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Abstract. This study quantifies current and potential fu-
ture changes in transpiration, evaporation, interception loss
and river discharge in response to land use change, irri-
gation and climate change, by performing several distinct
simulations within the consistent hydrology and biosphere
modeling framework LPJmL (Lund-Potsdam-Jena managed
Land). We distinguished two irrigation simulations: a wa-
ter limited one in which irrigation was restricted by local
renewable water resources (ILIM), and a potential one in
which no such limitation was assumed but withdrawals from
deep groundwater or remote rivers allowed (IPOT). We found
that the effect of historical land use change as compared
to potential natural vegetation was pronounced, including
a reduction in interception loss and transpiration by 25.9%
and 10.6%, respectively, whereas river discharge increased
by 6.6% (climate conditions of 1991–2000). Furthermore,
we estimated that about 1170 km3yr−1 of irrigation water
could be withdrawn from local renewable water resources
(in ILIM), which resulted in a reduction of river discharge by
1.5%. However, up to 1660 km3yr−1 of water withdrawals
were required in addition under the assumption that optimal
growth of irrigated crops was sustained (IPOT), which re-
sulted in a slight net increase in global river discharge by
2.0% due to return flows.

Under the HadCM3 A2 climate and emission scenario, cli-
mate change alone will decrease total evapotranspiration by
1.5% and river discharge by 0.9% in 2046–2055 compared
to 1991–2000 average due to changes in precipitation pat-
terns, a decrease in global precipitation amount, and the net
effect of CO2 fertilization. A doubling of agricultural land in
2046–2055 compared to 1991–2000 average as proposed by
the IMAGE land use change scenario will result in a decrease
in total evapotranspiration by 2.5% and in an increase in river
discharge by 3.9%. That is, the effects of land use change in
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the future will be comparable in magnitude to the effects of
climate change in this particular scenario. On present irri-
gated areas future water withdrawal will increase especially
in regions where climate changes towards warmer and dryer
conditions will be pronounced.

1 Introduction

There is growing evidence that humans are altering the global
water cycle to an unprecedented and globally visible scale
(Vörösmarty et al., 1997; Vörösmarty and Sahagian, 2000;
Nilsson et al., 2005; Hanasaki et al., 2006; Haddeland et al.,
2006; Shiklomanov and Rodda, 2003). One reason for these
anthropogenic disturbances is the production of food and
other commodities through irrigation; in fact, agriculture rep-
resents the sector with the largest water demand. Agricul-
tural withdrawals represent about 70% of the total human
water withdrawals, whereas agricultural water consumption
(the part of withdrawals that evapotranspires and does not re-
turn to the river system) represents about 90% of the total
water consumption (Gleick, 2003; Shiklomanov and Rodda,
2003). To fulfill human water demands, additional water re-
sources are being increasingly exploited, e.g. fossil ground-
water. Global information on the extraction of deep ground-
water is poor, thus its influence on vapor flows and river dis-
charge is largely unknown.

With a growing population, increasing welfare and
changes in food patterns, the demand for food increased
considerably during the recent decades. To accomplish for
this demand, agricultural and irrigated areas were expanded
and intensified (Ramankutty and Foley, 1999). In addi-
tion to the more direct effects of irrigation, these land use
changes should also have affected evapotranspiration, in-
filtration rates, soil moisture patterns, and runoff genera-
tion. In fact, field studies showed that deforestation can
cause substantial losses of water to the atmosphere due to
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immediate reductions in interception loss and transpiration
(Swift, jr. et al., 1975). Furthermore, several experiments
and modeling studies demonstrated that river discharge in-
creased as a consequence of forest clearance (Bosch and
Hewlett, 1982; Sahin and Hall, 1996; Scanlon et al., 2007;
Haddeland et al., 2007). There exist only a few studies which
quantified changes in evapotranspiration due to deforestation
and irrigation spatially explicitly and at continental or global
scale (Döll and Siebert, 2002; Gordon et al., 2005; Hadde-
land et al., 2007). Future changes in both climate and land
use are rarely addressed explicitly in water cycle studies at
the global scale. Also, while many studies exist on effects
of climate change on river discharge, mainly at river basin
scale (e.g.Arnell, 2003, for global scale), studies on climate
and land use change effects upon the individual components
of evapotranspiration are virtually lacking. Moreover, only a
few studies estimated the impact of climate change on irriga-
tion water requirements (Döll, 2002; Fischer et al., 2007).

