© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of (η^4 -cycloocta-1,5-dien)(1,2-bis(diethylphosphino)ethane)rhodium(I) tetrafluoroborate, [Rh(C₈H₁₂)(C₁₀H₂₄P₂)](BF₄)

R. Kempe, A. Spannenberg, D. Heller and H.-J. Drexler*

Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Buchbinderstr. 5-6, D-18055 Rostock, Germany

Received March 15, 2004, accepted and available on-line May 5, 2004; CCDC no. 1267/1277

Abstract

C₁₈H₃₆BF₄P₂Rh, monoclinic, P12₁/n1 (no. 14), a = 15.522(3) Å, b = 9.173(2) Å, c = 15.862(3) Å, $\beta = 103.91(3)^{\circ}$, V = 2192.3 Å³, Z = 4, $R_{gt}(F) = 0.037$, $wR_{obs}(F^2) = 0.087$, T = 200 K.

Source of material

Standard preparation according to [1]. The ligand is commercially available.

Discussion

For chelating phosphane ligands it is known that a growing sterical hindrance of the functional groups at the phosphorus atom accompanies a distortion towards tetrahedral geometry (for phenyl groups see [2,3], for cyclohexyl groups [4]). On the other hand the ideal square planar arrangement results, as expected, for sterically less demanding groups. Accordingly in the title compound, the small ethyl group causes a dihedral angle between the planes P.Rh,P and X,Rh,X (X = centroid of the double bond) of only 0.7°.

Table 1. Data collection and handling.

Crystal:	orange needle, size $0.1 \times 0.1 \times 0.5$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
μ:	9.58 cm ⁻¹
Diffractometer, scan mode:	Stoe IPDS I, φ
$2\theta_{\rm max}$:	48.48°
N(hkl)measured, N(hkl)unique:	6293, 3290
Criterion for Iobs, N(hkl)gt:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 2491$
N(param)refined:	235
Programs:	SHELXS-86 [5], SHELXL-97 [6]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	Uiso	
H(1)	4 <i>e</i>	0.3267	-0.0358	0.5339	0.029	
H(2)	4e	0.1783	-0.0616	0.4833	0.029	
H(3A)	4e	0.1154	-0.1620	0.3481	0.030	
H(3B)	4e	0.2074	-0.1482	0.3202	0.030	
H(4A)	4e	0.1229	0.0170	0.2331	0.029	
H(4B)	4e	0.0730	0.0662	0.3055	0.029	
H(5)	4e	0.1643	0.2629	0.3165	0.022	
H(6)	4e	0.3129	0.2594	0.3535	0.027	
H(7A)	4e	0.3923	0.0680	0.3108	0.034	
H(7B)	4e	0.3055	-0.0325	0.2897	0.034	
H(8A)	4e	0.3905	-0.1382	0.4099	0.040	
H(8B)	4e	0.4246	0.0145	0.4538	0.040	
H(9A)	4e	0.1334	0.3557	0.6191	0.030	
H(9B)	4e	0.2210	0.3782	0.6957	0.030	
H(10A)	4e	0.2930	0.5030	0.6064	0.032	
H(10B)	4e	0.1943	0.5683	0.5812	0.032	
H(11A)	4 <i>e</i>	0.3477	0.1959	0.7387	0.039	
H(11B)	4e	0.3636	0.0524	0.6877	0.039	
H(12A)	4e	0.4835	0.2109	0.7005	0.073	
H(12B)	4 <i>e</i>	0.4190	0.3365	0.6515	0.073	
H(12C)	4e	0.4348	0.1927	0.6000	0.073	
H(13A)	4e	0.2022	-0.0504	0.6442	0.035	
H(13B)	4e	0.1813	0.0681	0.7104	0.035	
H(14A)	4e	0.0483	-0.0290	0.6268	0.065	
H(14B)	4e	0.0739	0.0221	0.5394	0.065	
H(14C)	4e	0.0530	0.1410	0.6056	0.065	
H(15A)	4 <i>e</i>	0.0956	0.5782	0.4336	0.031	
H(15B)	4e	0.1058	0.4942	0.3484	0.031	
H(16A)	4e	-0.0250	0.4235	0.3843	0.053	
H(16B)	4e	0.0297	0.3704	0.4780	0.053	
H(16C)	4e	0.0400	0.2861	0.3926	0.053	
H(17A)	4e	0.2756	0.5340	0.3618	0.031	
H(17B)	4e	0.2755	0.6451	0.4393	0.031	
H(18A)	4e	0.4219	0.5886	0.4354	0.049	
H(18B)	4e	0.4035	0.4191	0.4470	0.049	
H(18C)	4 <i>e</i>	0.4035	0.5306	0.5246	0.049	

