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Abstract

We introduce an electronic model for solar cells taking into account heterostruc-
tures with active interfaces and energy resolved volume and interface trap densities.
The model consists of continuity equations for electrons and holes with thermionic
emission transfer conditions at the interface and of ODEs for the trap densities with
energy level and spatial position as parameters, where the right hand sides contain
generation-recombination as well as ionization reactions. This system is coupled with
a Poisson equation for the electrostatic potential.

We show the thermodynamic correctness of the model and prove a priori estimates
for the solutions to the evolution system. Moreover, existence and uniqueness of weak
solutions of the problem are proven. For this purpose we solve a regularized problem
and verify bounds of the corresponding solution not depending on the regularization
level.

1 Introduction and notation

The paper is devoted to the analysis of electronic models for solar cells including active
interfaces, which take into account energy resolved defect (trap) densities. Different kinds
of such traps occur in the bulk material and others live only at interfaces. These traps are
assumed to be immobile, but during the time being they can change their charge states
by reactions with bulk electrons and holes from both sides of the interface. Additionally
thermionic emission effects for electrons and holes at the interface are taken into account.

Semiconductor models with varying in time densities of ionized impurities, where the
impurities are associated to a fixed energy level have been investigated in [12]. Recently,
in [9], we investigated a model with energy resolved defect densities in the bulk. But there
no active interfaces (and no traps at interfaces) where taken into account.

Our equations are based on models proposed by engineers working on solar cells (see e.g.
[20, Sect. 4.2]). But, for an easier writing we consider here the situation of only one kind
of volume defects and one kind of interface defects. We demonstrate on this example how
such defects can be analytically treated. Since there is only a very weak coupling of the
effects of the different defects our ideas can easily be generalized to any finite number of
kinds of defects in the bulk and at interfaces.

Moreover, we study here a special geometric situation of a heterostructure, which can be
generalized to more complicated geometries. Ω ⊂ R

2 denotes the solar cell domain. The
boundary ∂Ω of Ω splits up into a part ΓD, representing the contacts of the device and
a part ΓN , where the device is insulated. Let a hypersurface Γ representing the active
interface divide Ω into the two parts Ωα and Ωβ (see Figure 1, too). We assume that
the active interface Γ and the part of ∂Ω, where Dirichlet conditions are prescribed, are
strictly separated, that means infx∈ΓD, y∈Γ |x − y| ≥ κ0 > 0. We denote Γγ

D = ΓD ∩ Ωγ ,
Γγ

N = ∂Ωγ \ (Γ ∪ ΓD), γ = α, β. Note that Γγ
D is allowed to be empty for one γ.
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Figure 1: Heterostructure Ω with interface Γ.

For the analysis we rescale the quantities, such that energies are counted in units of kBT ,
where kB is Boltzmann’s constant and T is the temperature. In this energy scale for
E ∈ EG = [E1, E2] we take into account one kind of bulk (volume) defects with given
defect distribution N(x,E). To include also measure valued distributions of traps on the
energy scale we use a finite nonnegative measure µ = NdE on G := Ω × EG proposing
Young measure type properties such that µ(x, ·) is a Radon measure on EG a.e. on Ω and
x 7→

∫
EG

g(E)µ(x,dE) is measurable for all continuous functions g : EG → R.

This setting allows for µ(x, ·) =
∑K

k=1 θk(x)δEk(x)(·) such that the case of point-like dis-
tributed traps at single energies Etrap ∈ EG as discussed in [12] result as special case of
our investigations, too.

Additionally we consider one type of interface defects with distribution NΓ(x,E). Similarly
we work with a finite nonnegative measure µΓ = NΓdE on GΓ := Γ× EG.

We use the abbreviations

〈〈g〉〉 :=

∫

EG

g(E)µ(x,dE), 〈〈g〉〉Γ :=

∫

EG

g(E)µΓ(x,dE).

Besides the densities of electrons u1 and holes u2 depending only on the spatial position
x we have to balance the following quantities: The probability that defect states with
defect distribution N(x,E) are occupied by an electron can be interpreted as the density
of defects occupied by electrons on G = Ω×EG with respect to the measure µ. We denote
it by u3, and u4 = 1 − u3 corresponds to the density of non occupied defect states with
respect to the measure µ. Correspondingly we denote the density of interfacial defects
occupied by electrons on GΓ = Γ × EG with respect to the measure µΓ by uΓ1, and
uΓ2 = 1−uΓ1 corresponds to the density of non occupied defect states with respect to the
measure µΓ.

Moreover, we introduce the charge numbers of electrons, holes, volume and interface traps

λ1 = −1, λ2 = 1, λ3 =

{
−1 for acceptor like traps

0 for donator like traps
, λ4 = λ3 + 1,

λΓ1 =

{
−1 for acceptor like traps

0 for donator like traps
, λΓ2 = λΓ1 + 1,
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and use the vector λ = (λ1, . . . , λ4, λΓ1, λΓ2) ∈ R
6. In the bulk we consider capture/escape

reactions of electrons from the conduction band by unoccupied traps and of holes from the
valence band by occupied traps (see R1, R2 in (1.5)). Also the interface defects capture
and escape charge carriers from Ωγ , see reaction rates RΓ

1 , RΓ
2 , γ = α, β in (1.5)).

The electronic model for solar cells with active interface proposed in [20] is a drift-diffusion
model for the charge carriers coupled with ODEs for the defect occupation probabilities
in the bulk u3(x,E), u4(x,E), (x,E) ∈ G and with ODEs for the defect occupation
probabilities at the interface uΓ1(x,E), uΓ2(x,E), (x,E) ∈ GΓ. Additionally there occur
transfer conditions at the interface including thermionic emission of electrons and holes.
The incident light, generating pairs of electrons and holes is treated as a given (time
dependent) source term Gphot in the continuity equations for electrons and holes. Let z

denote the scaled electrostatic potential and let ui = (uα
i , uβ

i ) be the carrier densities with
uγ

i being defined on Ωγ , γ = α, β, i = 1, 2. in our notation, the model proposed in [20,
Sect. 4.2] can be written as the drift diffusion system

−∇ · (ε∇z) = f − u1 + u2 +

4∑

i=3

λi〈〈ui〉〉+ δΓ

2∑

i=1

λΓi〈〈uΓi〉〉Γ in R+ × Ω,

∂

∂t
uγ

i +∇ · jγ
i = Gphot −R− 〈〈Ri〉〉 in R+ × Ωγ , γ = α, β, i = 1, 2,

(1.1)

the ODEs
∂

∂t
u3 = R1 −R2,

∂

∂t
u4 = − ∂

∂t
u3 on R+ × suppµ, (1.2)

the ODEs at the interface

∂

∂t
uΓ1 =

∑

γ=α,β

(
Rγ

Γ1 −Rγ
Γ2

)
,

∂

∂t
uΓ2 = − ∂

∂t
uΓ1 on R+ × suppµΓ, (1.3)

and the transfer conditions at the interface

−jα
i · να = σα

i uα
i − σβ

i uβ
i + 〈〈Rα

Γi(·, uα
i , uΓ1, uΓ2)〉〉Γ,

−jβ
i · νβ = σβ

i uβ
i − σα

i uα
i + 〈〈Rβ

Γi(·, u
β
i , uΓ1, uΓ2)〉〉Γ on R+ × Γ, i = 1, 2.

(1.4)

The flux terms and reaction rates in the continuity equations are given by

jγ
i = −Di(∇uγ

i + λiu
γ
i∇z), γ = α, β, i = 1, 2,

R = R(u1, u2) = r0(u1, u2)[u1u2 − k0],

R1 = R1(E, u1, u3, u4) = r1[u1u4 − k1u3],

R2 = R2(E, u2, u3, u4) = r2[u2u3 − k2u4],

Rγ
Γ1 = Rγ

Γ1(E, uγ
1 , uΓ1, uΓ2) = rγ

Γ1[u
γ
1uΓ2 − kγ

Γ1uΓ1],

Rγ
Γ2 = Rγ

Γ2(E, uγ
2 , uΓ1, uΓ2) = rγ

Γ2[u
γ
2uΓ1 − kγ

Γ2uΓ2],

(1.5)

where the positive coefficients r0, k0 are allowed to depend in a nonsmooth way on the
spatial position and the positive coefficients ri, ki, rγ

Γi, kγ
Γi, γ = α, β, i = 1, 2, depend on

(x,E). In the Poisson equation f means a fixed doping profile and δΓ denotes the surface
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measure on Γ such that in the sense of distributions
∫
Ω wδΓv dx =

∫
Γ wv da for all test

functions v.

For the Poisson equation on ∂Ω we suppose

z = zD on R+ × ΓD, ν · (ε∇z) = 0 on R+ × ΓN . (1.6)

For the continuity equations for uγ
i besides the transfer conditions (1.4) we assume that

uγ
i = uγD

i on R+ × Γγ
D, ν · jγ

i = 0 on R+ × Γγ
N , γ = α, β, i = 1, 2. (1.7)

We complete the model equations by initial conditions for the densities of all species

ui(0) = Ui, i = 1, . . . , 4, uΓi = UΓi , i = 1, 2. (1.8)

We introduce reference quantities ũ3, ũ4, ũΓ1, ũΓ2 fulfilling

uD
1 ũ4 = k1ũ3 µ-a.e. in G, uαD

1 ũΓ2 = kα
Γ1ũΓ1 µΓ-a.e. in GΓ.

Remark 1.1 Our model is an extensive generalization of the classical van Roosbroeck
system [21] describing charge transport in semiconductor devices due to drift and diffu-
sion within a self-consistent electrical field. First mathematical analysis for this transient
system was done in [18], for more references see [5]. Recently [22] investigated existence
and asymptotic behavior of solutions for the whole space situation. Global existence and
uniqueness of weak solutions under physically realistic conditions in two space dimensions
is achieved in [6]. In [14] the van Roosbroeck system is reformulated as an evolution
equation for the potentials. In this setting a unique, local in time solution in Lebesgue
spaces is available and leads to classical solutions to the drift-diffusion equations in the
two-dimensional case.

To handle the electronic model for solar cells including active interfaces we profit from
techniques approved for the van Roosbroeck system and combine them with new ideas.

The plan of the paper is the following: In Section 2 we collect our general assump-
tions and give a weak formulation (P) of the electronic model for solar cells includ-
ing active interfaces. Section 3 is devoted to a priori estimates for solutions to (P). In
Subsection 3.1 we start with energy estimates and we establish L∞-estimates for solutions
to (P) in Subsection 3.2. Section 4 contains the existence and uniqueness proof for (P).
In Subsection 4.1 we introduce a regularized problem (PM ) and prove its solvability in
Subsection 4.2. After deriving energy estimates (Subsection 4.3) and L∞-estimates for
solutions to (PM ) (Subsection 4.4) which are independent on the regularization level M ,
in Subsection 4.5 the existence and uniqueness result for (P) is shown.