The aim of this paper is to globally quantify present and
potential future interventions of humans on evaporation, in-
terception loss, transpiration and river discharge within a
consistent modeling framework. Furthermore, we quanti-
fied present and potential future water withdrawals for irri-
gation distinguished between renewable and non-renewable
and/or allochthonous water resources. In a first step we in-
vestigated present-time effects of land use change and irri-
gation on the water fluxes. Then, we studied future effects
of climate change and land use change on the water fluxes
and on irrigation demand under a given climate and land use
change scenario with fixed irrigated areas. The next section
explains the model and the data used, and the simulations
performed to quantify human modifications of the hydrolog-
ical cycle. Thereafter we introduce and discuss our findings
in comparison with previous studies. Finally we summarize
and conclude our study.

2 Methods

2.1 The LPJmL model

To determine the diverse water fluxes we applied the well-
established dynamic global vegetation and water balance
model LPJmL (Lund-Potsdam-Jena managed Land), which
has been extensively validated against biogeochemical and
hydrological observations including leaf phenology, crop
yields, river discharge, soil moisture, agricultural water con-
sumption, and irrigation water use (e.g.Sitch et al., 2003;
Gerten et al., 2004; Bondeau et al., 2007; Rost et al., 2008).
LPJmL simulates global natural and agricultural vegetation,
and the associated soil dynamics, carbon and water fluxes in
a single framework. For this, key ecosystem processes such
as photosynthesis, evapotranspiration, autotrophic and het-
erotrophic respiration, including the effects of soil moisture
and drought stress, as well as allocation of assimilated car-

bon to different above- and below-ground pools are imple-
mented. Carbon fluxes and vegetation dynamics are directly
coupled to water fluxes, in that e.g. photosynthesis and tran-
spiration are treated as simultaneous processes (Sitch et al.,
2003; Gerten et al., 2004).

Potential natural vegetation is represented by nine plant
functional types (PFTs). PFTs can coexist in any grid cell,
but their abundance depends on competition for light, water
and space as well as on environmental (e.g. bioclimatic) con-
straints. Therefore, the distribution, fractional coverage and
seasonal phenology of PFTs change depending on climate,
water availability and fire occurrence (Sitch et al., 2003). On
agricultural land, plant physiological and hydrological pro-
cesses are simulated analogous to the PFTs using crop func-
tional types (CFTs) (Bondeau et al., 2007). The world’s most
important field crops as well as pasture are represented by
12 CFTs. A grid cell may fractionally contain one stand
for PFTs and several stands for agricultural vegetation which
share the same climate and soil but have individual soil wa-
ter budgets. The individual cover fractions of the stands are
prescribed by the land use data set (see below). The growing
season of individual CFTs is initiated by a temperature- or
precipitation-dependent sowing date and ends with harvest
when maturity is reached.

Cropland and grazing land can be either rainfed or irri-
gated. Irrigation water requirements were determined from
the soil water deficit below optimal growth of the present
CFTs and a country-specific irrigation efficiency to account
for water losses on the way to the plant (for more details see
Rohwer et al., 2007; Rost et al., 2008).

