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Finding the semantic similarity in single-particle diffraction
images using self-supervised contrastive projection learning
Julian Zimmermann 1✉, Fabien Beguet1, Daniel Guthruf1, Bruno Langbehn 2 and Daniela Rupp1,3

Single-shot coherent diffraction imaging of isolated nanosized particles has seen remarkable success in recent years, yielding in-
situ measurements with ultra-high spatial and temporal resolution. The progress of high-repetition-rate sources for intense X-ray
pulses has further enabled recording datasets containing millions of diffraction images, which are needed for the structure
determination of specimens with greater structural variety and dynamic experiments. The size of the datasets, however,
represents a monumental problem for their analysis. Here, we present an automatized approach for finding semantic similarities
in coherent diffraction images without relying on human expert labeling. By introducing the concept of projection learning, we
extend self-supervised contrastive learning to the context of coherent diffraction imaging and achieve a dimensionality reduction
producing semantically meaningful embeddings that align with physical intuition. The method yields substantial improvements
compared to previous approaches, paving the way toward real-time and large-scale analysis of coherent diffraction experiments
at X-ray free-electron lasers.
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INTRODUCTION
A guiding principle in fundamental condensed matter research is
that for understanding function, we have to study structure (The
phrase was coined by Nobel laureate Francis Crick in his book
What Mad Pursuit: A personal view of scientific discovery)1.
Techniques based on lensless diffractive imaging, like X-ray
crystallography and coherent diffraction imaging (CDI), are
powerful and widely used tools to discover structures up to
atomic resolutions2. In the recent past, single-particle coherent
diffraction imaging using intense coherent X-ray pulses from
free-electron lasers (SP-CDI)2,3 has revolutionized the field of
structural characterization4–12. SP-CDI is a technique with which
in-situ measurements of isolated and non- fixated nano-scaled
targets can be acquired. Depending on the experimental scheme,
each recorded diffraction image is a complete and self-contained
experiment that needs individual analysis3. However, due to the
advent of high repetition-rate sources like the European XFEL13

and LCLS-II14, millions of images are typically recorded during
one experimental campaign15. Manual analysis of such amounts
of data represents an enormous problem. It may leave
researchers unable to analyze significant amounts of their data
comparatively as they have to resort to large-scale averaging,
which might wash out or conceal important information, or
manually select subsets of the dataset. In this work, we present
an embedding technique for diffraction images called contrastive
projection learning (CPLR) based on contrastive learning
(CLR)16,17. CPLR produces a dimensionality-reduced embedding
space with which semantic comparisons between diffraction
images become possible and, thus, enables human-level com-
parative analysis on big-data scale datasets.
At the very core of every comparative analysis is an assumption

establishing a similarity measure between samples. However,
current approaches for establishing such a measure for diffraction
images cannot compete with the perception of a trained
researcher. This perceived similarity, or semantic similarity, is
contextually aware; we adopt this term from the domain of natural

language processing. There it is used to differentiate between the
semantic—contextual—and the lexicographical—word for word—
similarity18,19. The lexicographical measures are in our case pixel-
wise or keypoint-based approaches. Please also compare the term
interference in ref. 20. In Human–Perceptual–Similarity, interference
is the distortion that a judged truth of a property—like the length
of a line—can exhibit. Meaning, the perceived length of the line is
determined not only by its length, but also by its surrounding),
whereas computational methods for diffraction image data
currently lack such awareness.
Available strategies for comparative analysis are based on either

supervised classifier schemes21,22 or unsupervised sorting meth-
ods23–27. However, all these methods come with significant trade-
offs: Supervised algorithms align with human perception and
produce high-accuracy results22,28 but are in real-world scenarios
unavailable as they require time- and labor-expensive manually
fabricated expert labels. Unsupervised routines work in such cases
but do not reach comparable accuracy levels and introduce
additional restrictions or requirements. For example, traditional
cluster techniques produce a lot of unwanted predictions23,
threshold-based approaches act primarily as hit-finder24,29,
autocorrelation-based methods only extract particle size informa-
tion and are computationally costly25, auxiliary approaches
rely on rarely available additional experimental data25, and
Fourier-inversion based techniques15,25,27 are only applicable to
diffraction images when the single scattering approximation is
valid30, meaning, where reconstruction by Fourier inversion is
physically meaningful10,31.
Our CPLR method can potentially improve all strategies

