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Gradient structures for flows of concentrated suspensions
Dirk Peschka, Marita Thomas, Tobias Ahnert,

Andreas Münch, Barbara Wagner

Abstract

In this work we investigate a two-phase model for concentrated suspensions. We construct a
PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and
solid phase as well as different driving forces. Our construction is based on the concept of flow
maps that also allows it to account for flows in moving domains with free boundaries. The major
difference compared to similar existing approaches is the incorporation of a non-smooth two-
homogeneous term to the dissipation potential, which creates a normal pressure even for pure
shear flows.

1 Introduction

Suspension flows of solid particles in a viscous liquid are omnipresent in nature and are involved in
many technological processes, e.g., in the food, pharmaceutical, printing or oil industries. The fraction
of volume occupied by solid particles 0 ≤ φs ≤ 1 relative to the combined solid and liquid content,
as shown in Figure 1, strongly affects the suspension flow. For very small volume fraction φs the sus-
pension is called dilute, and mutual interaction between particles is neglegible. For increasing volume
fraction of the particles the suspension enters a number of flow regimes and rheological behaviours,
from shear thinning, to discontinuous shear thickening until it enters the shear jamming transition,
when a critical volume fraction φcrit is reached. Suspensions in this state are called dense or concen-
trated. The actual value of φcrit depends sensitively on the particle shape, surface and other material
properties.

Predictive models therefore need to link the interaction of solid particles with the liquid and with other
particles on the micro scale with the large-scale description of the dynamics of the liquid and solid
phases on the continuum scale. In Figure 2 the numerical simulation of the sedimentation of two-
dimensional particles in a viscous liquid is shown. The sedimentation of a particle is certainly influ-
enced by the presence of other particles that create mututal long-ranged interactions due to the fluid
flow. On the continuum scale, such a two-phase model works with averaged flow quantities such as
averaged velocity u, or effective viscosity µeff which relates the deviatoric1 stress τ and the shear
rate Du = 1

2
(∇u +∇u>) via τ = 2µeff devDu. For dilute suspensions of Newtonian liquids with

viscosity µ and spherical particles Einstein [Ein05] derived the effective viscosity law

µeff

µ
= 1 +

5

2
φs. (1)

However, for many problems suspensions are not dilute but exhibit complex phenomena such as the
formation of aggregates, creation of dense sedimentation layers, and shear-induced phase separa-
tion into highly concentrated and dilute regions. In fact, for any suspension where the liquid phase
evaporates, Einstein’s result (1) or its extensions [BG72] will eventually fail.

1The deviator of a tensor/matrix in dimension d is defined as devA = A− d−1 tr(A)I with I the d× d unit matrix.
It is tr devA ≡ 0 by construction. Subsequently we use σ to denote the total (Cauchy) stress, τ for the deviatoric stress,
and p for the normal stress/pressure.
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Figure 1: Discrete solid particle distribution and corresponding volume fractions φs, φ`. Left: charac-
terstic functions of particles P : Ω → {0, 1} and Right: volume fractions φs : Ω → [0, 1] ≡ 〈P 〉
defined by a suitable average.

For many decades a great number of experimental and theoretical studies have been devoted to ob-
tain expressions for an effective viscosity for the regime of concentrated suspensions, such as the
Krieger-Dougherty law [KD59]. It has been observed experimentally that, as the suspension attains
a solid-like state, it undergoes a jamming transition and develops further distinct phases [JHJJ17,
OSG+15, HGP+16, DDLW15, WC14]. These studies focussed on examining the role of friction and
other properties of the particles interacting with each other and the liquid, reflecting how these micro-
scopic properties control large-scale networked patterns. The dramatic increase in research devoted
to this topic is rooted in the ground-breaking experimental study by Cassar et al. [CNP05], where it
was found that a dense suspension on an inclined plane sheared at a rate 2|Du| under a confining
pressure pc can be characterized by a single dimensionless control parameter, the viscous number

Iv =
2µ|Du|
pc

. (2)

Figure 2: Particulate flow with gravity in Ω ⊂ R2 showing the sedimentation in a suspension with time
advancing from left to right. The particle indictor function P : Ω→ {0, 1} is shown using white discs,
the shading indicates the magnitude of the velocity field, shown using vectors.

This result was taken up by Boyer et al. [BGP11], where a new constitutive friction law combining the
rheology for non-Brownian suspensions and granular flows has been proposed, and for the first time
offers to quantitatively capture the jamming transition. In Ahnert et al. [AMW18], this new constitutive
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friction law was incorporated in the derivation of a new two-phase model for non-homogeneous shear
flows and studied for simple shear flows such as plane Couette and Poiseuille flow. One key feature
of these suspension models is the appearance of the normal or contact pressures pc, with their role
for particle migration discussed by Morris & Boulay [MB99].

Beyond simple effective models, predictive models on the length scale of these applications need to
combine the interactions of the liquid and solid particles among each other on the microscale with
a description of the dynamics of the liquid and solid phase on the continuum scale. This requires to
incorporate phenomena such as transport of volume and mass with the balances of momenta and
forces. The solid and liquid phase, i.e., their volume fractions φs and φ` = 1− φs, are transported by
individual velocities us and u`. The velocities themselves obey the momentum balances of solid and
liquid phase and are dissipative due to the presence of viscosity. Similar phenomena are known in the
literature for classical mixture models.

To obtain further insight into the mathematical structure of this model we discuss in this article two-
phase flow models from an energetic point of view and obtain that the general mathematical structure
behind is of gradient-flow type. Hence, the evolution of the model system is characterized in terms of
an energy functional and a dissipation potential. In particular, we will use the property that the model for
the different regimes, from dilute to highly concentrated states, have a common general mathematical
structure of variational type. In the long run, this will allow it to pursue the limit passage using variational
convergence methods, and thus to carry out the transition from a dilute to a concentrated suspension
as a rigorous scaling limit.

The focus of this work is to construct a class of thermodynamically and mechanically consistent models
that support normal pressures using the framework of variational modelling. We present a method to
construct suspension models with free boundaries and provide the underlying construction for gravity
driven and surface-tension driven flows. Examples of such flows are given in applications such as in
Murisic et al. [MPPB13].