Precipitation and irrigation water are partitioned into soil
moisture, transpiration, evaporation from soils and canopies,
and river discharge. Soil moisture is calculated as the bal-
ance between the amount of water infiltrating into the soil
(snowmelt, irrigation water, and precipitation minus inter-
ception loss from canopies) and that removed from the soil
through surface and subsurface runoff, percolation, and evap-
otranspiration. Transpiration is calculated as a minimum
function of soil water supply and atmospheric demand. The
supply is determined as a function of potential evapotran-
spiration according to the Priestley-Taylor method, relative
soil moisture, and rooting depth; whereas the demand is a
function of potential evapotranspiration and potential canopy
conductance as controlled by photosynthesis rate and ambi-
ent CO2 concentration. If soil water supply is lower than de-
mand, canopy conductance, transpiration, and photosynthe-
sis are reduced simultaneously (for more detail seeGerten
et al., 2004). Soil evaporation occurs from bare soil and is
determined as a function of potential evapotranspiration, and
relative soil moisture. Lake evaporation is assumed to equal
potential evapotranspiration. Interception loss is computed
as a function of potential evapotranspiration, leaf area index,
precipitation and irrigation water. River discharge is deter-
mined as accumulated surface and subsurface runoff along
the river network (Rost et al., 2008).
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2.2 Data

LPJmL was run on a 0.5◦ spatial resolution for the period
1901–2055, preceded by a 990-yr spin-up period to bring
PFT distribution and carbon pools into equilibrium. Grid-
ded monthly climate forcing data of monthly air temperature,
precipitation and cloud cover were derived as anomalies from
the HadCM3 scenario (IPCC, 2007) under the economy-
oriented SRES A2 emissions trajectory (Nakicenovic and
Swart, 2000) and an extended CRU TS2.1 global climate
dataset (̈Osterle et al., 2003; Mitchell and Jones, 2005) for the
period 1961 to 1990. Sub-monthly weather variability was
emulated using statistical procedures (Gerten et al., 2004).
Soil information was derived from the FAO global database
(FAO, 1991, details inSitch et al., 2003). Annual fractional
coverages with cropland were prescribed by a 0.5◦ resolu-
tion dataset for the period 1901–1992 (Ramankutty and Fo-
ley, 1999). Thereafter the coverage was assumed to follow
the trend of the last 20 years of that period until 2003. An
A2-consistent future scenario of land use change patterns for
rainfed agricultural land was derived fromIMAGE (2001),
whereas irrigated areas were kept constant at the 2003 value.
The distribution of crop types within every grid cell was de-
rived from Leff et al. (2004) for the year 1990 and interpo-
lated backwards. The fraction of grazing land was approxi-
mated from the HYDE dataset (Klein Goldewijk and Battjes,
1997) for 1970 and also interpolated backwards. To assign
irrigated cropland and pasture land we used a map of areas
equipped for irrigation (Siebert et al., 2007). The river net-
work topology was derived from the global 0.5◦ drainage di-
rection map DDM30 ofDöll and Lehner(2002). To derive
for each grid cell the area occupied by open freshwater bod-
ies we used the global database ofLehner and D̈oll (2004).

2.3 Simulations

To distinguish present-time human alterations of the terres-
trial water cycle, we performed four simulations for 1991–
2000:

1. a simulation with potential natural vegetation, also on
areas that are currently cropland or grazing land; PNV);

2. same as 1. but with current distribution of cropland and
grazing land, and without irrigation (INO);

3. same as 2. but with limited irrigation (ILIM) where
water can only be withdrawn from renewable water,
i.e. river discharge of the considered or one neighbor
cell.