mentioned above; It can serve as an improved similarity measure
for unsupervised methods, as in the context of regular self-
supervised learning32–34, and can act as a powerful pretraining for
subsequent supervised or distillation-based training17. Furthermore,
CPLR directly establishes a way to find semantically similar diffraction
images in a fully self-supervised fashion. In self-supervised
contrastive learning, a supervised task is constructed by artificially
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creating label information via domain-specific augmentation strate-
gies16,35,36. In this work, we design an augmentation approach for
diffraction image data where a deep neural network contrasts
images from different coordinate projections.
The quality of the CPLR embedding space is evaluated using a

publicly available diffraction image dataset37 from an SP-CDI
experiment on superfluid helium nanodroplets, for which semanti-
cally sensitive expert labels are available12,22. Using the broadly
established linear evaluation protocol16,17,38, we show that our
method outperforms non-contrastive methods by a large margin
while improving the contrastive-learning baseline by 6 to 10%.
Figure 1 provides a concrete example of three diffraction

images from12, a, b, and c. Two images (b and c) are to be
compared to a. A human immediately identifies the elongated
streak-like feature in a as the dominant characteristic and can
identify b as being more similar to a than c is to a. And, indeed,
this is correct from a physical perspective. The nanoparticles’
structures that produce a and b are more similar to each other
than those that produce a and c12. However, from an algorithmic
perspective, this is not a trivial problem. Figure 1d shows for b and
c five similarity measures: the structural similarity index (SSIM)39,
the correlation of the principal components, the mean-squared-
error (MSE), the keypoint-based scale-invariant feature transform
(SIFT) distance—calculated using the ratio test as in ref. 40— and
our method (labeled CPLR). Color-coding is that the image that is
more similar to a is green, while the less similar image is orange.
The only measure that agrees with the human perception, and the
physics of the problem, is our CPLR method.
Our approach is not limited to data from SP-CDI experiments.

Theoretically, CPLR can be applied to diffraction data from all
experimental techniques operating in Polar coordinates, including
X-ray crystallography and traditional CDI approaches. Ultimately,
CPLR provides a path for analyzing the impending amounts of
diffraction data where the human perceived similarity is
maintained even among millions of diffraction images.

RESULTS
Contrastive learning is about augmentation, not architecture
In contrastive learning (CLR), we artificially create label informa-
tion for supervised learning by designing augmentation pipelines
that consider domain and task knowledge16. Therefore, CLR is an

instance of self-supervised learning41. The fundamental assump-
tion in self-supervised learning is that the input data contain
more task-specific information than sparse categorical ground
truth data in supervised learning41. Consequently, a careful
augmentation design should provide better results on down-
stream tasks than a supervised learning scenario41,42. While
improvements in accuracy in supervised learning are usually
related to architecture modifications, regularization, or loss
function, CLR is about domain-specific augmentation strategies
above anything else16,41. Formally, CLR is a technique to create an
embedding space from arbitrary input modalities, enabling
comparative analysis. CLR dates back to work done in the
nineties42 but only recently has seen a renaissance, yielding State-
of-the-art results in visual-16,17,38,43, audio-44–46, video-47–49, and
text-representation50,51 learning.

Contrastive baseline and contrastive projection learning
In this study, we use the experimental design presented in ref. 17,
called SimCLRv2, as a baseline to compare our results. A large
encoder and a smaller transformation neural network produce
the representations in two stages. First, the encoder acts as a
feature extractor; then, the transformation network learns an
optimized representation that minimizes the CLR loss, termed
normalized temperature-scaled cross-entropy loss (NT-Xent)52.
Conceptually, a duplicate is produced for each input image
where both images are heavily augmented. All duplicates form so-
called positive pairs with their originals, while all images with all
other images but their duplicates form negative pairs. Then, the
network learns to discriminate between positive and negative
pairs during training.
In contrastive projection learning (CPLR), we produce the

