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A Discussion of the Cell Voltage during Discharge of an
Intercalation Electrode for Various C-Rates Based on
Non-Equilibrium Thermodynamics and Numerical Simulations
Manuel Landstorfer z

Weierstrass Institute for Applied Analysis and Stochastics (WIAS) 10117 Berlin, Germany

In this work we discuss the modeling procedure and validation of a non-porous intercalation half-cell during galvanostatic discharge.
The modeling is based on continuum thermodynamics with non-equilibrium processes in the active intercalation particle, the elec-
trolyte, and the common interface where the intercalation reaction Li+ + e− � Li occurs. The model is in detail investigated and
discussed in terms of scalings of the non-equilibrium parameters, i.e. the diffusion coefficients DA and DE of the active phase and the
electrolyte, conductivity σA and σE of both phases, and the exchange current density e0L

s
, with numerical solutions of the underlying

PDE system. The current density i as well as all non-equilibrium parameters are scaled with respect to the 1-C current density
iCA of the intercalation electrode. We compute then numerically the cell voltage E as function of the capacity Q and the C-rate
Ch. Within a hierarchy of approximations we provide computations of E (Q) for various scalings of the diffusion coefficients, the
conductivities and the exchange current density. For the later we provide finally a discussion for possible concentration dependencies.
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Lithium ion batteries (LIBs) are vital today for many branches of
modern society and especially for electro-mobility. The german na-
tional platform electro-mobility aims one million electric vehicles by
2020, as well as the U.S., while China targets about five million zero
emission cars. To achieve these goals, substantial knowledge on the
effectively non-linear behavior of LiBs is required in order to reduce
cost, increase their efficiency, safety, durability and further. The in-
terpretation of experimental data requires a versatile and predictive
mathematical model of a LIB, which accounts for the many physico-
chemical processes occurring simultaneously during charge and dis-
charge, e.g. Li+ diffusion in the electrolyte, surface reactions at the
electrode/electrolyte interface, solid state diffusion in the active parti-
cles, and electrical conductivity.

First academic steps to model the functional principle of LIBs
with the purpose of simulating their charge/discharge behavior were
carried out by Newman et al. around 1993.1 This electrochemical
model became a central tool to interpret measured data of interca-
lation batteries. One of the central ingredients of the Newman model
is the Butler–Volmer-type reaction rate R

s
for the intercalation reaction

Li++e− � Li occurring at the interface �A,E between an intercalation
electrode (particle) �A and the electrolyte �E. The actual functional
dependency of R

s
= R

s
(nE, ϕE, nA,ϕA) on the different variables of the

equation system, e.g. the electrolyte concentration nE, the electrostatic
potential ϕE in the electrolyte, the concentration nA of intercalated ions,
and the electrostatic potential ϕA of the active phase, is, however, rather
stated then derived. Especially the so called exchange current density
and its functional relationship to the cation concentration is doubtable.

From a non-equilibrium thermodynamics (NET) point of view,
the functional dependency R

s
= R

s
(nE, ϕE, nA, ϕA) can be consis-

tently derived and NET restricts this functional dependency in a very
specific manner. We discuss in this work the modeling procedure of
a single transfer reaction at the interface between an active interca-
lation phase and some electrolyte based on the framework of NET
for volumes and surfaces and draw some conclusions regarding ther-
modynamic consistent models of the reaction rate. We account also
for diffusion processes in the adjacent active particle and the elec-
trolyte, as well es electrical conductivity, and state the corresponding
balance equations. Then we consider galvanostatic discharge in half
cell of some cathode intercalation material, electrolyte, and a lithium
reference electrode, which is considered as ideally polarizable counter
electrode.

zE-mail: Manuel.Landstorfer@wias-berlin.de

We introduce the C1-current density, i.e. the current at which the
electrode is completely discharged during one hour, and scale all non-
equilibrium parameters based on the C-rate Ch, i.e. multiples of the
C1 current density. It is then possible to derive a general relation be-
tween the measured cell voltage E , the capacity Q, and the C-rate Ch

based on the reaction rate R
s

= R
s
(nE, ϕE, nA, ϕA). Since, however, ac-

tually the concentrations at the interface �A,E of intercalated cations nA
and electrolytic cations nE enter the surface reaction rate R

s
, we need

to solve necessarily the diffusion equations in the adjacent phases.
We discuss various approximation regimes and parameter scalings of
the non-equilibrium parameters which allows us to compare numeri-
cal simulations of cell voltage E = E (Q,Ch ) to some representative
experimental examples, especially of Lix (Ni1/3Mn1/3Co1/3O2(NMC).
Fig. 1 shows the measured cell voltage E as function of the capacity
(or status of charge) for various discharge rates of thin of NMC half
cell.2

We show that a rather simple (but thermodynamically consistent)
model of the surface reaction rate R

s
, or more precise of the exchange

current density, is sufficient to understand and predict the complex
non-linear behavior of the cell voltage as function of the capacity Q
and the C-Rate Ch. We provide also computations of E = E (Q,Ch )
for the exchange current density introduced by Newman et al., draw
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Figure 1. Discharge curves (lower part) for various C-rates (Data of Fig 1b
from Ref. 2, reprinted with permission of The Electrochemical Society).
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some conclusions regarding thermodynamic consistency, and compare
computations based on this expression to the cell voltage based on our
simple expression of the current density.

Modeling

We consider an active intercalation particle �A in contact with
some electrolyte �E. The interface �A,E = �A ∩ �E captures the
actual surface �A of the active particle as well as the electrochemical
double layer forming at the interface, i.e. �A,E = �SCL

A ∪ �A ∪ �SCL
E .

The domains �E and �A are thus electro-neutral, and we refer to Refs.
3–5 for details on the derivation. The electrolyte is on the right side
in contact to some metallic counter electrode �R, where the interface
�E,C captures also the double layer forming at the interface between
the electrolyte and the counter electrode �C.

We consider a 1D approximation, where the electrode-electrolyte
interface �A,E is positioned at x = xAE, the left boundary of �A is
denoted by x = 0 and the right boundary of �E is x = xEC, with
dA = |xAE| and dE = |xEC − xAE|. The counter electrode is positioned
at x = xEC and spans to x = xC.

For some quantity u(x, t ), we denote with

u|±AE = u
∣∣∓
x=xAE

and u|±EC = u
∣∣∓
x=xEC

[1]

the evaluation at the respective side of the interface �A,E and �E,C. If
u is present only on one phase, we drop the superscript ±.

The active particle �A is a mixture of electrons e−, intercalated
cations C and lattice ions M+, and the electrolyte a mixture of sol-
vated cations C+, solvated anions A− and solvent molecules S. The
respective species densities are denoted with nα(x, t ), x ∈ �i. We
denote with

μα := ∂ψ

∂nα

, α = EA,EC,ES,AC,Ae,AM , [2]

the chemical potential of the constituents, which are derived from a
free energy density6,7 ψ = ψA + ψE with ψA = ψ̂A(nAe , nAC , nAM ) of
the active particle and ψE = ψ̂(nES , nEA , nEC ) of the electrolyte phase.

For the surface � we have surface chemical potentials4,6,8,9

μ
s

α :=
∂ψ

s

∂n
s
α

, α = EA,EC,ES,AC,Ae,AM , [3]

which are derived from some general surface free energy density ψ
s

.

Material functions.—For the electrolyte we consider exclusively
the material model9–11 of an incompressible liquid electrolyte account-
ing for solvation effects, i.e.

μα = gR
α + kBT ln (yα) + vR

α (p − pR), α = ES,EA,EC, [4]

with mole fraction

yα = nα

ntot
E

, [5]

molar concentration nα, and total molar concentration of the mixture
(with respect to the number of mixing particles9)

ntot
E = nES + nEA + nEC . [6]

In (4) T denotes temperature, kB the Boltzmann constant, gR
α denotes

the reference molar Gibbs free energy (or chemical potential of the
pure substance), pR the reference pressure and vR

α the partial molar
volume of constituent α in the mixture. Throughout this manuscript
we assume an isothermal temperature of T = 298.15 [K].

Note that nES denotes the number of free solvent molecules,
whereas nEA and nEC are the densities of the solvated ions. This is
crucial for various aspects of the thermodynamic model, and we re-
fer to Refs. 9,10,12,13 for details. Overall, the material model for the
electrolyte corresponds to an incompressible mixture with solvation

effects. We assume further

vR
EC

vR
ES

= mEC

mES

and
vR
EA

vR
ES

= mEA

mES

[7]

whereby the incompressibility constraint9–11 implies also a conserva-
tion of mass, i.e.∑

α

vR
αnα = 1 ⇔

∑
α

mαnα = ρ = mES

vR
ES

= const.. [8]

The molar volume of the solvent is related to the mole density nR
ES

of
the pure solvent as

vR
ES

= (nR
ES

)−1. [9]

Note further that the partial molar volumes vR
α and the molar masses

mα of the cation and anion are related to the solvation number κEC and
κAC , respectively.

We assume that the partial molar volume of the ionic species is
mainly determined by the solvation shell, which seems reasonable for
large solvents like DMC in comparison to the small ions like Li+. We
proceed thus with the assumption

vEC = κE · vES and vEA = κE · vAC . [10]

For the active particle, we consider an extension of a classical lattice
mixture model14–21 which accounts for occupation numbers ωA > 1 as
well as a Redlich–Kister type enthalpy term22,23 for the intercalation
material Liy(Ni1/3Mn1/3Co1/3)O2 (NMC). We refer to Ref. 24 for a
detailed discussion and derivation based on a free energy ψA. The
chemical potential of intercalated lithium is derived as

μAC = kBT

(
ln

(
1

ωA
yAC

1+ 1−ωA
ωA

yAC

)
− ωA · ln

(
1 − yAC

1 + 1−ωA
ωA

yAC

)

+ γA · hA(yAC )

)
[11]

with

hA(y) := (2y−1) + 1

2

(
6y(1−y) − 1

) − 1

3

(
8y(1−y) − 1

)
(2y−1)

[12]

and mole fraction

yAC = nAC

nA�

=: yA [13]

of intercalated cations in the active phase. The number density nA�
of

lattice sites is constant, which corresponds to an incompressible lattice,
and the enthalpy parameter γA < 2.5. Note that γA > 2.5 entails a
phase separation20 and requires an additional term γAdiv∇yAC in the
chemical potential. However, we assume throughout this work that
no phase separation occurs, whereby in diffusional equilibrium of the
intercalation phase the concentration is homogeneous. An extension
of this discussion toward phase separating materials will given in a
subsequent work.