2 Assumptions and weak formulation

2.1 Assumptions

Some notation. Let Ω ⊂ R
2 be a bounded Lipschitzian domain. The notation of function

spaces in the present paper corresponds to that in [15]. To specify norms, we write ‖·‖Lp
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and ‖·‖H1 instead of ‖·‖Lp(Ω) and ‖·‖H1(Ω). Moreover, let ΓN , ΓD be disjoint open subsets

of ∂Ω with ∂Ω = ΓN ∪ ΓD, where Γ0 := ΓN ∩ ΓD consists of finitely many points. Let
Ω ∪ ΓN be regular in the sense of Gröger [13]. For 1 ≤ p ≤ ∞ we define W 1,p

0 (Ω ∪ ΓN ) as
the closure of the set

{w|Ω : w ∈ C∞(R2), (ΓD ∪ Γ0) ∩ supp(w) = ∅}

in W 1,p(Ω) equipped with the usual norm of the space W 1,p(Ω). Its dual is denoted by
W−1,p′(Ω ∪ ΓN ), where 1/p + 1/p′ = 1, see [13]. Correspondingly we use H1

0 (Ω ∪ ΓN ).

For a Banach space B we denote by B+ the cone of non-negative elements and by B∗

its dual space. We write u+ (u−) for the positive (negative) part of a function u. The
abbreviation a.e. means Ld-a.e., for the measures µ and µΓ we write µ-a.e. and µΓ-a.e.
The scalar product in R

d is indicated by a centered dot. Positive constants which depend
only on the data of our problem are denoted by c.

Now we collect the general assumptions our analytical investigations are based on.

(A1) Ω, Ωα, Ωβ ⊂ R
2 are bounded Lipschitzian domains, ΓD, ΓN are disjoint open

subsets of ∂Ω, ∂Ω = ΓD ∪ ΓN ∪ Γ0, mes ΓD > 0, Γ0 consists of finitely many

points (Ω ∪ ΓN is regular in the sense of Gröger [13]).

A part Γ of a hypersurface devides Ω into Lipschitzian domains Ωα and Ωβ,

infx∈ΓD, y∈Γ |x− y| ≥ κ0 > 0, Γγ
D = ΓD ∩Ωγ , Γγ

N = ∂Ωγ \ (Γ ∪ ΓD), γ = α, β;

(A2) N and NΓ generate Young like measures µ = NdE on G and µΓ = NΓdE

on GΓ.
∫
EG

µ(x,dE) ≤ ĉ a.e. in Ω,
∫
EG

µΓ(x,dE) ≤ ĉ a.e. on Γ;

(A3) Gphot ∈ L∞(R+, L∞+ (Ω)), ‖Gphot(t)‖L∞ ≤ c f.a.a. t ∈ R+,

k0 ∈ L∞+ (Ω), k0 ≥ c > 0 a.e., r0 : Ω×R
2
+ → R+, r0(x, ·) Lipschitzian, uni-

formly w.r.t. x ∈ Ω, r0(·, y) measurable for all y ∈ R
2
+, r0(·, 0) ∈ L∞(Ω),

ri, ki ∈ L∞+ (G; dµ), ki ≥ c > 0 µ-a.e. on G, rγ
Γi, kγ

Γi ∈ L∞+ (GΓ; dµΓ),

kγ
Γi ≥ c >0 µΓ-a.e. on GΓ, σγ

i ∈ L∞+ (Γ), γ = α, β, i = 1, 2;

(A4) ε ∈ L∞(Ω), ε ≥c>0 a.e. on Ω, f ∈L2(Ω), zD∈W 1,∞(Ω), zD|ΓD
= zD (cf. (1.6));

(A5) Di ∈ L∞(Ω), Di ≥ ǫ > 0 a.e. on Ω, i = 1, 2,

uD = ((uαD
1 , uβD

1 ), (uαD
2 , uβD

2 ), 0, 0, 0, 0), ln uγD
i ∈ W 1,∞(Ωγ), with

uγD
i |Γγ

D
= uγD

i (cf. (1.7)), uγD
i |Γ = 1

σγ
i
, γ = α, β, i = 1, 2,

ũi ∈ L∞(G,dµ), ũi ≥ c > 0, i = 3, 4, uD
1 ũ4 = k1ũ3 µ-a.e. in G,

ũΓi ∈ L∞(GΓ,dµΓ), ũΓi ≥ c > 0, i = 1, 2, uαD
1 ũΓ2 = kα

Γ1ũΓ1 µΓ-a.e. in GΓ;
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(A6) Ui ∈ L∞+ (Ω), i = 1, 2, U3, U4 ∈ L∞+ (G; dµ), U3, U4 ≤ 1, U3+U4 = 1 µ-a.e. on G,

UΓ1, UΓ2 ∈ L∞+ (GΓ; dµΓ), UΓ1, UΓ2 ≤ 1, UΓ1 + UΓ2 = 1 µΓ-a.e. on GΓ.

2.2 Weak formulation

We use the vector U = (U1, . . . , U4, UΓ1, UΓ2) and we introduce the function spaces

Y := L2(Ω)2 × L2(G; dµ)2 × L2(GΓ; dµΓ)2, Z := H1
0 (Ω ∪ ΓN ),

V := L∞(Ω)2 × L∞(G; dµ)2 × L∞(GΓ; dµΓ)2,

X :=
{
u = (u1, ..., u4, uΓ1, uΓ2) ∈ Y : ui = (uα

i , uβ
i ), uγ

i ∈ H1
0 (Ωγ \ Γγ

N ), γ= α, β, i = 1, 2
}
,

and define the operators A : [(X + uD)∩V+]× (Z + zD)] → X∗, R : [X + uD]∩ V+ → X∗,
and P : (Z + zD)× Y → Z∗ by

〈A(u, z), û〉X :=
2∑

i=1

∫

Ω
Di(∇ui + λiui∇z) · ∇ûi dx, û ∈ X,

〈R(u), û〉X :=

2∑

i=1

{ ∫

Ω

{
r0(u1u2 − k0)−Gphot

}
ûi dx +

∫

Γ
(σα

i uα
i − σβ

i uβ
i )(ûα

i − ûβ
i ) da

}

+

∫

G

{
r1(u1u4 − k1u3)(û1+û4−û3) + r2(u2u3 − k2u4)(û2+û3−û4)

}
dµ

+
∑

γ=α,β

∫

GΓ

{
rγ
Γ1(u

γ
1uΓ2 − kγ

Γ1uΓ1)(û
γ
1 + ûΓ2 − ûΓ1)

+ rγ
Γ2(u

γ
2uΓ1 − kγ

Γ2uΓ2)(û
γ
2 + ûΓ1 − ûΓ2)

}
dµΓ, û ∈ X,

〈P(z, u), z〉Z :=

∫

Ω

{
ε∇z · ∇ẑ −

[
f +

2∑

i=1

λiui

]
ẑ
}

dx−
4∑

i=3

∫

G
λiuiẑ dµ

−
2∑

i=1

∫

GΓ

λΓiuΓiẑ dµΓ, ẑ ∈ Z.

Note that here integrals over Ω of expressions containing u1, u2 or ∇u1, ∇u2 take into
account the values of uγ

i or ∇uγ
i on Ωγ , i = 1, 2. Then the weak formulation of the

electronic model for solar cells with active interfaces (1.1) – (1.8) reads as

u′(t) +A(u(t), z(t)) +R(u(t)) = 0, P(z(t), u(t))=0, f.a.a. t > 0,

u(0) = U, u ∈ H1
loc(R+,X∗) ∩ L∞loc(R+, V+),

u− uD ∈ L2
loc(R+,X), z − zD ∈ L2

loc(R+, Z) ∩ L∞loc(R+, L∞(Ω)).





(P)



3 A priori estimates 7

3 A priori estimates

3.1 Energy estimates

To prove the thermodynamic correctness of the model we need three preparatory lemmas.

Lemma 3.1 We assume (A1), (A2), (A4). For any u ∈ Y there exists a unique solution
z ∈ Z + zD to P(z, u) = 0. Moreover there is a constant c > 0 such that

‖z − ẑ‖Z ≤ c ‖u− û‖Y ∀u, û ∈ Y, P(z, u) = P(ẑ, û) = 0. (3.1)

Let S = [0, T ], T > 0. Then for every u ∈ L2(S, Y ) there exists a unique z ∈ L2(S,Z)+zD

such that P(z(t), u(t)) = 0 f.a.a. t ∈ S. If u ∈ C(S, Y ) then z ∈ C(S,Z) + zD follows and
the last equation is fulfilled for all t ∈ S.

Proof. 1. The problem P(z, u) = 0 may be written equivalently by P0(z − zD) = g(zD , u)
with g(zD, u) and the Lipschitz continuous and strongly monotone operator P0 : Z → Z∗,

〈g(zD, u), ŷ〉Z =

∫

Ω

{(
f +

2∑

i=1

λiui

)
ŷ − ε∇zD· ∇ŷ

}
dx +

4∑

i=3

∫

G
λiuiŷ dµ +

2∑

i=1

∫

GΓ

λΓiuΓiŷ dµΓ,

〈P0y, ŷ〉Z =

∫

Ω
ε∇y · ∇ŷ dx, y, ŷ ∈ Z.

To show g(zD , u) ∈ Z∗, for the last two terms we argue as follows: Because of (A2) we
have
∫

G
ui+2ŷ dµ ≤ c‖ui+2‖L2(G;dµ)‖ŷ‖Z ,

∫

GΓ

uΓiŷ dµΓ ≤ c‖uΓi‖L2(GΓ;dµΓ)‖ŷ‖Z , ŷ ∈ Z, i = 1, 2.

Therefore, for all right-hand sides g(zD, u) ∈ Z∗ there is a unique solution to P0(z−zD) =
g(zD, u) and (3.1) follows immediately. As a direct consequence we obtain the result for
the time dependent functions. �

Remark 3.1 If (u, z) is a solution to (P) then u ∈ C(R+, Y ). Thus, by Lemma 3.1
z − zD ∈ C(R+, Z) and for all t ∈ R+ the relations P(z(t), u(t)) = 0 in Z∗, ui(t) ≥
0 a.e. on Ω, i = 1, 2, ui(t) ≥ 0 µ-a.e. on G, i = 3, 4, uΓi(t) ≥ 0, µΓ-a.e. on GΓ, i = 1, 2,
are fulfilled.

