`h‖2
L2(Ω) . (1 + λΓ) ‖uh‖2

L2(Ωh) and ‖uh‖2
L2(Ωh) . (1− λΓ)−1 ‖u`h‖2

L2(Ω). In an
analogous way one can show (3.24b).
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4 Residual Error Estimation

This section is devoted to the derivation of a residual estimator of the error measured in the
energy norm for the coupled problem. We introduce the energy norm on U × V by

|||(φ, ψ)|||2 := a((φ, ψ), (φ, ψ)) = α ‖φ‖2
U + β ‖ψ‖2

V + ‖αφ− βψ‖2
L2(Γ) . (4.1)

Given some finite element function (uh, vh) ∈ Uh × Vh, the residual R with regard to the
variational problem (2.4) is defined by

〈R, (φ, ψ)〉 := a((u`h, v
`
h), (φ, ψ))− `(φ, ψ) for all (φ, ψ) ∈ U × V . (4.2)

Proposition 4.1. Let (u, v) ∈ U × V be the solution of (2.4). Given (uh, vh) ∈ Uh × Vh, the
energy norm of the error satisfies∣∣∣∣∣∣(u− u`h, v − v`h)∣∣∣∣∣∣ = |||R|||∗ . (4.3)

Proof. We set e := (u`h − u, v`h − v) and easily check that for all (φ, ψ) ∈ U × V we have
〈R, (φ, ψ)〉 = a(e, (φ, ψ)). Hölder inequality directly implies 〈R, (φ, ψ)〉 ≤ |||e||| |||(φ, ψ)||| for
all (φ, ψ) ∈ U × V and thus |||R|||∗ ≤ |||e|||. On the other hand, since 〈R, e〉 = |||e|||2, it follows

|||e||| = 〈R, e〉
|||e|||

≤ sup
w∈(U×V )\{0}

〈R,w〉
|||w|||

= |||R|||∗ .

We split the residual into R = Rh +Rnc +Rosc with

〈Rh, (φ, ψ)〉 := ah((uh, vh), (φ
−`, ψ−`))− `h(φ−`, ψ−`) , (4.4a)

〈Rnc, (φ, ψ)〉 := a((u`h, v
`
h), (φ, ψ))− ah((uh, vh), (φ−`, ψ−`)) (4.4b)

− ``h(φ, ψ) + `h(φ
−`, ψ−`) ,

〈Rosc, (φ, ψ)〉 := ``h(φ, ψ)− `(φ, ψ) . (4.4c)

Rh is the discretisation part of the residual, Rnc is the non-conformity part which quantifies the
quality of the polyhedral domain approximation Ωh with respect to the exact domain Ω andRosc is
the data approximation part of the residual. In the subsequent sections, computable error bounds
for Rh and Rnc are derived and then combined to yield the total a posteriori error estimate.

4.1 Discretisation residual

The derivation of the upper bound for the discretisation residual Rh largely follows the classical
approach of residual error estimators, see e.g. [AO00, Ver96] and [CEHL12] for a recent account
on the universal application of the principle. In the proof, we employ the stable interpolation
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operator Πh : U−` = H1(Ωh) → Uh of Scott and Zhang [SZ90]. For φ ∈ H1(Ωh) and any
Th ∈ Th, Fh ∈ Fh, it verifies

‖φ− Πhφ‖L2(Th) . hT ‖∇φ‖L2(ωTh
) , (4.5a)

‖φ− Πhφ‖L2(Fh) . h
1/2
F ‖∇φ‖L2(ωFh

) , (4.5b)

where ωTh and ωFh
denote patches containing Th or Fh, respectively, and all neighbouring

elements. In an analogous way, we introduce the stable interpolation operator Π∂
h : V −` → Vh

on the polyhedral boundary Γh. It holds∥∥ψ − Π∂
hψ
∥∥
L2(Fh)

. hF ‖∇Γhψ‖L2(ω∂
Fh

) , (4.6a)∥∥ψ − Π∂
hψ
∥∥
L2(Eh)

. h
1/2
E ‖∇Γhψ‖L2(ω∂

Eh
) , (4.6b)

with surface patches ω∂Fh
⊂ Γh and ω∂Eh

⊂ Γh.