For the electrons we consider9,25

μAe =
(

3

8π

) 2
3 h2

2mAe

n
2
3
Ae

and μ
s
Ae = g

s

R
Ae

= const. [14]

and for the lattice ions

μAM = gR
AM

+ kBT ln
(
1 − yAC

) + vR
M (pM − pR

M), [15]

where vR
M = (nR

M )−1 is the molar volume of the lattice ions, pM the
partial pressure and gR

AM
the constant molar Gibbs energy. The material

functions of the active intercalation electrode is essentially model an
incompressible solid with a sub-lattice for the intercalated cations AC .

The explicit surface chemical potentials

μ
s

α =
∂ψ

s

∂n
s
α

, α = EA,EC,ES,AC,AM , [16]
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are not required throughout this work since we will assume that the
double layer is in equilibrium and that the double layer capacity (and
thus also adsorption), is negligible for the sake of this work. However,
we refer to Ref. 9 for the explicit functions of μ

s
α and the surface free

energy of a surface lattice mixture with solvation effects.

Electroneutrality condition.—The electroneutrality condition of
�A, �E and �C can be obtained by an asymptotic expansion of the
balance equations in the electrochemical double layer at the respec-
tive surface �. We only briefly recapture the central conclusions and
refer to Refs. 3–5,9,26 for details on the modeling, validation and the
asymptotics. Most importantly, we have that

• the double layer is in thermodynamic equilibrium, i.e. ∇μα +
e0zα∇ϕ = 0 in �SCL

A and �SCL
E , where e0 is the elementary charge, zα

the charge number and ϕ the electrostatic potential
• there exists a potential drop between the active particle surface

� and the hyper-surface �±
A,E outside of the respective space charge

layers which is denoted by

U SCL
i := ϕ

s
− ϕ|±AE [17]

where ϕ|±AE is the electrostatic potential right outside the space charge
layer in the electrolyte or the active particle, respectively, and ϕ

s
the

(continuous) potential at the surface �a. The whole potential drop
across the double layer at �A,E is denoted by

U DL
AE := U SCL

E − U SCL
A = ϕ|+AE − ϕ|−AE [18]

• the chemical potential at the surface can be pulled back through
the double layer, i.e. μ

s
α = μi

α − e0zαU SCL
i , i = A,E

• the condition μ
s

e = const. entails that the potential drop U SCL
A is

constant (with respect to some applied voltage) and determined by

U SCL
A = 1

e0
(μ

s
Ae − μAe

∣∣
AE

). [19]

• the charge density in the electrolyte vanishes and that for mono-
valent electrolytes the cation mole fraction (or number density) is equal
to the anion mole fraction, i.e.

yEC = yAC =: yE. [20]

• in the active phase the electroneutrality entails

nAe = nAM = const. [21]

whereby we abbreviate

gR
Ae

:= μAe (nAM ) [22]

which is basically the Fermi energy of the solid material.

Transport equations.—In the electrolyte �E we have two balance
equations determining the concentration nEC (x, t ) (or the mole fraction
yEC (x, t )) and the electrostatic potential ϕE(x, t ) in the electrolyte,27–32

i.e.
∂nEC

∂t
= −∂xJEC with JEC = −DE · ntot

E �tf
E · ∂xyEC + tEC

e0
JE,q [23]

0 = −∂xJE,q with JE,q = −SE · ntot
E �tf∂xyE − �EnE∂xϕE [24]

with (dimensionless) thermodynamic factor

�tf
E := yEC

kBT

∂μ̂EC

∂yEC

= 1 + 2κE
yE

1 − 2yEC

= �tf
E (yE). [25]

where

μ̂EC := μEC − mEC

mES

μES = kBT (ln
(
yEC

) − κEln
(
yES

)
) [26]

aNote that the continuity of ϕ across � is an assumption.

is the thermodynamic driving force for diffusion,11 and DE the chem-
ical diffusion coefficient, tEC the cation transfer number, and �E the
molar conductivity.

Note that we assumed
vR
EC

vR
ES

= mEC
mES

and vR
EC

= κE · vR
ES

which yields

the representation 26. Note further that the total number density ntot
E =

nES + nEC + nEA in the electrolyte writes as

ntot
E = nR

ES
· 1

1 + 2(κE − 1)yE
= ntot

E (yE) [27]

which is determined from the incompressibility constraint 8

vR
ES

nES + vR
EA

nEA + vR
EC

nR
EC

= 1 [28]

and the electrolyte concentration nEC in terms of yE as

nEC = yEC · n = nR
ES

yEC

1 + 2(κE − 1)yE
= nEC (yE). [29]

If we consider a simple Nernst–Planck-flux relation for the cation
and anion fluxes,11,33 respectively, i.e.

Jα = DNP
α

nα

kBT
(∇μα − mα

m0
∇μES + e0zαnα∇ϕE) α = EA,EC,

[30]

with constant diffusion coefficients DNP
EA

for the anion and DNP
EC

for the
cation, we obtain (in the electroneutral electrolyte)

DE = 2DNP
EC

· DNP
EA

DNP
EA

+ DNP
EC

tEC = DNP
EC

DNP
EA

+ DNP
EC

[31]

�E = e2
0

kBT
(DNP

EA
+ DNP

EC
) SE = e0(DNP

EC
− DNP

EA
) [32]

Note, however, for general Maxwell-Stefan type diffusion29–32,34

or cross-diffusion coefficients7,24,35 in the cation and anion fluxes
lead to more complex representations of the transport parameters
(tEC , SE, DE, �E). In general, three of the transport parameters are in-
dependent, and SE, tEC and �E are related to each other via

kBT

e0
(2tC − 1) = SE

�E
. [33]

Further, (tEC , SE, DE, �E) depend in general non-linearly on the elec-
trolyte concentration nEC . However, it is sufficient for the sake of
this work to assume constant values for the transport parameters
(tEC , SE, DE, �E), together with relation 33.

In the active particle �A we have two balance equations determin-
ing the concentration nAC (x, t ) (or mole fraction yAC ) and the electro-
static potential ϕA(x, t ) in the active particle, i.e.

∂nAC

∂t
= −∂xJAC with JAC = −DA · nA�

�tf
A · ∂xyAC [34]

0 = −∂xJA,q with JA,q = −σA∂xϕA [35]

and (dimensionless) thermodynamic factor

�tf
A = yA

kBT

∂μA

∂yA
= 1 + yA

1 − yA
− 2γAyA = �tf

A (yA). [36]

Note that in principle σA can be dependent on the amount of interca-
lated ions, i.e. σA = σA(yA).

Reaction rate based on surface thermodynamics.—We want to
investigate the non-equilibrium thermodynamic modeling of the in-
tercalation reaction

Li+
∣∣
E

+ e−∣∣
A

� Li
∣∣
A

+ κE · S
∣∣
E
. [37]

Surface thermodynamics dictates that the reaction rate R
s

of this process
can in general be written as4,5,13,36,37

R
s

= L
s
·
(

e
α· 1

kBT λ
s − e

−(1−α)· 1
kBT λ

s

)
with

λ
s

= μ
s
AC + κE · μ

s
ES − μ

s
EC − μ

s
Ae , [38]
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Figure 2. Sketch of an active intercalation phase �A in contact with some electrolyte �E. The electrode-electrolyte interface �A,E covers the space charge layer
�SCL
E of the electrolyte and �SCL

A of the electrode as well as the actual electrode surface �. Several processes occur simultaneously, i.e. the intercalation reaction,
electrolyte diffusion and solid state diffusion as well es electrical conductivity.

with α ∈ [0, 1]. Note that a non-negative function L
s

in 38 ensures a

non-negative entropy production r
s
σ,R due to reactions on the surface,

i.e. r
s
σ,R = λ

s
· R

s
> 0.

The quantity λ
s

can be considered as surface affinity of the Reaction

37. The surface reaction rate R
s

vanishes when the affinity vanishes,
which is the actually the thermodynamic equilibrium condition of 37,
i.e. λ

s
= 0 ⇔ rσ,R = 0.

Since the electrochemical double layer is in equilibrium, we can
pull back the surface chemical potentials μ

s
α through the double layer

to the respective points (in an asymptotic sense) outside of the double
layer, whereby we obtain for the surface affinity

λ
s

= μAC

∣∣−
AE

+ κE · μES

∣∣+
AE

− μEC

∣∣+
AE

+ e0U
DL
A,E − μAe

∣∣−
AE

. [39]

With the material models 4 and 11 we can rewrite the surface
affinity as

λ
s

= e0(U DL
AE − ET

A,E) + kBT
(

fA(yAC |AE) − fE(yEC |AE)
)

[40]

with

ET
A,E := 1

e0
(gR

EC
+ gR

Ae
− gR

AC
− κEgR

ES
) [41]

and

fE(yEC ) := ln

(
yEC(

ŷES (yEC )
)κE

)
, [42]

fA(yAC ) : = ln

(
1

ωA
yAC

1+ 1−ωA
ωA

yAC

)
− ωA · ln

(
1 − yAC

1 + 1−ωA
ωA

yAC

)
+ γA · hA(yAC ) [43]

with hA according to 12. Note again that yAC |AE denotes the evaluation
of yAC at the interface �A,E and that the surface affinity 40 is depen-
dent on the chemical potential (or the mole fraction) evaluated at the
interface.

