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A FAST, STABLE AND ACCURATE NUMERICAL METHOD FORTHE BLACK�SCHOLES EQUATION OF AMERICAN OPTIONSMATTHIAS EHRHARDTWeierstrass Institute for Applied Analysis and Sto
hasti
sMohrenstr. 39, D�10117 Berlin, Germanyehrhardt�wias-berlin.dehttp://www.wias-berlin.de/�ehrhardtRONALD E. MICKENSDepartment of Physi
s, Clark Atlanta University,Atlanta, GA 30314, USArohrs�math.gate
h.eduRe
eived (Day Month Year)Revised (Day Month Year)In this work we improve the algorithm of Han and Wu (SIAM J. Numer. Anal. 41(2003), 2081�2095) for Ameri
an Options with respe
t to stability, a

ura
y and orderof 
omputational e�ort. We derive an exa
t dis
rete arti�
ial boundary 
ondition (ABC)for the Crank�Ni
olson s
heme for solving the Bla
k�S
holes equation for the valuationof Ameri
an options. To ensure stability and to avoid any numeri
al re�e
tions we derivethe ABC on a purely dis
rete level.Sin
e the exa
t dis
rete ABC in
ludes a 
onvolution with respe
t to time with aweakly de
aying kernel, its numeri
al evaluation be
omes very 
ostly for large�time sim-ulations. As a remedy we 
onstru
t approximate ABCs with a kernel having the formof a �nite sum�of�exponentials, whi
h 
an be evaluated in a very e�
ient re
ursion. Weprove a simple stability 
riteria for the approximated arti�
ial boundary 
onditions.Finally, we illustrate the e�
ien
y and a

ura
y of the proposed method on severalben
hmark examples and 
ompare it to previously obtained dis
retized ABCs of May�eldand Han and Wu.Keywords: Bla
k�S
holes equation; 
omputational �nan
e; option pri
ing; �nite di�er-en
e method; arti�
ial boundary 
ondition; free boundary problem; Ameri
an option.1. Introdu
tionThe famous Bla
k�S
holes equation is an e�e
tive model for option pri
ing. It wasnamed after the pioneers Bla
k, S
holes and Merton who suggested it 1973 [9℄,[29℄ and re
eived in 1997 the Nobel Prize in E
onomi
s for their dis
overy [16℄.Mathemati
ally it is a �nal value problem for a se
ond order paraboli
 equation. A
on
ise derivation of the Bla
k�S
holes equation 
an be found in [39℄.An option is a 
ontra
t that admits the owner the right (not the duty) to buy(`
all option' ) or to sell (`put option' ) an asset (typi
ally a sto
k or a par
el of1



2 Matthias Ehrhardt and Ronald E. Mi
kensshares of a 
ompany) for a prespe
i�ed pri
e E (`strike pri
e' ) by the date T tore
eive some payo�s. The basi
 problem here is to spe
ify a fair pri
e to 
harge forpermitting these rights. A 
losely related question is how to hedge the risks thatarises when selling these options. `European' options 
an only be exer
ised at theexpiration date T . For `Ameri
an' options exer
ise is permitted at any time until theexpiry date. The notion European or Ameri
an are not meant geographi
ally, theyjust de
lare the type of option. We remark that most of the options traded in sto
kex
hanges are of Ameri
an style. While for European options the Bla
k�S
holesequation results after a standard transformation in a boundary value problem (that
an be solved expli
itly for 
ases with 
onstant 
oe�
ients and simple payo�s [39℄),for Ameri
an options it results in a free boundary problem for the heat equation.In general, 
losed�form solutions do not exist (espe
ially for Ameri
an options)and the solution has to be 
omputed numeri
ally (
f. the referen
es given in [20℄).The standard approa
h for solving the Bla
k�S
holes equation for Ameri
an options
onsists in transforming the original equation to a heat equation posed on a semi�unbounded domain with a free boundary [34℄, [39℄. For a new alternative dire
tmethod using the Mellin transformation we refer the reader to [23℄, [31℄.Usually �nite di�eren
es [37℄ or �nite elements [1℄ are used to dis
retize this heatequation and an arti�
ial boundary 
ondition (ABC) is introdu
ed in order to 
on-�ne the 
omputational domain appropriately. If the solution on the 
omputationaldomain 
oin
ides with the exa
t solution on the unbounded domain (restri
ted tothe �nite domain), one refers to this boundary 
ondition as a transparent boundary
ondition (TBC). While the numeri
al treatment of the free boundary has attra
teda lot of attention and di�erent strategies were developed (e.g. [11℄) less attention waspayed to the a

urate treatment of the arti�
ial boundary even though the analyti
TBC for the heat equation is well�known, 
f. [19℄, [32℄, [41℄. In fa
t, many textbookspropose to use a homogeneous Diri
hlet boundary 
ondition at some (su�
ientlylarge) �nite distan
e [39℄.This very simple method is 
learly stable and widely used in pra
ti
e oftenjointly with an unequally spa
ed grid, that be
omes 
oarser towards the arti�
ialboundary. While these frequently used approa
h might be easy to use and to ex-tend for more general settings, from a mathemati
al point of view one must arguethat using a Diri
hlet boundary 
ondition means solving a quite di�erent model ofequation. I.e. using Diri
hlet 
onditions 
ommits an error in the model right fromthe beginning and there exists no error estimate for the Ameri
an Option problemthat tells in advan
e how far this Diri
hlet boundary should be for a pres
ribederror toleran
e. Moreover, unequally spa
ed grids (as mentionend above) lead towell�known internal grid re�e
tions [26℄; another fa
tor that must be in
luded inan error estimate.Hen
e the "
orre
t" way of solving this kind of problem is to limit the domainby arti�
ial BCs (instead of solving a di�erent model with Diri
hlet BCs) and im-plement/approximate the arti�
ial BC su
h that one 
an prove stability, does not
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k�S
holes Equation of Ameri
an Options 3in
rease the overall e�ort and have a high a