Lemma 3.2 i) We assume (A1) – (A6). If (u, z) is a solution to (P) then for all t ∈ R+

u3(t) + u4(t) = U3 + U4 = 1, 0 ≤ u3(t), u4(t) ≤ 1 µ-a.e. on G,

uΓ1(t) + uΓ2(t) = UΓ1 + UΓ2 = 1, 0 ≤ uΓ1(t), uΓ2(t) ≤ 1 µΓ-a.e. on GΓ.

ii) We assume (A1) – (A6). Then there exist constants q > 2 and c > 0 such that

‖z‖W 1,q ≤ c
{

1 +
2∑

i=1

‖ui‖L2q/(2+q)

}
(3.2)

for any solution (u, z) to (P).
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Proof. i) The result for u3 and u4 is obtained as in the proof of [9, Lemma 3.2]. By
similar ideas, now testing the ODEs for uΓ1 and uΓ2 by µΓ(BGΓ

̺ (y))−1 χ
B

GΓ
̺ (y)

(where

BGΓ
̺ (y) is the intersection of GΓ and the ball centered at y with radius ̺ and χ denotes

the characteristic function) and letting ̺ ↓ 0 the assertions for uΓ1 and uΓ2 follow.

ii) We use the notation of the proof of Lemma 3.1. According to Gröger’s regularity result
for elliptic equations with nonsmooth data [13, Theorem 1] and (A4), (A1) we can fix a
q = q(Ω, ε) > 2 such that, if

∀ŷ ∈ H1
0 (Ω ∪ ΓN ) : 〈P0y, ŷ〉Z = 〈g, ŷ〉, g ∈ W−1,q(Ω ∪ ΓN ), y ∈ H1

0 (Ω ∪ ΓN )

then y ∈ W 1,q
0 (Ω ∪ ΓN ). We set

r =
2q

q − 2
, r′ =

2q

q + 2
, s =

q

q − 2
, s′ =

q

2
. (3.3)

Note that g(zD, u) ∈ W−1,q(Ω ∪ ΓN ). We use again (A2) to estimate
∫

G
ui+2ŷ dµ ≤ c‖ui+2‖Lr′ (G;dµ)‖ŷ‖Lr ≤ c‖ui+2‖Lr′(G;dµ)‖ŷ‖W 1,q′ ,

∫

GΓ

uΓiŷ dµΓ ≤ c‖uΓi‖Ls′ (GΓ;dµΓ)‖ŷ‖Ls(Γ) ≤ c‖uΓi‖Ls′ (GΓ;dµΓ)‖ŷ‖W 1,q′ , i = 1, 2.

Gröger’s regularity result thus implies

‖z−zD‖W 1,q
0
≤c‖g(zD, u)‖W−1,q ≤c

(
1+

2∑

i=1

‖ui‖Lr′+

4∑

i=3

‖ui‖Lr′(G;dµ)+

2∑

i=1

‖uΓi‖Ls′(GΓ;dµΓ)

)
.

Therefore, due to (A4) and part i) of Lemma 3.2 the desired estimate follows. �

Lemma 3.3 We assume (A1) – (A6). Then for all τ > 0 there exist constants cτ > 0,
c > 0 such that
∫ t

0

{ ∑

γ=α,β

(
‖rγ

Γ1u
γ
1uΓ2‖L1(GΓ,dµΓ) + ‖rγ

Γ2u
γ
2uΓ1‖L1(GΓ,dµΓ)

)
+

2∑

i=1

∣∣∣
∫

Γ
σα

i uα
i − σβ

i uβ
i da

∣∣∣
}

ds

≤ c +

∫ t

0

{
c +

2∑

i=1

{
τ‖2∇√ui + λi

√
ui∇z‖2

L2(Ω) + cτ‖ui‖L1(Ω)

}}
ds ∀t > 0

for any solution (u, z) to (P).

Proof. Due to (A1), for γ = α, β we find Lipschitz continuous functions φγ : Ωγ → [0, 1]
with φγ = 0 on Γγ

D, φγ = 1 on Γ and |∇φγ | ≤ 1/κ0. Testing the equations for ui, i = 1, 2,
on Ωα by φα, adding them and having in mind Lemma 3.2 i), (A4), (A5), (A6) we obtain

2∑

i=1

‖ui(t)φ
α‖L1(Ωα) +

∫ t

0

{ ∫

Ωα

2r0u1u2φ
α dx +

∫

Ωα×EG

(r1u1u4 + r2u2u3)φ
αdµ

}
ds

+

∫ t

0

{∫

GΓ

(rα
Γ1u

α
1 uΓ2 + rα

Γ2u
α
2 uΓ1) dµΓ +

2∑

i=1

∫

Γ
(σα

i uα
i − σβ

i uβ
i ) da

}
ds

≤
2∑

i=1

{
‖Ui‖L1(Ωα) +

∫ t

0

{
c +

∫

Ωα

Di

κ0
|∇ui + λiui∇z|dx

}
ds

}
∀t > 0.
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The terms in the first line can be left out since they are nonnegative. The last term in the
last line can be estimated as follows where at the end Young’s inequality is used

∫

Ωα

Di

κ0
|∇ui + λiui∇z|dx ≤ c

∫

Ωα

√
ui|2∇

√
ui + λi

√
ui∇z|dx

≤ τ‖2∇√ui + λi
√

ui∇z‖2
L2(Ωα) + cτ‖ui‖L1(Ωα).

Similar results are obtained by testing the equations for ui, i = 1, 2, on Ωβ by φβ , only
the term

∫
Γ(σα

i uα
i − σβ

i uβ
i ) da then has the opposite sign. Combining both estimates, the

assertion of the lemma follows. �

Using zD, uγD
1 , uγD

2 and ũ3, ũ4, ũΓ1, ũΓ2 from (A5), we define functionals F̃1, F̃2 : Y+ → R,

F̃1(u) :=

∫

Ω

ε

2
|∇(z − zD)|2 dx,

F̃2(u) :=

∫

Ω

2∑

i=1

{
ui(ln

ui

uD
i

− 1) + uD
i

}
dx +

4∑

i=3

∫

G

{
ui ln

ui

ũi
− ui + ũi

}
dµ

+

2∑

i=1

∫

GΓ

{
uΓi ln

uΓi

ũΓi
− uΓi + ũΓi

}
dµΓ,

where z is the solution to P(z, u) = 0 (see Lemma 3.1). The value F̃1(u) + F̃2(u) can be
interpreted as free energy of the state u. Because of (A4) we find for u ∈ Y+ the estimate

F̃1(u)+F̃2(u)

≥ c
(
‖z − zD‖2

Z+

2∑

i=1

‖ui ln ui‖L1 +

4∑

i=3

‖ui ln ui‖L1(G,dµ) +

2∑

i=1

‖uΓi ln uΓi‖L1(GΓ,dµΓ)

)
−c̃.

We extend F̃k, k = 1, 2, to arguments from the space X∗ by the definition

Fk := (F̃ ∗
k |X)∗ : X∗ → R, k = 1, 2.

The star denotes the conjugation (see [3]). Following the ideas in [9, Subsection 3.4] we find
that the free energy functional F := F1 + F2 is proper, convex and lower semicontinuous.
For u ∈ Y+ the relation F (u) = F̃1(u) + F̃2(u) is fulfilled, F |Y+ is continuous. Moreover,
if u ∈ Y+, u > δ and (ln u1

uD
1

, ln u2

uD
2

, ln u3
ũ3

, ln u4
ũ4

, ln uΓ1
ũΓ1

, ln uΓ2
ũΓ2

) ∈ X, then

λ(z − zD) +
(
ln

u1

uD
1

, ln
u2

uD
2

, ln
u3

ũ3
, ln

u4

ũ4
, ln

uΓ1

ũΓ1
, ln

uΓ2

ũΓ2

)
∈ ∂F (u).

Theorem 3.1 We assume (A1)–(A6). Let (u, z) be a solution to (P) and T ∈ R+. Then

F (u(t)) ≤ (F (U) + c0)e
c0t ∀t ∈ [0, T ],

where c0 > 0 is a constant independent of U and T . Moreover, if

Gphot = 0, uD
1 uD

2 = k0, lnuγD
i + λiz

D is constant on Ωγ , γ = α, β, i = 1, 2, (3.4)

and if

k1k2 = uD
1 uD

2 µ-a.e. on G,
kα
Γ1

kβ
Γ1

=
uαD

1

uβD
1

, kγ
Γ1k

γ
Γ2 = uγD

1 uγD
2 , µΓ-a.e. on GΓ, (3.5)

γ = α, β, then c0 can be chosen as zero.
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Proof. 1. We use formally the test function

λ(z − zD) +
(
ln

u1

uD
1

, ln
u2

uD
2

, ln
u3

ũ3
, ln

u4

ũ4
, ln

uΓ1

ũΓ1
, ln

uΓ2

ũΓ2

)

for (P) and apply Brézis formula (see Lemma 6.1 or [2, Lemma 3.3]). (To derive the
desired result precisely, one has to use test functions

λ(z − zD) +
(
ln

uδ
1

uD
1

, ln
uδ

2

uD
2

, ln
uδ

3

ũ3
, ln

uδ
4

ũ4
, ln

uδ
Γ1

ũΓ1
, ln

uδ
Γ2

ũΓ2

)
, uδ = max{u, δ},

0 < δ < min
{

min
i=1,2

{ess inf
Ω

Ui, ess inf
Ω

uD
i }, min

i=3,4
{ess inf

G,µ
Ui}, min

i=1,2
{ess inf

GΓ,µΓ

UΓi}
}
, (3.6)

and then one has to take the limit δ ↓ 0, see steps 1, 2 in the proof of [9, Theorem 3.2].)

2. We estimate a.e. in Ω

Di(∇ui+λiui∇z) · ∇(ln ui

uD
i

+ λi(z−zD)) ≥ ǫ

2
|2∇√ui +λi

√
ui∇z|2 − cui|∇(ln uD

i +λiz
D)|2,

Gphot(ln
ui

uD
i

+ λi(z−zD)) ≤ |Gphot|(|ui|+ | ln uD
i |+ |z − zD|),

r0(u1u2 − k0) ln u1u2

uD
1 uD

2
≥ −c| ln uD

1 uD
2

k0
|.

The last line follows by a case by case analysis. Have in mind that all considered reactions
are charge conserving. Moreover, we find by the monotonicity of the logarithm function
and by uD

1 ũ4 = k1ũ3 (see (A5)) that µ-a.e. on G

r1(u1u4 − k1u3) ln u1u4ũ3

uD
1 ũ4u3

= r1(u1u4 − k1u3) ln u1u4
k1u3

≥ 0,

r2(u2u3 − k2u4) ln u2u3ũ4

uD
2 ũ3u4

= r2(u2u3 − k2u4)
[
ln u2u3

k2u4
+ ln k1k2

uD
1 uD

2

]
≥ −c(|u2|+ 1)| ln k1k2

uD
1 uD

2
|.