Cell Voltage.—We consider the cell voltage in a half cell with
metallic lithium as counter electrode, denoted by C and position at
x = xEC (see Fig. 2. The cell voltage in such a cell is

E = ϕ|x=0−ϕ|+AE︸ ︷︷ ︸
=:−Ubulk

A

+ ϕ|+AE−ϕ|−AE︸ ︷︷ ︸
=UDL

AE

+ ϕ|+AE−ϕ|−EC︸ ︷︷ ︸
=:Ubulk

E

+ ϕ|−EC−ϕ|+EC︸ ︷︷ ︸
UDL
EC

+ ϕ|+x=xEC
−ϕ|x=xC︸ ︷︷ ︸

=:Ubulk
C

, [44]

Figure 3. Reaction rate function g(x) = eα·x − e−(1−α)·x and its inverse g−1 for various values of α.
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where U bulk
A is the potential drop in the bulk active particle due to the

electron transport, U DL
A,E is the potential drop across the double layer at

the interface between the active particle and the electrolyte, and U bulk
E

the bulk potential drop due to cation electric current.
We assume that the counter electrode �C is ideally polarizable,28

whereby the reaction

Li+
∣∣
C

+ κE · S
∣∣
E

� Li+
∣∣
E

[45]

at the the interface �E,C positioned at x = xEC is in thermodynamic
equilibrium and U bulk

C = ϕ|−x=xEC
− ϕ|x=xC = 0. The equilibrium

condition of 45 entails

U DL
EC = ϕ|−x=xEC

− ϕ|+x=xEC
= 1

e0

(
μCC − μEC

∣∣−
EC

+ κEμES

∣∣−
EC

)
[46]

= 1

e0
(μCC − gR

AC
− κEgR

ES
) − kBT

e0
fE(yEC

∣∣
EC

) [47]

where μCC = const. is the chemical potential of the metallic lithium.
For the surface affinity 40 we obtain the compact typeface

λ
s

= e0(E +U bulk
A −U bulk

E −EA,C)+ kBT
(

fA − fE|AE + fE|EC
)

[48]

with

EA,C = 1

e0
(μCC − gR

AC
+ gR

Ae
). [49]

and

fE|AE = fE(yEC |AE) and fE|EC = fE(yEC |EC). [50]

Current–Voltage relation.—For the single intercalation reaction
we have the following expression4

i = −e0R
s
+ CDL

E · dU SCL
E

dt
[51]

for the current density i flowing out of the electrode �A, where CDL
E is

the double layer capacity. Note that the reaction rate is

R
s

= L
s
· g(

1

kBT
λ
s
) with g(x) = (

eα·x − e−(1−α)·x )
. [52]

Since g(x) is a strictly monotone function, we can introduce the in-
verse of g, i.e. g−1. For α = 1

2 we have g(x) = 2sinh
(

1
2 x

)
and

g−1(y) = 2g−1
(

1
2 x

)
. For values α �= 0.5 the inverse function g−1 is

only implicitly given, however, can easily be calculated numerically.
Fig. 3 display the functions g and g−1 for various values of α. We
call g(x) the reaction rate function and g−1 the inverse reaction rate
function.

Note that in the Tafel approximation g( 1
kBT λ

s
) ≈ 1

kBT λ
s

Eq. 51

yieldsb

e0

kBT
U DL
E − 1

e0L
s

CDL
E · dU DL

E

dt
= e0

kBT
ET
A,E − (

fA − fE
) − 1

e0L
s

i [53]

The term e0L
s

can be considered as the exchange current density.28

Onsager coefficient of the intercalation reaction.—The Onsager
coefficient L

s
(or the exchange current density e0L

s
) of the surface re-

action 37 could in principle be a function of the surface chemical po-
tentials (or surface concentrations), i.e. L

s
= L

s
(μ

s
AC , μ

s
EC , μES , μ

s
Ae ) or

L
s

= L
s
(λ

s
) or the surface affinity, i.e. L

s
= L

s
(λ

s
), as long as the condition

L
s

> 0 is ensured.4,8,26 Note, however, that surface thermodynamics

dictates the dependency of L
s

on the surface chemical potentials μ
s

α

and not the bulk chemical potentials μα.

bNote again thatUDL
AE = USCL

E −USCL
A and that the space charge layer dropUSCL

A is constant

due to the material model μAe
s = const. whereby

dUSCL
E
dt = dUDL

AE
dt .

For a general relation L
s

= L
s
(μ

s
AC , μ

s
EC ,μES ) we can pull back the

surface chemical potentials μ
s

α through the double layer to obtain

L
s

= L
s

(
μAC (yAC |AE),μEC (yEC |+AE) − e0U

SCL
E , μES (yES |+AE)

)
. [54]

Note that this necessarily restricts the functional dependency of L
s

on

the mole fractions yα|A,E at the interface �A,E.
Consider, for example a model L

s
= L

s
E(yEC |+AE), where the ex-

change current density is dependent on the electrolyte concentration
at the interface. This would be, however, thermodynamically incon-
sistent since the general functional dependency of 54 requires for the
electrolyte concentration at the interface

L
s

= L
s
E(μEC (yEC |+AE) − e0U

SCL
E ) = L̂

s
E(yEC |+AE · e− e0

kBT USCL
E ). [55]

Another commonly used model is a functional dependency of L
s

on the concentration yAC |AE of intercalated ions at the interface, i.e.
L
s

= L
s
A(yAC |AE). Since the space charge layer in the active particle

U SCL
A is essentially constant (because μ

s
Ae is constant), we can indeed

write

L
s

= L
s
A

(
μAC (yAC |AE)

) = L̂
s
A(yAC |AE). [56]

We discuss this aspect as well as various models for
L
s
(μ

s
AC , μ

s
EC , μES , μ

s
Ae ) in Discussion of the exchange current

density section. Meanwhile we assume L
s

= const. and proceed the

following derivation and the discussion based on this assumption
since it turns out to be very reasonable.

Discussion of the model parameters.—At this stage, it is illustra-
tive to discuss the explicit value of the parameters.

• For the electrode geometry we consider for �A,E a planar surface
of area A and a thickness dA = 10 [μm] which yields VA = A · dA
and xAE = 10 [μm]. The electrolyte is considered with a thickness
of dE = 50 [μm]. This corresponds to the cell dimensions of the cell
MX-6 in Ref. 2.

• Throughout this work we consider DMC as solvent with nR
ES

=
11.91

[
mol
L

]
and assume for the solvation number κE = 4. The refer-

ence electrolyte concentration is nR
E = 1

[
mol
L

]
and average amount of

electrolyte is nE and a parameter of the model.
• Average concentrations (or mole fractions) are abbreviated as

yα = 1

VE

∫
�E

yα dV α = EC,EA,ES [57]

for the electrolyte species and

yAC
= 1

VA

∫
�A

yAC dV [58]

for the amount of intercalated ions in the active phase.
• For the active particle phase we consider Li(Ni1/3Mn1/3Co1/3)O2

(NMC) whereby

qV,NMC
A = 1294

[
mA h

cm3

]
and qM,NMC

A = 318
[
mA h g−1

]
[59]

which is simply computed from the density and stoichiometry of the
bulk material.38 As parameters for the chemical potential μAC we con-
sider an occupation number of ωA = 10 and a Redlich–Kister inter-
action energy of γA = 13.24

• The differential capacityCDL
E has a prescribed value (actuallyCDL

E
is a function of U SCL

E , but we proceed here with a constant approxima-
tion for the sake of simplicity9 of about

CDL
E = 100

[
μF

cm2

]
[60]
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• The electrode capacity Q is

Q =
∫

�A

qV
A · yAC dV = QV

A · yAC
with QV

A := VA · qV
A [61]

This yields the non-dimensional capacity

Q

QV
A

= yAC
∈ (0, 1) [62]

which is sometimes also called status of charge (SOC) or depth of
discharge (DOD).

Note that during discharge of a complete battery the cathode is
actually filled up with lithium. In a half cell with metallic lithium as
counter electrode, discharge thus actually means filling up the interca-
lation electrode, here the NMC cathode material. Hence Q/QV

A → 0
corresponds to a fully charged cathode (i.e. no lithium in the intercala-
tion compound, yAC

→ 0) while Q/QV
A → 1 corresponds to a fully dis-

charged cathode (i.e. the intercalation compound is completely filled
with lithium, yAC

→ 1).
• From the charge balance 35 of the active particle we can deduce

Q = Q0 +
∫ t

0
I (t ′)dt with Q0 =

∫
�A

qV
A · yAC (x, t = 0) dV [63]

where I is the current flowing into the intercalation electrode during
discharge and Q(t = 0) the initial charge state. For a galvanostatic
discharge I > 0 we obtain thus

Q = Q0 + I · t . [64]

• The C-Rate Ch [1] defines (implicitly) the current at which after
h-hours the intercalation cathode is completely filled during galvano-
static discharge. C1 is thus the rate at which the battery is charged
within one hour and commonly abbreviated just as C-rate C, i.e.

IC = QV
A

1 [h]
= A

dA · qV
A

1 [h]
. [65]

We can hence express the current I in multiples of the C-rate, i.e.

I = Ch · IC [66]

which yields

Q = Q0 +I ·t = Q0 +Ch ·IC ·t = Q0 +Ch · QV
A

1 [h]
·t = QV

A (y0
AC

+Ch
t

[h]
)

[67]
The only parameter for the current density i = I/A is thus Ch.

• For the time t we consider the interval of one discharge cycle,
i.e. t ∈ [0, tend] with

tend = 1 [h]

Ch
[68]

We can thus introduce the non-dimensional time

τ := Ch
t

3600 [s]
∈ [0, 1] [69]

whereby the capacity rewrites as

Q/QV
A = (y0

AC
+ τ). [70]

• For the current density i at the planar electrode we have thus

i = I

A
= Ch · IC

A
= iCA · Ch with iCA := dA · qV

A

1 [h]
. [71]

Discussion of the scaling.—Consider the non-dimensional voltage

Ũ = e0

kBT
U SCL
E [72]

and abbreviate

H̃ = e0

kBT
EA,R,E − fA + fE [73]

which yields

Ũ − c1 · Ch

L̃
· dŨ

dτ
= H̃ (1 − τ) − Ch

L̃
[74]

with

c1 := 1

d · qV
A

CDL
E

kBT

e0
[75]

The parameters dA = 0.01 [cm] and qV
A = 1294

[
mA h cm−3

]
yield

dA ·qV
A = 0.01 [cm] ·1294

[
mA h cm−3

] · 1

[h]
= 12.94

[
mA h

cm2

]
[76]

and

CDL
E

kBT

e0
= 100

[
μF

cm2

]
· 0.0257 [V] = 2.568

[
μC

cm2

]
[77]

whereby

c1 = 5.51 · 10−8. [78]

The double layer contribution in Eq. 51 is thus almost negligible
whereby 51 reduces to

i = −e0L
s
g
( 1

kBT
λ
s

)
. [79]

We consider for the exchange current density the rescaling

e0L
s

= L̃ · iCA = L̃
dA · qV

A

1 [h]
. [80]

This is the crucial decomposition throughout this work and L̃ the pa-
rameter of the surface reaction rate R

s
.