2 Model for a concentrated suspension

We briefly summarise the dense suspension model that was derived in Ahnert et al. [AMW18], by
averaging the microscopic formulation of the flow with a liquid and a particulate solid phase along the
lines of Drew [Dre83] and Drew & Passman [DP99], in combination with a constitutive law for the solid
phase stress-strain rate relation based on the results of the experiments by Boyer et al. [BGP11] and
a Kozeny-Carman relation for the interphase drag, see for example Brennen [Bre05]. We assumed
that the suspension consists of monodisperse, spherical, non-Brownian particles. It is also assumed
that the mass densities of the solid ρs and liquid phase ρ` are constant. The equations are stated in
non-dimensional variables as explained in detail in [AMW18]; here we only give a brief summary of the
scalings and the resulting equations. We use a velocity scale U , a length scale L, a time scale L/U
and a viscous scale µ`U/ρ` for the pressure and stress field, where µ` is the liquid phase viscosity.
The variables φs, us, τs and ps denote the volume fraction, velocity, deviatoric stress and normal
stress for the solid phase, respectively, and analogously φ`, u`, τ` and p` for the liquid phase; t is the
time. (The index ` is ommitted from the liquid pressure to be consistent with notation for the Lagrange
multiplier in subsequent sections.) The bars | · | represent the componentwise Euclidean norm of a
vector or tensor. Without inertia, the mass conservation and momentum balance equations for the two
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phases are

∂tφ` +∇ · (φ`u`) = 0, (3a)

∂tφs +∇ · (φsus) = 0, (3b)

−∇ · σ` +Md + φ`∇π = 0, (3c)

−∇ · σs −Md + φs∇π = 0, (3d)

where the total stresses in liquid and solid phase are

σ`(u`) = −p`(u`)I + τ`(u`), (3e)

σs(us) = −
(
pc(us) + ps(us)

)
I + τs(us). (3f)

The Lagrange multiplier π takes care of the constraint divx(φsus + φ`u`) = 0, which results from
the condition φs + φ` = 0 upon differentiation with respect to time using the transport equations. The
drag Md is given by the non-dimensional form of the Kozeny-Carman relation

Md = Da
φ2
s

φ`
(u` − us). (4)

The Darcy number which appears here is Da = L2/K2
p , where Kp is proportional to the square of

the particle diameter, so that Da is typically large. Next we specify the constitutive equations for the
rheology of the liquid and the solid phase. For the liquid phase in three space dimensions, i.e., for
d = 3, we have

p` = −2

3
φ` divx(u`), τ` = 2φ` devDu`, (5)

with Du` =
(
∇u` +∇uT`

)
/2 the shear rate. For the solid phase, if |Dus| > 0, then

ps = −2

3
φsηs(φs) divx us, τs = 2φsηs(φs) devDus, (6a)

with devA = A − 1
3

trA the deviator of a matrix A ∈ R3×3; additionally there also acts a contact
pressure given by

pc = 2φsηn(φs)|Dus|. (6b)

For i = s, ` note that pi = 0 for divergence-free flows divx ui = 0, whereas pc only vanishes when
Dus does so. The constitutive material laws in the above definitions are

ηs(φs) = 1 +
5

2

φcrit

φcrit − φs
+ µc(φs)

φs
(φcrit − φs)2

, (6c)

µc(φs) = µ1 +
µ2 − µ1

1 + I0φ2
s(φcrit − φs)−2

, (6d)

ηn(φs) =

(
φs

φcrit − φs

)2

, (6e)

with the non-dimensional parameters, µ2 ≥ µ1, I0, and the maximum volume fraction φcrit for a
random close packing. Instead, if Dus = 0, we require

φs = φcrit, (6f)
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and
|σs| ≤ µ1pc. (6g)

A typical value for the maximum random packing fraction is φcrit = 0.63. The values suggested in
Boyer et al. [BGP11] for the other parameters are µ2 = 0.7 , and I0 = 0.005, but these lead to a
problem with ill-posedness even for plane Poiseuille flow [AMW18].

The constitutive law (6) has the following implications: Given a fixed, positive finite contact pressure pc,
if the shear rate Dus tends to zero, then ηn = pc/(2φs|Dus|)→∞ and thus (φcrit−φs)→ 0. Since
ηs has the same singular dependence on φcrit− φs, it tends to infinity at the same rate and, therefore,
|σs| tends to a finite positive value, µ1pc/φs, which gives rise to the yield stress in (6g). Across a yield
surface, we require that φs, u`, us, |Dus| and the projection of−p`I+ τ` and−(ps + pc)I+ τs onto
the surface normal are continuous. While the suspension model above is stated for simplicity without
any additional external forces, the later gradient flow construction will contain the full model with forces
arising due to certain bulk or surface energies.

3 Gradient flow for two-phase flows of concentrated suspensions

Beyond flows of purely viscous liquids, the discussion of the proper mechanical statement of models
for multi-phase flows has been studied extensively in the past, e.g., [Dre83, DP99, IH11, JR13]. A
major challenge from the modelling point of view is the construction of models that are mathemati-
cally, thermodynamically and mechanically meaningful. We here construct a class of models using a
variational approach based on the energy and dissipation functionals related to the processes. In this
way, we will deduce one possible model to describe flows of two-phase mixtures with free, evolving
boundaries and provide the underlying construction for gravity-driven and surface-tension driven flows.

First variational descriptions of fluid flows are due to Helmholtz [Hel68] and Rayleigh [Str71]. A general
framework for the thermodynamic description of fluids has been layed out by Öttinger & Grmela [GÖ97,
ÖG97]. For the special construction of Euler flows using Poisson structures has been reviewed, for
instance, by Morrison [Mor98]. Peletier [Pel14] gave a well-structured overview of systems which can
be casted as gradient flows. For an extensive overview of different models for complex fluids and
flow maps we refer to the recent review by Giga et al. [GKL18]. It has to be stressed that the afore
mentioned contributions consider the flow in fixed domains with fixed boundaries. In fact, our approach
can be seen as a generalization of the one presented in [GKL18] for single-phase fluid flow in a fixed
domain to the problem of two-phase flows on evolving domains.

In the following we focus on the formal description of free boundary multi-phase flows on moving
domains in terms of generalized gradient flows. This concept has been discussed e.g. by Mielke
[Mie16] in an abstract framework and formally applied to models arising in many different applications.
Following [Mie16], such a description is based the specification of a triple

(
V,R, E

)
consisting of the

(Banach) space of velocities, a dissipation potentialR : Q×V→ [0,∞], and an energy functional
E : Q → R defined on the state space Q. Elements of the state space are denoted by q ∈ Q and
their corresponding velocities by q̇ ∈ V. For all states q ∈ Q it is required thatR(q; ·) : V→ [0,∞]
is convex and that R(q; q̇ = 0) = 0 . With V∗ we denote the dual space of V and define for fixed
q ∈ Q the dual dissipation functional R∗(q, ·) : V∗ → [0,∞] as the convex conjugate of R(q; ·),
i.e., for all v∗ ∈ V∗ it is R∗(q, v∗) := supv∈V

(
〈v∗, v〉V − R(q, v)

)
. As in [Mie16] we speak here

of a generalized gradient flow as we neither require R to be quadratic nor classically differentiable.
In this generalized setting it can be shown, cf. e.g. [Mie16, MR15], by exploiting the convexity of the
functionalsR(q, ·) andR∗(q, ·) that a solution q : [0, T ]→ Q of

(
V,R, E

)
is characterized by the
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following three equivalent problem formulations:

q̇(t) ∈ ∂R∗(q(t),−DqE(q(t))) in V, (7a)

⇔ −DqE(q(t)) ∈ ∂R(q(t), q̇(t)) in V∗, (7b)

⇔ 〈−DqE(q(t)), q̇(t)〉V = R(q(t), q̇(t)) +R∗(q(t),−DqE(q(t))), (7c)

where ∂(·) denotes the subdifferential of a convex functional with respect to q̇ and DE(q) the Fréchet-
derivative of E .