Additionally, using that uαD
1 ũΓ2 = kα

γ1ũΓ1 (see (A5)) we establish that µΓ-a.e. on GΓ

rα
Γ1(u

α
1 uΓ2 − kα

Γ1uΓ1) ln
uα
1 uΓ2ũΓ1

uαD
1 ũΓ2uΓ1

= rα
Γ1(u

α
1 uΓ2 − kα

Γ1uΓ1) ln
uα
1 uΓ2

kα
Γ1uΓ1

≥ 0,

rβ
Γ1(u

β
1uΓ2 − kβ

Γ1uΓ1) ln
uβ
1uΓ2ũΓ1

uβD
1 ũΓ2uΓ1

= rβ
Γ1(u

β
1uΓ2 − kβ

Γ1uΓ1)
[
ln

uβ
1uΓ2

kβ
Γ1uΓ1

+ ln
kβ
Γ1uαD

1

kα
Γ1uβD

1

]

≥ −(rβ
Γ1u

β
1uΓ2 + c)| ln kβ

Γ1uαD
1

kα
Γ1uβD

1

|,

rα
Γ2(u

α
2 uΓ1 − kα

Γ2uΓ2) ln
uα
2 uΓ1ũΓ2

uαD
2 ũΓ1uΓ2

= rα
Γ2(u

α
2 uΓ1 − kα

Γ2uΓ2)
[
ln

uα
2 uΓ1

kα
Γ2uΓ2

+ ln
kα
Γ1kα

Γ2

uαD
1 uαD

2

]

≥ −(rα
Γ2u

α
2 uΓ1 + c)| ln kα

Γ1kα
Γ2

uαD
1 uαD

2
|,

rβ
Γ2(u

β
2uΓ1 − kβ

Γ2uΓ2) ln
uβ
2uΓ1ũΓ2

uβD
2 ũΓ1uΓ2

= rβ
Γ2(u

β
2uΓ1 − kβ

Γ2uΓ2)
[
ln

uβ
2uΓ1

kβ
Γ2uΓ2

+ ln
kα
Γ1kβ

Γ2

uαD
1 uβD

2

]

≥ −(rβ
Γ2u

β
2uΓ1 + c)| ln kα

Γ1kβ
Γ2

uαD
1 uβD

2

|,

and by uγD
i |Γ = 1

σγ
i

i = 1, 2, γ = α, β, (see (A5)) we conclude that

(σα
i uα

i − σβ
i uβ

i ) ln
uα

i uβD
i

uαD
i uβ

i

= (σα
i uα

i − σβ
i uβ

i ) ln
σα

i uα
i

σβ
i uβ

i

= 0 a.e. on Γ, i = 1, 2.
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According to our assumptions (A3), (A4) and (A5) we find from step 1 and the previous
estimates

F (u(t))− F (U) +
ǫ

2

∫ t

0
‖2∇√ui + λi

√
ui∇z‖2

L2 ds

≤ c

∫ t

0

2∑

i=1

(1+‖ui‖L1)
(
‖∇(ln uD

i +λiz
D)‖2

L∞ + ‖ln uD
1 uD

2
k0

‖L∞ + ‖ln k1k2

uD
1 uD

2
‖L∞(G,dµ)

)
ds

+ c

∫ t

0
(1 + ‖rβ

Γ1u
β
1uΓ2‖L1(GΓ,dµΓ))‖ln

kβ
Γ1uαD

1

kα
Γ1uβD

1

‖L∞(GΓ,dµΓ) ds

+ c

∫ t

0
(1 + ‖rα

Γ2u
α
2 uΓ1‖L1(GΓ,dµΓ))‖ln

kα
Γ1kα

Γ2

uαD
1 uαD

2
‖L∞(GΓ,dµΓ) ds

+ c

∫ t

0
(1 + ‖rβ

Γ2u
β
2uΓ1‖L1(GΓ,dµΓ))‖ln

kα
Γ1kβ

Γ2

uαD
1 uβD

2

‖L∞(GΓ,dµΓ) ds

+

∫ t

0
‖Gphot‖L∞

{ 2∑

i=1

(
‖ui‖L1 + ‖ln uD

i ‖L1

)
+ ‖z − zD‖L1

}
ds.

3. If (3.4) and (3.5) are fulfilled, then the right-hand side of the previous estimate is zero.
Therefore the last assertion of the theorem follows immediately. For the more general
situation we argue as follows: Using (A3), (A4), (A5) and Lemma 3.3 the right hand side
in the previous estimate can be majorized by

∫ t

0

2∑

i=1

(
c
(
‖ui‖L1 + ‖z − zD‖2

Z + 1
)

+
ǫ

2
‖2∇√ui + λi

√
ui∇z‖2

L2

)
ds.

Since
∑2

i=1 ‖ui‖L1 + ‖z − zD‖2
Z ≤ cF (u) + c for z with P(z, u) = 0, Gronwall’s lemma

supplies the desired result. �

Remark 3.2 Theorem 3.1 guarantees that the electronic model for solar cells including
interface kinetics and energy resolved defect densities in Ω and at the interface Γ is thermo-
dynamically correct. The free energy functional F is something like a Lyapunov function.
Namely, under the special assumptions (3.4) and (3.5) (meaning that the data is compati-
ble with thermodynamic equilibrium) the function t 7→ F (u(t)) is monotonously decreasing.
For the more general case of data the free energy may be increasing, but its growth can be
estimated by Theorem 3.1.

Remark 3.3 If r0 is independent of u1, u2 and Gphot is independent of time, and the
Dirichlet values and reaction constants fulfill

uD
1 uD

2 = k0 +
Gphot

r0
, ln uγD

i + λiz
D is constant on Ωγ , γ = α, β, i = 1, 2, (3.7)

instead of (3.4) in Theorem 3.1 and if additionally (3.5) holds true, then the free energy
on solutions F (u(t)) decreases monotonously, too. This can be seen by substituting the
second and third estimate in step 2 of the proof of Theorem 3.1 by

r0

(
u1u2 − k0 −

Gphot

r0

)
ln

u1u2

uD
1 uD

2

≥ −
∣∣∣ ln

uD
1 uD

2

k0 +
Gphot

r0

∣∣∣,

which is obtained by a case by case analysis, too.
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3.2 L
∞-estimates of the solution

Have in mind that Lemma 3.2 provides global upper and lower bounds for u3, u4 on G
and uΓ1, uΓ2 on GΓ. To prove upper bounds for the densities of electrons and holes we
argue in two steps. Starting with estimates of the L∞(R+, L2)-norm of ui, i = 1, 2, (see
Lemma 3.4), the final estimate is obtained by Moser iteration in Theorem 3.2.

Lemma 3.4 Under the assumptions (A1) – (A6) there exists a monotonous function d :
R+ → R+ depending only on the data (but not on T ) such that

2∑

i=1

‖ui(t)‖L2 ≤ d(‖F (u)‖C(S)) ∀t ∈ S = [0, T ]

for any solution (u, z) to (P).

Proof. For problem (P) we use the test function e2t(v1, v2, 0, . . . , 0),

vi := (ui −K)+, where K ≥ K̂ := max
(
1, ‖U‖V , max

i=1,2, γ=α,β
‖uγD

i ‖L∞(Ωγ )

)
(3.8)

will be fixed later. The choice of K̂ ensures that vγ
i (0) = 0, vγ

i |Γγ
D

= 0, γ = α, β, i = 1, 2.

e2t

2

2∑

i=1

∫

Ω
vi(t)

2 dx

=

∫ t

0
e2s

{∫

Ω

2∑

i=1

{
v2
i −Di(∇vi +λiui∇z) · ∇vi + Gphotvi + r0(·, u1, u2)(k0 − u1u2)vi

}
dx

+
2∑

i=1

∫

Γ
(σα

i uα
i − σβ

i uβ
i )(vβ

i − vα
i ) da +

∫

G

{
r1(k1u3 − u1u4)v1 + r2(k2u4 − u2u3)v2

}
dµ

+
∑

γ=α,β

∫

GΓ

{
rγ
Γ1(k

γ
Γ1uΓ1 − uγ

1uΓ2)v
γ
1 + rγ

Γ2(k
γ
Γ2uΓ2 − uγ

2uΓ1)v
γ
2

}
dµΓ

}
ds

≤
∫ t

0
e2s

2∑

i=1

{
− ǫ‖vi‖2

H1 + c‖ui‖Lr‖∇z‖Lq‖vi‖H1 + c‖vi‖2
L2 + c

∑

γ=α,β

‖vγ
i ‖2

L2(Γ) + cK2
}

ds.

The exponents q > 2 and r are taken from Lemma 3.2 ii) and (3.3). For the treatment
of the reaction terms we refer to (A3) and Lemma 3.2 i). Moreover, due to (A2) we
have ‖vi‖L2(G,dµ) ≤ c‖vi‖L2(Ω), ‖vγ

i ‖L2(GΓ,dµΓ) ≤ c‖vγ
i ‖L2(Γ), i = 1, 2. Now we apply the

trace inequality (6.1), the estimate (3.2) and the three variants of the Gagliardo-Nirenberg
inequality (6.2)

‖vi‖2
L2 ≤ c‖vi‖L1‖vi‖H1 , ‖vi‖Lr ≤ c‖vi‖1/r

L1 ‖vi‖1/r′

H1 , ‖vi‖Lr′ ≤ c‖vi‖1/r′

L1 ‖vi‖1/r
H1 ,

with r and r′ from (3.3). At the end, Young’s inequality gives for all t ∈ S

e2t

2

2∑

i=1

‖vi(t)‖2
L2 ≤

∫ t

0
e2s

2∑

i=1

{(
c̃

2∑

j=1

‖vj‖L1 − ǫ

2

)
‖vi‖2

H1 + c(K)
(
‖vi‖2

L1 + 1
)}

ds (3.9)
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with a monotonously increasing function c(K). For K with ln K > maxi=1,2 ‖ln uD
i ‖L∞+1

we estimate

F (u) ≥
2∑

i=1

∫

Ω

{
ui(ln

ui

uD
i
− 1) + uD

i

}
dx ≥

2∑

i=1

∫

{x:vi>0}
ui(ln K − max

k=1,2
‖ln uD

k ‖L∞ − 1) dx

≥ (ln K − max
k=1,2

‖ln uD
k ‖L∞ − 1)

2∑

i=1

‖vi‖L1 .

Now we fix K ≥ K̂ as a monotonously increasing function of ‖F (u)‖C(S) fulfilling

c̃

2∑

i=1

‖vi‖L1 ≤
c̃‖F (u)‖C(S)

ln K −maxk=1,2 ‖ln uD
k ‖L∞ − 1

<
ǫ

2

(compare Theorem 3.1); then the term in front of the H1-norm in (3.9) is negative. It
results

e2t
2∑

i=1

‖vi(t)‖2
L2 ≤ e2t c c(K)(‖F (u)‖2

C(S) + 1).