positive pairs not from the same image, as in refs. 16,17, but project
the diffraction images, which are naturally recorded in Polar
coordinates, to Cartesian coordinates. Figure 2i) and ii) provide a
schematic overview of the network design and the conceptual
idea. Using coordinate projections as an augmentation strategy
implicitly penalizes that trivial Polar symmetries are learned and
explicitly enforces that learned representations are invariant under
rotational and translational changes. A simple example can be
constructed with the help of Fig. 2iii). There, example images for
every class in the dataset are shown. While Fig. 2iii) is fully
explained in the following subsection, here, we concentrate on the
Polar and Cartesian projection of the Elliptical class - the first
column. The Polar form shows the characteristic Airy rings typical
for single-laser-shot and single-particle imaging data12. Usually,
learning rotational invariance in arbitrary image data is achieved
via random rotational transformations during the augmentation
stage of training a network. However, such a transformation would
yield no, or very little, change with such diffraction images due to
the high degree of rotational symmetry. Therefore, we encourage
the network to decouple the learned representation from
rotational symmetries by associating the Polar form with the
Cartesian form. Conceptually, this establishes a causal relation
between two fundamentally dissimilar images. In addition, after
the coordinate transformation, we leverage a stochastic augmen-
tation pipeline16,17. More details can be found in the Methods
section Augmentation strategy.

The dataset
Helium nanodroplets were imaged at XUV photon energies in a
single-shot single-particle experiment12 at the FERMI free-electron
laser53. The scattering images were recorded using a non-linear
MCP-type detector54 in a so-called wide-angle setting where each
diffraction image contains 3D-structural information and cannot
be reconstructed via Fourier inversion10,12,55. The publicly avail-
able and hand-curated dataset37 contains 7264 diffraction images
and is, to the best of our knowledge, the only dataset with

Fig. 1 Illustrating semantic similarity. a–c are diffraction images
taken from a publicly available dataset37 from an SP-CDI experiment
on superfluid helium nanodroplets12,22. a, b are semantically
similar while a and c are not. d shows four widely used similarity
measures—the structural similarity index (SSIM)39, the correlation of
the principal components, the mean-squared-error (MSE), and the
keypoint-based scale-invariant feature transform (SIFT) distance40—
that disagree with the human perception, while only our method
(labelled CPLR) agrees with it. Color-coding is that the pair of
images that is more-similar is green, while the one that is less-similar
is orange.
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semantically sensitive labels. It has been extensively benchmarked
in a supervised classification task22. We discarded 6000 diffraction
images as they either exhibited strictly round or no Airy patterns
at all. The round Airy patterns are by far the most common class,
and we removed them to create a more balanced dataset since
they can be reliably sorted using radial slices and a classical peak-
finder (see the section Size distribution of helium nanodroplets in
the supplemental material of ref. 12). However, more research
should go toward adapting recent advances in few- or single-shot
learning56–58 for diffraction imaging as a preprocessing step to
tackle inherent class imbalances that such datasets often have
with minimal labeling effort.
The provided expert labels can be used for multiclass and

multilabel analysis, meaning every diffraction image has binary label
information for multiple classes that are often mutually non-
exclusive. Figure 2iii) shows this dataset’s seven possible classes and
their absolute and relative occurrence. For every class, one example
is given in Polar and Cartesian form. To illustrate the multilabel
property: The characteristic streak-like feature that defines the
Streak class can also be found, for example, in the image for the
Layered class. For this reason, the given percentages do not add up
to 100%, as multiple images belong to multiple classes and most
classes are heavily under-represented. This pronounced multilabel
imbalance is typical for diffraction image datasets9,12.

Training and evaluation
As in ref. 17, we use a 2x-wide59, selective-kernel60 ResNet50-D61

network with squeeze-excitation blocks62 as feature extractor,
and a three-layer multi-layer-perceptron (MLP) as transformation
network. We train for 1000 epochs, with a batch size of 628,
using the LARS optimizer63 with a cosine schedule64, ten warmup
epochs65, and optimizing the NT-Xent loss52. Our projection
approach adds negligible computational cost to the vanilla CLR
baseline; We train for half an hour on four NVIDIA 3090 GPUs.
Training for 1000 epochs on datasets with more than a million
samples can be achieved using, for example, 128 TPU v3 cores
for 15 h16. The code, pretrained models, and training results are

openly available at https://gitlab.ethz.ch/nux/machine-learning/
contrastive_projection_learning.
The quality of the learned embedding space is evaluated using