Lemma 4.2. Let (uh, vh) ∈ Uh × Vh be a solution of the discrete problem (2.7). For all
(φ, ψ) ∈ U × V , the discretisation residual Rh satisfies the estimate

〈Rh, (φ, ψ)〉 .α (ηB + ηC) ‖∇φ‖L2(Ω) + β ηS ‖∇Γψ‖L2(Γ) , (4.7)

where the error indicators on the right-hand side are given by

ηC :=
∥∥∥h1/2

F∂
h

(αuh − βvh + ∂nuh)
∥∥∥
L2(F∂

h )
, (4.8a)

ηB := ‖hTh(∆uh − uh + fh)‖L2(Th) +
∥∥∥h1/2
Fh

[∂nuh]Fh

∥∥∥
L2(Fh\F∂

h )
, (4.8b)

ηS :=
∥∥∥hF∂

h
(∆Γhvh − (1 + β)vh + αuh + gh)

∥∥∥
L2(F∂

h )
+
∥∥∥h1/2

E∂h
[[∂nvh]]E∂

∥∥∥
L2(E∂h )

. (4.8c)

Here, the discrete norms are defined as summation over the elements or faces, respectively. By
[∂nuh]Fh

we denote the usual jump of the normal derivative at element faces and [[∂nvh]]E∂ is
the corresponding jump quantity on the surface defined as in (1.1d).

Proof. Let (φ, ψ) ∈ U × V , then (Πhφ
−`,Π∂

hψ
−`) ∈ Uh × Vh is in the kernel of Rh. Thus, a

splitting of Rh into element contributions and an integration by parts result in

〈Rh, (φ, ψ)〉 = α
∑
Th∈Th

(∫
Th

(−∆uh + uh − fh)(φ−` − Πhφ
−`) dx

+
∑

Fh∈∂Th

∫
Fh

∂nuh(φ
−` − Πhφ

−`) ds

)
+ α

∑
Fh∈F∂

h

∫
Fh

(αuh − βvh)(φ−` − Πhφ
−`) ds (4.9)

+ β
∑
Fh∈F∂

h

(∫
Fh

(−∆Γhvh + (1 + β)vh − αuh − gh)(ψ−` − Π∂
hψ
−`) ds

+
∑

Eh∈∂Fh

∫
Eh

∂nvh(ψ
−` − Π∂

hψ
−`) dσ

)
.
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In the sum over all Th ∈ Th we collect all contributions over the inner faces Fh ∈ Fh \ F∂h and
move the boundary face parts to the coupling term. The Cauchy-Schwarz inequality yields

〈Rh, (φ, ψ)〉 . α
∑
Th∈Th

‖∆uh − uh + fh‖L2(Th)

∥∥φ−` − Πhφ
−`∥∥

L2(Th)

+ α
∑

Fh∈Fh\F∂
h

‖[∂nuh]Fh
‖L2(Fh)

∥∥φ−` − Πhφ
−`∥∥

L2(Fh)

+ α
∑
Fh∈F∂

h

‖αuh − βvh + ∂nuh‖L2(Fh)

∥∥φ−` − Πhφ
−`∥∥

L2(Fh)
(4.10)

+ β
∑
Fh∈F∂

h

‖∆Γhvh − (1 + β)vh + αuh + gh‖L2(Fh)

∥∥ψ−` − Π∂
hψ
−`∥∥

L2(Fh)

+ β
∑
Eh∈E∂h

∥∥∥[[∂nvh]]E∂h

∥∥∥
L2(Eh)

∥∥ψ−` − Π∂
hψ
−`∥∥

L2(Eh)
.

Then the properties of the interpolation (4.5) and (4.6) and the the norm equivalence of the lifted
functions according to Lemma 3.6 complete the proof.

4.2 Non-conformity residual

The geometric element indicator λ(T ) and the comparison results of Sect. 3 lead to an upper
bound for Rnc which is due to the polyhedral approximation of the curved domain Ω.

Lemma 4.3. Assume the triangulation Th is sufficiently fine such that Lemma 3.6 holds. For any
(φ, ψ) ∈ U × V , the non-conformity residual Rnc satisfies

〈Rnc, (φ, ψ)〉 . ηB,0nc ‖φ‖L2(Ω) + ηB,1nc ‖∇φ‖L2(Ω) + ηCnc‖αφ− βψ‖L2(Γ)

+ ηS,0nc ‖ψ‖L2(Γ) + ηS,1nc ‖∇Γψ‖L2(Γ),

where the element indicators are given by

ηB,0nc := α
∑
Th∈Th

λΓ(Th) ‖uh − fh‖L2(Th), (4.11a)

ηB,1nc := α
∑
Th∈Th

λΓ(Th) ‖∇uh‖L2(Th), (4.11b)

ηCnc :=
∑
Fh∈F∂

h

λΓ(Fh) ‖αuh − βvh‖L2(Fh), (4.11c)