For the current density i = iCA · Ch and the inverse function g−1 we
obtain thus with Eq. 48 for the surface affinity λ

s
the general expression

E = EA,C − kBT

e0

(
fA − fE|AE + fE|EC

) + kBT

e0
g−1

(
−Ch

L̃

)
−U bulk

A + U bulk
E [81]

for the cell voltage E .

Discussion

Throughout the manuscript, we assume that the initial state is com-
pletely uncharged, i.e. Q0 = 0 and y0

AC
= 0. If not stated otherwise,

we abbreviate

yAC = yA and yEC = yE [82]

as well as the respective densities nAC = nA, nEC = nE, fluxes JAC =
JA, JEC = JE, and chemical potential μAC = μA in the following.

We seek to discuss the general relation 81 of the cell voltage E as
function of the capacity

Q

QV
A

= yA ∈ (0, 1) [83]

during discharge of an intercalation electrode. Note that necessarily
Ch > 0 (discharge) and L̃ > 0 (Onsager constraint of 38), whereby
g−1

(− 1
2

Ch
L̃

)
< 0, which entails that any current decreases the cell

voltage E during discharge.
We will discuss consecutively the following hierarchy of approxi-

mations:

BV 0: infinite slow discharge - the open circuit potential
BV 1: infinite fast diffusion and conductivity in the active particle

and the electrolyte
BV 2: finite conductivity in the active particle, infinite diffusion in

the active particle, infinite fast diffusion and conductivity the
electrolyte

BV 3: finite conductivity and diffusion in the active particle, infinite
fast diffusion and conductivity the electrolyte
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Figure 4. OCP of Liy(Ni1/3Mn1/3Co1/3)O2. Comparison between the mate-
rial model 11 and experimental data of P. Bruce (Data of Fig. 3 in Ref. 39) and
N. Nitta et al. (Data of Fig. 4e in Ref. 52).

BV 4: finite conductivity and diffusion in the active particle, finite
conductivity in the electrolyte, infinite fast diffusion the elec-
trolyte

BV 5: finite conductivity in the active particle and the electrolyte,
finite solid state diffusion in the intercalation electrode as well
as finite diffusion in the electrolyte

BV 0: Open circuit potential.—The open circuit potential (OCP)
is obtained from 81 as

E = 1

e0

(
μCC − μA(yA)

)
[84]

for Ch = 0 (infinite slow discharge), which entails also U bulk
A =

U bulk
E = 0 as well as yE|AE = yE|EC. Hence we have

E = EA,C − kBT

e0
fA(yA) = E (0)(Q/QV

A ). [85]

For Liy(Ni1/3Mn1/3Co1/3)O2
39 as intercalation electrode, the two pa-

rameters of the chemical potential function μA are the occupation
number ωA = 10 and the interaction energy γA = 13 of the Redlich–
Kister type enthalpy contribution. This yields an absolute �2-error of
0.064 / V and a relative error of 1.860% vs. experimental data of P.
Bruce et al.,39 and Fig. 4 shows a comparison to two experimental data
sets of measured OCP data.

BV 1: Infinite fast diffusion and conductivity in the active particle
and the electrolyte.—Infinite conductivity within the active particle
phase as well as within the electrolyte yields

U bulk
A = 0 and U bulk

E = 0. [86]

and infinite fast diffusion in the active particle and the electrolyte
entails

yA(x, t ) = const. w.r.t.x and yE(x, t ) = const. w.r.t.x. [87]

Hence yA|AE is directly related to the capacity via

yA|AE = yA = Q/QV
A [88]

whereby the cell voltage of BV 1 is

E = EA,C − kBT

e0
fA(yA) + kBT

e0
g−1

(
−Ch

L̃

)
=: E (1)(Q/QV

A ;Ch, L̃).

[89]

It is a simple algebraic relation between the measured cell voltage
E , the C-rate Ch, the capacity Q and the (non-dimensional) exchange
current density L̃.

In order to compare the cell voltage E computed in the approx-
imation BV 1 with other approximations, we abbreviate the voltage
computed from 89 as E (1). Note that cell voltage 89 is actually inde-
pendent of the electrolyte. For L̃ = 1 we obtain the voltage/capacity
relation given in Fig. 5 for a variation of Ch from 0 (open circuit po-
tential) to Ch = 100 (extremely fast discharge).
Reaction overpotential.—We define the reaction overpotential as

ηR = E (0) − E (1) = − kBT

e0
g−1

(
−Ch

L̃

)
[90]

which is actually independent of the status of charge or capacity. Mea-
sured voltage data Ě = Ě (Ch ) would thus allow to determine L̃ and
the parameter α ∈ (0, 1).

Fig. 6 shows computations of the reaction overpotential ηR for
various values of α and L̃ as function of Ch.

BV 2: Contribution of finite active phase conductivity.—Finite
conductivity within active particle phase entails from Eq. 35

U bulk
A = Rbulk

A · i with Rbulk
A = dA

σA
. [91]

Employing the scaling 71 of the current density i, i.e. i = iCA · Ch, as
well as the decomposition

σA = σC
A · σ̃A with σC

A := dA · iCA · e0

kBT
= d2

AqV
A

1 [h]
· e0

kBT
[92]

yields

U bulk
A = kBT

e0

Ch

σ̃A
. [93]

The quantity σC
A is the specific conductivity of the active particle phase

at C-rate of one. For the parameters given in Discussion of the model
parameters section σC

A computes as

σC
A ≈ 4.9

[
mS

cm

]
. [94]

The measured cell voltage is then

E = EA,C − kBT

e0

(
fA(yA) − g−1

(
−Ch

L̃

)
+ Ch

σ̃A

)
= : E (2)(Q/QV

A ;Ch, L̃, σ̃A) [95]

which is (yet again) a simple algebraic relation between E , the
C-rate Ch, and the capacity Q/QV

A . E (2) is additionally parametrically
dependent on the conductivity σ̃A.

We define the active phase conductivity overpotential ησ
A as

ησ
A := E (1) − E (2) = kBT

e0

Ch

σ̃A
. [96]

BV 3: Contribution of the solid-state diffusion in the active parti-
cle phase.—Constant diffusion coefficient.—Reconsider that we have
assumed yet yA = const. with respect to space in the intercalation
particle. In general, however, we have to solve a (here 1D) diffusion
equation

∂nA
∂t

= −∂x jA with jA = −DAnA∂x fA(yA) [97]

with

jA
∣∣+
x=0

= 0 and jA
∣∣−
AE

= − 1

e0
i. [98]

This yields at the interface �A,E some solution

yA(x, t )
∣∣
x=xAE

= yA|AE(t; i) [99]
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Figure 5. Computed voltage E as function of the capacity Q/QA according to Eq. 89 for various values of L̃ and Ch.

which will also impact the cell voltage

E = EA,C − kBT

e0

(
fA(yA|AE(t; i)) − g−1

(
−Ch

L̃

)
+ Ch

σ̃A

)
[100]

=: E (3)(Q/QV
A ;Ch, L̃, σ̃A, D̃A) [101]

In order to discuss this impact systematically, we apply the follow-
ing scaling

τ = Ch
t

[h]
∈ [0, 1] and ξ = x

dA
∈ [0, 1] [102]

as well as

nA = yA · qV
A

e0
and j̃A = 1

L
s

jA [103]

which leads to

Ch

L̃

∂yA
∂t

= −∂ξ j̃A. [104]

The dimensionless flux

j̃A = 1

L̃
jA = − 1

L̃

1 [h]

d2
A

DAyA∂ξ fA(yA) [105]

yields the dimensionless diffusion coefficient

D̃A = 1 [h]

d2
A

DA [106]

and thus

j̃A = − D̃A

L̃
yA∂ξ fA(yA). [107]

At the interface �A,E we have thus

j̃A
∣∣
ξ=1

= −Ch

L̃
. [108]

Overall we may write

Ch

D̃A

∂yA
∂τ

= ∂ξ(yA
∂ fA
∂yA

∂ξyA) [109]

Figure 6. Reaction overpotential ηR as function of the C-Rate Ch with parameter variations of α and L̃.
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Figure 7. Concentration yA
∣∣
AE = ŷA|AE of intercalated ions at the interface �A,E as function the status of discharge Q/QV

A for various values of Ch and D̃A.

with

yA
∂ fA
∂yA

∂ξyA
∣∣
ξ=0

= 0 and yA
∂ fA
∂yA

∂ξyA
∣∣
ξ=1

= Ch

D̃A

. [110]

Note that we can analytically compute yA
∂ fA
∂yA

= �tf
A (yA) from Eq. 11

(see also appendix B1) as

�tf
A = yA · ∂ fA

∂yA
= 1

(1 − yA)( 1
ωA

yA + (1 − yA))

+ γA ·
(

16 · y3
A − 22y2

A + 25

3
yA

)
. [111]

Since the problem 109 is non-linear, a classical separation Ansatz
yA = X (ξ) · T (τ) is not meaningful. We proceed thus with solving the
problem 109 with 110 numerically with MATLAB and the pdepe()
function. The syntax for pdepe() of the problem 109 with 110 is given
in appendix B2.

Based on the numerical solution ŷA(ξ, τ) we compute then yA
∣∣
AE

=
ŷA(ξ, τ)|ξ=1(τ;Ch, D̃A) numerically for various values of Ch and D̃A.
The (global) capacity is yet Q/QV

A = yA = τ.
We assume the same parameters as before, now additionally

with two values of the diffusion coefficient D̃A, i.e. slow diffusion

D̃A = 1 and fast diffusion D̃A = 10, and compute yA
∣∣
AE

as func-
tion of the capacity Q/QV

A (or time τ). Fig. 7 shows computations
of yA|AE for various discharge rates and diffusion coefficients in the
active particle phase as function of the cell capacity. The angle bi-
section in black corresponds to the open circuit potential situation,
where yA|AE = yA. For increasing discharge rates, the concentra-
tion yA|AE at the interface �A,E is larger than the average concen-
tration yA in �A since the evacuation of intercalated ions is de-
layed by the finite diffusion. This effect becomes even stronger
for smaller values of D̃A, i.e. slow diffusion in the active parti-
cle.

The cell voltage E is then computed a posteriori from 100 based
on the numerical solution of yA|AE. Fig. 8 displays the cell voltage for
various discharge rates as well as slow (D̃A = 1) and fast (D̃A = 10)
diffusion in the intercalation phase. Finite diffusion in the active par-
ticle has an enormous impact on the cell voltage and changes quali-
tatively the shape due to the non-linear feedback. This effect is also
found experimentally, see Fig. 1, and extremely important since it de-
termines the maximum amount of charge that can be withdrawn from
an intercalation electrode.