the so-called linear evaluation protocol16,17,38, which is carried
out as follows: After self-supervised training, we freeze the
feature extractor network and use the first layer of the
transformation network (this is indicated by the green layer in
Fig. 2i)) as embedding space. Then, for every ground truth class
in the dataset, we train a linear classifier on top of the learned
representations and calculate the precision and recall score. Both
metrics are obtained for every class via 5-fold stratified cross-
validation to account for statistical fluctuations from sampling
and the dataset’s class imbalance. precision is a metric for how
many of the non-zero predictions are actually correct and recall
gives the percentage how many labels were missed. So, if 5 out
of 10 samples have a label of 1 and the rest a label of 0, and we
predict one of the five to be 1 but the rest as 0, then precision is
100%, but recall is only 20%, we refer the reader to section 11.1
in66 for further details. It has turned out to be important to use
precision and recall as most classes are very rare, with three out
of seven classes appearing in under 7% of all images. In these
cases, accuracy would produce very high scores for classifiers
predicting every image as not being part of any class. Moreover,
we calculate an additional metric called overlap score in order to
compare our method with metrics operating on raw images,
such as the structural similarity (SSIM) index39, the complex
wavelet SSIM (CWSSIM) index67, and the keypoint-based scale-
invariant feature transform (SIFT) distance40. Let SInput and
SNeighbor be the sets of labels for the input image and for an
image for which the overlap should be calculated. Then, the
overlap is the ratio between the cardinality of the intersection of
these two sets (∣SInput ∩ SNeighbor∣) and the minimum of the
individual cardinalities (min SInput

�
�

�
�; SNeighbor
�
�

�
�

� �
). Therefore, over-

lap is a measure of agreement between two images. However, it
is based directly on the label information for the given images
and not on the actual distance in embedding space. The
reported values in Tables 1 and 2 are the global average in
overlap for every image and its 13 closest images according to

Fig. 2 The details on the CPLR architecture, the concept, and the classes within the dataset. i) Schematic of the used architecture. In this
example, a positive pair, consisting of one diffraction image in its natural Polar and its Cartesian form, are passed on to the feature-extractor
network, a modified ResNet50-D61. The adjacent grey box then shows the transformation network, a three layer MLP, where the first layer—in
green—forms the embedding space within the here used SimCLRv217 framework. ii) The conceptual idea in more detail. The goal during
training is to maximize similarity (minimize distance in embedding space) for positive pairs and minimize similarity (maximize distance in
embedding space) for negative pairs. iii) The seven possible, non-exclusive classes of the here used multiclass and multilabel dataset. The top
row shows the diffraction image in Polar coordinates and the bottom row the Cartesian projection. In addition, the absolute and relative class
counts are given alongside the class names. Several different features can appear in a single image which then belongs to several classes
simultaneously. For example, a Streak feature is also present in the example for the Layered class.
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the pairwise-calculated distances. 13 was chosen as it corre-
sponds to 1% of all images in the dataset. We call this global
average the overlap score, opposed to simply overlap, and
consider it to be a local-neighborhood evaluation of disen-
tanglement in the embedding space. Consequently, an overlap
score of 0.5 corresponds to: On average, the 13 most similar
images shared 50% of the original image’s labels.
We compare our method to the SimCLRv2 baseline and other

approaches that have been used in the past with diffraction
images in the following sections. More details on training and
evaluation can be found in the Methods section Training and linear
evaluation strategy.

The embedding space is linearly separable into semantic
features
The evaluation scores after training are provided in Table 1. The
second and third columns show the precision and recall score of

the linear evaluation protocol, and the last two columns show the
used metric for calculating the pairwise distances to calculate the
overlap score, which is given in the last column. Contrastive-based
shows the results for the CLR baseline and our CPLR method. The
arrows indicate the coordinate projections used, where the first
term is used for inference and the second is used for constructing
the contrastive task. Consequently, Polar⇔ Polar and Cartesian⇔
Cartesian are cases of the standard CLR framework with either
purely unmodified (Polar) or purely projected (Cartesian) diffrac-
tion images. Cartesian⇔ Polar and Polar⇔ Cartesian are cases of
our CPLR method, where the difference between the two is that
we changed the input for inference at evaluation time to either
the Cartesian or the Polar form. Continuous latent variables and
variational Bayesian methods are techniques used previously in
the context of diffraction images. More details are given in the
Methods section Non-contrastive-based methods. Random baseline
gives the result for an artificial embedding space built from
uniform noise; this is the lowest possible score. This baseline is
equivalent to a random guesser with no learned information
about the dataset. Direct measures are methods applied directly
to the images, which cannot be evaluated using the linear
evaluation protocol.
All methods except for the Direct measures are trained/run five