ura
y. Kangro and Ni
olaides 
on-sidered in [24℄ a multidimensional Bla
k�S
holes equation for European optionsand derived pointwise bounds for the error 
aused by various boundary 
onditionsimposed on the arti�
ial boundary. Wind
li�, Forsyth and Vetzal [40℄ derived ne
-essary stability 
onditions for a �nite di�eren
e dis
retization of the Bla
k�S
holesequation for European options with the 
ommon linear asymptoti
 boundary 
on-dition, i.e. assuming that the se
ond derivative of the option value vanishes as themarket pri
e be
omes large. Re
ently, Han and Wu [20℄ proposed a dis
retizationstrategy of the analyti
 TBC to solve the Bla
k�S
holes equation for the Ameri
anoption problem in 
onjun
tion with the Crank�Ni
olson s
heme. The authors alsointrodu
ed a simple expli
it treatment of the free boundary.However, ad-ho
 dis
retizations of an analyti
 TBC may indu
e numeri
al re-�e
tions at this arti�
ial boundary and also may destroy the un
onditional stabilityof the Crank�Ni
olson �nite di�eren
e method. To over
ome both problems a so�
alled dis
rete TBC (DTBC) is derived from the fully dis
retized problem on theunbounded domain. This dis
rete TBC is 
ompletely re�e
tion�free and 
onservesthe stability property of the underlying s
heme. Sin
e the dis
rete TBC in
ludes a
onvolution with respe
t to time with a weakly de
aying kernel, its numeri
al eval-uation be
omes very 
ostly for large�time simulations. As a remedy we 
onstru
tan approximate dis
rete TBC with a kernel having the form of a �nite sum-of-exponentials [5℄, whi
h 
an be evaluated by a very e�
ient re
ursion formula.While we fo
us here on the standard linear Bla
k�S
holes model in one dimen-sions we want to point out that our new dis
rete approa
h generalizes to non�
onstant 
oe�
ients (e.g. if the volatility is a fun
tion of (S, t) obtained by 
alibra-tion to market pri
es) using themodi�ed Lentz's method in the Z�transformed spa
e[15℄, the 'iteration from in�nity' method [6℄ or by extra
tion of sets of limiting so-lutions [42℄. Moreover, this approa
h 
an be extended to systems of equations [44℄,higher�dimensions (multi�asset options) [4℄ and even to nonlinear Bla
k�S
holesmodels [3℄, [45℄.This paper is organized as follows: �rst we introdu
e the Bla
k�S
holes equationand re
all the standard transformations to a forward�in�time heat equation. In�3 we derive the analyti
 TBC for the heat equation and for the 
ase of time�dependent parameters. To in
orporate the TBC into a �nite di�eren
e method wereview in �4 two approa
hes to dis
retize the analyti
 TBC and 
onstru
t a DTBCfor the Crank�Ni
olson dis
retization. In �6 we dis
uss the numeri
al treatmentof the free boundary. To redu
e the numeri
al e�ort we present in �5 an e�
ientimplementation by the sum-of-exponentials approximation. Afterwards we analyzein �7 the stability of the resulting numeri
al s
heme. Finally we illustrate in �8 thea

ura
y and e�
ien
y of the new method with a numeri
al example and 
ompareit to the known dis
retized TBCs of May�eld [27℄ and Han and Wu [20℄.



4 Matthias Ehrhardt and Ronald E. Mi
kens2. The Bla
k�S
holes equationIn this paper we 
onsider an Ameri
an 
all option. The treatment of an Ameri
anput option is analogous. The value of a 
all option is denoted by V and depends onthe 
urrent market pri
e of the underlying asset, S, and the remaining time t untilthe option expires: V = V (S, t). The Bla
k�S
holes equation is a ba
kward�in�timeparaboli
 equation and posed on a time�dependent domain
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+(r−D0)S

∂V

∂S
−rV = 0, 0 < S < Sf (t), 0 ≤ t < T, (2.1a)where σ denotes the annual volatility of the asset pri
e, r the risk�free interest rateand T is the expiry date (t = 0 means 'today'). We assume that dividends are paidwith a 
ontinuous yields of 
onstant level D0 > 0. Note that we have to in
lude thepayment of dividends. Otherwise, for D0 = 0 early exer
ise does not make senseand the Ameri
an 
all would be equivalent to the European one [29℄.In (2.1a) Sf (t) denotes the (a priori unknown) free boundary and is also 
alled`early exer
ise boundary' or 'optimal exer
ise pri
e'. The Ameri
an 
all optionshould be exer
ised if the value of the asset S is equal or greater than Sf (t) attime t; otherwise the option should be held. Thus the free boundary Sf (t) separatesthe holding region (S < Sf (t)) from the exer
ise region (S ≥ Sf (t)).The �nal 
ondition (`payo� 
ondition') at the expiry t = T 
an be written as

V (S, T ) = (S − E)+, 0 ≤ S < Sf (T ), (2.1b)with the notation f+ = max(f, 0). Here E > 0 denotes the previously agreedexer
ise pri
e or `strike', of the 
ontra
t and Sf (T ) = max(E, rE/D0).The `spatial' or asset�pri
e boundary 
onditions at S = 0, and S = Sf (t) are
V (0, t) = 0, 0 ≤ t ≤ T, (2.1
)

V (Sf (t), t) = (Sf (t) − E)+,
∂V

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T, (2.1d)i.e. at S = 0 the option is worthless. Note that we need two 
onditions at the freeboundary S = Sf (t). One 
ondition is ne
essary for the solution of (2.1a) and theother one is needed for determining the position of the free boundary Sf (t) itself.The �rst 
ondition in (2.1d) ('value mat
hing' 
ondition) is the 
ontinuity of themapping S 7→ V (S, t) sin
e V (S, t) = (S − E)+ = S − E, in the exer
ise region

S ≥ Sf(t). At S = Sf (t) one requires additionally that V (S, t) tou
hes the payo�fun
tion tangentially ('high 
onta
t 
ondition'), i.e. the fun
tion S 7→ ∂V (S, t)/∂Sshould be 
ontinuous at S = Sf (t). The 
onditions (2.1d) are jointly referred as the'smooth�pasting 
onditions'. Note that the later 
ondition 
an be derived from anarbitrage argument [37℄, [39℄.Sin
e Ameri
an options 
an be exer
ised at any time, we have the a priori bound
V (S, t) ≥ (S − E)+, S ≥ 0, 0 ≤ t ≤ T.If V (S, t) < (S − E)+ for one value S > E and t ≤ T then the pur
hase of a
all for V and the immediate exer
ise of this option to buy the underlying asset
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k�S
holes Equation of Ameri
an Options 5for E (although its value is S) would lead to an instantaneous risk�free pro�t of
S − V −E > 0, in violation to the no�arbitrage prin
iple. Of 
ourse, this reasoningignores transa
tion 
osts.2.1. The transformation to the heat equationIn the sequel we shall show how to transform (2.1a) into a pure di�usion equation(
f. [39, � 5.4℄). First it is 
onvenient to apply a time reversal and transform (2.1)to a forward�in�time equation by the 
hange of variable t = T − 2τ/σ2. The newtime variable τ stands for (up to the s
aling by σ2/2) the remaining life time of theoption. We denote the new variables by:

Ṽ (S, τ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, S̃f (τ) = Sf

(
T − 2τ

σ2

)
,

r̃ =
2

σ2
r, D̃0 =

2

σ2
D0, T̃ =

σ2

2
T.The resulting forward�in�time equation then reads:

∂Ṽ

∂τ
= S2 ∂2Ṽ

∂S2
+ (r̃ − D̃0)S

∂Ṽ

∂S
− r̃ Ṽ , 0 < S < S̃f (τ), 0 ≤ τ < T̃ , (2.2a)with the initial 
ondition

Ṽ (S, 0) = (S − E)+, 0 ≤ S < S̃f (0) = S0, (2.2b)and the boundary 
onditions
lim
S→0