Since the Young-Fenchel inequality for convex functionals and their conjugate always ensures
〈−DqE(q), q̇〉V ≤ R(q, q̇) + R∗(q,−DqE(q)) one can infer from (7c) that the time-derivative q̇
of a solution q of (7) also satisfies

q̇ ∈ argminq̇∈V
(
〈DqE(q), q̇〉V +R(q, q̇)

)
, (7d)

sinceR∗(q(t),−DqE(q(t))) is independent of q̇.

Indeed, the setting of generalized gradient flows based on convex potentials with the formulation (7)
provides a generalization of classical gradient flows characterized by quadratic potentials. For a given
self-adjoint linear operator G(q) : V → V∗ and quadratic functionals R(q, q̇) = 1

2
〈G(q)q̇, q̇〉 a

solution q(t) of the gradient flow is given by a curve q : [0, T ] → Q satisfying (7b), which reads in
this smooth, quadratic context as

q̇(t) = −∇RE
(
q(t)

)
. (7e)

where the gradient v = ∇RE(q) ∈ V of E with respect to the metric induced by R is defined by
〈G(q)∗v, ˙̃q〉 = 〈G(q)∗DqE(q), ˙̃q〉 for all ˙̃q ∈ V and G(q) = G(q)∗.

Formulation (7) provides the abstract framework that we are going to use in order to deduce two-
phase suspension models on moving domains. More precisely, in this section we will show that, under
suitable smoothness assumptions on the functions involved, flow models for suspensions as discussed
in the previous Section 2 indeed arise as generalized gradient flows (V,R, E) in the form (7b). Given
a suitable triple (V,R, E) we will rigorously derive a weak formulation of the corresponding PDE
system (7b). At this point our presentation will stay on a formal level, as we will not address the
existence and regularity of solutions for the resulting problem. Under further smoothness assumptions
we will then formally deduce a pointwise formulation of the associated Cauchy problem and compare
our resulting system with the one presented in Section 2. Indeed, we shall see that a dissipation
potential suited to produce a critical pressure of 1-homogeneous nature is not of the standard smooth,
quadratic nature.

3.1 Notation and states

We consider the motion of a liquid continuous phase (index `) mixed with a solid dispersed phase of
non-Brownian particles (index s) phase occupying at each time t ∈ [0, T ] a bounded set Ω(t) ⊂ Rd

where d ∈ N. At the initial time t = 0 this subdomain is denoted by Ω̄ = Ω(0). For each point in space
x ∈ Ω(t) the state of the suspension is characterized by volume fractions 0 ≤ φs(t, x), φ`(t, x) ≤ 1
such that we have φs(t, x) +φ`(t, x) = 1 pointwise. In the following we define the structures needed
to model the evolution of φi and Ω(t) using a gradient flow structure. One key idea in this construction
is the consistent use of flow maps as elements of an abstract state space.
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Ω̄ Ω(t) ⊂ Rd

x = χ(t,X)
X

x

u(t, x)

Figure 3: Flow map χ(t, ·) : Ω̄ → Ω(t) mapping a point X ∈ Ω̄ ⊂ Rd from the reference domain
Ω̄ (green shaded) to a point in the mapped configuration Ω(t) (gray shaded). When considering the
trajectory x(t) = χ(t,X) (dashed line) for any given X , then u = ẋ(t) is the associated velocity
(arrow) and u(t, x) the corresponding flow field.

Definition 1 (Evolution of shapes with flow maps). Let χ(t, ·) : Ω̄ → Ω(t) a family of diffeomor-
phisms that map from Ω̄ ⊂ Rd to Ω(t) ⊂ Rd using

Ω(t) = χ(t, Ω̄) ≡ {x ∈ Rd : ∃X ∈ Ω̄ s.t. x = χ(t,X)}. (8)

The small letter x will always denote coordinates in Ω(t), whereas the capital letter X denotes coor-
dinates in the reference configuration X ∈ Ω̄. We define the associated velocity u(t, ·) : Ω(t)→ Rd

with

u(t, x) =
(
∂tχ
)
(t,χ−1(t, x)). (9)

We call χ(t, ·) the flow map associated to the motion of Ω(t) and u(t, ·) the corresponding velocity
vector field. Initial data are chosen such that χ(t = 0, X) = X and Ω̄ = Ω(0). With the notation
Fχ = ∇Xχ we indicate the gradient of the transformation and assume for its Jacobian determinant
that detFχ > 0. On the other hand, for given flow field u we have an associated ODE-Cauchy
problem:

∂tχ(t,X) = u(t,χ(t,X)) for all X ∈ Ω̄ and t ∈ [0, T ], (10a)

χ(0, X) = X for all X ∈ Ω̄. (10b)

Note that (10) is the kinematic condition for the domain motion.

In the presence of two phases, each phase is characterized by its own flow map χi : [0, T ] × Ω̄ →
Ω(t) ⊂ Rd with i ∈ {s, `} for solid and liquid phase. Correspondingly we use ui and Fi to indicate
the corresponding velocities and Jacobians. With this notation we further require the flow maps to
satisfy the following assumptions: Multiple flow maps are defined on the same domain

Ω(t) = χs(t, Ω̄) = χ`(t, Ω̄), (11)

which of course does not imply that the flow maps are equal. Furthermore we have the following
assumptions on ui and χi for i ∈ {s, `} for all t ∈ [0, T ]:

• Ω(t) and Ω̄ bounded and sufficiently smooth, (12a)

• χi(t, ·) : Ω̄→ Ω(t) is a smooth diffeomorphism, (12b)

• detFi(t, ·) > 0, where Fi(t,X) = ∇Xχi(t,X), (12c)

• us(t, ·) = u`(t, ·) on ∂Ω(t). (12d)
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Ω̄ Ω(t)
Xs = χ−1

s (t, x)

Xℓ = χ−1
ℓ (t, x)

x

uℓ(t, x)

us(t, x)

Figure 4: Flow maps χi(t, ·) for solid i = s phase and liquid i = ` phase mapping a point X ∈
Ω̄ ⊂ Rd from the reference domain Ω̄ (green shaded) to a point in the mapped configuration Ω(t)
(gray shaded). When considering the trajectories xi(t) = χi(t,X) (dashed lines) for any given X
and i ∈ {s, `}, then ui = ẋi(t) are the associated velocities (arrow) and ui(t, x) the corresponding
flow field. At time t the trajectories meet at the same point x, when they started at Xi = χ−1

i (t, x).

Note that for the gradient structure equality of tangential velocities on the boundary would suffice to
ensure (11), but we require the slightly stronger condition (12d).