ηS,0nc := β
∑
Fh∈F∂

h

λΓ(Fh) ‖vh − gh‖L2(Fh), (4.11d)

ηS,1nc := β
∑
Fh∈F∂

h

λΓ(Fh) ‖∇Γhvh‖L2(Fh). (4.11e)
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Proof. Let (φ, ψ) ∈ U × V . We rearrange terms to split 〈Rnc, (φ, ψ)〉 = IB + IS + IC with

IB = α

(∫
Ω

∇u`h · ∇φ+ (u`h − f `h)φ dx−
∫

Ωh

∇uh · ∇φ−` + (uh − fh)φ−` dx

)
,

IS = β

(∫
Γ

∇Γv
`
h · ∇Γψ +

(
v`h − g`h

)
ψ ds−

∫
Γh

∇Γhvh · ∇Γhψ
−` +

(
vh − gh

)
ψ−` ds

)
,

IC =

(∫
Γ

(αu`h − βv`h)(αφ− βψ) ds−
∫

Γh

(αuh − βvh)(αφ−` − βψ−`) ds

)
.

To estimate the coupling term IC , we split the integral into its contributions from the surface
elements and apply (3.11) and Lemma 3.5. This yields

IC = α
∑
Fh∈F∂

h

∫
Fh

( √
det(G)√
det(Gh)

− 1

)
(αuh − βvh)(αφ−` − βψ−`) ds

. α
∑
Fh∈F∂

h

λΓ(Th) ‖αuh − βvh‖L2(Fh) ‖αφ−` − βψ−`‖L2(Γh)

In an analogous way, we estimate the surface part IS where we also use (3.12) for the gradient
terms. It follows

IS = β
∑
Fh∈F∂

h

∫
Fh

∇vh

( √
det(G)√
det(Gh)

T
(
G−1 −G−1

h

)
TT
)
· ∇ψ−` ds

+ β
∑
Fh∈F∂

h

∫
Fh

( √
det(G)√
det(Gh)

− 1

)(
vh − gh

)
ψ−` ds

. β
∑
Fh∈F∂

h

λΓ(Th)
(
‖∇vh‖L2(Fh) ‖∇ψ−`‖L2(Γh) + ‖vh − gh)‖L2(Fh) ‖ψ−`‖L2(Γh)

)
Likewise, the bulk term can be bounded by

IB . α
∑
Th∈Th

λΓ(Th)
(
‖∇uh‖L2(Th) ‖∇φ−`‖L2(Ωh) + ‖uh − fh‖L2(Th) ‖φ−`‖L2(Ωh)

)
.

Application of Lemma 3.6 completes the proof.

4.3 Overall error estimator

As a direct consequence of the preceding Sects. 4.1 and 4.2, we devise an a posteriori estimator
for the overall error of a finite element solution of the coupled problem and prove its reliability
and efficiency. In the subsequent error analysis, we employ piecewise constant approximations
of the data. We define fh : Ωh → R by fh|Th = |Th|−1 ∫

Th
f−` dx for each Th ∈ Th. The
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oscillations of the data f and g are defined by

osc(f, Th) := hTh
∥∥f−` − fh∥∥L2(Th)

and osc(f, Th) :=
∑
Th∈Th

osc(f, Th), (4.12a)

osc(g, Fh) := hFh

∥∥g−` − gh∥∥L2(Fh)
and osc(g,F∂h ) :=

∑
Fh∈F∂

h

osc(g, Fh). (4.12b)

Theorem 4.4. Assume the triangulation Th is sufficiently fine such that Lemma 3.6 holds. For
the solution (uh, vh) ∈ Uh × Vh of the discrete problem (2.7), it holds∣∣∣∣∣∣(u− u`h, v − v`h)∣∣∣∣∣∣ . ηh + ηnc + osch, (4.13)

ηh .
∣∣∣∣∣∣(u− u`h, v − v`h)∣∣∣∣∣∣+ ηnc + osch, (4.14)

with the discretisation error indicator of (4.8) and the non-conformity indicator according to (4.11)

ηh := ηB + ηC + ηS,

ηnc := hT η
B,0
nc + ηB,1nc + hF∂ηS,0nc + ηS,1nc + ηCnc,

and data oscillations osch := osc(f, Th) + osc(g,Fh).