4. same as 2. but with full irrigation (IPOT) assuming that
irrigated crops do not experience water stress. If irri-
gation demand exceeds the renewable water in IPOT,
we assume that the remaining water is withdrawn from
somewhere else (e.g. fossil groundwater, desalinization
plants, river diversion).To provide an estimate of how

water fluxes changed in response to both anthropogenic
land cover conversion and irrigation, we compared the
results of PNV and INO (to derive the isolated land
cover change effect), of INO and ILIM (to derive the
isolated irrigation effect), of ILIM and IPOT (to de-
rive the effect of the use of non-renewable and/or al-
lochthonous water resources), and of PNV and ILIM (to
derive the joint effect of land cover change and irriga-
tion) (see Table1). To estimate future effects of climate
and land use change on water flows and irrigation de-
mand we performed four analogous simulations for the
period 2046–2055:

5. same as 2. but assuming a constant land use fraction
from 2003 (INO.CC);

6. same as 2. including land use change (INO.CC.LUC);

7. same as 6. but with limited irrigation (ILIM.CC.LUC);
and

8. same as 6. but with potential irrigation (IPOT.CC.LUC).
To provide an estimate of how future water fluxes may
change in response to climate change, anthropogenic
land cover conversion and irrigation, we compared the
results of INO and INO.CC (to derive the isolated
climate change effect), of INO.CC and INO.CC.LUC
(to derive the isolated land cover change effect), of
INO.CC.LUC and ILIM.CC.LUC (to derive the iso-
lated irrigation effect), and of ILIM.CC.LUC and
IPOT.CC.LUC (to derive the effect of the use of non-
renewable and/or allochthonous water resources) (see
Table1).

3 Results and discussion

3.1 Effects of present land cover change

We found that land cover change alone (INO minus
PNV) decreased interception loss globally by 25.9%
(ca. 2000 km3yr−1, Table1), which reflects the decrease in
canopy closure and in growing season as compared to the
forest vegetation in the absence of human land use. Further-
more, transpiration decreased by 10.6% (ca. 4420 km3yr−1,
Table 1). Deforestation has reduced transpiration for ex-
ample due to shorter growing periods (i.e. intermittent pe-
riods with fallow land) and lower rooting depth of crops (as
compared to the potential forests). These changes are ap-
portioned differently to the diverse PFTs, with the deforesta-
tion of tropical forests having contributed most to the change
(Fig. 1). Note, that the lower transpiration is partly counter-
balanced by increased soil evaporation, so that overall evap-
otranspiration changes are small (–3.8%, Table1). The effect
of deforestation resulted in an increase of river discharge of
2349 km3yr−1 in the INO simulation compared to PNV (Ta-
ble1).
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Table 1. LPJmL-simulated global transpiration, evaporation (sum of evaporation from soil, lakes, and canals), interception loss, total vapor
flows (sum of evaporation, interception loss and transpiration), and river discharge as annual means 1991–2000 for the PNV, INO, ILIM, and
IPOT simulations, and as annual means 2046–2055 for the INO.CC, INO.CC.LUC, ILIM.CC.LUC, and IPOT.CC.LUC simulations (in km3

yr−1).

simulation transpiration evaporation interception loss total evapotranspiration river discharge

PNV 41 628 13 102 7672 62 403 35 607
INO 37 207 17 151 5685 60 042 37 956
% difference to PNV –10.6 +30.9 –25.9 –3.8 +6.6
(land cover change impact)
ILIM 37 375 17 455 5694 60 525 37 377
% difference to INO +0.5 +1.8 +0.2 +0.8 –1.5
(irrigation impact)
% difference to PNV –10.2 +33.2 –25.8 –3.0 +5.0
(joint land cover change and irrigation impact)
IPOT 37 695 17 978 5694 61 367 38 143
% difference to ILIM +0.9 +3.0 0.0 +1.4 +2.0
(impact of non-renewable/allochthonous water)
INO.CC 36 154 16 901 6103 59 157 37 598
% difference to INO –2.8 –1.5 +7.4 –1.5 –0.9
(climate change impact)
INO.CC.LUC 33 670 18 965 5064 57 700 39 049
% difference to INO.CC –6.9 +12.2 -17.0 –2.5 +3.9
(land cover change impact)
ILIM.CC.LUC 33 864 19 319 5077 58 260 38 391
% difference to INO.CC.LUC +0.6 +1.9 +0.2 +1.0 –1.7
(irrigation impact)
IPOT.CC.LUC 34 206 19 832 5099 59 137 39 154
% difference to ILIM.CC.LUC +1.0 +2.7 +0.4 +1.5 +2.0
(impact of non-renewable/allochthonous water)
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Fig. 1. PFT transpiration (km3yr−1) for the PNV simulation (black)
and the INO simulation (gray), 1991–2000 averages. TrBE: tropical
broadleaved evergreen forest, TrBR: tropical broadleaved raingreen
forest, TeNE: temperate needleleaved evergreen forest, TeBE: tem-
perate broadleaved evergreen forest, TeBS: temperate broadleaved
summergreen forest, BoNE: boreal needleleaved evergreen forest,
BoNS: boreal needleleaved summergreen forest, TeH: temperate
herbaceous (C3), TrH: tropical herbaceous (C4).

