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Zero-dimensional symmetry

George Willis

This snapshot is about zero-dimensional symmetry.
Thanks to recent discoveries we now understand such
symmetry better than previously imagined possible.
While still far from complete, a picture of zero-dimen-
sional symmetry is beginning to emerge.

1 Anintroduction to symmetry: spinning globes and infinite
wallpapers

Let’s begin with an example. Think of a sphere, for example a globe’s surface.
Every point on it is specified by two parameters, longitude and latitude. This
makes the sphere a two-dimensional surface.

You can rotate the globe along an axis through the center; the object you
obtain after the rotation still looks like the original globe (although now maybe
New York is where the Mount Everest used to be), meaning that the sphere has
rotational symmetry. Each rotation is prescribed by the latitude and longitude
where the axis cuts the southern hemisphere, and by an angle through which it
rotates the Sphere. These three parameters specify all rotations of the sphere,
which thus has three-dimensional rotational symmetry.

In general, a symmetry may be viewed as being a transformation (such as a
rotation) that leaves an object looking unchanged. When one transformation
is followed by a second, the result is a third transformation that is called the
product of the other two. The collection of symmetries and their product

Note that we include the rotation through the angle 0, that is, the case where the globe
actually does not rotate at all.



operation forms an algebraic structure called a gr‘oup. Mathematicians have
used groups to classify symmetry since the nineteenth century, with some of the
most influential ones being Evariste Galois (1811-1832), Felix Klein (1849-1925),
and Sophus Lie (1842-1899), see [4, 3].

In the example of rotations of the globe, one could move the axis just a
little or vary the angle of rotation ever so slightly. Mathematicians say that
the rotational symmetries can be continuously parametrized or even smoothly
parametrized (meaning that there are no abrupt changes or “peaks” in the
parametrization). Zero-dimensional symmetry occurs when this is not the
case. The sphere again provides an example because its symmetries include
not just rotations, but also reflections about some bisecting plane. Reflections
reverse the orientation, but rotations don’t — if you are right-handed, then your
reflection in a mirror is left-handed, whereas simply turning around won’t make
you a left-hander. The same is true for two-dimensional beings that are drawn
on the globe. It is therefore not possible to make a smooth transition from a
rotation to a reflection. The full symmetry group of a sphere (including both
rotations and reflections) is called O(3). Let’s choose a bisecting plane (say,
the equatorial plane, but this doesn’t really matter). You can try to convince
yourself that every symmetry of the sphere can be generated by first rotating
the sphere and then (if necessary) reflecting it about the equatorial plane. In
other words: every element of O(3) can be written as a product of an element of
the group of rotations called SO(3) and the equatorial reflection (or the neutral
element that leaves every point fixed); we say that the group O(3) factors into
SO(3) and the group that consists of the equatorial reflection and the neutral
element.

The symmetries of any object always have a smooth factor and a zero-
dimensional factor 2! Sometimes, though, the smooth factor is trivial (containing
only the neutral element), and then we see zero-dimensional symmetry groups
in isolation. For example, a cube has only 48 symmetries, and it is not possible
to make a smooth transition from one to a different one — a vertex of the cube
is either rotated or reflected to another vertex or it isn’t.

Symmetries of wallpaper patterns are also examples of zero-dimensional
groups: imagine a regular pattern on an infinite walld and the ways in which it

A group is a set of objects (in the introductory example the rotations) that comes with a
product operation and one specific neutral element (in our case, the rotation through angle 0)
where every element is invertible (this means in our case that you can cancel the effect of one
rotation by applying a “backwards” rotation — what you obtain is the neutral element that
leaves the globe fixed), and where associativity of the product operation holds.

The neutral element that leaves every point fixed is always an element of both factors.
Here regular means that after you have decided what the pattern looks like on one tile and
how to combine the tiles, you have already chosen what the whole wall looks like; the first tile
just is repeated over and over using translations, reflections, rotations, and so-called glide-
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Figure 1: A ceiling in an egyptian tomb (left) and a wall in the Alhambra,
exhibiting different symmetry groups.

may be translated, rotated, or reflected and still look the same.5) There are 17
distinct symmetry groups of the plane (17 ways to generate a regular pattern
using essentially just one tile), and all of their corresponding patterns have been
used in wall designs, see [8].