Ṽ (S, τ) = 0, 0 ≤ τ ≤ T̃ , (2.2
)
Ṽ (S̃f (τ), τ) = (S̃f (τ) − E)+,

∂Ṽ

∂S
(S̃f (τ), τ) = 1, 0 ≤ τ ≤ T̃ . (2.2d)The right hand side of (2.2a) is a well�known Euler`s di�erential equation andtherefore it is standard pra
ti
e (
f. [34, � 4.1℄) to transform (2.2a) to the heatequation. To do so, we let

α = −1

2
(r̃ − D̃0 − 1), β = −α2 − r̃,and use the 
hange of variables

S = Eex, Ṽ (S, τ) = Eeαx+βτv(x, τ). (2.3)Then problem (2.2) is equivalent to the free boundary problem for the heat equation:
∂v

∂τ
=

∂2v

∂x2
, −∞ < x < xf (τ), 0 ≤ τ < T̃ , (2.4a)where xf (τ) = ln(S̃f (τ)/E). The equation (2.4a) is supplied with the initial 
ondi-tion

v(x, 0) = g(x, 0) =
(
e

1
2 (r̃− eD0+1)x − e

1
2 (r̃− eD0−1)x

)+
, x < xf (0), (2.4b)



6 Matthias Ehrhardt and Ronald E. Mi
kenswith xf (0) = ln(max(1, r/D0)) and the boundary 
onditions
lim

x→−∞
v(x, τ) = 0, 0 ≤ τ ≤ T̃ , (2.4
)

v(xf (τ), τ) = g(xf (τ), τ), 0 ≤ τ ≤ T̃ , (2.4d)
e(α−1)x+βτ

(
αv(xf (τ), τ) +

∂v(xf (τ), τ)

∂x

)
= 1, 0 ≤ τ ≤ T̃ , (2.4e)where

g(x, τ) = e−αx−βτ(ex − 1)+,It is well�known [29℄ that the free boundary Sf (t) is a nonde
reasing fun
tion and
Sf(T ) ≤ Sf (t) ≤ S∗

f , 0 ≤ t ≤ T, (2.5)with
S∗

f =

√−β + α√
−β + α − 1

E.Thus if we set x∗
f = ln(S∗

f/E), then the free boundary xf (τ) has the property [1℄:
0 ≤ xf (τ) ≤ x∗

f , 0 ≤ τ ≤ T̃ . (2.6)Remark 2.1. We remark that the original Bla
k�S
holes equation (2.1a) is de-generate at S = 0. However, the 
hange of variables (2.3) transformed it into auniformly paraboli
 initial boundary value problem (2.4).3. The transparent boundary 
onditionThe boundary problem (2.4) is posed on an unbounded and time�dependent domain
Ω(τ):

Ω(τ) = {(x, τ) ∈ R
2 |x < xf (τ), 0 ≤ τ ≤ T̃}.In the following we brie�y present the derivation of the (analyti
) TBC at thearti�
ial boundary x = a. For this purpose we split the domain Ω(τ) into thebounded time�dependent interior domain

Ωint(τ) = {(x, τ) ∈ R
2 | a < x < xf (τ), 0 ≤ τ ≤ T̃},and the unbounded time�independent exterior domain

Ωext = {(x, τ) ∈ R
2 |x < a, 0 ≤ τ ≤ T̃}.
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 73.1. Derivation of the TBCHere we determine the TBC at x = a < 0 su
h that the solution of the resultinginitial boundary value problem 
oin
ides with the solution of the problem (2.4)restri
ted to Ωint. For simpli
ity we assume that the initial data v(x, 0) is 
ompa
tlysupported in the interior domain Ωint, i.e. g(x, 0) = 0 for x < a. A strategy toover
ome this restri
tion 
an be found in [14℄.The analyti
 TBC for the heat equation was derived by several authors, e.g. [1℄,[19℄, [20℄. Histori
ally, this TBC was �rst derived by Papadakis [32℄ in the 
ontext ofthe S
hrödinger equation. We remark that the derivation of the TBC for a paraboli

onve
tion di�usion equation with rea
tion term 
an be found in [13℄, [14℄.For the derivation of the TBC at x = a we 
onsider the interior problem
∂v

∂τ
=

∂2v

∂x2
, (x, τ) ∈ Ωint(τ),

v(x, 0) = g(x, 0), a < x < xf (0),

vx(a, τ) = (Tav)(a, τ), 0 ≤ τ ≤ T̃ ,

(3.1)together with the boundary 
onditions (2.4d), (2.4e) at the free boundary x = xf (τ).We obtain the Diri
hlet�to�Neumann map Ta by solving the exterior problem:
∂u

∂τ
=

∂2u

∂x2
, (x, τ) ∈ Ωext,

u(x, 0) = 0, x < a,

u(a, τ) = Φ(τ), 0 ≤ τ ≤ T̃ , Φ(0) = 0,

u(−∞, τ) = 0, 0 ≤ τ ≤ T̃ ,

(TaΦ)(τ) = ux(a, τ), 0 ≤ τ ≤ T̃ .

(3.2)The problem on the exterior domain Ωext is 
oupled to the problem on the inte-rior domain Ωint by the assumption that v, vx are 
ontinuous a
ross the arti�
ialboundary at x = a. One 
an solve (3.2) expli
itly by the Lapla
e�method, i.e. weuse the Lapla
e transformation of u

û(x, s) =

∫ ∞

0

u(x, τ) e−sτ dτ,where we set s = ζ + iξ, ξ ∈ R, and ζ > 0 is �xed, with the idea to later performthe limit ζ → 0. Now the exterior problem (3.2) is transformed to
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).
(3.3)The solution to (3.3) whi
h de
ays as x → −∞ is simply û(x, s) = Φ̂(s) e

+
√

s(x−a),
x < a, where +

√ denotes the bran
h of the square root with nonnegative real part.Consequently, the transformed TBC is:
ûx(a, s) = +

√
s û(a, s),
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kensand after an inverse Lapla
e transformation (
f. [8℄) the TBC at x = a reads:
vx(a, τ) =

1√
π

∫ τ

0

vτ (a, ξ)√
τ − ξ

dξ. (3.4)We observe that (3.4) has a weakly singular kernel and is a memory�type non�lo
alfun
tion of τ , i.e. the 
omputation of the solution at some time uses the solution atall previous times.Remark 3.1. As noted in [20℄ the solution in Ωext 
an also be 
omputed with
v(x, τ) = −x − a

2
√

π

∫ τ

0

e−
(x−a)2

4(τ−ξ)
v(a, ξ)