Gordon et al.(2005) estimated that total evapotranspira-
tion for potential natural vegetation is 67 000 km3yr−1 and
that deforestation decreased global evapotranspiration by
3000 km3yr−1. Furthermore,Haddeland et al.(2007) re-
ported a decrease in evapotranspiration in 1992 for North

America by 155 km3yr−1 and for Asia by 923 km3yr−1 com-
pared to historical (1700) values, which led to an increase in
river discharge by about the same amounts. We estimated a
decrease in evapotranspiration and therewith an increase in
river discharge by 352 km3yr−1 for North America and by
838 km3yr−1 for Asia (INO minus PNV, data not shown).
Similar to our study both studies used the cropland dataset of
Ramankutty and Foley(1999), in which for North America
no permanent croplands were assigned in 1700. The more
detailed description of CFTs in our study and the use of an-
other approach to calculate total evapotranspiration might ex-
plain the different findings.

3.2 Effects of present-time irrigation

Due to withdrawal of surface water for irrigation river dis-
charge decreased by 1.5% in the ILIM simulation compared
to INO (Table1). Due to irrigation, the different components
of evapotranspiration increased to different extents (Table1).
The larger increase in soil evaporation can be explained by
water losses from river to field, which are estimated by a
country-specific conveyance efficiency (Rohwer et al., 2007;
Rost et al., 2008).
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Fig. 2. Comparison of LPJmL-simulated water withdrawals for ir-
rigation under present (1991–2000 averages) water limited (ILIM)
and potential (IPOT) irrigation and under future (2046–2055 aver-
ages) water limited (ILIM.CC.LUC) and potential (IPOT.CC.LUC)
irrigation (km3yr−1).

Today about 1170 km3yr−1 of irrigation water require-
ments are withdrawn globally from renewable water (Fig.2,
ILIM simulation). An additional 1660 km3yr−1 of water
withdrawals are required for optimal growth of irrigated
crops (IPOT simulation). To fulfill this demand water has
to be taken from other sources like fossil groundwater, river
diversions or desalinization plants. The discrepancy in with-
drawal between IPOT and ILIM represents non-renewable
and/or allochthonous water use, and it varies slightly among
continents (Fig.2). Asia is the continent with the largest de-
mand for irrigation water withdrawal (2126 km3yr−1, IPOT)
and with the largest discrepancy between renewable water
and irrigation water requirements (1322 km3yr−1, IPOT mi-
nus ILIM). This deficit is most severe in Northern India and
North-West China (Fig.3a).

Our estimate of 2830 km3yr−1 irrigation water withdrawal
in IPOT is in good agreement with previous studies that ex-
hibit a range from 2605 to 2942 km3yr−1 around the year
2000 (FAO, 2003; Shiklomanov and Rodda, 2003; Siebert
and D̈oll, 2007). This implies that a major part of water for
irrigation stemmed from non-renewable locally not accessi-
ble supplies (seeRost et al., 2008). Vörösmarty et al.(2005)
suggested that 400 to 800 km3 yr−1 of agricultural water
withdrawal is non-sustainable. This is lower than our esti-
mate, but might be partly explained by the larger surrounding
area (75 km2) from which irrigation water can be withdrawn.
Anyway, it is known that especially countries with large ar-
eas equipped for irrigation like China, India, and the US use
fossil groundwater to a large degree (FAO, 2003) to balance
the surface water deficit (Fig.3a).