^{*} Correspondence author

⁽e-mail: hans-joachim.drexler@ifok.uni-rostock.de)

Atom	Site	x	у	2	Un	U22	U ₃₃	<i>U</i> ₁₂	U ₁₃	U ₂₃
C(1)	4e	0.3051(3)	-0.0458(5)	0.4728(3)	0.037(3)	0.017(3)	0.016(3)	0.011(2)	0.002(2)	-0.002(2)
C(2)	4e	0.2136(4)	-0.0666(5)	0.4420(3)	0.047(3)	0.013(3)	0.013(3)	0.000(2)	0.009(3)	0.000(2)
C(3)	4e	0.1662(3)	-0.0963(5)	0.3487(3)	0.027(3)	0.021(3)	0.029(3)	-0.009(2)	0.008(2)	-0.006(2)
C(4)	4e	0.1317(3)	0.0402(5)	0.2955(3)	0.023(2)	0.029(3)	0.018(3)	-0.002(2)	0.000(2)	-0.005(2)
C(5)	4e	0.1921(3)	0.1706(5)	0.3166(3)	0.027(2)	0.018(2)	0.007(3)	-0.001(2)	0.001(2)	0.000(2)
C(6)	4e	0.2833(3)	0.1698(6)	0.3361(3)	0.027(2)	0.026(3)	0.016(3)	-0.010(2)	0.007(2)	-0.004(2)
C(7)	4 <i>e</i>	0.3400(3)	0.0378(6)	0.3320(3)	0.023(3)	0.038(3)	0.026(3)	-0.003(2)	0.011(2)	-0.010(2)
C(8)	4e	0.3718(3)	-0.0379(6)	0.4200(4)	0.034(3)	0.027(3)	0.035(4)	0.008(2)	0.003(3)	-0.006(2)
C(9)	4e	0.1990(3)	0.3583(5)	0.6328(3)	0.041(3)	0.019(3)	0.015(3)	0.002(2)	0.009(3)	-0.006(2)
C(10)	4e	0.2300(3)	0.4793(5)	0.5801(3)	0.032(3)	0.018(3)	0.028(3)	0.001(2)	0.005(3)	-0.006(2)
C(11)	4 <i>e</i>	0.3511(3)	0.1582(6)	0.6811(4)	0.035(3)	0.036(3)	0.023(3)	0.003(3)	-0.001(3)	0.001(3)
C(12)	4e	0.4290(4)	0.2310(7)	0.6561(5)	0.027(3)	0.052(4)	0.056(5)	0.000(3)	-0.010(3)	0.003(3)
C(13)	4e	0.1767(4)	0.0474(6)	0.6482(3)	0.047(3)	0.024(3)	0.019(3)	0.001(2)	0.012(3)	0.002(2)
C(14)	4e	0.0793(4)	0.0452(7)	0.6008(4)	0.037(3)	0.048(4)	0.047(4)	-0.019(3)	0.017(3)	-0.007(3)
C(15)	4e	0.1066(3)	0.4814(5)	0.4106(3)	0.027(3)	0.022(3)	0.029(3)	0.007(2)	0.006(2)	0.001(2)
C(16)	4e	0.0312(3)	0.3816(6)	0.4169(4)	0.020(3)	0.037(3)	0.045(4)	0.003(2)	0.000(3)	-0.004(3)
C(17)	4e	0.2895(3)	0.5437(5)	0.4258(3)	0.033(3)	0.017(3)	0.025(3)	0.001(2)	0.004(3)	0.002(2)
C(18)	4e	0.3884(3)	0.5182(6)	0.4614(4)	0.031(3)	0.032(3)	0.032(3)	-0.006(2)	0.004(3)	0.001(3)
B (1)	4 <i>e</i>	0.4330(4)	-0.2483(6)	0.6878(4)	0.029(3)	0.023(3)	0.028(4)	0.001(3)	0.002(3)	0.000(3)
F(1)	4e	0.3415(2)	-0.2246(3)	0.6700(2)	0.030(2)	0.035(2)	0.046(2)	0.004(1)	0.001(2)	0.003(2)
F(2)	4 <i>e</i>	0.4743(2)	-0.1764(4)	0.7636(2)	0.052(2)	0.052(2)	0.040(2)	-0.010(2)	-0.006(2)	-0.016(2)
F(3)	4 <i>e</i>	0.4474(2)	-0.3971(4)	0.6977(2)	0.061(2)	0.031(2)	0.053(3)	0.016(2)	-0.004(2)	0.001(2)
F(4)	4e	0.4643(2)	-0.1979(4)	0.6188(2)	0.050(2)	0.081(3)	0.043(2)	-0.017(2)	0.013(2)	0.012(2)
P(1)	4 <i>e</i>	0.21792(8)	0.4203(1)	0.46805(8)	0.0207(6)	0.0111(6)	0.0187(7)	-0.0011(5)	0.0025(6)	0.0015(5)
P(2)	4 <i>e</i>	0.24197(8)	0.1819(1)	0.60603(8)	0.0204(6)	0.0202(7)	0.0143(7)	-0.0002(6)	0.0001(5)	-0.0002(6)
Rh(1)	4e	0.24006(2)	0.17505(4)	0.46177(2)	0.0188(2)	0.0109(2)	0.0107(2)	0.0006(2)	0.0015(1)	-0.0001(2)