At each time t ∈ [0, T ] and each x ∈ Ω(t), the fraction of volume occupied by liquid and solid phase
is characterized by the two phase indicators φi(t, x), i ∈ {s, `}. Since φi represent volume fractions,
they must satisfy

φs(t, x), φ`(t, x) ∈ [0, 1] for all t ∈ [0, T ] and all x ∈ Ω(t) (13a)

and fill the volume such that

φs(t, x) + φ`(t, x) = 1 for all t ∈ [0, T ] and all x ∈ Ω(t) (13b)

The evolution of the densities is defined via a local conservation law for the two volume fractions. We
assume that the given initial volume fractions φi(t = 0, X) = φ̄i(X) ∈ [0, 1] and that the flow maps
χi(t, ·) : Ω̄ → Ω(t) as well as their velocities ui(t, ·) : Ω(t) → Rd are sufficiently smooth for
i ∈ {s, `}. For arbitrary ω̄ ⊂ Ω̄ let ωi(t) = χi(t, ω̄) ⊂ Ω(t). In the absence of reaction or diffusion
processes we require the volume fraction φi(t, ·) : Ω(t) → R to satisfy the integral form of volume
conservation stated as ∫

ω(t)

φi(t, x) dx =

∫
ω̄

φ̄i(X) dX. (14a)

Differentiating (14a) in time and using the Reynolds transport theorem, given the smoothness of all
quantities involved, shows the equivalent differential form of volume conservation: For given t ∈ [0, T ]
and any x ∈ Ω(t) the density φi(t, x) satisfies the (Cauchy problem for the) transport equation

∂tφi(t, x) + divx
(
φi(t, x)ui(t, x)

)
= 0 in Ω(t),

φi(0, X) = φ̄i(X) in Ω̄,
(14b)

with given, sufficiently smooth initial data φ̄i, which also have to satisfy the volume constraints, i.e., we
claim that

• 0 ≤ φ̄i ≤ 1 for all X ∈ Ω̄, (15a)

• φ̄s + φ̄` = 1 for all X ∈ Ω̄. (15b)

DOI 10.20347/WIAS.PREPRINT.2543 Berlin 2018
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The following lemma summarizes a few immediate consequences of the preceeding definitions, con-
straints, and assumptions. Moreover, Statement 4. below justifies why we can subsequently work with
the divergence contraint (16) for the average velocity, cf. the definition of the dissipation potential (23),
in order to equivalently guarantee the volume constraint (13b) for the phase indicators.

Lemma 1. Let i ∈ {s, `} and let all the quantities χi, φi,ui, φ̄i be sufficiently smooth.

1 Assume the densities φi fill the volume (13b). Then at each time t ∈ [0, T ] the average velocity
defined as u = φsus + φ`u` satisfies the following divergence constraint

divx u(t, x) = 0, for all x ∈ Ω(t). (16)

2 Let the sufficiently smooth flow map also satisfy the positivity assumption (12c), i.e., detFi > 0.
Then, the transport problem (14) for the volume fraction φi is equivalent to the following explicit
representation for any given t ∈ [0, T ]:

φi
(
t,χi(t,X)

)
=
(
det Fi(t,X)

)−1
φ̄i(X), for each X ∈ Ω̄. (17)

3 Let the transport problem (14) as well as the volume constraint (13b) be satisfied. Then the two
phase volumes are conserved, i.e.,

Vi(t) =

∫
Ω(t)

φi(t, x) dx = Vi(0), and |Ω(t)| = Vs + V` = |Ω̄|. (18)

4 Let the transport problem (14) be satisfied. Then, the following equivalence holds true for the
volume constraint on the phase indicator:{

(15b) for φ̄s, φ̄` at initial time
& divergence constraint (16)

}
⇔
{

(13b) for φs, φ` at any t ∈ [0, T ]
}

(19)

5 Assume that φ̄i satisfies the convex constraint (15a) at initial time, that the transport relation
(14) as well as volume constraint (15b) and divergence constraint (16) hold true. Then the
convex constraint (13a) holds true also for φi(t, ·) in Ω(t) for any t ∈ [0, T ].

Proof: To 1.: Since we assumed φs(t, x) + φ`(t, x) = 1 for any x ∈ Ω(t) we readily conclude
∂t(φs + φ`) = 0 = divx(φsus + φ`u`).

To 2.: Using change of variables X = χ−1
i (t, x) and volume conservation (14) we find for all t ∈

[0, T ], arbitrary ω̄ ⊂ Ω̄ and ω(t) = χi(t, ω̄) that∫
ω̄

φ̄i(X) dX =

∫
ω(t)

φi(t, x) dx =

∫
ω̄

φi(t,χi(t,X)) detFi(t,X) dX .

The assertion follows due to the smoothness of φi and the positivity of detFi.

To 3.: This is a direct consequence of 1. and φs + φ` = 1.

To 4.: Clearly, condition (13b) includes (15b) initial time. The divergence constraint again follows
from (13b) and (14) along the lines of Item 1.. Hence, ’⇐’ in (19). To find also ’⇒’ we argue as
follows: Transport problem (14) together with (16) implies ∂t(φs + φ`) = 0 in [0, T ] × Ω(t). Hence
φs(t, x) + φ`(t, x) = c(x) = φs(0, X) + φ`(0, X) = 1, which is (13b) at any t ∈ [0, T ].

To 5.: The above argument implies φi ≤ 1, if it is possible to show that φi ≥ 0. Indeed, the latter fol-
lows from (14) thanks to its equivalence to the representation (17). By the positivity of the determinant
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(12c) and the constraint (15a) satisfied by the initial data we may thus conclude that φi ≥ 0. �

Here we point out the crucial observation that the evolution of φi is not independent but rather defined
using the flow maps χi. However, when considering functional depending on φi we need to be able to
compute its variations. For this we recall the simple identity for change of variables for volume integrals.

Theorem 1 (Change of variables in volumes). Let χ : (t, ·)Ω̄ → Ω a flow map from Ω̄ ⊂ Rd to
Ω(t) ⊂ Rd and let φ(t,χ(t,X)) = (detFχ)−1φ̄(X) and f(x, φ) given.∫

χ(t,Ω̄)

f(x, φ) dx =

∫
Ω̄

f
(
χ(t,X), (detFχ(t,X))−1φ̄(X)

)
detFχ(t,X) dX.

For instance using f(x, φi) = φi and χ = χi shows that conservation of volume holds by construc-
tion since ∫

χi(t,Ω̄)

φi(t, x) dx =

∫
Ω̄

φ̄i(X) dX = Vi.

3.2 The triple (V,R, E) for flows of concentrated suspensions

In view of the discussion in Section 3.1 we denote in the following the vector of states by q :=
(χs,χ`) ∈ Q and its associated vector of velocities by q̇ := (us,u`) ∈ V. Hereby, we will use
the spaces

X := {χ ∈ H1(Ω̄;Rd), χ = idΩ̄ on ∂Ω̄\Γ̄}, (20a)

Q := {(χs,χ`) ∈ X×X, χs = χ` on Γ̄}, (20b)

as the state space for the flow maps defined on the reference configuration Ω̄ and

V :=

{
(ũs, ũ`) ∈ H1(Ω(t);Rd × Rd),

ũs = ũ` on Γ(t)
ũs = ũ` = 0 on ∂Ω(t)\Γ(t)

}
, (21)

as the function space for the velocities defined on the current configuration Ω(t) for all t ∈ [0, T ].
Note that above we introduced a part of the boundary ∂Ω̄ \ Γ̄, on which the shape of the domain is
fixed corresponding to a no-slip boundary condition. Moreover we stress that the upcoming definitions
of functionals will always implicitely depend on a vector of given data (φ̄s, φ̄`, Ω̄), which consists of
the reference configuration Ω̄ ⊂ Rd, and of the reference densities φ̄s, φ̄` of solid and fluid phase.