(τ − ξ)3/2
dξ, x < a. (3.5)Remark 3.2. The treatment of an Ameri
an put option is 
ompletely analogous.Now one has to 
onsider the Bla
k�S
holes equation (2.1a) on the domain S > Sf (t).The terminal 
ondition at the expiry date t = T then reads

V (S, T ) = (E − S)+, S > Sf (T ), (3.6a)and the `spatial' boundary 
onditions at S = Sf (t), S → ∞ are given by
V (Sf (t), t) = (E − Sf (t))+,

∂V

∂S
(Sf (t), t) = −1, 0 ≤ t ≤ T, (3.6b)

lim
S→∞

V (S, t) = 0, 0 ≤ t ≤ T. (3.6
)Thus the TBC has to be 
onstru
ted at x = b with b > Sf (t), for all 0 ≤ t ≤ T .3.2. Time�dependent parametersIt is possible to derive a TBC for Ameri
an 
all options with time�varying interestrate r = r(t), dividend yield D = D(t) and volatility σ = σ(t). This situation ismore realisti
 but the time�dependen
e of the parameters r = r(t) and σ = σ(t)is unknown and must be modeled sto
hasti
ally. In this 
ase the Bla
k�S
holesequation reads (
f. [39, �6.5℄)
∂V

∂t
+

1

2
σ2(t)S2 ∂2V

∂S2
+ (r(t) − D(t))S

∂V

∂S
− r(t)V = 0, (3.7)

0 < S < Sf (t), 0 ≤ t < T . Making the substitutions
S̄ = Seα(t), V̄ = V eβ(t), t̄ = γ(t),with

α(t) =

∫ T

t

(
r(τ) − D(τ)

)
dτ, β(t) =

∫ T

t

r(τ) dτ, γ(t) =

∫ T

t

σ2(τ) dτ,then (3.7) be
omes
∂V̄

∂t̄
=

1

2
S̄2 ∂2V̄

∂S̄2
, 0 < S̄ < S̄f (t̄), 0 ≤ t̄ ≤ T̄ = γ(0). (3.8)
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 9supplied with the initial 
ondition V̄ (S̄, 0) = V (S, T ) be
ause γ(T ) = 0. Sin
e theright hand side of (3.8) is again of Euler�type one 
an pro
eed analogously to �3.1.The Lapla
e�transformed exterior problem reads:
x2

2
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).

(3.9)The solution to (3.9) whi
h de
ays as x → −∞ is simply
û(x, s) = Φ̂(s)

(x

a

)( 1
2−

1
2

+
√

1+8s)

, x < a,and therefore the transformed TBC is:
ûx(a, s) = a−1

(
1

2
−
√

2
+

√
s +

1

8

)
û(a, s).Finally an inverse Lapla
e transformation yields the desired TBC at x = a:

V̄x(a, t̄) =
V̄ (a, t̄)

2a
−

√
2

a
√

π

∫ t̄

0

(
V̄t̄(a, ξ) +

V̄ (a, ξ)

8

)
e−(t̄−ξ)/8

√
t̄ − ξ

dξ. (3.10)Remark 3.3. Most dividend payments on an index (e.g. the Dow Jones IndustrialAverage (DJIA) or the Standard and Poor's 500 (S&P500)) are so frequent that they
an be modeled as a 
ontinuous payment. However, if 
ompanies make two or fourpayments per year then one has to treat the dividend payments dis
retely and thequestion is how to in
orporate dis
rete dividend payments into the Bla
k�S
holesequation. In the sequel we brie�y review the results from [39℄. We assume that thereis only one dividend payment during the lifetime of the option at the dividend date
td. Negle
ting other fa
tors like taxes, the asset pri
e S must de
rease exa
tly bythe amount of the dividend payment d0. Thus we have the jump 
ondition

S(t+d ) = (1 − d0)S(t−d ),where t−d , t+d denotes the moments just before and after td. This leads to the fol-lowing e�e
t on the option pri
e
V (S, t−d ) = V ((1 − d0)S, t+d ), (3.11)i.e. the value of the option at S and time t−d is the same as the value immediatelyafter the dividend date td but at the asset value (1 − d0)S. To value a 
all optionwith one divident payment we solve the Bla
k�S
holes equation from expiry t = Tuntil t = t+d and use the relation (3.11) to 
ompute the values at t = t−d . Finally,we 
ontinue to solve the Bla
k�S
holes equation ba
kwards starting at t = t−dusing these values as initial data. The transparent boundary 
onditions need not bemodi�ed for this 
ase.
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kens4. Dis
rete Transparent Boundary ConditionsIn this se
tion we shall address the question how to adequately dis
retize the an-alyti
 TBC (3.4) for a 
hosen full dis
retization of (2.4a) whi
h in this examplewill be the Crank�Ni
olson s
heme. This s
heme has been extremely popular fornumeri
al solutions in �nan
e sin
e it is un
onditionally stable and has se
ond ordera

ura
y in time and spa
e. Furthermore it obeys a dis
rete maximum prin
iple.Instead of dis
retizing the analyti
 TBC (3.4) with its singularity our strategy isto derive the dis
rete TBC of the fully dis
retized problem. With the uniform gridpoints xj = a + j∆x, j = 0, 1, . . . , τn = n∆τ , n = 0, 1, . . . and the approximation
v
(n)
j ≈ v(xj , τn) the Crank�Ni
olson s
heme for solving the heat equation (2.4a) is:

v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, (4.1)with the abbreviation v

(n+1/2)
j = (v

(n+1)
j + v

(n)
j )/2 and the paraboli
 mesh ratio

ρ = ∆τ/(∆x)2. While a uniform grid in x is ne
essary in the exterior domain, theinterior grid may be nonuniform (e.g. logarithmi
) in x. In the sequel we presentdi�erent strategies to in
orporate the analyti
 TBC (3.4) into the �nite di�eren
es
heme (4.1).4.1. Dis
retization strategies for the TBCHere we want to 
ompare three strategies to dis
retize the TBC (3.4) whi
h is arather deli
ate question with its mildly singular 
onvolution kernel. First we reviewtwo known dis
retization te
hniques from May�eld [27℄ and Han and Wu [20℄.Dis
retized TBC of May�eldTo 
ompare our results we �rst review the ad-ho
 dis
retization strategy of May�eldapplied to the heat equation (2.4a). A

ording to the approa
h of May�eld [27℄ forthe S
hrödinger equation, one way to dis
retize the analyti
 TBC (3.4), at x = a,in the equivalent form
v(a, τ) =

1√
π

∫ τ

0

vx(a, ξ)√
τ − ξ

dξ (4.2)is
∫ τn

0

vx(a, τn − ξ)√
ξ

dξ ≈ 1

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )

∫ τm+1

τm

dξ√
ξ

=
2
√

∆τ

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )√

m + 1 +
√

m
.This approa
h leads to the following dis
retized TBC for the heat equation:

v
(n)
1 − v

(n)
0 =

√
π∆x

2
√

∆τ
v
(n)
0 −

n−1∑

m=1

ℓ̃(m)
(
v
(n−m)
1 − v

(n−m)
0

)
, (4.3)
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an Options 11with the 
onvolution 
oe�
ients given by
ℓ̃(m) =

1√
m + 1 +

√
m

. (4.4)Dis
retized TBC of Han and WuRe
ently a very similar dis
retization strategy was introdu
ed in [20℄. The authorsdis
retized the analyti
 TBC (3.4) in the following way
∫ τn

0

vτ (a, ξ)√
τn − ξ

dξ ≈
n−1∑

m=0

vτ (a, ξm)

∫ τm+1

τm

dξ√
τn − ξ

= 2∆τ

n−1∑

m=0

vτ (a, ξm)√
τn − τm+1 +

√
τn − τm

.This approa
h leads to the 
ondition
v
(n)
1 − v

(n)
−1 =

4√
π

1√
ρ

n∑

m=1

v
(m)
0 − v

(m−1)
0√

n − m +
√

n − m + 1
. (4.5)By applying a purely impli
it s
heme to the heat equation at the arti�
ial boundary

x0 = a, i.e.
v
(n)
0 − v

(n−1)
0 = ρ

(
v
(n)
1 − 2v

(n)
0 + v

(n)
−1

)
,one 
an eliminate the �
titious value v

(n)
−1 in (4.5) to obtain the dis
retized TBC ofHan and Wu [20℄:

(1 + 2ρ + B) v
(n)
0 − 2ρ v

(n)
1 = (1 + B) v

(n−1)
0 −B

n−1∑

m=1

ℓ̃(n−m)
(
v
(m)
0 − v

(m−1)
0

)
, (4.6)with the abbreviation B = 4

√
ρ/

√
π and the 
onvolution 
oe�
ients given in (4.4).On the fully dis
rete level the dis
retized TBCs like (4.3), (4.6) are not exa
tlytransparent any more and 
an lead to an unstable numeri
al s
heme. This wasproven for a dis
retized TBC of the form (4.3) by May�eld [27℄ in the 
ase of theS
hrödinger equation.The dis
rete transparent boundary 
onditionIn order to avoid any numeri
al re�e
tions at the arti�
ial boundary and to ensureun
onditional stability of the resulting s
heme we will 
onstru
t in the next sub-se
tion a dis
rete TBC instead of 
hoosing an ad�ho
 dis
retization of the analyti
TBC (3.4) like May�elds approa
h [27℄ or the approa
h of Han and Wu [20℄. Thedis
rete TBC 
ompletely avoids any numeri
al re�e
tions at the boundary at noadditional 
omputational 
osts (
ompared to ad�ho
 dis
retization strategies like(4.3), (4.6)).
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kens4.2. Derivation of the DTBCWe mimi
 the derivation from �3 on a purely dis
rete level: we obtain the DTBCby solving the dis
rete exterior problem, i.e. (4.1) for j ≤ 1.We apply for j �xed the Z�transformation:
Z{v(n)

j } = v̂j(z) :=
∞∑

n=0

v
(n)
j z−n, |z| > Rv̂j

,(Rv̂j
denotes the 
onvergen
e radius of the Laurent series) to solve (4.1) for j ≤ 1expli
itly. Again we assume for the initial data, v

(0)
j = 0, j ≤ 1 and obtain thetransformed exterior s
heme

2

ρ

z − 1

z + 1
v̂j(z) = v̂j+1 − 2v̂j + v̂j−1, j ≤ 1. (4.7)The two linearly independent solutions of the resulting se
ond order di�eren
e equa-tion (4.7) take the form

v̂j(z) = (ν1,2)
j+1(z), j ≤ 1,where ν1,2(z) are the solutions of the quadrati
 equation

ν2 − 2
[
1 +

1

ρ

z − 1

z + 1

]
ν + 1 = 0.Sin
e we are seeking de
reasing modes as j → −∞ we have to require |ν1| > 1 andobtain the Z�transformed dis
rete TBC as

v̂1(z) = ν1(z) v̂0(z). (4.8)It only remains to 
al
ulate the inverse Z�transform of ν1(z) to obtain thedis
rete TBC from (4.8). In a tedious 
al
ulation this 
an be performed expli
itly(
f. [14℄) and the dis
rete TBC be
omes:
v
(n)
1 = ℓ(n) ∗ v

(n)
0 =

n∑

k=1

ℓ(n−k)v
(k)
0 , n ≥ 1, (4.9)with 
onvolution 
oe�
ients ℓ(n) given in [14℄. Sin
e the asymptoti
al behaviour

ℓ(n) ∼ 4(−1)n/ρ of the 
onvolution 
oe�
ients may lead to subtra
tive 
an
ellationin (4.9) we prefer to use the following summed 
oe�
ients in the implementation
s(n) := ℓ(n) + ℓ(n−1), n ≥ 1, s(0) := ℓ(0). (4.10)The DTBC then reads

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=1

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.11)with the 
onvolution 
oe�
ients

s(0) = 1 +
1 +

√
1 + 2ρ

ρ
, s(1) = 1 − 1

ρ
− 1

ρ
√

1 + 2ρ
,

s(n) = −
√

1 + 2ρ

ρ

P̃n(µ) − λ−2P̃n−2(µ)

2n − 1
, n ≥ 2,

(4.12)
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an Options 13where P̃n(µ) := λ−nPn(µ) denotes the �damped� Legendre polynomials (P̃0 ≡ λ−1,
P̃−1 ≡ 0). The parameters λ, µ are given by

λ =

√
1 + 2ρ

+
√

1 − 2ρ
, µ =

1√
1 + 2ρ +

√
1 − 2ρ

.Alternatively, the 
onvolution 
oe�
ients 
an be 
omputed by the re
ursion formula
s(n+1) =

2n − 1

n + 1
µλ−1s(n) − n − 2

n + 1
λ−2s(n−1), n ≥ 2, (4.13)whi
h 
an be used after 
al
ulating s(n), n = 0, 1, 2 by the formula (4.12).In Fig. 1 the values of the summed 
oe�
ients s(n) are presented in a logarithmi
plot. One 
learly observes their rapid de
ay property s(n) = O(n−3/2) [14℄ whi
hmotivates a simpli�ed dis
rete TBC by restri
ting (4.11) to a 
onvolution over the�re
ent past� (last M time levels):

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=n−M

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.14)We note that the stability of the resulting s
heme is still not proven yet.For a 
on
ise dis
ussion of several dis
retization strategies of analyti
 TBCs, thederivation of the DTBC for a 
lass of di�eren
e s
hemes for a general 
onve
tiondi�usion equation and a stability proof of the re
ursion formula (4.13) we refer to[14℄.
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Fig. 1. Convolution 
oe�
ients s(n) (4.12) (left axis, dashed line) and error |s(n) − s̃(n)| of theapproximated 
onvolution 
oe�
ients (5.1) (right axis, solid line); ρ = 1, L = 20.