The use of additional water resources in the IPOT simu-
lation resulted in a further increase in evapotranspiration of
about 842 km3yr−1 compared to the ILIM simulation. Fur-
thermore, river discharge increased by 766 km3yr−1 due to
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Fig. 3. (a)LPJmL-simulated discrepancy between potential (IPOT)
and limited (ILIM) irrigation water withdrawals, 1991-2000 aver-
ages (mm yr−1). (b) Difference between future (2046–2055 av-
erages) discrepancies of water withdrawals (IPOT.CC.LUC minus
ILIM.CC.LUC, mm yr−1) and (a).

return flows (Table1). The latter amount may be slightly
overestimated, as we did not simulate reservoir management
and river diversions but assumed the irrigation water to be
withdrawn from fossil groundwater or from desalinization
plants.

3.3 Joint effects of present land cover change and irrigation

The combined effect of land use change and irrigation (PNV
compared to INO) was estimated to decrease transpiration
globally by 10.2% (Table1). Regional large reductions in
transpiration occurred due to land use change in regions with
large agricultural areas, e.g. in parts of the US, Eastern Eu-
rope, southeast Australia, and in parts of India and China
(Fig.4a). The withdrawal of water for irrigation allows plants
to grow where otherwise only poor vegetation growth is pos-
sible. Thus, transpiration increased along rivers like the Nile,
Amur Darya, Indus, Euphrates, and Tigris in response to ir-
rigation (Fig.4a).

Global river discharge increased by 5.0% in the INO simu-
lation compared to PNV (Table1). Regional large percentage
increases in river discharge occurred due to land use change,
such as in parts of the US, China, and Australia (Fig.4b).
Water withdrawals for irrigation reduced river discharge es-
pecially in regions with large areas equipped for irrigation,
such as in the Colorado, Rio Grande, Euphrates, Tigris, Syr
Darya, Amur Darya, and Huang He basins (Fig.4b).
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Fig. 4. LPJmL-simulated(a) transpiration and(b) river discharge
as percentage difference of the PNV simulation to the ILIM simu-
lation, showing the combined effect of land cover conversion and
irrigation; 1991–2000 averages.

3.4 Effects of climate and CO2 change

To derive the effect of climate change on global water flows
we compared INO and INO.CC. According to the chosen cli-
mate change scenario, transpiration and evaporation will de-
crease by 1053 km3yr−1 and 250 km3yr−1, respectively (Ta-
ble1). The reduction in evapotranspiration followed the pat-
terns of decreasing precipitation in parts of Middle and South
America, and in southern India (data not shown). In addition,
the projected increase in future CO2 concentration resulted in
a decrease in stomatal conductance and therewith transpira-
tion. Interception loss increased globally by 418 km3yr−1,
primarily as a result of an increasing leaf mass due to CO2
fertilization. Global river discharge decreased by 0.9% as a
result of a decrease in total precipitation by 1346 km3yr−1.

3.5 Effects of future land use change and irrigation

To investigate future effects of land use change on global
water fluxes we compared INO.CC and INO.CC.LUC. We
estimated that an expansion of agricultural land and man-
aged grassland in 2046–2055 (almost twice as large as in
1991–2000) will result in a further decrease in transpiration
by 6.9% and in canopy evaporation by 17.0%, while soil
evaporation and river discharge will increase by 12.2% and
by 3.9%, respectively (Table1). That is, the effect of land
use change will be in the same order of magnitude or even
stronger than the effect of climate change (at least in the par-
ticular scenario used), though the regional patterns of these
effects will certainly differ.