times using five different integer random_state keys where the
evaluation scores were each time obtained via 5-fold stratified
cross-validation. The macro average see section 13.6 in ref. 68)
over all classes for all train and cross-validation runs is given in
the table. The standard deviation of all methods is equal to or
below 0.01.
Compared to the CLR baseline, the CPLR method yields

significant improvements on all metrics improving precision
relative by 6% (from 0.49 to 0.52) and recall by 10% (from 0.50
to 0.55). Relative to the best non-CLR methods (VAE for precision
and all but UMAP for recall), the CPLR method improves precision
by 35% (from 0.34 to 0.52) and recall by 36% (from 0.35 to 0.55). In
addition, the overlap score is relatively improved by about 6%
(from 0.49 to 0.52) compared to the CLR baseline and 17% (from
0.43 to 0.52) compared to the two best PCA-based approaches.
CPLR is the only method that achieves precision and overlap
scores above 0.50. To put these results into perspective, a fully
supervised ResNet architecture can achieve a global Precision
score of 0.922 and a Recall of 0.870 on this dataset22. So, while the
CPLR method provides a significant improvement over all other
methods, the gap in performance highlights the difficulty that
diffraction imaging datasets represent, as contrastive learning
using non-scientific data already achieves accuracies comparable
to supervised learning scenarios16,17.

CPLR is more robust with fewer samples
The general idea of using the linear evaluation protocol for
evaluation is to look for linearly separable regions in the
embedding space. Therefore, this method only applies to one-
hot (a multinomial distribution where the number of trials (n) is
equal to the number of possible labels (nlabel) and with
probabilities pn= 1/nlabel) ground truth data, meaning multiclass
but single label. However, the helium nanodroplets dataset has
multiclass and multilabel (a categorical distribution with number
of categories k= 1, and with probabilities pn= 1/nlabel) ground
truth data, where each image has multiple associated labels.
Moreover, as typical in datasets on helium nanodroplets, the
dataset is heavily unbalanced, where simpler shapes, like Elliptical,
dominate other classes9.
It is, therefore, instructive to look at the individual averages for

every class, which are given in Table 2. The CPLR method performs
significantly better than the CLR baseline and non-contrastive
methods in linear evaluation. The most significant improvement is
with rarely occurring classes that appear only in ≤7% of all images.

Table 1. Macroaverage (The macroaverage computes the average
independently for each class and then takes the global average.
Thereby, treating all classes equally. A microaverage aggregates each
contribution of all classes first and averages that. For a discussion on
macro- and microaveraging see section 13.6 in ref. 68.) results on the
helium nanodroplets dataset.

Linear evaluation Local similarity

Method Precision Recall Measure Overlap

Contrastive-based

CLR

Polar⇔ Polar 0.49 0.50 Cosine 0.49

Cartesian⇔ Cartesian 0.49 0.48 Cosine 0.43

CPLR

Cartesian⇔ Polar 0.51 0.54 Cosine 0.52

Polar⇔ Cartesian 0.52 0.55 Cosine 0.52

Continuous latent variables methods

Factor Analysis 0.28 0.35 Euclidean 0.28

PCA 0.29 0.35 Euclidean 0.40

Correlation 0.43

Kernel PCA 0.28 0.35 Euclidean 0.43

Correlation 0.40

UMAP75 0.30 0.31 Euclidean 0.41

Variational Bayesian methods

VAE (A categorical distribution
with number of categories
k= 1, and with probabilities
pn= 1/nlabel)76,77