Proof. We easily verify that for all (φ, ψ) ∈ U × V it holds

〈Rosc, (φ, ψ)〉 .
∑
T∈T

∥∥f `h − f∥∥L2(T )
‖φ‖L2(T ) +

∑
F∈F∂

∥∥g`h − g∥∥L2(T )
‖ψ‖L2(F )

.
∑
Th∈Th

hTh
∥∥fh − f−`∥∥L2(Th)

∥∥∇φ−`∥∥
L2(Th)

+
∑
Fh∈F∂

h

hFh

∥∥gh − g−`∥∥L2(Th)

∥∥∇Γψ
−`∥∥

L2(Fh)
.

.
∑
Th∈Th

osc(f, Th) ‖∇φ‖L2(Ω) +
∑
Fh∈F∂

h

osc(g, Fh) ‖∇Γψ‖L2(Γ) .

Then, the first part (reliability) is an immediate consequence of Lemmas 4.2 and 4.3. To prove
efficiency, we apply the standard technique due to Verfürth. We have to consider all terms
contributing to the indicator ηh and thus carry out the proof in several steps.

i) Efficiency of ηB For any Th ∈ Th and for any Fh ∈ Fh, we introduce the (volume) bubble
functions bTh and bFh

with supp bTh = Th and supp bFh
= ωFh

, where ωFh
consists of the

elements adjacent to Fh. The bubble functions are normalized such that maxx∈Th bTh(x) = 1
and maxx∈Fh

bFh
(x) = 1. For any Th ∈ Th and Fh ∈ Fh, let

rBTh := ∆uh − uh + fh, rBFh
:= [∂nuh],

φTh := bTh r
B
Th
, φFh

:= bFh
rBFh

.
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By the equivalence of norms in finite dimensional spaces and the properties of the bubble
functions, one can show that∥∥rBTh∥∥2

L2(Th)
≈
∫
Th

rBThφTh dx and
∥∥rBFh

∥∥2

L2(Fh)
≈
∫
Fh

rBFh
φFh

ds, (4.15)

‖φTh‖L2(Th) .
∥∥rBTh∥∥L2(Th)

and ‖φFh
‖L2(ωFh

) . h
1/2
Fh

∥∥rBFh

∥∥
L2(Fh)

. (4.16)

Details can be found in [Ver96, Ver13, BC04]. To estimate rBTh , we use (1.1) on the curved
element T ∈ T corresponding to Th ∈ Th. When integrating by parts, the boundary terms
vanish due to the bubble functions. We get∥∥rBTh∥∥2

L2(Th)
.
∫
Th

−∇uh · ∇φTh − uhφTh dx+

∫
Th

fhφTh dx

+

∫
T

∇u · ∇φ`Th + uφ`Th dx−
∫
T

fφ`Th dx.

For the integrals over Th, we insert the according integrals over T and apply Lemma 3.5

∥∥rBTh∥∥2

L2(Th)
.
∫
T

∇(u− u`h) · ∇φ`Th + (u− u`h)φ`Th dx+

∫
T

(f `h − f)φ`Th dx

+ λΓ(T )
(
‖∇uh‖L2(Th) ‖∇φTh‖L2(Th) + ‖uh − fh‖L2(Th) ‖φTh‖L2(Th)

)
.

We apply the Cauchy-Schwarz inequality and then use Lemma 3.6 for the inverse lifting of∥∥φ`Th∥∥L2(T )
. Then, an inverse inequality and (4.16) yield

∥∥rBTh∥∥L2(Th)
. h−1

Th

(∥∥u− u`h∥∥H1(T )
+ osc(f, T )

)
+ λΓh(T )

(
h−1
Th
‖∇uh‖L2(Th) + ‖uh − fh‖L2(Th)

)
.

On the inner facets F ∈ Fh \ F∂h we proceed similarly. After partial integration, we add (1.1), i.e.∥∥rBFh

∥∥2

L2(Fh)
.
∫
ωFh

∆uhφFh
dx+

∫
ωFh

∇uh · ∇φFh
dx

.
∫
ωFh

(rBTh + uh − fh)φFh
dx+

∫
ωFh

∇uh · ∇φFh
dx

+

∫
ωF

(f − u)φ`Fh
dx−

∫
ωF

∇u · ∇φ`Fh
dx.
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Lemma 3.5 leads to∥∥rBFh

∥∥2

L2(Fh)
.
∫
ωFh

rBThφFh
dx +

∫
ωF

(f − f `h)φ`Fh
dx

+

∫
ωF

∇(u`h − u) · ∇φ`Fh
+ (u`h − u)φ`Fh

dx

+ λΓ(T )
(
‖∇uh‖L2(ωFh

) ‖∇φFh
‖L2(ωFh

) + ‖uh − fh‖L2(ωFh
) ‖φFh

‖L2(ωFh
)

)
.
∥∥rBTh∥∥L2(ωFh

)
‖φFh
‖L2(ωFh

) +
∥∥f − f `h∥∥L2(ωF )

∥∥φ`Fh

∥∥
L2(ωF )

+
∥∥u`h − u∥∥H1(ωF )

∥∥φ`Fh

∥∥
H1(ωF )

+ λΓ(T )
(
‖∇uh‖L2(ωFh

) ‖∇φFh
‖L2(ωFh

) + ‖uh − fh‖L2(ωFh
) ‖φFh

‖L2(ωFh
)

)
.