We compared INO.CC.LUC and ILIM.CC.LUC as well
as ILIM.CC.LUC and IPOT.CC.LUC to provide an estimate
of the effect of climate change and land use change on irri-
gation requirements and availabilities under the assumption
that irrigated areas remain constant. In the ILIM.CC.LUC
simulation river discharge will decrease by 658 km3yr−1

(1.7%) whereas total evapotranspiration will increase by
560 km3yr−1 (1.0%) compared to the INO.CC.LUC sim-
ulation (Table1). About 1305 km3yr−1 of surface water
will be withdrawn globally from rivers, lakes, and reser-
voirs. However, an additional 1661 km3yr−1 of water will
have to be withdrawn for optimal crop growth. Further-
more, in the future the absolute amount of water with-
drawal will increase under the considered climate change
scenario in both ILIM/ILIM.CC.LUC (11.3% globally) and
IPOT/IPOT.CC.LUC (4.7% globally) simulations (Fig.2).
The gap between the withdrawal under IPOT and ILIM
shows regional differences. It will decrease mainly in the
Indus basin, and simultaneously increase in parts of India
(Fig. 3b). Thus, in the latter regions non-renewable and/or
allochthonous water use will have to be increased to sustain
crop growth.

Other climate and land use change scenarios (IPCC, 2007)
may show different results. But our findings compare well
to the results ofDöll (2002), who found a small relative in-
crease in global net irrigation requirement by 5.5% and 7.8%,
respectively, in 2070 compared to 1995, depending on the
climate projections (ECHAM3 and HADCM4, respectively,
with forcing according to the IPCC IS92a scenario). Fur-
thermore,Döll (2002) found regional shifts in irrigation de-
mand patterns with the highest absolute increase in South
Asia, which largely agrees with our findings.

Our assumption that irrigated areas will remain constant in
the future is unrealistic, as these areas almost certainly will
expand to some degree in many areas, but nonetheless we
based our study on this assumption in order to show the sep-
arate effect of climate change on irrigation water demand.
Further studies should include scenarios where irrigated ar-
eas on the one hand are adapted to population growth, tech-
nological development, and improvements in irrigation effi-
ciency (like inFischer et al., 2007), and on the other hand are
shifted to more suitable regions to compensate regionally the
negative impact of climate change.

4 Conclusions

This study shows that historical land use change resulted
in a reduction of transpiration and interception loss, and in
an increase in evaporation and in river discharge. Irriga-
tion increased total evapotranspiration and reduced river dis-
charge in a scenario that allowed only for the use of local
renewable water (ILIM), but a scenario that allowed for the
observed significant use of additional non-renewable and/or
allochthonous water resources (IPOT) indicated that global
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river discharge actually increased relative to a non-irrigated
simulation, due to return flows. The computed water with-
drawals in the latter simulation compared well to previous
studies, suggesting that currently about half of the irrigation
water stems from non-renewable resources.

Climate change under the chosen projection resulted in a
decrease in both total evapotranspiration and river discharge
(INO.CC). This can be explained by the interplay between
spatially distinct changes in precipitation patterns, a decrease
in absolute precipitation amount, and the transpiration-
reducing effect of increased atmospheric CO2 content. Fur-
thermore, we showed that an expansion of agricultural land
in INO.CC.LUC will result in a reduction of transpiration
and interception loss as well as an increase in evaporation
and river discharge, with the magnitudes of change compara-
ble to those of the climate change effects. Globally we found
a slight increase in water withdrawal in both ILIM.CC.LUC
and IPOT.CC.LUC simulations on present irrigated areas. In
this study only one climate change projection was consid-
ered. Future investigations are required to estimate the range
of changes in terrestrial water flows, irrigation requirements,
and irrigation supplies under different emission scenarios,
climate change projections, and rainfed and irrigated land use
changes.
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