Further using the notation from Definition 1 we consider an energy functional E : Q→ [0,∞] where

E(q) := Ebulk(q) + Esurf(q) with

Ebulk(q) :=

{ ∫
Ω(t)

E(x, φs) dx if φi(t, x) = φ̄i(t,X)
detFi(t,X)

,

∞ otherwise,
(22a)

where E(x, φs) := gxd(φsρs + (1− φs)ρ`), and (22b)

Esurf(q) :=

{ ∫
Γ(t)

ϑ dHd−1 if φi(t, x) = φ̄i(t,X)
detFi(t,X)

,

∞ otherwise.
(22c)

In (22b) the constant g denotes the gravity constant, xd is the dth component of the space variable
x ∈ Ω(t) ⊂ Rd in the current configuration Ω(t), and ρs, ρ` denote the mass densities of the solid
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and the fluid phase, respectively. Moreover, in (22c), the parameter ϑ denotes the surface tension and
Hd−1 is the (d− 1)-dimensional Hausdorff measure.

In addition, we also introduce the dissipation potentialR : Q×V→ [0,∞] as

R(q; ˙̃q) :=

∫
Ω(t)

R(φs, φ`; ũs, ũ`, ẽs, ẽ`) dx+ IK(q)(ũs, ũ`), (23a)

where we used the indicator functional IK(q) and the constraint set K(q) defined as

IK(q)(ũs, ũ`) :=

{
0 if (ũs, ũ`) ∈ K(q),

∞ otherwise,
(23b)

K(q) := {(ũs, ũ`) ∈ V, divx(φsũs + φlũ`) = 0 a.e. in Ω(t)}. (23c)

The constraint set K(q) ⊂ V depends on q = (χs,χ`) ∈ Q through φs, φ` by (17). Indeed, with
given, fixed φs, φ` it can be checked that K(q) is a closed linear subspace of V.

Moreover, in (23a) there are the following contributions to the density R

R(φs, φ`; ũs, ũ`, ẽs, ẽ`) := R`(φ`; ẽ`) +Rs(φs; ẽs) +Rs`(φs; ũs, ũ`), (23d)

R`(φ`; ẽ`) := µ̃`1(φ`)
2
| dev ẽ`|2 + µ̃`2(φ`)

2
| tr ẽ`|2, (23e)

Rs`(φs; ũs, ũ`) := µ̃s`(φs)
2
|ũs − ũ`|2, (23f)

Rs(φs; ẽs) := µ̃s(φs)
2

[
α| dev ẽs|2 + β+(tr ẽs)

2
+ + β−(tr ẽs)

2
− + γ|ẽs|(tr ẽs)−

]
, (23g)

where ei = e(ui), ẽi = e(ũi), e(u) := 1
2
(∇u + ∇u>) is the symmetric strain tensor, tr ei :=∑d

k=1 ei,kk is the trace of the matrix ei = (ei,kl)
d
k,l=1 ∈ Rd×d, and with the notation dev ei :=

ei − 1
d

tr eiI we indicate its deviator. The functions (·)± in (23g) denote the positive, resp. negative
part, i.e.,

(a)± := max{±a, 0} for a ∈ R.

Observe that the contribution of the liquid (23e) and the coupled part (23f) are both quadratic, hence
convex for strictly positive coefficient functions. Instead, the dissipation potential of the solid phase
features, in addition to the quadratic terms, also the mixed term | dev ẽs|(tr ẽs)−. Hence, convexity of
the solid dissipation potential can only be ensured under additional assumptions on α, β−, and γ.

We now specify conditions on the coefficients in (23), for which coercivity and convexity of R can be
ensured. Under these conditions we give a characterization of its subdifferential.

Proposition 1 (Properties ofR). LetR be given by (23) with the velocity space V as in (21) and let
the states q = (χs,χ`) be given in accordance with (12) and (17). For given us ∈ H1(Ω(t);Rd),
resp. u` ∈ H1(Ω(t);Rd) with us = u` = 0 on ∂Ω(t)\Γ(t), set

Vus := {ũ` ∈ H1(Ω(t);Rd), (us, ũ`) ∈ K(q)} , (24a)

Vu` := {ũs ∈ H1(Ω(t);Rd), (ũs,u`) ∈ K(q)} . (24b)

1. Assume that µ̃s, µ̃`, µ̃s` ∈ L∞(R) and that there is a constant µ̃∗ > 0 such that µ̃s, µ̃`1, µ̃`2, µ̃s` >
µ̃∗ a.e. in R. Further assume that α, β+, β− > 0, and γ ≥ 0. Then, for given q ∈ Q the functional
R(q; ·) is lower semicontinuous and coercive on V, i.e., for all (us,u`) ∈ V it is

R(q; q̇) ≥ 1
2
µ̃∗α∗CPF

(
‖us‖2

H1(Ω(t);Rd) + ‖u`‖2
H1(Ω(t);Rd)

)
, (25)

where α∗ := min{α, β−, β+} and CPF is the Poincaré-Friedrichs constant for V.
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2. Let the assumptions of Item 1. hold true. Then the functionalRs(q; ·) :=
∫

Ω(t)
Rs(q; e(·)) dx with

Rs from (23g) is strictly convex on Vu` , cf. (24b), if γ2

(1−δ)β− ≤ 4 min{α, β+, δβ−} for a constant

δ ∈ (0, 1).

3. Let the assumptions of Item 1. hold. ThenR(q; ·) is strictly convex if γ2

(1−δ)β− ≤ 4 min{α, β+, δβ−}
for a constant δ ∈ (0, 1).