Since ui ≤ vi + K this proves the lemma. �

Lemma 3.2 and Lemma 3.4, guarantee that for solutions (u, z) to (P) for all t ∈ S the
norm ‖z(t)‖W 1,q(Ω) is bounded by a continuous function of ‖F (u)‖C(S) depending on the
data but not on T . The exponent q > 2 is results from Lemma 3.2 ii). We write shortly

κ =
(
‖∇z‖L∞(S,Lq(Ω)) + 1

)2r
. (3.10)

Now we establish the upper bounds for the densities of electrons and holes. The proof is
based on Moser iteration techniques. Such techniques e.g. are used in [10] for problems
from semiconductor technology, in [6] for the classical van Roosbroeck system and in [8]
for spin-polarized drift-diffusion systems.

Theorem 3.2 Let (A1) – (A6) be satisfied. Then there exists a constant c > 0 and a
continuous function d of ‖F (u)‖C(S) depending only on the data (but not on T ) such that

2∑

i=1

‖ui(t)‖L∞ ≤ c κ

2∑

i=1

(
sup
s∈S

‖ui(s)‖L1 + 1
)
, ‖z(t)‖L∞ ≤ d(‖F (u)‖C(S)) ∀t ∈ S

for any solution (u, z) to (P).

Note that sups∈S ‖ui(s)‖L1 ≤ c (‖F (u)‖C(S) + 1), i = 1, 2, on solutions to (P) and that
this right hand side is bounded by Theorem 3.1.

Proof. Using for (P) the test functions

p ept (vp−1
1 , vp−1

2 , 0, . . . , 0) ∈ L2(S,X), p = 2m, m ≥ 1, where vi := (ui − K̂)+, i = 1, 2,
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with K̂ from (3.8) we obtain

ept
2∑

i=1

∫

Ω
vi(t)

p dx

=

∫ t

0
pe2s

{∫

Ω

2∑

i=1

{
vp
i −Di(∇vi +λiui∇z) · ∇vp−1

i + Gphotv
p−1
i + r0(k0 − u1u2)v

p−1
i

}
dx

+
2∑

i=1

∫

Γ
(σα

i uα
i − σβ

i uβ
i )

(
(vβ

i )p−1 − (vα
i )p−1

)
da

+

∫

G

{
r1(k1u3 − u1u4)v

p−1
1 + r2(k2u4 − u2u3)v

p−1
2

}
dµ

+
∑

γ=α,β

∫

GΓ

{
rγ
Γ1(k

γ
Γ1uΓ1 − uγ

1uΓ2)(v
γ
1 )p−1 + rγ

Γ2(k
γ
Γ2uΓ2 − uγ

2uΓ1)(v
γ
2 )p−1

}
dµΓ

}
ds.

Regarding (A3), (A4), (A2) and Lemma 3.2, applying the trace inequality (6.1) for (vγ
i )p/2,

Hölder’s, Gagliardo-Nirenberg’s and Young’s inequality we continue by

ept
2∑

i=1

‖vi(t)‖p
Lp ≤

∫ t

0
eps

{∫

Ω

2∑

i=1

{
cp

(
ui|∇z||∇vp−1

i |+ vp
i + (

2∑

k=1

uk+1)vp−1
i

)
− ǫ|∇v

p/2
i |2

}
dx

+ cp
∑

γ=α,β

∫

Γ

(
(vγ

i )p + 1
)
dΓ

}
ds

≤
∫ t

0
eps

2∑

i=1

{
cp

(
‖∇z‖Lq(‖vp/2

i ‖Lr + 1)‖vp/2
i ‖H1

+ cp
(
‖vp/2

i ‖2
L2 +

∑

γ=α,β

‖(vγ
i )p/2‖2

L2(Γ) + 1
)
− ǫ‖vp/2

i ‖2
H1

}
ds

≤
∫ t

0
eps

{
κ c p2r

2∑

i=1

(‖vp/2
i ‖2

L1 + 1) ds
}

where κ is defined in (3.10). In summary it results the estimate

2∑

i=1

‖vi(t)‖p
Lp ≤ cp2rκ

2∑

i=1

sup
s∈S

(‖vi(s)‖p

Lp/2 + 1) ∀t ∈ S. (3.11)

Defining

am =

2∑

i=1

{
sup
s∈S

‖vi(s)‖2m

L2m + 1
}

, m = 0, 1, . . .

the inequality (3.11) implies

am ≤ cm κa2
m−1 ≤ cm+2(m−1) κ1+2 a4

m−2 ≤ · · · ≤ c2m+1−2−m κ2m−1 a2m

0 ,

and we continue estimate (3.11) by

2∑

i=1

‖vi(t)‖L2m ≤ cκ
2∑

i=1

{
sup
s∈S

‖vi(s)‖L1 + 1
}

.
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In the limit m →∞, we find

2∑

i=1

‖vi(t)‖L∞ ≤ cκ

2∑

i=1

{
sup
s∈S

‖vi(s)‖L1 + 1
}

∀t ∈ S.

Because of ui ≤ vi + K̂ the desired estimate for ui, i = 1, 2, follows and then the assertion
for z is a direct consequence of Lemma 3.2 ii) and the Sobolev embedding W 1,q(Ω) →֒
L∞(Ω) for q > 2 in two spatial dimensions. �

4 Existence and uniqueness result for (P)

4.1 A regularized problem (PM)

In order to show the existence of solutions to (P) we study a regularized problem (PM )
defined on an arbitrarily fixed time interval S = [0, T ]. For M ≥ M∗ := max

{
1, ‖U‖V }

let ρM : R
6 → [0, 1] be a Lipschitz continuous function fulfilling

ρM (u) =

{
0 if |u|∞ ≥ M,

1 if |u|∞ ≤ M/2
, |u|∞ = max{|u1|, . . . , |uΓ2|}.

Additionally, we introduce the projection

σM (y) :=





−M for y < −M,

y for y ∈ [−M,M ],

M for y > M,

y ∈ R,

and define the operators AM : (X + uD)× (Z + zD) → X∗, RM : [X + uD]∩ V+ → X∗ by

〈AM(u, z), û〉X :=

∫

Ω

2∑

i=1

Di(∇ui + λi[σM (ui)]
+∇z) · ∇ûi dx,

〈RM (u), û〉X :=

∫

G
ρM (u)

{
r1(u1u4−k1u3)(û1+û4−û3) + r2(u2u3−k2u4)(û2+û3−û4)

}
dµ

+
∑

γ=α,β

∫

GΓ

ρM (u)
{

rγ
Γ1(u

γ
1uΓ2 − kγ

Γ1uΓ1)(û
γ
1 + ûΓ2 − ûΓ1)

+ rγ
Γ2(u

γ
2uΓ1 − kγ

Γ2uΓ2)(û
γ
2 + ûΓ1 − ûΓ2)

}
dµΓ

+
2∑

i=1

∫

Γ
ρM (u)(σα

i uα
i − σβ

i uβ
i )(ûα

i − ûβ
i ) da

+

∫

Ω
ρM (u)

{
r0(u1u2 − k0)(û1 + û2)−Gphot(û1 + û2)

}
dx, û ∈ X.

We study the regularized problem

u′(t) +AM (u(t), z(t)) +RM (u+(t)) = 0 P(z(t), u+(t)) = 0, f.a.a. t ∈ S,

u(0) = U, u ∈ H1(S,X∗), u− uD ∈ L2(S,X), z − zD ∈ L2(S,Z).



 (PM )

Solutions (u, z) to (PM ) fulfil u ∈ C(S, Y ) and z − zD ∈ C(S,Z).
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4.2 Solvability of (PM)

In this subsection the constants may depend on M and S. We work with an equivalent
formulation of (PM ). We decompose u in the form u = (v,w), where v = (u1, u2), w =
(u3, u4, uΓ1, uΓ2) and make use of the spaces

Y 2 = L2(Ω)2, Y 4 = L2(G; dµ)2×L2(GΓ; dµΓ)2, X2 = (H1(Ωα
N )×H1(Ω

β
N ))2, X2∗ := (X2)∗,

where H1(Ωγ
N ) := H1

0 (Ω ∪ Γγ
N ). We define operators A0

v : L2(S,X2) → L2(S,X2∗),
Rv : (L2(S,X2)+vD)×L2(S, Y 4) → L2(S,X2∗), Av : (L2(S,X2)+vD)×(L2(S,Z)+zD) →
L2(S,X2∗) and Rw : (L2(S,X2) + vD)× L2(S, Y 4) → L2(S, Y 4) by

〈A0
v(v − vD), v̂〉L2(S,X2) :=

∫

S

∫

Ω

2∑

i=1

Di∇(vi − vD
i ) · ∇v̂i dxds,

〈Av(v, z), v̂〉L2(S,X2) :=

∫

S

∫

Ω

2∑

i=1

Di(∇vD
i + λi [σM (vi)]

+∇z) · ∇v̂i dxds,

〈Rv(v,w), v̂〉L2(S,X2) :=

∫

S
〈RM (v+, w+), (v̂, 0)〉X ds, v̂ ∈ L2(S,X2),

〈Rw(v,w), ŵ〉L2(S,Y 4) :=

∫

S
〈RM (v+, w+), (0, ŵ)〉X ds, ŵ ∈ L2(S, Y 4).

Let v ∈ L2(S, Y 2) and w ∈ L2(S, Y 4). Then (v,w) ∈ L2(S, Y ) and by Lemma 3.1 there is
a unique solution z with z − zD ∈ L2(S,Z) ∩ L∞(S,L∞(Ω)) of

P(z(t), v+(t), w+(t)) = 0 f.a.a. t ∈ S.

By Tz : L2(S, Y 2) × L2(S, Y 4) → L2(S,Z) + zD we denote the corresponding solution
operator such that z = Tz(v,w). Then the system

(v − vD)′ +A0
v(v − vD) = −Rv(v,w) −Av(v,Tz(v,w)),

(v − vD)(0) = (U1, U2)− vD, v − vD ∈ W 2,
(4.1)

w′ +Rw(v,w) = 0, w(0) = (U3, U4, UΓ1, UΓ2), w ∈ H1(S, Y 4), (4.2)

is an equivalent formulation of problem (PM ). Note that here

W 2 :=
{
v ∈ L2(S,X2) : v′ ∈ L2(S,X2∗)

}
⊂ C(S, Y 2).