Symmetries of crystal structures give further examples. A crystal of salt
has sodium and chlorine atoms arrayed in a regular fashion and, imagining the
pattern extending infinitely, there is a certain group of translations, rotations,
and reflections of the crystal that preserve the pattern. It may be shown
mathematically that there are only 32 crystallographic groups, That puts a
limit on the number of crystal shapes that may occur in nature [7].

2 Understanding zero-dimensional, non-discrete
symmetries: ancestral trees

All of the examples of symmetry mentioned so far are well-understood. The next
one is, too, but it is representative of a type that is not generally understood
and is the subject of current research. The example is the “tree” of ancestors
of an individual: a person at the “root” (let’s call her Polly) has two parents
(Fred and Martha), each of those has two parents, and so on, see Figure 2.
The ancestral tree has many symmetries. We might for example exchange
the positions of the Polly’s parents Fred and Martha (and also of all their
respective ancestors, that is, Grandpa George swaps places with Grandpa Gerd,

reflections (that is, combinations of translations and reflections). The tile is not necessarily
rectangular, it may as well be a parallelogram or a rhombus.

You can play with symmetries of wallpapers and draw beautiful patterns us-
ing the free software MORENAMENTS (downloadable from http://imaginary.org/de/
program/morenaments). Explanations are available here: http://imaginary.org/imaginary-
entdeckerbox.


http://imaginary.org/de/program/morenaments
http://imaginary.org/de/program/morenaments
http://imaginary.org/imaginary-entdeckerbox.
http://imaginary.org/imaginary-entdeckerbox.

and Grannies Gita and Gertrude swap places as well), or we might leave the

parents and grandparents in place and exchange the positions of the Grandpa
Gerd’s parents (and their respective ancestors).

What distinguishes this example from

. . . . . the previous ones is that we can fix the an-
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back, but flexibility remains to move still

@ @ @ earlier generations by symmetries, while

spheres and crystals are so rigid that once

@ @ three or four points are fixed by a symme-

try, so is the rest of the sphere or crystal.

Although zero-dimensional, the sym-

@ metry of the ancestral tree shares with

higher dimensional symmetry groups the

Figure 2: Polly and her infinitely property of being non-discrete. An object

many ancestors. has a discrete symmetry group if all sym-

metries that are close to fixing the points

of the object in fact do fix all points. The

group of symmetries of a salt crystal is an example of a discrete group: it is not

possible to move a sodium atom just a little bit in the crystal, it must be moved

to the place of another sodium atom if it moves at all; and any symmetry that

fixes four atoms (not all in the same plane) must already fix the whole crystal.

The three-dimensional group of rotations of the sphere SO(3) is non-discrete

because rotations through small angles go close to fixing all points of the sphere

while not doing so. The symmetry group of the ancestral tree, on the other

hand, is non-discrete because a symmetry can fix any number of generations

without fixing the whole tree. It is the only one among the examples we've seen
that is both zero-dimensional and non-discrete.

Recent discoveries appear to show us a path to an understanding of non-
discrete zero-dimensional symmetry that will match what we know about higher-
dimensional symmetry. Since any symmetry group has higher-dimensional and
zero-dimensional factors, that would complete our understanding of all non-
discrete symmetry. We will see next where that path might lead and some of
the difficulties that lie ahead.

3 Local theory

The parameters that determine the dimension of a higher-dimensional symmetry
group also allow us to analyse it. For example, the group SO(2) of rotations
of the circle in the plane may be parametrized by the angle of rotation, and a
rotation through an angle of ¥ followed by a rotation through an angle of ¢ has



the same effect as a rotation through an angle of ¥ + ¢. The product in SO(2)
therefore corresponds to adding the angles. In SO(3), however, the dependence
of the product on the three parameters describing the axes and angles of the
rotations is more complicated. It turns out, though, that for rotations through
small angles (in the locality of the neutral element), adding the parameters gives
a good approximation to the product. (If the instructions on a treasure map
say “walk 10 metres north from a certain point in Bermuda and then 10 metres
west”, you will still find the treasure if you walk west first and then north; if
the instructions are to travel 1,000 kilometres north and then 1,000 kilometres
west, you must follow them in that order if you wish to arrive at the treasure.)
Geometrically, this approximation corresponds to finding a flat tangent space to
a three-dimensional curved space. In the language of calculus, it corresponds to
taking a derivative. The same idea applies to any higher-dimensional symmetry
group and gives rise to a local theory of these groups. The local theory was
initiated by S. Lie [3, 5], and for this reason the higher-dimensional groups are
called Lie groups.