4. Let the assumptions of Item 3. hold true. The subdifferential ofR(q; ·) for an element (us,u`) ∈ V
is given by the elements (ξs, ξ`) + (ζs, ζ`) ∈ V∗ such that for all (ũs, ũ`) ∈ V it is

R(q; ˙̃q)−R(q; q̇) ≥ 〈(ξs + ζs, ξ` + ζ`), (ũs, ũ`)〉V,

with (ζs, ζ`) ∈ ∂IK(q)(us,u`) characterized for any (us,u`) ∈ K(q) by elements π ∈ L2(Ω(t))
in the following way

0 = 〈(ζs, ζ`), (ũs, ũ`)〉V =

∫
Ω(t)

π divx(φsũs + φlũ`) dx for all (ũs, ũ`) ∈ K(q) . (26a)

Moreover, the elements (ξs, ξ`) ∈ V∗ are given by

〈ξ`, ũ`〉H1(Ω(t);Rd) :=

∫
Ω(t)

[
µ̃`1(φs) dev e` : dev ẽ` + µ̃`2(φs) tr e` tr ẽ`

−µ̃s`(φs)(us − u`) · ũ`
]

dx, (26b)

〈ξs, ũs〉H1(Ω(t);Rd) :=

∫
Ω(t)

[
µ̃s(φs)α dev es : dev ẽs + µ̃s`(φs)(us − u`) · ũs

+β̂+(tr es)+ tr ẽs + β̂−(tr es)− tr ẽs

+µ̂1|es| tr ẽs + µ̂2(es) : ẽs(tr es)−

]
dx, (26c)

with β̂+ ∈ L∞(Ω(t)), β̂+ = β+µ̃s(φs)H(tr es),

and β̂− ∈ L∞(Ω(t)), β̂− = −β−µ̃s(φs)H(− tr es),

and µ̂1 ∈ L∞(Ω(t)), µ̂1 = − µ̃s(φs)γ
2

H(− tr es),

and µ̂2 ∈ L∞(Ω(t);Rd×d), µ̂2(es) =

{
es
|es|

µ̃s(φs)γ
2

if |es| > 0,

ê ∈ Rd×d
sym with |ê| ≤ µ̃s(φs)γ

2
if |es| = 0,

at a.e. point x ∈ Ω(t), and where H denotes the Heaviside function

H(a) ∈


{0} if a < 0,
[0, 1] if a = 0,
{1} if a > 0.

(27)

Proof: To 1.: Observe that the functionalR(q; ·) is continuous in K(q) due to the closedness of this
subspace in V. In particular this is immediate for all the quadratic contributions of the functional; the
continuity of the product term can be seen by the following calculation∣∣∣∣∫

Ω(t)

µ̃s(φs)
2

(
|es|(tr es)− − |ẽs|(tr ẽs)−

)
dx

∣∣∣∣
≤ µ̃∗

∫
Ω(t)

∣∣|es| − |ẽs|∣∣ ∣∣(tr es)− − (tr ẽs)−
∣∣ dx

≤ µ̃∗‖es − ẽs‖L2(Ω(t);Rd×d)‖(tr es)− − (tr ẽs)−‖L2(Ω(t))
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by Hölder’s inequality. This proves continuity in K(q). Lower semicontinuity in V then follows by the
fact thatR(q;us,u`) =∞ for any (us,u`) ∈ V\(Vu` ×Vus).

Coercivity estimate (25) directly follows from all quadatic terms thanks to the positive bounds from
below for the coefficient functions and by Poincaré-Friedrich’s inequality in V.

To 2.: Let (us,u`), (ũs, ũ`) ∈ V and λ ∈ (0, 1). In what follows, we abbreviate e = es and
ẽ = ẽs. First of all, we observe that the positive and the negative part (·)± are convex functions so
that (λ tr e+ (1− λ) tr ẽ)± ≤ λ(tr e)± + (1− λ)(tr ẽ)±. Since | · |2 is monotone, we find

β±|(tr(λe+ (1− λ)ẽ))±|2 ≤ β±|λ(tr e)± + (1− λ)(tr ẽ)±|2 . (28)

Furthermore, dev and tr are linear operators. Hence, with placeholders a ∈ {dev e, tr e, (tr e)±}
and ã ∈ {dev ẽ, tr ẽ, (tr ẽ)±} the uniform convexity of | · |2 can be checked:

|λa+ (1− λ)ã|2 = λ|a|2 + (1− λ)|ã|2 − λ(1− λ)(a− ã)2. (29)

This also proves the convexity of R`. Moreover, the product term contained in Rs can be estimated by
monotonicity of | · | and (·)−, and Young’s inequality as follows:

|λe+ (1− λ)ẽ|(tr(λe+ (1− λ)ẽ))−

≤ (λ|e|+ (1− λ)|ẽ|)(λ(tr e)− + (1− λ)(tr ẽ)−)

= λ|e|(tr e)− + (1− λ)|ẽ|(tr ẽ)−
−λ(1− λ)

(
|e| − |ẽ|

)(
(tr e)− − (tr ẽ)−

)
≤ λ|e|(tr e)− + (1− λ)|ẽ|(tr ẽ)−

+λ(1− λ)
√
ε
∣∣|e| − |ẽ|∣∣ ∣∣(tr e)− − (tr ẽ)−

∣∣(√ε)−1

≤ λ|e|(tr e)− + (1− λ)|ẽ|(tr ẽ)−
+λ(1− λ)

(
ε
2

(
|e| − |ẽ|

)2
+ 1

2ε

(
(tr e)− − (tr ẽ)−

)2)
,

where the positive terms in the very last line of this estimate have to be absorbed by the corresponding
negative term obtained in (29). For this, it can be checked that

−α(| dev e| − | dev ẽ|)2 − β+((tr e)+ − (tr ẽ)+)2 − (δ + 1− δ)β−((tr e)− − (tr ẽ)−)2

≤ −mδ(|e| − |ẽ|)2 − (1− δ)β−((tr e)− − (tr ẽ)−)2

with mδ := min{α, β+, δβ−} for a constant δ ∈ (0, 1). Thus, combining this estimate with the
previous ones, we obtain

Rs(φs;λe+ (1− λ)ẽ)

≤ λRs(φs;λe) + (1− λ)Rs(φs; ẽ)

−λ(1− λ) µ̃(φs)
2

(
(mδ − γε

2
)
(
| dev e| − | dev ẽ|

)2
+ ((1− δ)β− − γ

2ε
)
(
(tr e)− − (tr ẽ)−

)2

+β+

(
(tr e)+ − (tr ẽ)+

)2)
,

and we have to make sure that bothmδ− γε
2
≥ 0 and (1−δ)β−− γ

2ε
≥ 0. This implies the constraint

γ
2(1−δ)β− ≤ ε ≤ 2mδ

γ
, which finally gives γ2

(1−δ)β− ≤ 4mδ for strict convexity.

To 3.: Thanks to the previously proved statement of Item 2, the convexity properties of the full func-
tionalR(q; ·) now follow by the uniform convexity of the quadratic fluid and solid-fluid contributions.

DOI 10.20347/WIAS.PREPRINT.2543 Berlin 2018



D. Peschka, M. Thomas, T. Ahnert, A. Münch, B. Wagner 14

To 4.: From Item 1. we recall that R(q; ·) is convex. The Moreau-Rockafellar Theorem for convex
functionals, cf. e.g. [IT79, p. 200, Thm. 1], provides a sum rule for the subdifferential of convex func-
tionals, i.e.: If F1, . . . , Fk : U → (−∞,∞] are proper, convex functionals, all but possibly one of
them continuous in a point v̄ ∈ domF1 ∩ . . . ∩ domFk, then

∂F1(v) + . . .+ ∂Fk(v) = ∂(F1(v) + . . .+ Fk(v)) for all v ∈ U. (30)

We observe that all the contributions to
∫

Ω(t)
R dx are continuous on all of V and a possible dis-

continuity for some (us,u`) ∈ domR arises by the constraint term IK(q). Hence, the prerequisites
of the Moreau-Rockafellar Theorem are met and (30) applies to determine the contributions of its
subdifferential.