0.34 0.35 Wasserstein
W2

0.42

Random baseline

Uniform Noise 0.23 0.27 Euclidean 0.28

Direct measures

SSIM (see section 13.6 in ref. 68) N/A N/A Custom 0.37

CWSSIM67 N/A N/A Custom 0.36

SIFT40 N/A N/A Euclidean 0.32

Contrastive-based are the results for the CLR baseline and the CPLR
method, where the arrows indicate with which projections the contrastive
task was constructed. Continuous latent variables or variational Bayesian
methods list techniques that have been used with diffraction data in the
past. Random baseline gives the result for an artificial embedding space
built from uniform noise, this is the lowest possible score. Direct measures
are applied directly to the images, and cannot be evaluated using the
linear evaluation protocol. All methods except for the Direct measures
are trained/ran for five times were each time the evaluation scores were
obtained via 5-fold stratified cross-validation. The standard deviation of all
methods is equal or below 0.01. The best result for each score is given in
bold letters.
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VAE and PCA-based techniques fail entirely to place these
diffraction images in a linearly separable region of the embedding
space, resulting in poor precision and recall scores. However, the
CLR baseline also yields limited success in the case of radial
symmetry-breaking features like the Newton Rings and Layered
class. There, the diffraction images contain features that either
break radial symmetry (Layered) or introduce a second radially
symmetric feature (Newton Rings), cf. Fig. 2iii), which in combina-
tion with a low class-count brings the CLR method to its limits. The
symmetry-breaking projection of the CPLR method helps in those
cases and yields better results when fewer images are available.
A qualitative comparison of the CPLR, CLR, and VAE results is

given in Fig. 3i) to iii). In each plot, the column Input image shows
the same three diffraction images, randomly chosen out of the
three classes Streak, Layered, and Double Rings. Next to each input
image are the four diffraction images belonging to the four closest
embeddings in the embedding space. Additionally, every image is
augmented in the top left corner by the class names given in the
ground truth data and, for all images but the input image, by the
overlap score with its corresponding input image.
The images for the Streak/Bent class combination in the first

row show strong overlap scores for all three frameworks, where
the averages of the shown four nearest neighbors are 1.00 for
CPLR, 0.92 for CLR, and 0.79 for VAE. However, only the
contrastive-based methods placed those embeddings of images
next to each other where the characteristic Streak feature is
orientated and elongated differently than in the input image. We
consider this a strength highlighting that both contrastive
methods focus more on the semantics within a diffraction image
than the pixel-wise similarity. This can also be seen in the Streak/
Bent/Layered class combination in the second row of Fig. 3, where
the direction of the characteristic Streak and Bent features vary
substantially in size and orientation for both CLR-based methods
but are identically aligned within the nearest neighbors of the
VAE framework.
As already discussed above, our CPLR method outperforms the

baseline CLR methods, especially in scenarios with low sample
counts and symmetry-breaking features. This behavior is best seen
in the second row for the Streak/Bent/Layered class combination.
Only 27 images in the dataset have a Layered label assigned to
them, and the CLR method fails to learn this characteristic having
an average overlap score of 0.25 for this example and only placing
one additional image with a Layered label near the input image in
the embedding space. On the other hand, the CPLR method
performs significantly better, with an average overlap score of 0.67

and placing two images with a Layered label, two with a Streak,
and one with a Bent label next to the input image.
This observation also holds for the third example with the

Elliptical/Double Rings example, where the CPLR method reaches
an average overlap score of 0.58, compared to 0.54 and 0.38 for
the CLR and the VAE method, respectively.
These qualitative observations, along with the quantitative

results presented above, show conclusively that the CPLR method
is introducing significant improvements compared to previous
methods for finding the semantic similarity in diffraction images
and the baseline CLR method.

DISCUSSION
We have introduced a method for finding the semantic similarities
in diffraction images without relying on expert labeling. Based on
contrastive learning (CLR), we introduced contrastive projection
learning (CPLR), where the contrastive learning task is constructed
from coordinate-projections of an input diffraction image and not
from the same image as in CLR. This relatively easy alternation of
the learning scenario substantially improves the quality of the
learned embedding space on all metrics and scores. CPLR,
therefore, provides a much-needed pathway for the upcoming
big-data challenges within the coherent diffraction imaging (CDI)
community since similarity calculations are at the core of almost
every segmentation, classification, and clustering algorithm. Con-
sequently, CPLR can be implemented as a stand-in-replacement for
other similarity metrics in all so-far published classification and
clustering approaches for diffraction images21–27,69–71, potentially
improving a wide range of long-established working routines in
research groups.
In addition, our method can, theoretically, also be applied to all