Solvability of (PM ) is obtained by proving that the system (4.1), (4.2) has a solution. First
we give a short overview of this proof. For an arbitrarily fixed v̂ ∈ W 2 + vD we solve

w′ +Rw(v̂, w) = 0, w(0) = (U3, U4, UΓ1, UΓ2), w ∈ H1(S, Y 4), (4.3)

and get w = Twv̂ with a solution operator Tw : W 2 + vD → H1(S, Y 4) (see Lemma 4.1).
The problem

(v − vD)′ +A0
v(v − vD) = −Rv(v̂,Twv̂)−Av(v̂,Tz(v̂,Twv̂)),

(v − vD)(0) = (U1, U2)− vD, v − vD ∈ W 2
(4.4)
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consists of four independent linear parabolic problems for uα
1 , uβ

1 , uα
2 , uβ

2 and fixed given
right hand sides from L2(S,H1(Ωγ

N ))∗ . Thus there exists a unique solution v = Qv̂ to this
problem. The operator Q is completely continuous (see Lemma 4.2). Using Schauder’s
fixed point theorem we obtain a fixed point v of Q (see Lemma 4.3). Then (v,Twv)
corresponds to a solution to (4.1), (4.2). Now we give the detailed proof.

Lemma 4.1 We assume (A1) – (A6). Then for all v̂ ∈ W 2 + vD there is exactly one
solution to (4.3). Moreover ‖Twv̂‖C(S,Y 4) ≤ c for all v̂ ∈ W 2+vD and

‖Twv̂1 − Twv̂2‖C(S,Y 4) ≤ c
{
‖v̂1 − v̂2‖L2(S,Y 2) +

∑

γ=α,β

‖v̂1γ − v̂2γ‖L2(S,L2(Γ)2)

}

for all v̂1, v̂2 ∈ W 2+vD.

Proof. Since for w ∈ L2(S, Y 4) the map w 7→ Rw(v̂, w) is Lipschitz continuous uniformly
w.r.t. v̂, by [7, Chapt. V, Theorem 1.3] problem (4.3) has a unique solution w = Twv̂ with
a solution operator Tw : W 2 + vD → H1(S, Y 4). Since a.e. on S

‖Rw(v̂1, w1)−Rw(v̂2, w2)‖Y 4 ≤ c
(
‖v̂1 − v̂2‖Y 2 +

∑

γ=α,β

‖v̂1γ − v̂2γ‖L2(Γ)2 + ‖w1 − w2‖Y 4

)

for all (v̂1, w1), (v̂2, w2) ∈ L2(S,X) we derive by testing (4.3) (for (v̂1, w1) and (v̂2, w2))
by w1−w2 and by using Gronwall’s lemma the Lipschitz-estimate of Lemma 4.1. Testing
(4.3) by w = Twv̂, taking into account that ρM (u) = 0 for u with |u|∞ > M and again
using Gronwall’s lemma the uniform estimate for ‖Twv̂‖C(S,Y 4) results. �

Lemma 4.2 We assume (A1) – (A6). Then the mapping Q : W 2 + vD → W 2 + vD is
completely continuous.

Proof. Let {v̂n} ⊂ W 2 + vD be bounded. According to [16, Theorem 5.1] and (6.1) we
may assume that there exists an element v̂ ∈ W 2 + vD such that v̂n → v̂ in L2(S, Y 2),
v̂γ
n → v̂γ in L2(S,L2(Γ)2), γ = α, β. Let

vn = Qv̂n, v = Qv̂, wn = Twv̂n, w = Twv̂, zn = Tz(v̂n, wn), z = Tz(v̂, w).

Lemma 4.1 and Lemma 3.1 ensure that wn→ w in L2(S,Y 4) and zn − z → 0 in L2(S,Z).
Testing (4.4) for v̂n and v̂ by vn − v ∈ L2(S,X2) it results

1

2
‖(vn − v)(t)‖2

Y 2 +

∫ t

0
ǫ‖vn − v‖2

X2 ds

≤ c

∫ t

0

{ ∫

Ω

2∑

i=1

{
|[σM (v̂ni)]

+−[σM (v̂i)]
+||∇z| |∇(vni − vi)|+ |∇(zn−z)||∇(vni − vi)|

}
dx

+
(
‖v̂n − v̂‖Y 2 +

∑

γ=α,β

‖v̂γ
n − v̂γ‖L2(Γ)2 + ‖wn − w‖Y 4

)
‖vn − v‖X2

}
ds ∀t ∈ S.
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By Hölder’s inequality and Lemma 4.1 we conclude that

‖vn − v‖2
L2(S,X2)

≤ c‖vn − v‖L2(S,X2)

{
‖v̂n − v̂‖L2(S,Y 2) +

∑

γ=α,β

‖v̂γ
n − v̂γ‖L2(S,L2(Γ)2) + ‖zn − z‖L2(S,Z)

+

2∑

i=1

[ ∫ T

0

∫

Ω
|[σM (v̂ni)]

+ − [σM (v̂i)]
+|2 |∇z|2 dxds

]1/2}
.

Properties of superposition operators give that the square bracket term in the last line
tends to zero if n →∞. Finally we find that vn − v → 0 in L2(S,X2). Next we estimate

‖(vn − v)′‖L2(S,X2∗)

≤ ‖Rv(v̂n, wn)−Rv(v̂, w)‖L2(S,X2∗)+‖A0
v(vn−v)‖L2(S,X2∗)+‖Av(v̂n,zn)−Av(v̂, z)‖L2(S,X2∗)

≤ c
{
‖vn − v‖L2(S,X2) + ‖v̂n − v̂‖L2(S,Y 2) +

∑

γ=α,β

‖v̂γ
n − v̂γ‖L2(S,L2(Γ)2) + ‖wn − w‖L2(S,Y 4)

+ ‖zn − z‖L2(S,Z) +

2∑

i=1

[ ∫ T

0

∫

Ω
|[σM (v̂ni)]

+ − [σM (v̂i)]
+|2 |∇z|2 dxds

]1/2}
→ 0

for n → ∞, and we obtain vn − v → 0 in W 2. The continuity of the operator Q follows
by similar arguments. �

Lemma 4.3 We assume (A1) – (A6). Then there exists a fixed point of the mapping Q.

Proof. For given v̂ ∈ W 2 + vD, let z = Tz(v̂,Twv̂) and v = Qv̂. We use v := v− vD as test
function for (4.4), take into account (A4), (A5) and (A6) and use for Rv that ρM (u) = 0
if |u|∞ > M and apply (6.1), Lemma 3.1, Lemma 4.1 and Young’s inequality. Then, since
‖Tz(v̂,Twv̂)‖H1 ≤ c (1 + ‖v̂ − vD‖Y 2) we find

‖v(t)‖2
Y 2 + ǫ

∫ t

0
‖v‖2

X2 ds ≤ c + c

∫ t

0

(
1 + ‖v‖2

Y 2 +
∑

γ=α,β

‖vγ‖2
L2(Γ)2 + (1 + ‖z‖H1)‖v‖X2

)
ds

≤ c +

∫ t

0

(
ǫ
2‖v‖2

X2 + c
(
1 + ‖v‖2

Y 2 + ‖v̂ − vD‖2
Y 2

) )
ds ∀t ∈ S.

Thus there is a constant c > 0 such that for all k > 0

e−kt
(
‖v(t)‖2

Y 2 +

∫ t

0
‖v‖2

X2 ds
)

≤ c + ce−kt

∫ t

0

{{
‖v‖2

Y 2 + ‖v̂ − vD‖2
Y 2 +

∫ s

0

(
‖v‖2

X2 + ‖v̂ − vD‖2
X2

)
dτ

}
e−kseks

}
ds

≤ c + ce−kt sup
s∈S

{
e−ks

{
‖v(s)‖2

Y 2+‖v̂(s)− vD‖2
Y 2 +

∫ s

0

(
‖v‖2

X2+‖v̂−vD‖2
X2

)
dτ

}}ekt−1

k
.
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We take now k ≥ 3c and obtain

sup
t∈S

e−kt
(
‖v(t)‖2

Y 2 +

∫ t

0
‖v(s)‖2

X2 ds
)

≤ 3

2
c +

1

2
sup
t∈S

{
e−kt

(
‖v̂(t)− vD‖2

Y 2 +

∫ t

0
‖v̂(s)− vD‖2

X2 ds
)}

.

Once more using for the reaction terms that ρM (u) = 0 for |u|∞ > M , and again applying
Lemma 3.1 and Lemma 4.1 we estimate

‖v′‖L2(S,X2∗) = sup
‖ṽ‖L2(S,X2)≤1

〈−Rv(v̂,Twv̂)−A0
v(v)−Av(v̂, z), ṽ〉L2(S,X2)

≤ c
(
‖v‖L2(S,X2) + ‖z‖L2(S,H1) + ‖v̂ − vD‖L2(S,Y 2) + 1

)

≤ c
(
‖v‖L2(S,X2) + ‖v̂ − vD‖L2(S,Y 2) + 1

)

≤ c̃
(
‖v‖L2(S,X2) +

[
sup
t∈S

{
e−kt

(
‖v̂(t)−vD‖2

Y 2 +

∫ t

0
‖v̂(s)−vD‖2

X2 ds
)}

ekT
]1/2

+ 1
)
.

The non-empty, bounded, closed and convex subset of W 2 + vD,

M :=
{

v ∈ W 2 + vD : sup
t∈S

{
e−kt

(
‖v(t)‖2

Y 2 +

∫ t

0
‖v‖2

X2 ds
)}

≤ 3c,

‖v′‖L2(S,X2∗) ≤ c̃
(
2
√

3cekT + 1
) }

possesses the property that Q(M) ⊂M. Since Q by Lemma 4.2 is completely continuous
the assertion of Lemma 4.3 is guaranteed by Schauder’s fixed point theorem. �

Theorem 4.1 We assume assume (A1) – (A6). Then there exists a solution (u, z) to
problem (PM ).

Proof. Due to Lemma 4.3 there exists a solution v of the problem

(v − vD)′+A0
v(v − vD) = −Rv(v,Twv)−Av(v,Tz(v,Twv)),

(v − vD)(0) = (U1, U2)− vD, v − vD ∈ W 2.