In order to find the characterization (26a) of (ζs, ζ`) ∈ ∂IK(q)(us,u`) we note that for any (ũs, ũ`) ∈
V it is

(ũs, ũ`) ∈ K(q) ⇔ for all η ∈ L2(Ω(t)) :

∫
Ω(t)

η divx(φsũs + φ`ũ`) dx = 0 . (31)

This equivalently states that the annihilator K(q)⊥ of the linear subspace K(q) is given by

K(q)⊥ =
{(∫

Ω(t)

η divx(φs •+φ`•) dx
)

: K(q)→ 0, η ∈ L2(Ω(t))
}
.

On the other hand, by the definition of the subdifferential of IK(q) for any (us,u`) ∈ K(q) we have
that (ζs, ζ`) ∈ ∂IK(q)(us,u`) is a support function, i.e.,

(ζs, ζ`) ∈ ∂IK(q)(us,u`) ⇔ for all (ũs, ũ`) ∈ K(q) :

〈(ζs, ζ`), (us,u`)− (ũs, ũ`)〉V ≥ 0 .

With the specific choices (ũs, ũ`) = (0, 0) ∈ K(q) and (ũs, ũ`) = −2(us,u`) ∈ K(q) we find that
〈(ζs, ζ`), (us,u`)〉V = −〈(ζs, ζ`), (us,u`)〉V ≥ 0 and hence (ζs, ζ`) = 0 on K(q). This means
that (ζs, ζ`) ∈ K(q)⊥ and hence (26a) is deduced.

It remains to determine the other contributions to the subdifferential given by (26b) & (26c). For this,
we further make use of the chain rule for the subdifferential of convex functionals, cf. e.g. [IT79, p. 201,
Thm. 2]: Assume thatA : U → W is linear, F : W → (−∞,∞] is convex and there is u ∈ U such
that F is continuous in Au. Then,

∂(F ◦ A)(u) = (A∗∂F)(Au), (32)

where A∗ : W ∗ → U∗ is the adjoint of A, defined by 〈A∗u∗, v〉 = 〈u∗, Av〉.
Since the dissipation potential of the liquid (23e) and the coupling term (23f) are Fréchet-differentiable,
we directly find (26b) and the second summand of (26c). To deduce the remaining terms of (26c) we
shall apply the above theorem to the dissipation potential of the solid Rs(q; ·). To this aim we set
U = Vu` with given u`, A : Vu` → W = L2(Ω(t);Rd×d) × L2(Ω(t)) × L2(Ω(t);Rd×d),

Av := (dev e(v), tr e(v), e(v))> and set R̃s(a1, a2, a3) :=
∫

Ω(t)
µ̃(φs)

2

(
α|a1|2 + β+|(a2)+|2 +

β−|(a2)−|2 + γ|a3|(a2)−
)

dx. Thus, Rs(q; v) = (R̃s ◦ A)(v) for all v ∈ Vu` . Thanks to the

previously proved continuity and convexity properties of R(q; ·) we see that also R̃s is convex and
continuous on W . Hence chain rule (32) is applicable. To ultimately conclude (26c), we note that for
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all (a1, a2, a3), (ã1, ã2, ã3) ∈ W it is

〈∂R̃s(a1, a2, a3), (ã1, ã2, a3)〉W
= 〈∂a1R̃s(a1, a2, a3), ã1)〉L2(Ω(t)) + 〈∂a2R̃s(a1, a2, a3), ã2)〉L2(Ω(t)) with

〈∂a1R̃s(a1, a2, a3), ã1)〉L2(Ω(t)) =

∫
Ω(t)

µ̃s(φs)αa1 : ã1 dx ,

〈∂a2R̃s(a1, a2, a3), ã2)〉L2(Ω(t)) =

∫
Ω(t)

(
β̂+(a2)+ã2 + β̂−(a2)−ã2 + µ̂1|a3|ã2

)
dx ,

〈∂a3R̃s(a1, a2, a3), ã3)〉L2(Ω(t)) =

∫
Ω(t)

(a2)−µ̂2(a3) : ã3 dx ,

with the coefficient functions β̂±, µ̂1, µ̂2 as stated in (26c). �

In order to state (7b) for the system of concentrated suspensions it remains to calculate the derivative
of the energy functional.

Proposition 2 (Functional derivative of E ). Let the energy functional E(q) be given as in (22) and
consider the family of flow maps q(h) defined by

χi(h,X) = X + hui(X), (33)

for any arbitrary ui ∈ H1(Ω̄;Rd) representing an element q̇ = (us,u`) ∈ V. Then the variation of
E in an arbitrary direction q̇ ∈ V is given by

〈DqE(q), q̇〉 = lim
h→0

1

h

[
E
(
q(h)

)
− E

(
q(0)

)]
. (34)

1. The functional derivative of Ebulk from (22a) reads

〈DqEbulk(q), q̇〉 =

∫
Ω

(∇xE) · us + (E − φs∂φsE)(∇ · us) dx (35)

where E = E(x, φs).
2. The functional derivative of Esurf from (22c) reads

〈DqEsurf(q), q̇〉 =

∫
Γ

(
u · ∇xϑ+ ϑ divΓ(u)

)
dHd−1 (36)

with surface energy ϑ = ϑ(x) and u = φsus + φ`u`.

Proof: To 1.: First we use change of variables to express the integral

Ebulk

(
q(h)

)
=

∫
Ω(h)

E(x, φs(h, x)
)

dx

=

∫
Ω̄

E

(
χs(h,X),

φ̄s(X)

detFs(h,X)

)
detFs(h,X) dX.
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This allow us to use (34) for a fixed domain. Then the differentiation of the integrand gives the expres-
sion

〈DqEbulk(q), q̇〉 =

∫
Ω̄

lim
h→0

1

h

[
E
(
χs(h,X), φ̄s(X)

detFs(h,X)

)
detFs(h,X)− E

(
X, φ̄s(X)

)]
dX

=

∫
Ω̄

(∇xE) · us +

[
(∂φsE)

(
− φ̄s

detFs

)
+ E

]
(∂h detFs)h=0 dX

=

∫
Ω̄

(∇xE) · us + (E − φs∂φsE)∇ · us dx

where at h = 0 we have x ≡ X . We used a simple version of Jacobi’s formula ∂h detFs =
(detFs) tr(F−1

s ∂hFs), detFs = 1, and tr ∂hFs = ∇ · us for h = 0. The result remains valid for
arbitrary q if the final integral is expressed in x-coordinates.