14 Matthias Ehrhardt and Ronald E. Mi
kens5. Approximation by Sums of ExponentialsAn ad-ho
 implementation of the dis
rete 
onvolution (4.11), with 
onvolution 
o-e�
ients s(n) from (4.12), has still one disadvantage. The boundary 
ondition isnon�lo
al in time and therefore 
omputationally expensive. In fa
t, the evaluationof (4.11) is as expensive as for the dis
retized TBCs (4.3), (4.6). As a remedy, weproposed in [5℄ the sum-of-exponentials ansatz. In the work to 
ome, we brie�yreview this approa
h.In order to derive a fast numeri
al method to 
al
ulate the dis
rete 
onvolution in(4.11), we approximate the 
oe�
ients s(n) by the following (sum of exponentials):
s(n) ≈ s̃(n) :=






s(n), n = 0, 1
L∑

l=1

bl q−n
l , n = 2, 3, . . . ,

(5.1)where L ∈ N is a �xed number. Note that the approximation properties of s̃(n)depend on L, and the 
orresponding set {bl, ql}. Below we propose a deterministi
method of �nding {bl, ql} for �xed L.The �split� de�nition of {s̃(n)} in (5.1) is motivated by the di�erent nature of the�rst two 
oe�
ients in (4.12). In
luding them into the dis
rete sum-of-exponentialwould then yield less a

urate approximation results.Let us �x L and 
onsider the formal power series:
f(x) := s(2) + s(3)x + s(4)x2 + . . . , |x| ≤ 1. (5.2)If there exists the [L − 1|L] Padé approximation

f̃(x) :=
PL−1(x)

QL(x)of (5.2), then its Taylor series
f̃(x) = s̃(2) + s̃(3)x + s̃(4)x2 + . . .satis�es the 
onditions

s̃(n) = s(n), n = 2, 3, . . . , 2L + 1, (5.3)due to the de�nition of the Padé approximation rule.Theorem 5.1 ([5℄). Let QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L.Then
s̃(n) =

L∑

l=1

bl q−n
l , n = 2, 3, . . . , (5.4)where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L. (5.5)
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 15It follows from (5.3) and (5.4) that the set {bl, ql} de�ned in Theorem 5.1 
anbe used in (5.1) at least for n = 2, 3, .., 2L + 1. The main question now is: Is itpossible to use these {bl, ql} also for n > 2L + 1? In other words, how good is theapproximation
s̃(n) ≈ s(n), n > 2L + 1.The above analysis permits us to give the following des
ription of the approx-imation to the 
onvolution 
oe�
ients s(n) by the representation (5.1) if we use a

[L−1|L] Padé approximant for (5.2): the �rst 2L 
oe�
ients are reprodu
ed exa
tly,see (5.3); however, the asymptoti
 behaviour of s(n) and s̃(n) (as n → ∞) di�ersstrongly (algebrai
 versus exponential de
ay). A typi
al graph of |s(n) − s̃(n)| versus
n for L = 20 is shown in Fig. 1.So far we have dis
ussed how to 
al
ulate and approximate the DTBC for one�xed dis
retization. However, a ni
e property of this approa
h 
onsists of the fol-lowing: on
e the approximate 
onvolution 
oe�
ients {s̃(n)} are 
al
ulated for aparti
ular mesh ratio ρ, it is easy to transform them into appropriate 
oe�
ientsfor any mesh ratio ρ∗.Theorem 5.2 ([5℄). Let a rational fun
tion

ˆ̃s(z) := s(0) +
s(1)

z
+

L∑

l=1

bl

qlz − 1
(5.6)approximate the Z-transform of the 
onvolution kernel {s(n)}∞n=0 
orresponding toa DTBC for the equation (4.1) with a given mesh ratio ρ (ˆ̃s is the Z-transform of

{s̃(n)} from (5.1)). Then, for another mesh ratio ρ⋆, one 
an take the approximation
ˆ̃s⋆(z) := s

(0)
⋆ +

s
(1)
⋆

z
+

L∑

l=1

b⋆
l

q⋆
l z − 1

, (5.7)where
s
(0)
⋆ := ˆ̃s(a/b) (:= s(0) if b = 0),

b⋆
l := blql

a2 − b2

(a − qlb)(qla − b)

1 + q⋆
l

1 + ql
, q⋆

l :=
qla − b

a − qlb
, (5.8)

a := (
1

ρ
+

1

ρ⋆
), b := (

1

ρ
− 1

ρ⋆
).While the Padé�algorithm provides a method to 
al
ulate approximate 
onvo-lution 
oe�
ients s̃(n) for a �xed mesh ratio ρ, this transformation rule yields thenatural link between di�erent mesh ratios ρ⋆ (and L �xed).Example 5.1. For L = 20 we 
al
ulated the 
oe�
ients {bl, ql} with the mesh ratio

ρ = 1 and then used the Transformation rule 5.2 to 
al
ulate the 
oe�
ients {b∗l , q∗l }for the mesh ratio ρ⋆ = 0.8. Fig. 2 shows that the resulting 
onvolution 
oe�
ients
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kens
s̃
(n)
∗ are in this example even better approximations to the exa
t 
oe�
ients s(n)than the 
oe�
ients s̃(n), whi
h are obtained dire
tly from the Padé algorithmdis
ussed in Theorem 5.1. Hen
e, the numeri
al solution of the 
orresponding heatequation is also more a

urate.5.1. Fast Evaluation of the Dis
rete Convolution.Let us 
onsider the approximation (5.1) of the dis
rete 
onvolution kernel appearingin the DTBC (4.11). With these �exponential� 
oe�
ients the 
onvolution

C(n) :=

n−1∑

m=1

s̃(n−m)v
(m)
0 , s̃(n) =

L∑

l=1

bl q−n
l , (5.9)where |ql| > 1, of a dis
rete fun
tion v

(m)
0 , m = 1, 2, . . . , with the kernel 
oe�
ients

s̃(n), 
an be 
al
ulated by re
urren
e formulas, and this will redu
e the numeri
ale�ort signi�
antly.A straightforward 
al
ulation (
f. [5℄) yields: The value C(n), from (5.9) for
n ≥ 2, 
an be represented by

C(n) =
L∑

l=1

C
(n)
l , (5.10)
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Fig. 2. Approximation error of the approximate 
onvolution 
oe�
ients for ρ = 0.8: The error of
s̃
(n)
∗

(- - -) obtained from the transformation rule and the error of s̃(n) (�) obtained from a dire
tPadé approximation of the exa
t 
oe�
ients s(n).
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C