Two important measures serve to discuss the impact of the diffusion
coefficient D̃A,

Figure 8. Cell voltage E for BV 3 as function of the status of discharge for various values of Ch and D̃A with numerical computation of ŷA,0(i) from the PDE 109
with boundary conditions 110.
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Figure 9. Cell voltage and Capacity for various discharge rates and diffusion coefficients. (a) Cell voltage at 50% state of discharge. (b) Capacity at the cutoff
voltage Eoff = 2.6/V.

• the cell voltage at 50% discharge, i.e. E
∣∣
Q=0.5·QV

A
,

• and the capacity Q
∣∣
E=Eoff at the cut off voltage E off , here with

E off = 2.6 / V .

Fig. 9 shows numerical computations of E
∣∣
Q=0.5·QV

A
and Q

∣∣
E=Eoff

for various values of the C-rate Ch and diffusion coefficients D̃A in the
range of 10−3 − 102. For slow discharge rates, i.e. Ch < 1 a diffusion
coefficient of D̃A = 0.1 is sufficient to achieve a voltage of 3 / V at
50% discharge and capacity of 90% at the the cutoff voltage. However,
for higher C-rates, e.g. Ch = 50, the impact of the solid state diffusion
becomes enormous, requiring a diffusion coefficient of D̃A > 0.3 to
discharge the electrode to 50%.
Overpotential ηD

A .—The overpotential due to finite diffusion in the
active particle phase can be defined as

ηD
A := E (2) − E (3) [112]

which computes as

ηD
A = − kBT

e0

(
fA(yA) − fA(ŷA|AE)

)
. [113]

Fig. 10 shows computations of ηD
A for slow and fast diffusion.

Concentration dependent diffusion coefficient.—The diffusion co-
efficient DA in 34 was yet assumed to be a constantc with respect to
the mole fraction yA of intercalated ions in the solid phase. This as-
sumption might be inappropriate or over-simplified, and we seek to
discuss this hypothesis again on the cell voltage E as function the ca-
pacity Q and the C-rate C. For this sake, we consider in the following
a concentration dependent diffusion coefficient

DA = (1 − yA) · D̂A, [114]

where the constant D̂A is scaled equally than before, yielding again
dimensionless diffusion coefficient D̃A = 1[h]

d2
A

D̂A. The term (1 − yA)
models that the diffusion on a lattice reduces when the lattice becomes
more occupied (i.e. yA → 1).

We obtain hence the non-dimensionalized transport equation

Ch

D̃A

∂yA
∂τ

= ∂ξ((1 − yA) · yA
∂ fA
∂yA

∂ξyA) [115]

with boundary conditions

(1 − yA) · yA
∂ fA
∂yA

∂ξyA
∣∣
ξ=0

= 0 and yA
∂ fA
∂yA

∂ξyA
∣∣
ξ=1

= Ch

D̃A

. [116]

cNote, however, that the effective diffusion coefficient DA · �tf
A as pre-factor of ∂xyA in the

flux relation 34 is inherently concentration dependent.

Figure 10. Overpotential ηD
A as function of the status of discharge Q/QV

A for slow (D̃A = 1) and fast (D̃A = 10) diffusion in the intercalation phase.
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Figure 11. Cell voltage E for BV 3 as function of the status of discharge for various values of Ch and D̃A with numerical computation of ŷA,0(i) for a constant
diffusion coefficient (PDE 109 with boundary conditions 110) and a concentration dependent diffusion coefficient (PDE 115 with boundary condition 116).

This equation system is again solved numerically with MATLAB and
the pdepe() function yielding numerical solutions ŷA(ξ, τ) whereby
we compute then yA

∣∣
AE

= ŷA(ξ, τ)|ξ=1(τ;Ch, D̃A) for various values
of Ch and D̃A. The (global) capacity is yet Q/QV

A = yA = τ. The
cell voltage E is then computed a posteriori from 100 based on the
numerical solution of yA|AE.

We assume the same parameters as before and two values of the
diffusion coefficient D̃A, i.e. slow diffusion D̃A = 1 and fast diffusion
D̃A = 10. Based on the numerical solution of 115 and 116 we compute
yA

∣∣
AE

as function of the capacity Q/QV
A (or time τ), and subsequent

the cell voltage E from 100 based on the numerical solution of yA|AE.
Fig. 11 displays the cell voltage for various discharge rates com-

puted numerically with a constant (dashed line) and the concentration
dependent (solid line) diffusion coefficient according to 114.

Expectably, the two models behave similar when the intercalation
electrode is empty, i.e. yA close zero. However, when the electrode gets
filled with lithium (i.e. yA → 1), the (1−yA)-term of the concentration
dependent diffusion coefficient reduces significantly the diffusivity,
which affects the cell voltage in a surprisingly non-linear behavior.

Most important, Fig. 11 shows that the concentration dependent
diffusion coefficient 114 could explain the decrease of the capacity at
the end of discharge, e.g. here at E = 2.6V, for increasing discharge
current densities (c.f. the experimental data in Fig. 1). Wu et al. state
in Ref. 2 that “the electrode capacity measured at the end of discharge
decreases with increasing rate, as a result of transport limitations in
the electrode”. This can be confirmed on the basis of concentration
dependent diffusion coefficient DA = (1 − yA) · D̂A with D̂A = const.

BV 4: Finite conductivity in the electrolyte.—First note that an
infinite fast diffusion in the electrolyte yet entails yE = yE, whereby the
(coupled) transport equation system 23–24 of the electrolyte reduces
to

i = −�EnE∂xϕE, [117]

which yields

U bulk
E = −Rbulk

E · i with Rbulk
E = dE

�EnE
. [118]

Employing the scaling 71 of the current density i, i.e. i = iCA Ch yields

U bulk
E = − dE

�EnE
· iCA Ch = dE

dA

σC
A

�EnE

kBT

e0
Ch, [119]

which motivates the decomposition

�EnR
E = σR

E = σC
A · σ̃E with σC

A = dA · iCA · e0

kBT
= d2

AqV
A

1 [h]
· e0

kBT
.

[120]
Here nR

E is a constant reference electrolyte concentration, e.g.
1 mol L−1, and σR

E = �EnR
E is the corresponding reference conduc-

tivity. Hence

U bulk
E = −d̃ · c̃R

E · kBT

e0

Ch

σ̃E
with d̃ := dE

dA
and c̃R

E := (nR
E

nE

)
,

[121]
whereby the cell voltage is

E = EA,C − kBT

e0

(
fA(yA|AE(t; i)) − g−1

(
−Ch

L̃

)
+ Ch

σ̃A
+ d̃ c̃R

E

Ch

σ̃E

)
[122]

= E (4)(Q/QV
A ;Ch, L̃, σ̃A, D̃A, σ̃E, d̃, c̃R

E ). [123]

Hence, finite conductivity in the electrolyte linearly decreases the cell
voltage and scales also with the ratio of the electrode width to the
electrolyte width, i.e. d̃ . The quantity c̃R

E accounts for concentration
dependence of the electrolyte conductivity.

Correspondingly we define the electrolyte conductivity overpoten-
tial η�

E as

ησ
E := E (3) − E (4) = kBT

e0
d̃ c̃R

E

Ch

σ̃E
. [124]

BV 5: Finite diffusion in the electrolyte phase.—The final con-
tribution to the surface reaction R

s
is the space dependent electrolyte

concentration. We have yet assumed yE = const. with respect to space,
however, in general the (coupled) equation system 23–24 has to be
solved.

Note that tEC = const. simplifies the (coupled) equation system
23–24 to

∂nE
∂t

= ∂x

(
DE · ntot

E �tf
E · ∂xyE

)
[125]

i = −SE · ntot
E �tf∂xyE − �EnE∂xϕE. [126]
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Figure 12. Numerical computation of the cation interface concentrations nE
∣∣AE and nE

∣∣EC in the electrolyte for slow (D̃E = 10) and fast (D̃E = 100) diffusion
and various C-rates Ch.

Further, JE = −DE · ntot
E �tf

E · ∂xyE + tEC
e0

i entails at the interface �A,E

the condition

− DE · ntot
E �tf

E · ∂xyE
∣∣
AE

= 1 − tEC

e0
i [127]

We assume that the average electrolyte concentration nE is constant in
time, i.e.

∂nE
∂t

= 0 with nE = 1

dE

∫ xAE

xEC

nEdx. [128]

which yields at the right boundary x = xEC the condition

DE · ntot
E �tf

E · ∂xyE
∣∣
x=xEC

= 1 − tEC

e0
i. [129]

The concept of an ideally polarizable counter-electrode �C, positioned
at x = xEC, delivers (or consumes) hence exactly the amount of ions in
the electrolyte which flow in (or out) of �E at x = xAE, with keeping
the reaction 45 in thermodynamic equilibrium. The initial value is

yE(x, t = 0) = yE(nE) [130]

where nE is the prescribed average electrolyte concentration.
We introduce the scalings

τ = Ch
t

[h]
∈ [0, 1], ξ = x

dE
∈ [0, 1],

ntot
E (ξ, τ)

nR
E

=: c̃tot,R
E (ξ, τ) [131]

�EnR
E = σ̃E · σC

A , i = iC · Ch, d̃ = dE
dA

[132]

with σC
A = dA · iCA · e0

kBT and iCA = dA·qV
A

1[h] . This yields for 125

Ch
d2
E

1 [h]
· 1

DE
· hE · ∂yE

∂τ
= ∂ξ (̃ctot,R

E �tf
E · ∂ξyE) with hE := 1

nR
E

∂nE
∂yE

.

[133]
The corresponding non-dimensional boundary conditions at ξ = 0
reads

(̃ctot,R
E �tf

E ∂ξyE)
∣∣
ξ=0

= dE
1

nR
E

1

DE

1 − tEC

e0
· i [134]

which introduces (implicitly) the scaling

DE = D̃E ·
(

qV
A

e0nR
E

(1 − tEC ) · dAdE
1 [h]

)
[135]

leaving

(̃ctot,R
E �tf

E ∂ξyE)
∣∣
ξ=0

= Ch

D̃E

and (̃ctot,R
E �tf

E ∂ξyE)
∣∣
ξ=1

= Ch

D̃E

. [136]

The balance Equation 125 then reads

d̃ · q̃V · t̃E
Ch

D̃E

hE(yE)
∂yE
∂τ

= ∂ξ (̃ctot,R
E �tf

E · ∂ξyE) [137]

with

q̃V := qV
E

qV
A

, qV
E = 2e0nR

E and t̃E = 1

2 · (1 − tEC )
. [138]

Note that the 2 in qV
E accounts for the charge of cations and anions.