To 2.: We use again change of variables to express the integrals

Esurf(q(h)) =

∫
Γ(h)

ϑ(x) dHd−1 =

∫
Γ̄

ϑ(χi(t,X))‖Cof(Fi(t,X)) · n‖ dHd−1,

where CofFi = (detFi)(F
−1
i )> is the cofactor of the Jacobian. The differentiation of this term is

slightly more technical and can be found, for instance, in [SZ92]. The resulting expression is

〈Esurf , q̇〉 =

∫
Γ

(u · ∇xϑ+ ϑ divΓ u) dHd−1,

where we used the surface divergence divΓ u. Observe that via the divergence theorem on manifolds
one can rewrite ∫

Γ

divΓ u ds = −
∫

Γ

H · u ds , (37)

where H = Hn ≡ −n(∇Γ ·n) is the mean curvature vector and H the scalar mean curvature (with
respect to n). Also note that u can be replaced with us or u` since by (12d) they all agree on Γ for a
given variation q̇. �

3.3 PDE system obtained by the gradient flow formulation

In this section we combine the results of Propositions 1 & 2 in order to obtain formulation of the force
balance (7b) for the problem.

Weak formulation of the problem. Force balance (7b)

−DE(q) ∈ ∂R(q̇) in V∗

is now directly obtained from the results of Propositions 1 & 2. For shorter notation we observe that
the gradient terms arising in the differential of the bulk dissipation, cf. (26), define viscous stresses of
solid and liquid phase. We here gather them in terms of the stress tensors σs, σ` given by

σ` = µ̃`1 dev(e(u`)) + µ̃`2 tr(e(u`))I, (38a)

σs = µ̃sα dev(e(us)) +
[
β̂+(tr e(us))+ + β̂−(tr e(us))− + µ̂1|e(us)|

]
I + σ∗s , (38b)

σ∗s = µ̂2(e(us))(tr e(us))−, (38c)
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where the coefficient functions β̂±, µ̂1, µ̂2 are defined in (26c). In this way, the weak formulation in-
duced by (7b) reads as follows:

〈(ξs + ζs, ξ` + ζ`), (ũs, ũ`)〉V
=

∫
Ω(t)

σ` : e(ũ`) + σs : e(ũs) + µ̃s`(u` − us) · (ũ` − ũs) + π divx(φsũs + φ`ũ`) dx

=−
∫

Ω(t)

(∇xE) · ũs − πs divx ũs dx−
∫

Γ(t)

ϑ divΓ ũ dHd−1 = −〈DE(q), (ũs, ũ`)〉V ,

(39)

for all (ũs, ũ`) ∈ V, with πs := −(E − φs∂φsE) as an effective pressure of the solid phase,
ũ = φsũs + φ`ũ`, and with (ξs + ζs, ξ` + ζ`) ∈ ∂R(q, q̇).

Pointwise formulation of the problem. Suppose now that all the functions involved in (39) are
sufficiently smooth, so that we can integrate by parts in (39) in order to move the gradients from the
test functions to the stress and pressure terms. This leads to the classical, pointwise formulation of
the problem, again involving the stresses σ`, σs from (38).

In order to reconstruct the pointwise PDE formulation we first rewrite the derivative of Ebulk as

〈DqEbulk(q), ˙̃q〉 =

∫
Ω

(∇xE) · ũs + (E − φs∂φsE)(∇ · ũs) dx

=

∫
Ω

(∇xE +∇p∗) · ũs dx+

∫
∂Ω

(−p∗)ũs · n dHd−1, (40a)

where the effective pressure is defined

p∗(x, φs) = φs∂φsE(x, φs)− E(x, φs). (40b)

The derivative of Esurf we already characterized in (37) using the mean curvature.

In particular, for all t ∈ [0, T ], a.e. in Ω(t) the following PDE-system has to be satisfied:

− divx σs + µ̃s`(us − u`) = −φs∇(π + πs), (41a)

− divx σ` − µ̃s`(us − u`) = −φ`∇π, (41b)

divx
(
φsus + φ`u`

)
= 0, (41c)

together with the following boundary conditions:

(σs + σ`)n = (d− 1)ϑκ+ π + πs on Γ(t) , (41d)

u` = us on Γ(t) , (41e)

u` = us = 0 on ∂Ω(t)\Γ(t) . (41f)

Comparison of models. Even though the model in (41) already appears very similar to the one in
(3), we perform a short discussion on the terms in the stress and the pressures. Firstly, the gradient
flow model (41) offers a systematic way to include forces due to bulk energies Ebulk and surface
energies and Esurf , leading to the coupling term p∗, ps and the corresponding boundary terms in
(41d). The easiest to identify are the pressure terms in (41), if we decompose the contribution σs−σ∗s
to the solid stress into a volumetric and a deviatoric part

σs − σ∗s := −psI + 2µ∗s devDus (42a)
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with

µ∗s =
1

2
µ̃sα, (42b)

ps = −β+(divx us)+ − β−(divx us)− − µ̂1|Dus| divx us=0
=

γ

2
µ̃s(φs)|Dus|H(− divx us), (42c)

where we used the material law µ̂1 = −γ
2
µ̃sH(− divx us) with the Heaviside function H as defined

in (27). Note that H is mutli-valued in divx us = 0 with H(0) ∈ [0, 1]. In order to compare this with
stresses pc, τs in (3) we have to identify

−pcI + φsτs
!

= −psI + 2µ∗s devD(us). (43)

with ps, µ∗s from (42). This shows how the normal pressure pc emerges from ps in (42c) and also gives
rise to a novel coupling term σ∗s from (38c), i.e.,

σ∗s =

{
es
|es|

µ̃s(φs)γ
4

(tr es)− if |es| > 0,

0 ∈ Rd×d
sym if |es| = 0.

(44)

The comparison for liquid stresses is entirely similar.

4 Conclusion

This paper focusses on a two-phase model that was derived in [AMW18] using the general averaging
approach introduced in [DP99, DS71]. The key ingredient is a stress-strain relation that features a
normal pressure pc which is proportional to the solid shear rate |D(us)| and becomes singular as the
solid volume fraction approaches a critical value φs → φcrit. In stationary shear flow situations with
prescribed normal pressure pc this produces a yield threshold due to zones where φs = φcrit. This
law extends a rheological relation inferred by [BGP11] from scaling arguments and experimental mea-
surements of constant shear flow to the general case where the average liquid and solid phase flow
fields can be different. Unfortunately, previous investigations also showed that even in these simple
flow situations the equations are not well-posed suggesting that some physics is missing.

In this paper, we reformulate the model within a variational framework based on the concepts of gra-
dient flows and energy dissipation. This allows us to infer useful properties about the model and, as
a long-term goal, access the rich analytical machinery that has been developed for models formu-
lated within this framework. For example, we can deduce a general form of the normal pressure which
includes the relation formulated in [AMW18]. In fact, we observe that the model creates a novel con-
tribution σ∗s to the solid shear stress σs. The dissipation potential is only ensured to be convex for
certain parameter ranges (α, β±, γ), thus offering an analytical reason for the loss of well-posedness
that may provide clues which kind of additional physics is required. Thus, we provide an alternative
route for discussing this phenomenon which has also been observed for granular flow models based
on the similar µ(I) rheology [BSBG15, BSSG17]. Moreover, the variational framework provides ap-
propriate boundary conditions for free interfaces of the suspension.
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