Putting w = Twv ∈ H1(S, Y 4), the pair (v,w) fulfills the equations (4.1) and (4.2) which
are an equivalent formulation of problem (PM ). �

4.3 Energy estimates for (PM)

Lemma 4.4 We assume (A1) – (A6). Then, for any solution (u, z) to (PM ) and for every
t ∈ S the inequalities ui(t) ≥ 0 a.e. on Ω, i = 1, 2, ui(t) ∈ [0, 1] µ-a.e. in G, i = 3, 4,
uΓi(t) ∈ [0, 1] µΓ-a.e. in GΓ, i = 1, 2, are fulfilled.
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Proof. Let (u, z) be a solution to (PM ). We use the test function −u−. Taking into
account that

(∇ui + λi[σM (ui)]
+∇z) · ∇u−i ≤ 0, −Gphotu

−
i ≤ 0, i = 1, 2,

(u+
1 u+

2 − k0)(u
−
1 + u−2 ) ≤ 0 a.e. on Ω;

(u+
1 u+

4 − k1u
+
3 )(u−1 + u−4 − u−3 ) ≤ 0,

(u+
2 u+

3 − k2b
+
4 )(u−2 + u−3 − u−4 ) ≤ 0 µ-a.e. on G;

(uγ+
1 u+

Γ2 − kΓ1u
+
Γ1)(u

γ−
1 + u−Γ2 − u−Γ1) ≤ 0,

(uγ+
2 u+

Γ1 − kΓ2u
+
Γ2)(u

γ−
2 + u−Γ1 − u−Γ2) ≤ 0 µΓ-a.e. on GΓ γ = α, β;

(σα
i uα+

i − σβ
i uβ+

i )(uα−
i − uβ−

i ) ≤ 0 a.e. on Γ, i = 1, 2,

we find that ‖u−(t)‖2
Y ≤ 0 for all t ∈ S. We argue now as in the proof of Lemma 3.2 to

verify the remaining results of the lemma. �

We work with a regularized free energy functional F 0
M which is compatible with the regu-

larizations done in problem (PM ). Let δ fulfill (3.6). Writing for quantities y the expression
yδ := max{y, δ} and using the function

lM (y) =





ln y if 0 < y ≤ M,

ln M − 1 + y
M if y > M,

we introduce the functionals F̃ δ
M2 : Y → R by

F̃ δ
M2(u) =

∫

Ω

2∑

i=1

∫ ui

uD
i

(lM (yδ)− ln uD
i ) dy dx +

4∑

i=3

∫

G

∫ ui

ũi

(lM (yδ)− ln ũi) dy dµ

+
2∑

i=1

∫

GΓ

∫ uΓi

ũΓi

(lM (yδ)− ln ũΓi) dy dµΓ if u ∈ Y+,

and F̃ δ
M2(u) = +∞ for u ∈ Y \ Y+. Additionally, we set

F δ
M2 = (F̃ δ∗

M2|X)∗ : X∗ → R, F δ
M = F1 + F δ

M2 : X∗ → R,

with F1 from Subsection 3.1. Note that the function lM has the same essential properties
as the ln-function occurring in the definition of F2 and that for u ∈ Y we have F δ

M2(u) →
F 0

M2(u) and F δ
M (u) → F 0

M (u) as δ ↓ 0, where F 0
M2(u) means F δ

M2(u) for δ = 0. Especially,
by the definition of F1 and lM we have for u ∈ Y+ and z with P(z, u) = 0 that

‖z − zD‖2
Z , ‖ui ln ui‖L1 , ‖ui‖L1 ≤ cF 0

M (u) + c̃, i = 1, 2. (4.5)

Lemma 4.5 We assume (A1)–(A6). Let (u, z) be a solution to (PM ) and uδ = max{u, δ}
for δ < M fulfilling (3.6). Then for all τ > 0 there exist constants cτ > 0, c > 0
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(independently on M and δ) such that

∫ t

0

∑

γ=α,β

{
‖ρM (uδ)rγ

Γ1(u
γ
1)δ(uΓ2)

δ‖L1(GΓ,dµΓ) + ‖ρM (uδ)rγ
Γ2(u

γ
2)δ(uΓ1)

δ‖L1(GΓ,dµΓ)

}
ds

≤ c +

∫ t

0

{ 2∑

i=1

{
τ

∫

Ω
σM (uδ

i )|∇lM (uδ
i ) + λi∇z|2 dx + cτ‖uδ

i ‖L1(Ω) + c‖∇(ui − uδ
i )‖L1

}

+ c(1 + Mδ + δ2)
}

ds ∀t > 0.

Proof. According to Lemma 4.4 we have u ≥ 0 for solutions to (PM ). Similar to the proof
of Lemma 3.3, testing in (PM ) the equations for ui, i = 1, 2, on Ωα by φα, adding them
and leaving out nonnegative terms on the left hand side we here obtain

∫ t

0

{∫

GΓ

ρM (u)(rα
Γ1u

α
1 uΓ2 + rα

Γ2u
α
2 uΓ1) dµΓ +

2∑

i=1

∫

Γ
ρM (u)(σα

i uα
i − σβ

i uβ
i ) da

}
ds

≤
2∑

i=1

{
‖Ui‖L1(Ωα) +

∫ t

0

{
c +

∫

Ωα

Di

κ0
|∇ui + λiσM (ui)∇z|dx

}
ds

}
∀t ∈ S.

Because of ρM (u) = 0 for |u|∞ ≥ M we find

ρM (uδ)
[
(uγ

1)δ(uΓ2)
δ + (uγ

2)δ(uΓ1)
δ
]
≤ ρM (u)

[
uγ

1uΓ2 + uγ
2uΓ1

]
+ c(Mδ + δ2).

Since σM (uδ) = σM (u) and ∇uδ
i = σM (uδ

i )∇lM (uδ
i ) we estimate the drift-diffusion term

finally using Young’s inequality and σM (uδ
i ) ≤ uδ

i by

|∇ui + λiσM (ui)∇z| ≤ |∇uδ
i + λiσM (uδ

i )∇z|+ |∇(uδ
i − ui)|

≤ σM (uδ
i )|∇lM (uδ

i ) + λi∇z|+ |∇(uδ
i − ui)|

≤ τσM (uδ
i )|∇lM (uδ

i ) + λi∇z|2 + cτ |uδ
i |+ c|∇(ui − uδ

i )|.

This together leads to

∫ t

0

{
‖ρM (uδ)rα

Γ1(u
α
1 )δ(uΓ2)

δ‖L1(GΓ,dµΓ) + ‖ρM (uδ)rα
Γ2(u

α
2 )δ(uΓ1)

δ‖L1(GΓ,dµΓ)

+

2∑

i=1

∫

Γ
ρM (u)(σα

i uα
i − σβ

i uβ
i ) da

}
ds

≤ c +

∫ t

0

{ 2∑

i=1

{
τ

∫

Ω
σM (uδ

i )|∇lM (uδ
i ) + λi∇z|2 dx + cτ‖uδ

i ‖L1(Ω) + c‖∇(ui − uδ
i )‖L1

}

+ c(1 + Mδ + δ2)
}

ds ∀t ∈ S.

Similar results are obtained by testing the equations for ui, i = 1, 2, on Ωβ by φβ , only the
term

∫
Γ ρM (u)(σα

i uα
i − σβ

i uβ
i ) da then has the opposite sign. Combining both estimates,

the assertion of the lemma follows. �
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Lemma 4.6 Under the assumptions (A1) – (A6) there exist constants c1(T ), c2(T ) > 0
not depending on M such that

F 0
M (u(t)) ≤ c1(T ), ‖ui(t) ln ui(t)‖L1 ≤ c2(T ), i = 1, 2, ∀t ∈ S

for any solution (u, z) to (PM ).

Proof. Let (u, z) be a solution to (PM ), let δ < M fulfill (3.6), and let uδ = max{u, δ}.
Then u ∈ H1(S,X∗), u ≥ 0, z − zD ∈ L2(S,Z),

wδ
M :=

((
lM (uδ

i )− ln uD
i

)
i=1,2

,
(
lM (uδ

i )− ln ũi

)
i=3,4

,
(
lM (uδ

Γi)− ln ũΓi

)
i=1,2

)
∈ L2(S,X),

and λ(z(t)− zD) ∈ ∂F1(u(t)), wδ
M (t) ∈ ∂F δ

M2(u(t)) f.a.a. t ∈ S (note that lM (uδ
i ) = ln uD

i

a.e. on S × ΓD, i = 1, 2, and by Lemma 4.4 we have lM (uδ
i ) = ln uδ

i , i = 3, 4, lM (uδ
Γi) =

ln(uδ
Γi), i = 1, 2). Thus, according to Lemma 6.1, we get for ζδ

M := wδ
M + λ(z − zD) that

[
F1(u(t)) + F δ

M2(u(t))
] ∣∣∣

t

0
=

∫ t

0
〈u′(s), ζδ

M (s)〉X ds

= −
∫ t

0
〈RM (u(s)) +AM (u(s), z(s)), ζδ

M (s)〉X ds

= −
∫ t

0

{
〈RM (uδ(s)) +AM (uδ(s), z(s)), ζδ

M (s)〉X − θδ(s)
}

ds,

where θδ = 〈RM (uδ)−RM (u) +AM(uδ , z)−AM (u, z), ζδ
M 〉X → 0 for δ ↓ 0. Since all the

reaction terms containing the factor ρM (uδ) become zero if |uδ|∞ > M , we have for these
terms only to discuss the situation uδ

i ≤ M , and here is lM (uδ
i ) = lnuδ

i . We arrive at

−〈RM (uδ), ζδ
M 〉X≤ c (1 +

2∑

i=1

‖uδ
i ‖L1)

(
‖ln uD

1 uD
2

k0
‖L∞ + ‖ k1k2

uD
1 uD

2
‖L∞(G,dµ)

)

+ c ‖Gphot‖L∞

{ 2∑

i=1

(
‖uδ

i ‖L1 + ‖ln uD
i ‖L1

)
+ ‖z−zD‖L1

}

+ c (1 + ‖ρM (uδ)rβ
Γ1(u

β
1 )δ(uΓ2)

δ‖L1(GΓ,dµΓ))‖
kβ
Γ1uαD

1

kα
Γ1uβD

1

‖L∞(GΓ,dµΓ)

+ c (1+ ‖ρM (uδ)rα
Γ2(u

α
2 )δ(uΓ1)

δ‖L1(GΓ,dµΓ))‖ kα
Γ1kα

Γ2

uαD
1 uαD

2
‖L∞(GΓ,dµΓ)

+ c (1+ ‖ρM (uδ)rβ
Γ2(u

β
2 )δ(uΓ1)

δ‖L1(GΓ,dµΓ))‖
kα
Γ1kβ

Γ2

uαD
1 uβD

2

‖L∞(GΓ,dµΓ).