The charge capacity qV
E of a 1mol L−1 electrolyte is

qV
E = 2e0nR

E ≈ 53
[
mA h cm−3

]
[139]

whereby

q̃V = 45

1294
= 0.042553. [140]

The dimensionless transference number t̃E ≈ 1 and d̃ = 5. The PDE
is solved with MATLAB’s pdepe function, and details are given in
the appendix A3. We denote the numerical solution of yE with ŷE and
emphasize that the capacity is yet Q/QV

A = τ. The numerical solutions
ŷE at the respective boundaries x = xAE and x = xEC are

yE
∣∣+
AE

= ŷE|ξ=0 and yE
∣∣−
EC

= ŷE|ξ=1. [141]

We discuss now briefly the concentration distribution in the elec-
trolyte as function of the C-rate Ch and the diffusion coefficient D̃E

based on numerical solutions of 125 with boundary conditions 127
and 129.

Fig. 12 displays computations of the electrolytic cation concen-
tration at the interface �A,E of the intercalation electrode, i.e. nE|AE,
and at the interface �E,C of the counter electrode, i.e. nE|EC for slow
electrolytic diffusion (D̃E = 1, left) and fast diffusion (D̃E = 10, right)
for various values of the C-rate.

After a short time the concentration yields a stationary state and
Fig. 13 displays the stationary concentration nE(x) in the electrolyte,
again for slow and fast diffusion as well as for various C-rates.

Note, however, that the concentration variation of yE has addition-
ally an impact on the voltage dropUE. First reconsider that 126 rewrites
as

UE = − dE
�EnR

E

(
1

dE

∫ xAE

xEC

nR
E

nE
dx

)
· i + kBT

e0
(2tC − 1)

(
fE(yE|AE)

− fE(yE|EC)
)
. [142]
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Figure 13. Numerical computation of the stationary cation distribution in the electrolyte for slow (D̃E = 10) and fast (D̃E = 100) diffusion and various C-rates
Ch.

since

SE
�E

= kBT

e0
(2tC − 1). [143]

We abbreviate

cR
E :=

(
1

dE

∫ xAE

xEC

nR
E

nE
dx

)
[144]

and insert the scaling �EnR
E = σ̃E · σC

A which yields

UE = −d̃cR
E · kBT

e0

Ch

σ̃E
+ kBT

e0
(2tC −1)

(
fE(yE|AE)− fE(yE|EC)

)
. [145]

The overall cell voltage of BV 5 is then

E = EA,C − kBT

e0

(
fA(ŷA|AE) − 2 · tC

(
fE(ŷE|AE) − fE(ŷE|EC

)
−g−1

(
−Ch

L̃

)
+ Ch

σ̃A
+ d̃ cR

E

Ch

σ̃E

)
[146]

= E (5)(s,Ch; L̃, σ̃A, D̃A, σ̃E, D̃E, tEC , d̃, nE). [147]

In order to show the impact of the electrolyte concentration varia-
tion on the cell voltage E , assume U bulk

E = U bulk
A = 0 as well infinite

fast diffusion in the active particle phase �A. This yields

E = EA,C− kBT

e0

(
fA(yA)−2·tC

(
fE(ŷE|AE)− fE(ŷE|EC)−g−1

(
−Ch

L̃

) )
[148]

and numerical computations of the cell voltage for slow and fast dif-
fusion are shown in Fig. 14.
Overpotential.—Due to the (stationary) concentration gradients in the
electrolyte (c.f. Fig. 13) we have a diffusional overpotential ηDE, which
can be defined as

ησ
E := E (4) − E (5)

= kBT

e0

(
d̃ (̃cR

E − cR
E )

Ch

σ̃E
− 2 · tC

(
fE(ŷE|AE) − fE(ŷE|EC

))
[149]

≈ − kBT

e0
2 · tC

(
fE(ŷE|AE) − fE(ŷE|EC

)
[150]

Fig. 15 displays numerical computations of the overpotential ηD
E

for slow and fast diffusion in the electrolyte.
The recursive definition of the various overpotentials allows us to

write

E = E (0)(yA) − ηR − ηD
A − ησ

A − ηD
E − ησ

E [151]

Figure 14. Computed cell voltage according to 148 with numerical solutions shown in Fig. 12 of the interface concentrations ŷE|AE and ŷE|EC for various discharge
rates.
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Figure 15. Diffusional overpotential of the electrolyte for slow and fast diffusion computed from numerical solutions of the interface concentrations ŷE|AE| and
ŷE|EC and Eq. 149.

with one overpotential for each non-equilibrium process, measuring
the deviation from the equilibrium of the respective process. This de-
composition is hence a useful tool to systematically investigate the
contribution of each process in broadly conceived experimental or
numerical studies of a cell batch with varying parameters.
Internal resistance.—Note that we can also compute the internal re-
sistance Rint of the electrochemical cell via the implicit definition

E − E (0) = R · I. [152]

With I = iCA ·Ch
A we obtain for the specific resistance

R = E − E (0)

I
= − A

iCA

(ηR + ηD
A + ησ

A + ηD
E + ησ

A)

Ch

= RA · (rR + rD
A + r�

A + rD
E + rσ

E) [153]

with

RA = kBT

e0

A

iCA
[154]

and

• intercalation reaction resistance

rR = −g−1

(
−Ch

L̃

)
1

Ch

Tafel≈ 1

L̃
, [155]

• active phase diffusional resistance

rD
A = (

fA(yA) − fA(ŷA|AE)
) 1

Ch
, [156]

• active phase conduction resistance

rσ
A = 1

σ̃A
, [157]

• electrolyte diffusional resistance

rD
E = 2 · tC

(
fE(ŷE|AE) − fE(ŷE|EC

) · 1

Ch
, [158]

• electrolyte conduction resistance

rσ
E = 1

σ̃E
. [159]

Conclusions

Validation.—Equation 146 for the general relation for the cell volt-
age E in a simple, non-porous intercalation electrode. Note, however,

that the scalings, discussion and parameter study of Discussion section
can be straight forward adapted to porous electrodes.

We provide finally a validation study for NMC with the following
set of the non-dimensional parameters

L̃ = 1, D̃A = 10, σ̃A = 100, D̃E = 100, σ̃E = 100 [160]

and a concentration dependent diffusion coefficient DA = (1−yA)D̂A.
In absolute values, these translate to:

• exchange current density i0 = L̃ · iCA = 1.2597
[
mAcm−2

]
,

• NMC electric conductivity of σA = σ̃A · d2
AqV

A
1[h] · e0

kBT =
4.9014

[
mScm−1

]
,

• lithium diffusion coefficient in NMC D̂A = D̃A · d2
A

1[h] = 2.7778 ·
10−10

[
cm2 s−1

]
,

• electrolyte conductivityσE = σ̃E· d2
AqV

A
1[h] · e0

kBT = 4.9014
[
mScm−1

]
,

• electrolyte diffusion coefficient D̂E = D̃E ·
(

qV
A

e0nR
E

(1 − tEC ) · dAdE
1[h]

)
= 1.9583 · 10−6

[
cm2 s−1

]
Figure 16 displays the numerical computation of the cell voltage.

In comparison to experimental data for a cell of the same dimension
(however, neglecting porosity), we obtain a good qualitative and quan-
titative agreement to Fig. 1.

This is especially remarkable since we assumed essentially for
all non-equilibrium parameters constant values, i.e. no concentration
dependence of the diffusion coefficient DE, the cation transference
number tE, and the conductivities. In particular we assumed that the
exchange current density e0L

s
is also constant, yielding the reasonable

results of the last section. Note, however, that it is frequently assumed
that the exchange current density is dependent on cation concentration
at the interface �A,E. We discuss this aspect in the next section and
emphasize again that a consistent thermodynamic modeling as well as
coupling through the surface reaction rate yields the reasonable results
of the last sections. The scaling of all non-equilibrium parameters to
the C-rate is quite illustrative for the sake of galvanostatic discharge
and especially for the systematic search of the parameters of a specific
battery.

Discussion of the exchange current density.—The preceding dis-
cussion of the cell voltage E was based on the model 38 of the surface
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Figure 16. Computed cell voltage E as function of the capacity Q/QV
A with

parameters of the non-equilibrium processes according to 160.

reaction rate R
s
, i.e.

R
s

= L
s
·
(

e
α· 1

kBT λ
s − e

−(1−α)· 1
kBT λ

s

)
with

λ
s

= μ
s
AC + κE · μ

s
ES − μ

s
EC − μ

s
Ae , [161]

with L
s

= const. In Discussion of the model parameters section we

showed that double layer charging effects are negligible under gal-
vanostatic conditions, whereby the measurable current density i is
directly related to e0R

s
, i.e. i = e0R

s
. The surface affinity λ

s
is related to

the cell voltage E via 48, i.e.

λ
s

= e0(E +U bulk
A −U bulk

E −EA,C)+kBT
(

fA− fE|AE+ fE|EC
)

[162]

with

fE(yE) := ln

(
yE(

ŷES (yE)
)κE

)
, [163]

fA(yA) := ln

(
1

ωA
yA

1+ 1−ωA
ωA

yA

)
− ωA · ln

(
1 − yA

1 + 1−ωA
ωA

yA

)
+ γA · hA(yA).

[164]

Note that we have introduce the open circuit potential E (0) in BV 0:
Open circuit potential section as

E (0)(yA) = EA,C − kBT

e0
fA(yA). [165]

We can also evaluate the open circuit potential function E (0) with the
interface concentration yA|AE, i.e.

E (0)(yAE) = EA,C − kBT

e0
fA(yAE). [166]

Note that this is a crucially different to 165 when finite diffusion in the
active particle phase is considered, see BV 1: Infinite fast diffusion and
conductivity in the active particle and the electrolyte section. However,
this allows us rewrite the surface affinity λ

s
as

λ
s

= e0(ϕA − ϕE − E (0)(yA|AE)) − kBT fE|AE [167]

= e0(ϕA − ϕ̃E − E (0)(yA|AE)) = e0(η̃AE − E (0)(yA|AE)) [168]

with

ϕA = ϕ|−AE,ϕE = ϕ|+AE, ϕ̃E := ϕ|+AE + kBT

e0
fE(yE|AE) [169]

and

ηAE := ϕA − ϕ̃E = U DL
AE − kBT

e0
fE|AE. [170]

This yields

i = e0L
s
·
(

eα· e0
kBT

(
η̃AE−E (0) (yA|AE )

)
− e−(1−α)

e0
kBT

(
η̃AE−E (0) (yA|AE )

) )
.