With the Cauchy-Schwarz inequality, Lemma 3.6, an inverse inequality and (4.16), we deduce∥∥rBFh

∥∥
L2(Fh)

.
∥∥∥h1/2
Th r

B
Th

∥∥∥
L2(ωFh

)
+
∥∥∥h−1/2
Th (u−` − uh)

∥∥∥
H1(ωF )

+
∥∥∥h1/2
Th (f−` − fh)

∥∥∥
L2(ωFh

)

+
∑

Th∈ωFh

λΓ(T )
(
h
−1/2
Th ‖∇uh‖L2(Th) + h

1/2
Th ‖uh − fh‖L2(Th)

)
.

Since ηB =
∥∥hThrBTh∥∥L2(Th)

+
∥∥∥h1/2
Th r

B
Fh

∥∥∥
L2(Fh\F∂

h )
, combining the previous estimates yields

ηB .
∥∥u− u`h∥∥H1(Ω)

+ osc(f, T ) +
∑
Th∈Th

λΓ(T )
(
‖∇uh‖L2(Th) + hTh ‖uh − fh‖L2(Th)

)
.

.
∣∣∣∣∣∣(u− u`h, v − v`h)∣∣∣∣∣∣+ osch +hT η

B,0
nc + ηB,1nc .

ii) Efficiency of ηC For any boundary face Fh ∈ F∂h , let

rCFh
:= αuh − βvh + ∂nuh and φFh

:= bFh
rCFh

.

Then, we estimate as before∥∥rCFh

∥∥2

L2(Fh)
.
∫
Fh

rCFh
φFh

ds−
∫
F

(αu− βv + ∂nu)φ`Fh
ds

.
∫
Th

(rBTh + uh − fh)φFh
dx+

∫
Th

∇uh · ∇φFh
dx+

∫
Fh

(αuh − βvh)φFh
ds

−
∫
T

(u− f)φ`Fh
dx−

∫
T

∇u · ∇φ`Fh
dx−

∫
F

(αu− βvh)φ`Fh
ds

.
(∥∥rBTh∥∥L2(Th)

+
∥∥f − f `h∥∥L2(T )

)
‖φFh
‖L2(T ) +

∥∥u− u`h∥∥H1(T )
‖φFh
‖H1(T )

+
∥∥α(u`h − u)− β(v`h − v)

∥∥
L2(F )

∥∥φ`Fh

∥∥
L2(Fh)

+ λΓ(F )
(
‖uh − fh‖L2(Th) ‖φFh

‖L2(Th) + ‖∇uh‖L2(Th) ‖∇φFh
‖L2(Th)

+ ‖(αuh − βvh)‖L2(Fh) ‖φFh
‖L2(Fh)

)
.
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A trace inequality and an inverse estimate yield ‖φFh
‖L2(Fh) . h

−1/2
Fh
‖φFh
‖L2(Th). We conclude

as before∥∥rCFh

∥∥
L2(Fh)

.
∥∥∥h1/2

Th
rBTh

∥∥∥
L2(Th)

+
∥∥∥h1/2

Th
(f−` − fh)

∥∥∥
L2(T )

+
∥∥∥h−1/2

Th
(u−` − uh)

∥∥∥
H1(T )

+
∥∥α(u− u`h)− β(v − v`h)

∥∥
L2(F )

+ λΓ(F )
(
h
−1/2
Fh
‖∇uh‖L2(Th) + h

1/2
Fh
‖uh − fh‖L2(Th) + ‖αuh − βvh‖L2(Fh)

)
.

Due to the properties of the bubble functions, this directly results in the estimate

ηC =
∥∥∥h1/2

F∂
h

rCFh

∥∥∥
L2(F∂

h )

.
∥∥u− u`h∥∥H1(Ω)

+ osc(f, T ) +
∥∥∥h1/2

F∂ (α(u− u`h)− β(v − v`h))
∥∥∥
L2(Γ)

+
∑
Fh∈F∂

h

λΓ(F )
(
‖∇uh‖L2(Th) + hFh

‖uh − fh‖L2(Th) + h
1/2
Fh
‖αuh − βvh‖L2(Fh)

)
.