(1)
l ≡ 0,

C
(n)
l = q−1

l C
(n−1)
l + bl q−1

l v
(n−1)
0 , n = 2, 3, . . . , l = 1, . . . , L. (5.11)In summary we now list the steps of the proposed method to evaluate an ap-proximate DTBC:1. Pres
ribe L in (5.1), take ρ = 1, and 
al
ulate s(n), n = 0, . . . , 2L+1, by formula(4.12).2. Use the [L − 1|L]�Padé algorithm for the series (5.2) with s̃(n) := s(n), n =

2, 3, . . . , 2L+1 in order to �nd {bl, ql} for (5.1) in a

ordan
e with Theorem 5.1.The steps 1. and 2. are made on
e and for all; see Appendix with the tableof 
oe�
ients for L = 5, 10.3. For given ratio ρ⋆, use formulas (5.8), with ρ = 1 and {bl, ql} from step 2, forthe 
al
ulation of {b⋆
l , q

⋆
l }.4. Implement the re
urren
e formulas (5.10)�(5.11) to 
al
ulate the approximate
onvolutions in (4.11). The 
oe�
ients s

(0)
∗ , s

(1)
∗ have to be 
al
ulated by use of(4.12).We remark that the Padé approximation must be performed with high pre
ision(2L − 1 digits mantissa length) to avoid a `nearly breakdown' by ill 
onditionedsteps in the Lan
zos algorithm. If su
h problems still o

ur or if one root of thedenominator is smaller than 1 in absolute value, the orders of the numerator anddenominator polynomials are su

essively redu
ed.6. Numeri
al treatment of the free boundaryIn this se
tion we shall des
ribe brie�y how to treat numeri
ally the free boundary

xf (τ) in (2.4). For more details on the optimal exer
ise time we refer the reader to[7℄. Up to now no exa
t analyti
al formula for the free boundary pro�le xf (τ) in(2.4) is known but several authors derived approximate expressions for valuingAmeri
an 
all and put options, e.g. [18℄. Re
ently, in a promising approa
h [33℄,�ev£ovi£ obtained a semi�expli
it formula for an Ameri
an 
all in the 
ase r > D0.By transforming (2.1) to a nonlinear paraboli
 equation on a �xed domain andapplying Fourier sine and 
osine transformations he derived a nonlinear singularintegral equation determining the shape of the free boundary. This integral equation
an be solved e�e
tively by means of su

essive iterations.However, sin
e the Bla
k�S
holes equation (2.1a) 
ouples V (S, t) to Sf (t) weprefer to determine the option value numeri
ally in 
onne
tion with the free bound-ary. To do this, many di�erent numeri
al methods are developed, e.g. the standardmethod 
onsists in the reformulation to a linear 
omplementary problem and solu-tion by the proje
ted SOR method of Cryer [12℄. Alternatively, penalty and front��xing methods were developed (e.g. in [17℄, [30℄). A disadvantage of these methods



18 Matthias Ehrhardt and Ronald E. Mi
kensis the 
hange of the underlying model. A di�erent approa
h [21℄ is based on a re-
ursive 
al
ulation of the early exer
ise boundary, estimating the boundary only atsome points and then approximating the whole boundary by Ri
hardson extrapo-lation. Expli
it boundary tra
king algorithms are e.g. a �nite di�eren
e bise
tions
heme [25℄ or the front�tra
king strategy of Han and Wu [20℄. In this work we willuse the later approa
h of Han and Wu, whi
h will be des
ribed now brie�y.In [20℄ the authors applied the strong maximum prin
iple for paraboli
 equationsto the Bla
k�S
holes equation for the derivative ṼS and the equation (2.2a) extendedto the time�independent domain S > 0 (whi
h is known in the literature as theJamshidian equation [22℄). The out
ome is a very useful inequality [20, Eq. (30℄for the numeri
al determination of the lo
ation of the free boundary xf (τ): for agiven τ the free boundary is the only point that ful�ls both the equation (2.4a)and the high 
onta
t 
ondition VS(S, t) = 1, i.e. (2.4e). If the boundary 
ondition
v(x, τ) = g(x, τ) is posed at some point x > xf (τ) then v(x, τ) < g(x, τ) will o

urfor some x < xf (τ). To solve the Crank�Ni
olson s
heme (4.1) Han and Wu usedthe 
ommon Thomas algorithm [38℄ for the arising tridiagonal system. On
e theboundary 
ondition

v
(n+1)
J+1 = g

(n+1)
J+1 , (6.1)with g

(n)
J = g(xJ , τn), is given at some grid point xJ+1 then the ba
kward sweep ofthe Thomas algorithm 
al
ulates the solution v

(n+1)
j for all 0 ≤ j ≤ J . The index

J is simply the largest index su
h that
v
(n+1)
J ≥ g

(n+1)
J (6.2)holds.Remark 6.1. For the Ameri
an 
all (in 
ontrast to the Ameri
an put) it is possibleto derive a series for the lo
ation of the optimal exer
ise boundary 
lose to expiryusing standard asymptoti
 analysis (
f. [2℄, [39℄). This lo
al analysis of the freeboundary Sf (t) yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (6.3)where ξ0 = 0.9034 . . . is a 'universal' 
onstant of 
all option pri
ing. Equation (6.3)
an be rewritten as

xf (τ) ∼ ln

[
Sf (T )

E

(
1 + ξ0

√
τ + . . .

)]
, as τ → 0. (6.4)With only a very few terms one gets a fairly a

urate result and thus (6.4) willserve us as a 
he
k of the above mentioned tra
king strategy of Han and Wu. Notethat this result is espe
ially useful in the �rst time levels of a numeri
al 
al
ulationwhere rapid 
hanges in xf (τ) in�uen
e the whole solution region.
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 197. Stability analysis of the arti�
ial boundary 
onditionHere we analyze the stability of the Crank�Ni
olson s
heme (4.1) along with theDTBC (4.11) or its approximated version. Sin
e we will fo
us on the fa
t that the(approximated) DTBC does not destroy the un
onditional stability of the under-lying �nite di�eren
e s
heme, we 
onsider the following problem on the half�spa
e
j ≥ 0:






v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, j ≥ 1,

v
(0)
j = g(xj , 0), j = 0, 1, 2, . . .with v
(0)
0 = v

(0)
1 = 0,

v̂1(z) = ℓ̂(z)v̂0(z),

(7.1)where the transformed boundary kernel ℓ̂(z) = ν1(z) is given by (4.8). In the sequelwe want to bound the exponential growth of solutions to the numeri
al s
heme (7.1)for a �xed mesh ratio. We will prove an estimate of the dis
rete solution to (7.1) inthe dis
rete ℓ2�norm:
‖v(n)‖2

2 := ∆x

∞∑

j=1

|v(n)
j |2. (7.2)Theorem 7.1 (Growth 
ondition). Let the transformed boundary kernel ℓ̂ sat-isfy