data that inherit Polar symmetry, such as in X-ray crystallography.
Our results have the potential to enable multiple future

possibilities. For example, currently, 3D reconstruction via CDI
methods can either be done in the small-angle regime, where
reconstruction by Fourier inversion is possible10,31, using the
Expand-Maximize-Compress (EMC) algorithm72, or in the wide-
angle regime, via a recursive forward-fitting Multi-Slice-Fourier-
Transform (MSFT) approach10,31,55. In both cases, the similarity
between diffraction images needs to be calculated. As of today,
the EMC method can be applied to datasets on the order of
millions of images15,27. However, the similarity calculation is
currently done using the cross-correlation between radial intensity
profile lines of the diffraction images at different angles15,27, which
is computationally costly, and, as the authors in27 pointed out,

Table 2. Results for every class in the helium nanodroplets dataset.

CPLR CLR VAE Kernel PCA

Linear eval. Similarity Linear eval. Similarity Linear eval. Similarity Linear eval. Similarity

Class nabs nrel Precision Recall Overlap Precision Recall Overlap Precision Recall Overlap Precision Recall Overlap

Elliptical 793 62.9 % 0.79 0.77 0.65 0.78 0.77 0.65 0.71 0.71 0.66 0.68 0.64 0.61

Streak 228 18.1 % 0.91 0.90 0.66 0.89 0.86 0.67 0.83 0.72 0.61 0.46 0.47 0.57

Bent 367 29.1 % 0.51 0.53 0.48 0.51 0.51 0.49 0.40 0.50 0.44 0.35 0.41 0.41

Asymmetric 358 28.4 % 0.42 0.38 0.55 0.38 0.40 0.55 0.33 0.33 0.56 0.29 0.37 0.52

Newton Rings 78 6.2 % 0.32 0.34 0.51 0.24 0.25 0.48 0.06 0.04 0.48 0.09 0.21 0.44

Double Rings 38 3.0 % 0.34 0.40 0.45 0.34 0.40 0.43 0.05 0.04 0.43 0.06 0.22 0.41

Layered 27 2.1 % 0.37 0.37 0.33 0.31 0.32 0.30 0.02 0.09 0.26 0.08 0.25 0.29

Compared to table 1, we only show the four best-performing methods, namely our CPLR (Polar ⇔ Cartesian) method along with the CLR (Polar ⇔ Polar)
baseline, and the VAE, and Kernel PCA (Using the euclidean metric) approaches. All methods have been trained/run for five times where each time the
evaluation scores where obtained via 5-fold stratified cross validation. The standard deviation of all methods and for all classes is equal or below 0.01. The best
result for each score is highlighted in bold letters.
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may not be sufficient for more complex patterns. As with the
MSFT method, similarity calculations are currently done using
either the MSE or even manual estimation by researchers10,12,31,73.
Ultimately, CPLR can provide a path to apply the EMC algorithm

on more complex datasets, get better results on simpler datasets,
and replace the MSE metric in MSFT-based approaches.
Furthermore, it enables quick and reliable statistical reasoning

on the variability and occurrence of features within diffraction
image datasets, as was done in ref. 12, for example.

Finally, recent research on contrastive methods in computer
vision43,74 promises accuracies comparable to supervised meth-
ods or surpassing them and can be easily implemented into our
framework.
Therefore, this manuscript stands as a stepping stone for

adapting self-supervised learning to the domain of diffraction
imaging.
All code for the discussed experiments, pretrained models,

and extracted embedding spaces are available at our ETH
Gitlab repository (https://gitlab.ethz.ch/nux/machine-learning/
contrastive_projection_learning).

METHODS
Augmentation strategy
A well-defined augmentation strategy is critical in contrastive
learning16. As pointed out by16,17, the essential parts of
constructing this strategy are random cropping and random
color distortion transformations. The latter is targeted towards
histogram and color-channel correlation-based overfitting of the
network. Since diffraction data is monochrome, we replace the
channel-independent RGB distortion with a single-channel jitter
distortion. Furthermore, as in16,17, we use a probabilistic
augmentation strategy that includes flip, rotation, crop & resize,
jitter, fill, and translation transformations on all input patches,
see also figure 4 in ref. 16. However, our crop & resize routine is
not changing the aspect ratio, as is usually done in other
contrastive learning augmentation pipelines. Changing the
aspect ratio would break the causal relation between the Polar
and Cartesian projections. Every transformation has a fixed
probability of 50% for being applied at every invocation. We
found that no single augmentation strategy is sufficient for
achieving the here presented performance, but the composition
of all operations is needed, which is in line with the findings in16.
We implemented the entire pipeline using TensorFlow augmen-
tation layers placed on the GPU itself. Code is available in the
official repository (https://gitlab.ethz.ch/nux/machine-learning/
contrastive_projection_learning).