.
∣∣∣∣∣∣(u− u`h, v − v`h)∣∣∣∣∣∣+ osch +hT η

B,0
nc + ηB,1nc + h

1/2

F∂ η
C
nc.

iii) Efficiency of ηS We introduce for Fh ∈ F∂h and Eh ∈ E∂h the (surface) bubble functions
b∂Fh

with supp b∂Fh
= Fh and b∂Eh

with supp b∂Eh
= ω∂Eh

. For any F ∈ Fh∂ and for anyE ∈ Eh∂ ,
let

rSFh
:= ∆Γhvh + αuh − (1 + β)vh + gh, rSEh

:= [[∂nvh]],

ψFh
:= b∂Fh

rSFh
, ψEh

:= b∂Eh
rSEh

.

From the properties of the bubble functions, we deduce∥∥rSFh

∥∥2

L2(Fh)
≈
∫
Fh

rSFh
ψFh

ds and
∥∥rSEh

∥∥2

L2(Eh)
≈
∫
Eh

rSEh
ψEh

dσ,

‖ψFh
‖L2(Fh) .

∥∥rSFh

∥∥
L2(Fh)

and ‖ψEh
‖L2(ω∂

Eh
) . h

1/2
Eh

∥∥rSEh

∥∥
L2(Eh)

.

As before, we integrate (1.1b) and (1.1c) over F and integrate by parts to get∥∥rSFh

∥∥2

L2(Fh)
.
∫
Fh

∇Γhvh · ∇ΓhψFh
+ (αuh − (1 + β)vh + gh)ψFh

ds

−
∫
F

∇Γv · ∇Γψ
`
Fh

+ (αu− (1 + β)v + g)ψ`Fh
ds.

With Lemma 3.5, the properties of the bubble function b∂Fh
and an inverse inequality, we deduce∥∥rSFh

∥∥
L2(Fh)

. h−1
Fh

(∥∥v`h − v∥∥H1(Fh)
+ osc(g, F )

)
+
∥∥α(u`h − u)− β(v`h − v)

∥∥
L2(Fh)

+ λΓ(F )
(
h−1
F ‖∇Γhvh‖L2(Fh) + ‖vh − gh‖L2(Fh) + ‖αuh − βvh‖L2(Fh)

)
.
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Moreover, with the properties of b∂Eh
and Lemma 3.5,

∥∥rSEh

∥∥2

L2(Eh)
.
∫
ω∂
Eh

rSFh
ψEh

ds +

∫
ω∂
Eh

∇Γhvh · ∇ΓhψEh
+ (vh − gh)ψEh

ds

+

∫
ω∂
Eh

(βvh − αuh)ψEh
ds

.
∫
ω∂
Eh

rSFh
ψEh

ds +

∫
ω∂
E

∇Γ(v`h − v) · ∇Γψ
`
Eh

+ (v`h − v)ψ`Eh
ds

+

∫
ω∂
E

(
β(v`h − v)− α(u`h − u)

)
ψ`Eh

ds +

∫
ω∂
E

(g − g`h)ψ`Eh
ds

+
∑

Fh∈ω∂
Eh

λΓ(Fh)
(
‖∇Γhvh‖L2(ω∂

Eh
) ‖∇ΓhψEh

‖L2(ω∂
Eh

)

+
(
‖vh − gh‖L2(ω∂

Eh
) + ‖αuh − βvh‖L2(ω∂

Eh
)

)
‖ψEh

‖L2(ω∂
Eh

)

)
.

It immediately follows∥∥rSEh

∥∥
L2(Eh)

. h
1/2
F

∥∥rSFh

∥∥
L2(ω∂

Eh
)
+ h

−1/2
F

∥∥v`h − v∥∥H1(ω∂
E)

+ h
−1/2
F osc(g, ω∂Eh

)

+ h
1/2
F

∥∥α(u`h − u)− β(v`h − vh)
∥∥
L2(ω∂

E)

+
∑

Fh∈ω∂
Eh

λΓ(Fh)
(
h
−1/2
Fh
‖∇Γhvh‖L2(Fh) + h

1/2
Fh
‖vh − gh‖L2(Fh)

+ h
1/2
Fh
‖αuh − βvh‖L2(Fh)

)
.