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Acknowledgment. We thank the DFG.

References

- 1. Schrock, R. R.; Osborn, J. A.: Preparation and Properties of Some Cationic Complexes of Rhodium(I) and Rhodium(III). J. Am. Chem. Soc. 93 (1971) 2397-2407.
- 2. Ball, R. G.; Payne, N. C.: Chiral phosphine ligands in asymmetric synthesis - molecular-structure and absolute-configuration of (1,5-cyclooctadiene)-(25,35)-2,3-bis(diphenylphosphino)butane rhodium(I) perchlorate tetrahydrofuran solvate. Inorg. Chem. 16 (1977) 1187-1191.
- 3. Drexler, H.-J.; Baumann, W.; Spannenberg, A.; Fischer, C.; Heller, D.: COD - versus NBD-precatalysts. Dramatic difference in the asymmetric hydrogenation of prochiral olefins with five membered diphosphine Rhhydrogenation catalysts. J. Organomet. Chem. 621 (2001) 89-102.
- 4. Kempe, R.; Spannenberg, A.; Drexler, H.-J.; Heller, D.: Crystal structures of 1,2-bis(dicyclohexyl-phosphino)-ethane rhodium(I)-norborna-2,5diene tetrafluoroborate (C33H56BF4P2Rh) and 1,2-bis(dicyclo-hexylphosphino)-ethane rhodium(I)-(Z,Z)-cycloocta-1,5-diene tetrafluoroborate (C₃₄H₆₀BF₄P₂Rh · 1/2CH₃OH). Z. Kristallogr. NCS 216 (2001) 165-168.
- Sheldrick, G. M.: SHELXS-86. Program for the Solution of Crystal 5. Structures. University of Göttingen, Germany 1986.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal 6. Structures. University of Göttingen, Germany 1993.