Training and linear evaluation strategy
The NT-Xent loss that is minimized during training is given by:

li;j ¼ � log
exp sim zi ; zj

� �
=τ

� �

P2N
k¼1 1½k≠i� exp sim zi ; zkð Þ=τð Þ ; (1)

where sim u; vð Þ ¼ uTv= jjujj jjvjjð Þ denotes the cosine similarity
between two vectors u and v, 1[k≠i]∈ {0, 1} is an indicator function
evaluating to 1 if, and only if, k ≠ i, and τ denotes a temperature
parameter. We performed extensive hyper-parameter optimization
to obtain the best possible values for the temperature parameter τ,
which are 0.200 for Polar⇔ Polar, 0.200 for Cartesian⇔ Cartesian,
0.075 for Cartesian⇔ Polar, 0.100 for Polar⇔ Cartesian. The results
of this hyper-search, as well as scripts to re-run it, can be found in
the official repository (https://gitlab.ethz.ch/nux/machine-learning/
contrastive_projection_learning).
The linear classifier we used for linear evaluation was a single-

layer perceptron with an inverse-scaling learning rate schedule
and a l2 penalty of 0.0001. We used the implementation
provided by the sklearn Python package. Code is available in the
official repository (https://gitlab.ethz.ch/nux/machine-learning/
contrastive_projection_learning).

Non-contrastive-based methods
Listed in Table 1 are the Factor-Analysis (FA), the Principal-
Component-Analysis (PCA), the Kernel-PCA, the Uniform Manifold
Approximation & Projection (UMAP)75, and the Variational
Autoencoder (VAE)76,77 methods. All of these have been used

Fig. 3 Qualitative results on the helium nanodroplets dataset. In i)
to iii) the column Input image shows three randomly chosen images
—from a pre-defined class combination. Next to the input images
are the four closest diffraction images according to calculated
pairwise distances for the CPLR, CLR, and VAE method using the
metric given in Table 1. Every image is augmented in the top left
corner by the class names given in the ground truth data and—for
all images but the input image—the overlap score with its
corresponding input image.
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with various forms of spectrographic image data. FA- and PCA-
based methods are parameter-free dimensionality reduction
techniques that are regularly used within all scientific disciplines;
while FA considers the dataset’s variance, PCA considers the
covariance of the data. FA and PCA-based methods have been
used with powder diffraction data78,79 and X-ray diffraction phase
analysis80 and as a dimensionality reduction for subsequent
classification81 and clustering23.
A VAE is a generative variational Bayesian model where the

input information is encoded to a low dimensional representa-
tion via an encoder function and then recreated by a decoder
function. The loss function, called the evidence lower bound, is
a lower bound on the marginal likelihood76. VAEs have been
used with diffraction images in various tasks, such as anomaly-
detection82, dimensionality reduction83, phase reconstruc-
tion84,85, and modeling the continuous 3D shape transition in
heterogeneous samples27. We train a β-VAE with β= 1 and with
a controlled capacity increase to C= 25, as described in77, using
the code from https://gitlab.ethz.ch/nux/machine-learning/
disentangling-vae.
UMAP is a dimensionality reduction technique based on

manifold learning and topological data analysis and has been
used with other spectrographic image data, such as Ronchi-
grams86 and Audio spectrograms87,88. We use UMAP with the
default parameters and a fixed integer random_state for
reproducibility.
The size of the low-dimensional representation for all men-

tioned methods was set to 1024, identical to the dimensionality of
the CLR-based representation space.

DATA AVAILABILITY
All code for the discussed experiments, pretrained models, data for the figures, and
extracted embedding spaces of all models are available at our ETH Gitlab repository
(https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning).

CODE AVAILABILITY
The code, pretrained models, and training results are openly available at (https://
gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning).
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