With ηS =
∥∥hFh

rSFh

∥∥
L2(F∂

h )
+
∥∥∥h1/2
Fh
rSEh

∥∥∥
L2(E∂h )

and the finite overlap of patch elements,

ηS .
∥∥v − v`h∥∥H1(Γ)

+
∥∥hF(α(u`h − u)− β(v`h − vh))

∥∥
L2(Γ)

+ osc(g,Fh∂)

+
∑
Fh∈F∂

h

λΓ(Fh)
(
‖∇Γhvh‖L2(Fh) + hFh

‖βvh − gh‖L2(Fh) + hFh
‖αuh − βvh‖L2(Fh)

)
.

This verifies the claimed statement and completes the proof.

5 Numerical Experiments

We implemented a finite element method based on the concepts outlined in [ACF99]. The volume
grid is described in two arrays: c4n contains the coordinates of the nodes and thereby defined
the global node indices. n4e lists for each element Th the global nodes indices of the corners
and thereby defines local node and face indices. For the surface representation we introduce the
additional array n4f containing for each surface element F ∈ F∂ the global node indices of its
corners. In the implementation we do not follow the above convention that within an element the
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boundary face has to be labeled last. Instead, there is an array bdy_face containing for each
Th ∈ Th either the value 0 for interior elements or the local face index i ∈ {1, . . . , (d+ 1)} of
the boundary face Fh ⊂ Th.

To compute the P1 stiffness matrix in the volume, on each element Th ∈ Th we need to
determine the constant gradient vectors∇φi for i = 1, . . . , (d+ 1). On each surface element
Fh ∈ F∂h we have to evaluate ∇ψj for j = 1, . . . , d. Suppose Fh ∈ F∂h and Th ∈ Th such
that Fh ⊂ Th. Let σ ∈ {1, . . . , (d+ 1)} denote the local face index of the boundary face Fh.
Then, the outer normal to Γh on Fh is

nFh
= −∇φTσ /|∇φσ|. (5.1)

Within Th, the corner nodes of Fh ⊂ Th have the local indices i ∈ {1, . . . , d+ 1} \ σ and the
gradients∇ψj , of the surface finite element shape functions are given by

∇ψj = ∇φTi(j) − (∇φTi(j) · nFh
)nFh

for j = 1, . . . , d. (5.2)

In the adaptive algorithm, elements are marked for refinement using the indicator

ηTh := αηC,Th + αηB,Th + 1
4
βηS,Th (5.3)

where the terms on the right-hand side refer to the error contributions of element Th ∈ Th
to the corresponding estimators defined in (4.8). The elements with the largest values of ηTh
are marked for refinement until the marked elements contribute to 3/4 of the total estimated
error. For the mesh refinement, we apply the bisection algorithm of [BS12]. Note that marking a
boundary element Th ∈ Th due to large surface or coupling indicators on Fh ∈ F∂h or Fh ⊂ Th
might not lead to an immediate refinement of the surface element because the refinement edge
of Th might be in the interior of Ωh.

For uniformly refined grids, the number of degrees of freedom (DoF) in the volume is proportional
to h−3

T and the number of DoFs on the surface is proportional to h−2
F . In the following we will call

a quantity proportional to hT or hF whenever it shows an according dependence on the DoFs in
the volume or on the surface, respectively. We set α = β = 1 in the following experiments.

5.1 Convergence to known regular solution

As a first benchmark, we verify our method with the example from [ER13]. On the unit sphere
Ω = B1(0) ⊂ R3 with boundary Γ = ∂Ω, the data f and g are prescribed such that the exact
solution of the problem (2.3) is

u(x, y, z) = exp (−x(x− 1)− y(y − 1)) , (5.4a)

v(x, y, z) = exp (−x(x− 1)− y(y − 1))
[
1 + x (1− 2x) + y (1− 2y)

]
. (5.4b)

The computed solution (uh, vh) is plotted in Fig. 2. From Fig. 3 we see that both the uniform and
the adaptive refinement yield the same asymptotic behaviour with respect to the number of DoFs.
On uniformly refined grids, the H1(Ω)-error of uh decreases proportionally to hT . Likewise, the
H1(Γ)-error of vh is proportional to hF . Examining Fig. 4 confirms that the estimator ηh and its
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Figure 2: Experiment of Sect. 5.1: cross-section of the solution uh and the adaptively refined
grid (left) and solution vh on the surface (right).
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Figure 3: Experiment of Sect. 5.1: Bulk, surface and overall error with respect to the exact
solution in the H1-norm over the number of unknowns for uniform refinement (left) and adaptive
refinement (right).

contributions ηB and ηS related to the volume and surface correctly follow the reduction of the
overall error and the individual H1 errors of uh and vh, respectively. Moreover, we observe that
during the first refinement steps, the estimator ηS of the surface error is dominant, leading to
some extra refinement of Γh in the adaptive algorithm, cf. Fig. 2. Due to the high regularity of
the prescribed solution, the later refinement steps are almost uniform. The estimate ηC of the
coupling error is at least about one order of magnitude smaller than the other error contributions
and thus does not have any influence on the refinement.