[171]
This is the general, thermodynamic consistent version of the Butler–
Volmer equation.4,26 The specific form 171 of the current density i
in terms of the surface overpotential1 ηAE, the open circuit potential
E (0)(yA|AE), and the exchange current density e0L

s
is widely employed

in the literature28,40 and thus feasible to discuss various material models
of L

s
.

In Refs. 1,41,42 as well as subsequent work we find

iBV = iBV
0 ·

(
eα· e0

kBT (η−E (0) (yA )) − e−(1−α)· e0
kBT (η−E (0) (yA ))

)
[172]

with η = �1 − �2, where �2 “is measured with a lithium reference
electrode”,1 p.1527 and �1 the electrostatic potential in the active
phase. For the exchange current density iBV

0 we find various models:

• In Ref. 41 we find

iBV
0 = k · (1 − yA|AE)(1−α)(yA|AE)α with k = const. [173]

• In Ref. 41 we find

iBV
0 = k · (1 − yA|AE)(1−α)(yA|AE)α(1 − yE|AE)(1−α)(yE|AE)α with

k = const. [174]

• In Refs. 35,43 we find

iBV
0 = k · (1 − yA|AE)(1−α)(yA|AE)(α)(yE|AE)α with k = const. [175]

This model for the Butler–Volmer-reaction rate became a standard
in the literature of modeling intercalation batteries44–48 and is imple-
mented in various software packaged to simulate battery cycles (i.e.
COMSOL, Battery Design Studio,49 BEST35,43) as well as a basis for
the interpretation of experimental data.50

We compare the Butler–Volmer Equation 172 to the surface re-
action rate 171 and discuss the thermodynamic consistency of the
three models 173–175 for the exchange current density. Latz et al.,51

Bazant,21 and Dreyer et al.26 also point out the importance of thermo-
dynamic consistency of the Butler–Volmer equation to achieve some
overall predictive model since it couples the different thermodynamic
bulk models. Dreyer et al.26 use the same structure 38 of the reaction
rate, in combination with a constant exchange current density, however
do not study intercalation electrodes.

First of all we mention again that the Butler–Volmer Equation 171
is derived from surface thermodynamics (see Reaction rate based on
surface thermodynamics section) and that the exchange current den-
sity e0L

s
is the Onsager coefficient of the surface reaction Onsager

coefficient of the intercalation reaction. This yields some necessary
constraints on L

s
in terms of the functional dependency on the concen-

trations (or mole fractions) evaluated at the interface �A,E, which are
discussed in Onsager coefficient of the intercalation reaction.

By comparison of Eqs. 171 and 172 we obtain

�1 = ϕ|−AE and �2 = ϕ|+AE + kBT

e0
fE(yE|AE). [176]

For a metallic lithium counter electrode, where the reaction

Li+
∣∣
C

+ κE · S
∣∣
E

� Li+
∣∣
E

[177]
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is in thermodynamic equilibrium we have 45 entails

ϕ|−x=xEC
= ϕ|+x=xEC

1

e0
(μCC − gR

AC
− κEgR

ES
) − kBT

e0
fE(yEC

∣∣
EC

) [178]

which somehow justifies the interpretation of �2 as the potential “is
measured with a lithium reference electrode”,1 p.1527. However, from
a thermodynamic point of view this re-definition of the potential is
not necessary and could lead to inconsistencies when not applied in
all balance equations (e.g. of the electrolyte transport) and boundary
conditions of the intercalation battery model.

For the exchange current density e0L
s

we showed in Onsager coef-

ficient of the intercalation reaction section that if L
s

is dependent on the

concentrations at the interface �A,E, the dependency for the electrolyte
species is necessarily

L
s

= L
s
E

(
μEC (yEC |+AE) − e0U

SCL
E

) = L̂
s
E

(
yEC |+AE · e− e0

kBT USCL
E

)
. [179]

and for the intercalated ions in the active phase

L
s

= L
s
A

(
μAC (yAC |AE)

) = L̂
s
A(yAC |AE), [180]

or overall

L
s

= L̂
s

(
yEC |+AE · e− e0

kBT USCL
E , yAC |AE

)
. [181]

with U DL
AE = ϕ|−AE−ϕ|+AE. Comparing these constraints with the models

of the exchange current densities 173–175 clearly shows that the de-
pendency of iBV

0 on the mole fraction yEC |+AE (or concentration nEC |+AE)
of the electrolyte concentration is not compatible with a reaction rate
based on non-equilibrium surface thermodynamics. The concentra-
tion dependence is already embedded in the term fE(yEC |AE) of the
surface affinity λ

s
167. A dependency of the exchange current density

on yA|AE is in principle compatible with surface thermodynamics. All
three models propose

iBV
0 ∝ (1 − yA|AE)(1−α)(yA|AE)α [182]

which in terms of the surface Onsager coefficient would be

L
s
A = L

s
· 2 · (1 − yA|AE)(1−α)(yA|AE)α and L

s
= const. > 0. [183]

In order to discuss the validity, predictability and finally the neces-
sity (or non-necessity) of a concentration dependent surface Onsager
coefficient L

s
A (or exchange current density), we pursue the same strat-

egy and scalings as in Discussion section, however, now with the model
183. We compute the cell voltage E as function of the capacity Q/QV

A
and the C-rate Ch in the hierarchy of approximations BV 1 – BV 5

and compare it to the computations based on the constant Onsager
coefficient.

Eq. 51 reduces with negligible double layer contributions to

i = −e0L
s
· 2 · (1 − yA|AE)(1−α)(yA|AE)α · g

(
1

kBT
λ
s

)
. [184]

We consider again the scaling

e0L
s

= L̃ · iCA = L̃
dA · qV

A

1 [h]
. [185]

which yields the cell voltage

E = EA,C − kBT

e0

(
fA − fE|AE + fE|EC

)
− g−1

(
−

Ch
L̃

2 · (1 − yA|AE)(1−α)(yA|AE)α

)
− U bulk

A + U bulk
E .

[186]

Consider the approximation of infinite conductivity in both phases as
well as infinite fast diffusion in the electrolyte, i.e. the approximation
BV 3. Fig. 17 shows computations of cell voltage with constant ex-
change current density as well as concentration dependent exchange
current density, for slow (D̃A = 1) and fast (D̃A10) diffusion in the
active particle phase.

The impact of the model 183 for the Onsager coefficient (or the ex-
change current density) on the cell voltage is surprisingly small. Quite
similar to the assumed concentration independence of the diffusion co-
efficients DA and DE we can conclude that L

s
= const. is a rather good

approximation for the overall modeling procedure. However, well de-
fined and reproduce experimental data sets to compute absolute and
relative model errors are rare throughout the literature and the devi-
ations in 17 within the experimental variability. We conclude hence
that the model 183 is in principle thermodynamically consistent, when
embedded rigorously as stated in Modeling section, however, a con-
stant exchange current density produces also very reasonable results
and is thus the first choice.

Summary.—In this work we discuss the cell voltage E of a non-
porous intercalation half-cell during galvanostatic discharge with a
continuum model for the active intercalation phase, the adjacent elec-
trolyte, and boundary conditions coupling the phases. Based on non-
equilibrium surface thermodynamics a reaction rate for the intercala-
tion reaction Li+ + e− � Li is stated and the measured cell voltage E
subsequently derived. We emphasize some necessary restrictions on

Figure 17. Comparison of the compute cell voltage for the exchange current density according to Eq. 183 (–) and a constant surface Onsager coefficient L
s

= const.

for various C-rates and slow diffusion (left) as well as fast diffusion (right).
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the exchange current density of the surface reaction rate in terms of
concentration dependence to ensure surface thermodynamic consis-
tency.

For the detailed investigation of the non-equilibrium processes,
scalings of all non-equilibrium parameters, i.e. the diffusion coeffi-
cients DA and DE of the active phase and the electrolyte, conductivity
σA and σE of both phases, and the exchange current density e0L

s
of the

intercalation reaction, with respect to the 1-C current density iCA are
introduced. The current density i, entering the model via the boundary
conditions, is then expressed as multiple of iCA , i.e. i = Ch · i, where
Ch is the C-rate. Further we derive an expression for the capacity Q
of the intercalation cell, which allows us to compute numerically the
cell voltage E as function of the capacity Q for various C-rates Ch.
Within a hierarchy of approximations, e.g. open circuit potential, infi-
nite conductivity, infinite fast diffusion, and so forth, we provide sim-
ulations of E = E (Ch, Q) for various values of the (non-dimensional)
parameters (̃σA, σ̃E, D̃A, D̃E, L̃), scaled with respect to the material con-
stant iCA . This provides an overall view of the processes and scalings
within a lithium ion half cell which is validated at experimental data
of LixNi1/3Mn1/3Co1/3O2(NMC).
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Appendix A: Electrolyte

Mole fractions.—We consider complete dissociation of the electrolyte and can thus
express the mole fractions yα in terms of nE, i.e.

yEC = nEC

n
= nE

nR
ES

+ (
2 − (vEA +vEC )

vES

)
nE

[A1]

yES = nES

n
=

nR
ES

− (vEA +vEC )

vES
nE

nR
ES

+ (
2 − (vEA +vEC )

vES

)
nE

, [A2]

and yEA = yEC according to the electroneutrality condition. Note we assume

vR
EA

= vR
EC

= κEvR
ES

[A3]

whereby

yEC = nEC

n
= nE

nR
ES

+ 2
(
1 − κE

)
nE

[A4]

yES = nES

n
=

nR
ES

− 2κEnE

nR
ES

+ 2
(
1 − κE

)
nE

. [A5]

We can also express yα as function of of nE, i.e.

yEC = nE
ntot
E

= nE
nR
ES

− 2κEnE
[A6]

Thermodynamic factor.—

�tf
E = yEC

kBT

∂μ̂EC

∂yEC

= 1 + 2κE
yE

1 − 2yEC

= �tf
E (yE ). [A7]