One of the main reasons why the local theory is useful is that it detects
important features of a symmetry such as the axis of a rotation. This may be
seen more clearly by considering the example of the projective symmetries of
the plane. These symmetries preserve straight lines and parallelism of lines,
although not necessarily angles, and allow scaling and shearing of the plane.
We might for example fix a point p in the plane and contract all distances by a
scaling factor of 2 in the horizontal direction from p and expand all distances in
the vertical direction by a scaling factor of /3.
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Figure 3: A circle centred at p and two straight lines under the effect of a
horizontal contraction with scaling factor 2 and a vertical expansion
with scaling factor V3.

All points on the horizontal line through p become twice as close to p under
this symmetry and all points on the vertical line through p become /3 times as



far away. Observe that this is a local property — we don’t need to look at the
whole plane to see the scaling factors, a small neighbourhood of p suffices.

There cannot be a local theory for zero-dimensional symmetry groups in the
same sense, since in this case we cannot meaningfully say that two symmetries
are close if their parameters differ only slightly. However, a local theory of
the non-discrete groups is currently being developed based on the idea that
for zero-dimensional groups “close” doesn’t mean “rotating by a small angle”
or “translating by a small distance” but “fixing a large part of the symmetric
object”, see [2]. This local theory considers symmetries that fix parts of the
object and studies problems like this: if the object is divided into halves A and
B, is it possible to fix A and not B with one symmetry and to fix B but not A
with a second symmetry?

A notion of scaling non-discrete zero-dimensional symmetry groups has
been developed separately, see [9]. The effect of the symmetry being zero-
dimensional is that the factor of expansion or contraction is always a positive
integer, it cannot be v/3 as in the example of the previous paragraph. If it is
equal to 1, the symmetry is like a rotation, and if it is bigger than 1, there is
something analogous to an axis of scaling. One of the challenges for research
is to understand how these ideas can be combined: in Lie groups the scaling
follows from the local theory, but in zero-dimensional groups local theory and
scaling methods are independent as far as we know today.
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Figure 4: Zero-dimensional, discrete symmetries in nature.

Another promising lead given by recent research is that we have learned
how to break down zero-dimensional symmetry groups into smaller factors,
which again has parallels with higher-dimensional symmetry. Symmetry groups
may often have more factors than just one higher-dimensional and one zero-
dimensional factor. Any translation of the plane, for example, may be obtained
by first translating by a certain distance in the horizontal direction and then by
a distance in the vertical direction: the group of translations of the plane thus
has the group of horizontal translations and the group of vertical translations as
factors. When a higher-dimensional group has factors in this way, its dimension
is equal to the sum of the dimensions of the factors. Since the dimension is
always a positive integer (or zero), there must be symmetry groups that cannot



be factored. The one-dimensional groups of translations of the line and rotations
of the circle are obviously two such groups, but there are others with dimension
greater than 1. The group of rotations of the sphere SO(3) is a three-dimensional
example for these so-called simple groups. Every higher-dimensional group may
be broken down into simple or one-dimensional factors, and the simple groups
have been classified and completely enumerated.

Until recently, it was difficult to see how to break zero-dimensional groups
down into simple pieces in a similar way because 04+ 0 = 0. However, new ideas
have now shown how general zero-dimensional groups may be decomposed into
simple pieces, see [1, 6]. Work is also being done to classify the simple groups
and, although enough examples have been found to show that there are too
many to enumerate them all, methods from the local theory are helping to
separate them into types. There is hope that we can learn enough about simple
groups to verify facts about general zero-dimensional symmetry by checking
the simple cases and then combining the information.

This is an exciting time for research on zero-dimensional symmetry. It is
more complicated than higher dimensional symmetry, but what we have learned
in recent years opens the prospect that complication can be turned into rich
understanding.
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