5.2 Non-smooth boundary and grid adaption due to data

In the next experiment with Ω = [−1, 1]3, we want to examine the effect of a domain Ω with
non-smooth boundary Γ and the ability of the adaptive algorithm to resolve singularities of the
solution. Then, the surface Γ is only piecewise smooth. Since all faces are flat (i.e. affine), the
discretisation of the surface Γh = Γ is exact and hence λΓ = 0. We set
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Figure 4: Experiment of Sect. 5.1: Discretisation error estimator ηh with contributions ηB, ηS, ηC
over the number of unknowns with uniform refinement (left) and adaptive refinement (right).

Figure 5: Experiment of Sect. 5.2: Solution for data specified by (5.5): Cross-section of uh with
the locally refined grid (left) and vh (right).
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Figure 6: Experiment of Sect. 5.2: Uniform refinement leads to a reduction rate of the estimated
error ηh slower than O(hT ) in the volume and O(hF ) on the surface (left) whereas for the
adaptively refined grids, ηh meets the optimal rates (right).

xf := (0.7, 0.6, 0.5) , f(x) := (|x− xf |2 + 10−4)−1 , (5.5a)

xg := (0.1,−1.0,−0.3) , g(x) := (|x− xg|3/2 + 10−5)−1 . (5.5b)

By this, we introduce “weak singularities” in Ω and on Γ. The computed solution is plotted
in Fig. 5 with a cross-section of the bulk solution uh on the left-hand side. Fig. 6 shows that
adaptive refinement leads to reduction rates of ηB and ηS proportional to O(hT ) and O(hF ),
respectively, whereas for uniform refinement the reduction rates are lower and do not reach
the same asymptotic behaviour. In particular, we see in Fig. 6, that using uniform refinement
the reduction of the surface estimate ηS is considerably slower than O(hF ) while for ηB the
difference to the O(hT ) rate is less pronounced. Keeping in mind that the volume grid has more
DoFs than the according surface grid, we observe that in each uniform refinement step, the
indicator ηS on the surface is larger than ηB in the volume. As before, the coupling error ηC is
only marginal with regard to η. Moreover, we see from Fig. 5 that the adaptive algorithm has
refined the grid towards the weak singularities of the data. These singularities are well separated
from the non-smooth edges of Γ where no extra refinement of the grid can be observed.

5.3 Domain with corner singularities

In the final experiment we examine the effect of corner singularities. Note that the classical
example of a reentrant corner and u(r, φ) = rα sin(αφ) can not be transferred to the coupled
problem (1.1). Let the domain Ω be given by a ball of radius 1 where one octant is removed, see
Fig. 7. We expect u and v to be of low regularity at the reentrant corner points of the domain Ω
and the surface Γ, respectively. We set x1 = 1

2
(−1, 1, 1), x2 = 1

2
(1,−1, 1), x3 = 1

2
(1, 1,−1),

and choose

f(x) = 0 , (5.6a)

g(x) = 20−20
(
|x| −exp(−4|x−x1|2)−exp(−4|x−x2|2) + exp(−4|x−x3|2)

)
.

(5.6b)
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Figure 7: Experiment of Sect. 5.3: The domain Ω with the surface patches Γi, i = 1, 2, 3, 4
(left). Refinement of the grid towards the corner at the north pole (0, 0, 1) due to the adaptive
algorithm (right).

Figure 8: Experiment of Sect. 5.3: Solution uh (left) and vh (right).

The computed solution (uh, vh) is plotted in Fig. 5.3.

Similar to the experiment of Sect. 5.2, we conclude from Fig. 9 that adaptive refinement leads
to reduction rates of ηB and ηS proportional to O(hT ) and O(hF ), respectively, whereas for
uniform refinement the reduction rates are lower and do not reach the same asymptotic behaviour.
However, when compared to Fig. 6, the deviation of ηS from the O(hF ) line is considerably less
pronounced in this experiment. This indicates that for the coupled system, the geometrically
induced singularities are weaker than those known in the pure volume or the pure surface
problem. At least, it is not possible to trigger stronger singularities using data (5.6).
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