Further

nEC = yEC · n = nR
ES

yEC

1 + 2(κE − 1)yE
= nEC (yE ). [A8]

whereby

∂nE
∂yE

= nR
ES

1 + 2(κE − 1)yE − yE2(κE − 1)

(1 + 2(κE − 1)yE )2
= nR

ES

1

(1 + 2(κE − 1)yE )2
[A9]

and thus

hE(yE ) = 1

nR
E

∂nE
∂yE

=
nR
ES

nR
E

1

(1 + 2(κE − 1)yE )2
=: . [A10]

Finally we have also

c̃tot,R
E (yE ) = ntot

E

nR
E

=
nR
ES

nR
E

· 1

1 + 2(κE − 1)yE
[A11]

PDEPE syntax for the electrolyte phase.—We want to solve numerically the problem

d̃ · q̃V · t̃E
Ch

D̃E
hE(yE )

∂yE
∂τ

= ∂ξ(stot
E (yE )�tf

E (yE ) · ∂ξyE ) [A12]

with boundary conditions

(̃ctot,R
E �tf

E ∂ξyE )
∣∣
ξ=0 = Ch

D̃E
and (̃̃ctot,R

E �tf
E ∂ξyE )

∣∣
ξ=1 = Ch

D̃E
[A13]

and

hE(yE ) =
nR
ES

nR
E

1

(1 + 2(κE − 1)yE )2
[A14]

�tf
E (yE ) = 1 + 2κE

yE
1 − 2yEC

[A15]

c̃tot,R
E =

nR
ES

nR
E

1

1 + 2(κE − 1)yE
[A16]

Note that it is ever convenient for the numerical computation of yE ∈ (0, 0.5) to
introduce the variable

u = 1

a
ln

(
2yE

1 − 2yE

)
= û(2yE ) [A17]

which yields

yE = 1

2
· eau

1 + eau
= 1

2
ŷ(u). [A18]

The parameter a can be adjusted for numerical computations.
Correspondingly, we obtain

hE(yE ) = hE(
1

2
ŷ(u)) [A19]

�tf
E (yE ) = �tf

E (
1

2
ŷ(u)) [A20]

c̃tot,R
E (yE ) = c̃tot,R

E (
1

2
ŷ(u)) [A21]

and

∂τyE = 1

2
∂uŷ · ∂τu, ∂xyE = 1

2
∂uŷ · ∂xu [A22]

with

∂uŷ = aeau (1 + eu ) − aeu eu

(1 + eau )2
= a

eau

(1 + eau )2
=: gu (u) [A23]

This yields

p̃· Ch

D̃E
hE

(
1

2
ŷ(u)

)
1

2
gu(u)

∂u

∂τ
= ∂ξ

(
c̃tot,R
E

(
1

2
ŷ(u)

)
�tf
E

(
1

2
ŷ(u)

)
1

2
gu(u)·∂ξu

)
[A24]

with boundary conditions(
c̃tot,R
E

(
1

2
ŷ(u)

)
�tf
E

(
1

2
ŷ(u)

)
1

2
gu(u) · ∂ξu

)∣∣
ξ=0 = Ch

D̃E
[A25]

(̃
ctot,R
E (

1

2
ŷ(u))�tf

E (
1

2
ŷ(u))

1

2
gu(u) · ∂ξu

)∣∣
ξ=1 = Ch

D̃E
[A26]

and

p̃ := d̃ · q̃V · t̃E [A27]

The initial value is

yE(x, t = 0) = yE(nE ) [A28]

and transfers as

u(x, t = 0) = û(2yE(nE )). [A29]

PDEPE takes the form

c(u)∂τu + ∂ξ( f (u, ∂ξu)) = 0 [A30]

with boundary conditions

pl (u|x=xl ) + ql · f (u, ∂ξu)
∣∣
x=xl

= 0 and pr (u|x=xr ) + qr · f (u, ∂ξu)|x=xr = 0. [A31]

We have hence

c = p̃ · Ch

D̃E
hE(

1

2
ŷ(u))

1

2
gu(u) [A32]

f = c̃tot,R
E (

1

2
ŷ(u))�tf

E (
1

2
ŷ(u))

1

2
gu(u) · ∂ξu [A33]
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and

pl = Ch

D̃E
pr = Ch

D̃E
[A34]

ql = −1 qr = −1 [A35]

Appendix B: Active Particle

Thermodynamic factor.—We consider for the chemical potential in the active particle
phase

μA = kBT

(
ln

( 1
ωA

yA

1+ 1−ωA
ωA

yA

)
− ω · ln

(
1 − yA

1 + 1−ωA
ωA

yA

)
+ γA · hA(yA )

)
[B1]

with

g(y) = (2y−1) + 1

2

(
6y(1−y) − 1

) − 1

3

(
8y(1−y) − 1

)
(2y−1) [B2]

Hence

∂μA

∂yA
= 1

yA

1

(1 − yA )( 1
ωA

yA + (1 − yA ))
+ γA · ∂yg [B3]

with

∂yg = 16 · y2 − 22yA + 25

3
. [B4]

The thermodynamic factor �tf
A is then

�tf
A = yA · ∂ fA

∂yA
= 1

(1 − yA )( 1
ωA

yA + (1 − yA ))
+ γA · (16 · y3

A − 22y2
A + 25

3
yA ). [B5]

PDEPE notation.—We seek to solve 109, i.e.

Ch

D̃A

∂yA
∂τ

= ∂ξ(yA
∂ fA
∂yA

∂ξyA ) [B6]

with boundary conditions 110

yA
∂ fA
∂yA

∂ξyA
∣∣
ξ=0 = 0 and yA

∂ fA
∂yA

∂ξyA
∣∣
ξ=1 = Ch

D̃A
. [B7]

and

yA
∂ fA
∂yA

= �tf
A = yA · ∂ fA

∂yA
= 1

(1 − yA )( 1
ωA

yA + (1 − yA ))
+γA · (16 · y3

A − 22y2
A + 25

3
yA ).

[B8]
Note that it is ever convenient for the numerical computation of yA ∈ (0, 1) to introduce

the variable

u = ln

(
yA

1 − yA

)
[B9]

which yields

yA = eu

1 + eu
[B10]

We have hence

∂τyA = ∂uyA · ∂τu [B11]

and

∂xyA = ∂uyA · ∂xu [B12]

with

∂uyA = eu (1 + eu ) − eu eu

(1 + eu )2
= eu

(1 + eu )2
=: g(u) [B13]

PDEPE takes the form

c(u)∂τu + ∂ξ( f (u, ∂ξu)) = 0 [B14]

with boundary conditions

pl (u|x=xl ) + ql · f (u, ∂ξu)
∣∣
x=xl

= 0 and pr (u|x=xr ) + qr · f (u, ∂ξu)|x=xr = 0. [B15]

We have hence

c = Ch

D̃E
gu(u) [B16]

f = �tf
A (ŷA(u))gu (u) · ∂ξu [B17]

and

pl = 0 pr = Ch

D̃E
[B18]

ql = 1 qr = −1 [B19]

Note that we introduce the stop-event yA|AE < 1 − 10−10 for the time-integration of
pdepe.

List of Symbols

A Area of the electrode
CDL
E Double layer capacity

Ch [1] C-rate
DA Active phase diffusion coefficient

D̃A = 1[h]
d2
A

DA Dimensionless diffusion coefficient
in the active phase

DE Electrolyte diffusion coefficient
E Measured cell voltage according to

44
e0 = 1.602176634 · 10−19 [C] Elementary charge

ET
A,E Intercalation reaction energy

fE = ln

(
yEC(

ŷES (yEC )
)κE

)
Electrolyte reaction potential (see

42)
g = eα·x − e−(1−α)·x Reaction rate function

g−1 Inverse reaction rate function
hA Molar enthalpy function according

to 12
i Current density flowing out of the

electrode
iCA = dA·qV

A
1[h] 1C current density.

I = A · i Measurable current
IC = A dA·qV

A
1[h] Current with which the battery is

charged within one hour
kB = 1.380649 ·10−23

[
JK−1

]
Boltzmann constant

L̃ = e0L
s

iCA
Dimensionless exchange current
density

L
s

Onsager coefficient of the intercala-

tion reaction
mα Molar mass of constituent α in solu-

tion
nα Molar concentration

ntot
E = nES + nEA + nEC Molar concentration of mixing par-

ticles in the electrolyte
nR
ES

Mole density nR
ES

of the pure solvent
qM,NMC
A = 318

[
mA h g−1

]
Mass charge density of NMC

qV,NMC
A = 1294

[
mA h
cm3

]
Volumetric charge density of NMC

Q = QV
A · yAC

Electrode capacity
R
s

Surface reaction rate of the inter-
calation reaction Li+

∣∣
E

+ e−∣∣
A

�
Li

∣∣
A

+ κE · S
∣∣
E

according to 38

SE = kBT
e0

�E(2tC − 1) Charge diffusion coefficient
tEC Cation transfer number

T = 298.15 [K] Isothermal temperature
U DL
AE Potential drop across the double

layer of �A,E

U SCL
i Space charge layer drop between the

surface �A,E and the adjacent points
x±
AE outside the space charge layer

vR
α Partial molar volume of constituent

α in solution
VA = A · dA Volume of the electrode

x = 0 Left boundary of �A in 1D approx-
imation

x = xAE Position of �A,E in 1D approxima-
tion

x = xEC Right boundary of �E in 1D approx-
imation

yA = nAC
nA�

Mole fraction of intercalated cations

in the active phase
yα Average mole fraction α = AC,EC
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yα = nα

ntot
E

Mole fraction (with respect to the
number of mixing particles)

zα Charge number of constituent α

Greek

κE Solvation number of cations and
anions in the electrolyte

�A Spatial domain of the active interca-
lation phase

�A Spatial domain of the electrolyte
�A,E Interface between active phase and

electrolyte (including electrochemi-
cal double layers)

μα Chemical potential (function)
for constituent α = EA,EC,ES,
AC,Ae,AM

μα Surface chemical potential (func-
tion) for constituent α = EA,EC,
ES,AC,Ae,AM

ϕ(x, z) Electrostatic potential
�tf
E Thermodynamic factor electrolyte

(see Eq. 25)
�E Molar conductivity
�tf
E Thermodynamic factor active phase

(see Eq. 36)
σA Active phase conductivity

λ
s

= e0(U DL
AE − ET

A,E)

+ kBT ( fA − fE)

Surface affinity (see Eq. 40)
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