Having in mind that on solutions [σM (uδ
i )]

+ = σM (uδ
i ) ≤ uδ

i , ∇lM (uδ
i ) = ∇(uδ

i )/σM (uδ
i ),

i = 1, 2, using (A4), (A5) and Young’s inequality we find

−〈AM (uδ, z), ζδ
M 〉X

= −
∫

Ω

2∑

i=1

DiσM (uδ
i )

{
|∇(lM (uδ

i ) + λiz)|2 −∇(lM (uδ
i ) + λiz) · ∇(ln uD

i −λiz
D)

}
dx

≤
2∑

i=1

(
c‖uδ

i ‖L1‖∇(ln uD
i + λiz

D)‖2
L∞ − ǫ

2

∫

Ω
σM (uδ

i )|∇(lM (uδ
i ) + λiz)|2 dx

)
a.e. on S.
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Putting both estimates together, using Lemma 4.5, taking δ ↓ 0 in the previous three
estimates and using (A3), (A5) and (4.5) we arrive at

F 0
M (u(t)) − F 0

M (U) ≤ c

∫ t

0
(1 + F 0

M (u(s))) ds,

where c depends on the data, but not on M . Due to the choice of M we have F 0
M (U) =

F (U). By Gronwall’s lemma we obtain the first assertion of the lemma, and the last result
of the lemma follows by (4.5). �

4.4 Further estimates for (PM)

Theorem 4.2 Under the assumptions (A1) – (A6) there is a constant c∗(T ) > 0 not
depending on M such that for any solution (u, z) to (PM )

‖u‖L∞(S,V ) ≤ c∗(T ). (4.6)

Proof. 1. Let q > 2, r and r′ be chosen as in Lemma 3.2 ii) and (3.3) and let (u, z) be a
solution to (PM ). By Lemma 4.4 and Lemma 3.2 ii) it results

‖z(t)‖W 1,q ≤ c
[
1 +

∑
i=1,2 ‖ui(t)‖Lr′

]
∀t ∈ S. (4.7)

2. Let vi = (ui−K̂)+, i =1, 2, where K̂ is given in (3.8). We test (PM ) by 2(v1, v2, 0, 0, 0, 0).
Estimating [σM (ui)]

+ by vi + K̂, using Lemma 4.4, (4.7), (6.2), the trace inequality (6.1),
Young’s inequality, Lemma 4.6 and (4.5) we obtain

∑

i=1,2

‖vi(t)‖2
L2 ≤

∫ t

0

∑

i=1,2

{
− 2ǫ‖vi‖2

H1 + c(‖vi‖Lr‖z‖W 1,q‖vi‖H1 + ‖z‖H1‖vi‖H1

+ ‖vi‖2
L2 +

∑

γ=α,β

‖vγ
i ‖2

L2(Γ) + 1)
}

ds

≤
∫ t

0

∑

i=1,2

{
− ǫ‖vi‖2

H1 + c‖vi‖Lr‖vi‖H1

∑

k=1,2

‖vk‖Lr′ + c
}

ds.

By ‖vk‖Lr′ ≤ ‖vk‖(r−2)/r
L1 ‖vk‖2/r

L2 , by inequality (6.3) for p = 2 and by Lemma 4.6 we get

c
∑

i=1,2

‖vi‖Lr‖vi‖H1

∑

k=1,2

‖vk‖Lr′ ≤
∑

i=1,2

{ ǫ

2
‖vi‖2

H1 + c‖vi‖2
L2

∑

k=1,2

‖vk‖2
L2

}

≤
∑

i=1,2

{ ǫ

2
‖vi‖2

H1 +
[ √

ǫ

2c2(T )
‖vi ln vi‖L1‖vi‖H1 + c‖vi‖L1

]2}
≤

∑

i=1,2

ǫ‖vi‖2
H1 + c.

By the previous estimates and inequality (4.7) we find positive constants c(T ), κ̃ indepen-
dent of M such that

‖vi(t)‖L2 ≤ c(T ) , i = 1, 2, ‖z(t)‖2r
W 1,q + 1 ≤ κ̃(T ) ∀t ∈ S. (4.8)

3. Similar to the estimates in the proof of Theorem 3.2, but estimating [σM (ui)]
+ by

vi + K̂ and using κ̃(T ) from (4.8) instead of κ we can verify that ‖vi(t)‖L∞ ≤ c(T ) for all
t ∈ S which leads to the desired upper bounds for ui, i = 1, 2, on S. Since by Lemma 4.4
the quantities u3, u4, uΓ1 and uΓ2 lie in [0, 1] for all t ∈ S, the proof is done. �
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4.5 Existence and uniqueness result for (P)

Theorem 4.3 We assume (A1) – (A6). Then there exists at least one solution to (P).

Proof. Note that it is sufficient to show the existence of a solution to (P) on any finite
time interval S = [0, T ]. We call such problems (PS) and choose the regularization level
M = 2 c∗(T ) (see Theorem 4.2). Then Theorem 4.1 guarantees a solution (u, z) to (PM ).
The choice of M ensures that the operators RM and R as well as the operators AM and
A coincide on this solution. Therefore (u, z) is a solution to (PS), too. �

Theorem 4.4 Under the assumptions (A1) – (A6) the solution to (P) is unique.

Proof. We prove uniqueness on every finite time interval S := [0, T ]. Let (uk, zk), k = 1, 2,
be two solutions to (P). We find a constant c > 0 such that ‖uk(t)‖V , ‖∇zk(t)‖Lq ≤ c
f.a.a. t ∈ S, k = 1, 2, where q > 2 (see Lemma 3.2 ii), too). Let u := u1−u2, z := z1− z2.
According to (3.1) we obtain

‖z(t)‖H1 ≤ c‖u(t)‖Y f.a.a. t ∈ S. (4.9)

We test (P) by u ∈ L2(S,X) and take into account Lemma 3.2 i) and the fact that the
reaction rates are uniformly locally Lipschitz continuous in the state variable. With the

Gagliardo-Nirenberg inequality ‖ui‖Lr(Ωγ) ≤ ‖ui‖2/r
L2(Ωγ)

‖ui‖1−2/r
H1(Ωγ )

, i = 1, 2, γ = α, β, for r

from (3.3), with inequality (4.9), the trace inequality (6.1) for ‖uγ
i ‖2

L2(Γ) and with Young’s
inequality we conclude as follows

1
2‖u(t)‖2

Y +
∑

i=1,2

∫ t

0
ǫ‖ui‖2

H1ds

≤ c

∫ t

0

{ 2∑

i=1

{
‖ui‖Lr‖∇z1‖Lq‖∇ui‖L2 + ‖∇z‖L2‖∇ui‖L2 +

∑

γ=α,β

‖uγ
i ‖2

L2(Γ)

}
+ ‖u‖2

Y

}
ds

≤
∫ t

0

{ 2∑

i=1

{
ǫ
4‖ui‖2

H1 + c‖ui‖2/r
L2 ‖∇z1‖Lq‖ui‖2−2/r

H1

}
+ c‖u‖2

Y

}
ds

≤
∫ t

0

{ 2∑

i=1

{
ǫ
2‖ui‖2

H1 + c‖∇z1‖r
Lq‖ui‖2

L2

}
+ c‖u‖2

Y

}
ds

≤
∫ t

0

{ 2∑

i=1

ǫ
2‖ui‖2

H1 + c‖u‖2
Y

}
ds ∀t ∈ S.

Therefore Gronwall’s lemma leads to u = 0 on S, and (4.9) completes the proof. �

5 Remarks and generalizations of the results of the paper

1. In the paper we studied the simplest situation of a heterostructure Ω with active inter-
face as indicated in Figure 1 consisting of two materials Ωα and Ωβ and an active interface
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Γ in between. The presented results can easily be generalized to the situation of multi-
material-heterostructures with several active interfaces. But for the analytic treatment we
need that active interfaces and the parts of the boundary of Ω, where Dirichlet boundary
conditions are prescribed, are strictly separated (see Lemma 3.3 and Lemma 4.5).

2. In our paper we restricted for an easier writing to the case of exactly one kind of traps
in the volume and one kind of traps at the interface. The results of the paper remain
true, if different kinds of traps (in possibly different subdomains) and different kinds of
traps on interfaces are considered. Such models are presented in [20], there also the 1D
simulation tool AFORS-HET for the simulation of solar cells and solar cell characterization
methods are introduced. Especially in solar cells with polycrystalline materials there
occur simultaneously acceptor like and donator like traps at grain boundaries which have
Gaussian like profiles with respect to their energy distribution where both profiles are
slightly shifted against each other.

3. Of course also volume or interface traps which can be occupied by multiple charge
carriers can be treated by our technique. We would have to use then charge numbers ap-
propriate for this situation and we would have to introduce additional ionization reactions.

4. In [11] we presented a (formal) generalized gradient flow formulation for electro-reaction-
diffusion systems on heterostructures and with active interfaces. This paper is an extension
of the ideas in [17] to heterostructures and to active interfaces, where at interfaces the
following effects are taken into account: drift-diffusion processes and reactions of species
living on the interface and transfer mechanisms allowing bulk species to pass the interface.

For the case of closed systems the equations discussed in the present paper can be writ-
ten as a generalized gradient flow, too, provided that the rate coefficients of the genera-
tion/recombination of electrons and holes k0, of the bulk ionization reactions ki, of the
ionization reactions at the interface kγ

Γi and the coefficients σγ
i in the thermionic emission

interface condition, i = 1, 2, γ = α, β, fulfill Wegscheider conditions allowing for detailed
balance of the reactions under consideration. Have in mind that in our notation the trans-
fer coefficients σγ

i are incorporated in the boundary value functions uγD
i (see assumption

(A5)).

6 Appendix

Let Ω ⊂ R
2 be a bounded Lipschitzian domain. We use Sobolev’s imbedding results (see

[15]) and the following trace inequality which can be derived from [15, p. 317, equ. 5] by
a modified application of Hölder’s inequality

‖w‖q
Lq(∂Ω) ≤ cΩ q‖w‖q−1

L2(q−1)(Ω)
‖w‖H1(Ω) ∀w ∈ H1(Ω), q ≥ 2. (6.1)

Moreover, we take advantage of the Gagliardo-Nirenberg inequality

‖w‖Lp ≤ cp ‖w‖1/p
L1 ‖w‖1−1/p

H1 ∀w ∈ H1(Ω) , 1 < p < ∞ (6.2)

(see [4, 19]). As an extended version of this inequality one obtains that for any δ > 0 and
any p ∈ (1,∞) there exists a cδ,p > 0 such that

‖w‖p
Lp ≤ δ ‖w ln |w|‖L1 ‖w‖p−1

H1 + cδ,p ‖w‖L1 ∀w ∈ H1(Ω). (6.3)
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This inequality is verified in [1] for bounded smooth domains and p = 3. But (6.3) is
true for bounded Lipschitzian domains and p ∈ (1,∞), too, since (6.2) is valid in this
situation, too. Finally, we make use of the following chain rule, which can be derived from
[2, Lemma 3.3].

Lemma 6.1 Let X be a Hilbert space, X∗ its dual, S = [0, T ]. Let F : X∗ → R be
proper, convex and semicontinuous. Assume that u ∈ H1(S,X∗), f ∈ L2(S,X) and
f(t) ∈ ∂F (u(t)) f.a.a. t ∈ S. Then F ◦ u : S → R is absolutely continuous, and

d F ◦ u

dt
(t) =

〈du

dt
(t), f(t)

〉
X

f.a.a. t ∈ S.
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