ℜℓ̂(βeiϕ) ≥ 1, ∀ 0 ≤ ϕ ≤ 2π, (7.3)for some (su�
iently large) β ≥ 1. Assume also that ℓ̂(z) is analyti
 for |z| ≥ β.Then, the solution of (7.1) satis�es the a-priori estimate in the dis
rete ℓ2�norm:
‖v(n+1)‖2 ≤ βn

(
‖v(0)‖2 +

√
(β − 1)ρ

2
‖∆−v(0)‖2

)
, n ∈ N0. (7.4)Proof. The proof is based on a dis
rete energy estimate for the new variable

u
(n)
j := v

(n)
j β−n,whi
h ful�lls

β−n
(
v
(n+1)
j ± v

(n)
j

)
= u

(n+1)
j ± u

(n)
j + (β − 1)u

(n+1)
j ,and therefore satis�es

u
(n+1)
j − u

(n)
j = ρ

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

) (7.5a)
+ (β − 1)

[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
, j ≥ 1

u
(0)
j = v

(0)
j , j = 0, 1, 2 . . . , (7.5b)

∆+û0(z) = (ℓ̂(βz) − 1) û0(z). (7.5
)
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kensThe transformed dis
rete TBC (7.5
) 
an be written in physi
al spa
e as
∆+u

(n)
0 =

ℓ̃(n)

βn
∗ u

(n)
0 =

n∑

m=0

(
ℓ̃(n−m) βm−n

)
u

(m)
0 ,where ℓ̃(n) := ℓ(n) − δ0

n is given in (4.9) and ∆+u
(n)
0 = u

(n)
1 −u

(n)
0 denotes the usualforward di�eren
e. First we multiply (7.5a) by u

(n)
j /β and then by u

(n+1)
j :

u
(n)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

− β−1(β − 1)u
(n)
j

[ρ
2

(
u

(n)
j+1 − 2u

(n)
j + u

(n)
j−1

)
+ u

(n)
j

]
,
(7.6a)

u
(n+1)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n+1)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

+ (β − 1)u
(n+1)
j

[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
.(7.6b)Note that we used equation (7.5a) to modify the last term of (7.6a). Next weadd (7.6a) and (7.6b), sum it up for the range j = 1, 2, . . . and obtain using thesummation by parts rule:

∞∑

j=1

[
(u

(n+1)
j )2 − (u

(n)
j )2

]
= −2ρ

∞∑

j=1

(∆−u
(n+1/2)
j )2

− (β − 1)
ρ

2

∞∑

j=1

(∆−u
(n+1)
j )2 +

β − 1

β

ρ

2

∞∑

j=1

(∆−u
(n)
j )2

− (β − 1)

∞∑

j=1

(u
(n+1)
j )2 − β − 1

β

∞∑

j=1

(u
(n)
j )2

− ρ

2β
(u

(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ), (7.7)where ∆−u

(n)
j = u

(n)
j − u

(n)
j−1 denotes the ba
kward di�eren
e. Now summing (7.7)from time level n = 0 to n = N yields:

β‖u(N+1)‖2
2 = β−1‖u(0)‖2

2 −
(β2 − 1)

β

N∑

n=1

‖u(n)‖2
2

− 2ρ

N∑

n=0

‖∆−u(n+1/2)‖2
2 −

(β − 1)2

β

ρ

2

N∑

n=1

‖∆−u(n)‖2
2

+
(β − 1)

β

ρ

2
‖∆−u(0)‖2

2 − (β − 1)
ρ

2
‖∆−u(N+1)‖2

2

− ρ

2β

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.8)
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 21Noting that β ≥ 1, we obtain from (7.8) the following estimate:
‖u(N+1)‖2

2 ≤ β−2‖u(0)‖2
2 +

(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2β2

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.9)It remains to show that the boundary�memory�term in (7.9) is of positive type. Tothis end we de�ne (for N �xed) the two sequen
es,
g(n) :=

{
u

(n)
0 + βu

(n+1)
0 , n = 0, . . . , N,

0, n > N,

f (n) :=
ℓ̃(n)

βn
∗ g(n) =

n∑

m=0

ℓ̃(n−m)

βn−m
g(m), n ∈ N0,i.e. ∑N

n=0 f (n) g(n) ≥ 0 is to show. The Z�transform Z{f (n)} = f̂(z) is analyti
for |z| > 0, sin
e it is a �nite sum. The Z�transform Z{f (n)} then satis�es f̂(z) =

(ℓ̂(βz) − 1)ĝ(z) and is analyti
 for |z| ≥ 1. Using Plan
herel's Theorem for Z�transforms we have
N∑

n=0

f (n)g(n) =
1

2π

∫ 2π

0

f̂(eiϕ)ĝ(eiϕ) dϕ =
1

π

∫ π

0

ℜ
{
f̂(eiϕ) ĝ(eiϕ)

}
dϕ

=
1

π

∫ π

0

|ĝ(eiϕ)|2
(
ℜ
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ,

(7.10)where we have used the fa
t that f̂(z̄) = f̂(z), ĝ(z̄) = ĝ(z), sin
e fn, gn ∈ R. Using(7.10) for the boundary term in (7.9) now gives:
‖u(N+1)‖2

2 ≤ β−2‖u(0)‖2
2 +

(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2πβ2

∫ π

0

|(1 + βeiϕ)û0(e
iϕ)|2

(
ℜ
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ.Our assumption on ℓ̂ therefore implies

‖u(N+1)‖2 ≤ β−1‖u(0)‖2 +

√
β − 1

β

√
ρ

2
‖∆−u(0)‖2, ∀N ≥ 0,and the result of the theorem follows.Example 7.1. For the 
ase of the exa
t dis
rete DTBC the assumption of Theorem7.1 
an easily be 
he
ked: This property of ℓ̂ 
an be shown for β = 1 in the followingway. On the unit 
ir
le z = eiϕ, 0 ≤ ϕ ≤ 2π, we have

y(z) :=
1

ρ

(z − 1

z + 1

)
=

1

ρ

(
i tan

ϕ

2

)
, 0 ≤ ϕ ≤ 2π.
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kensTherefore we obtain the requested property
ℜ{ℓ̂(z)} = 1 + ℜ

{
+

√
y(z)

(
2 + y(z)

)}
≥ 1,for z = eiϕ, 0 ≤ ϕ ≤ 2π, i.e. for the exa
t dis
rete TBC we have the estimate

‖v(n)‖2 ≤ ‖v(0)‖2, n ∈ N. (7.11)Remark 7.1. Above we have assumed that the Z�transformed boundary kernel
ℓ̂(z) is analyti
 for |z| ≥ β. Hen
e its real part is a harmoni
 fun
tion there. Sin
ethe average of ℓ̂(z) on the 
ir
les z = βeiϕ equals ℓ(0) = ℓ̂(z = ∞), 
ondition (7.3)implies ℜℓ̂(z = ∞) ≥ 1. Then we have the following simple 
onsequen
e of themaximum prin
iple for the Lapla
e equation:If 
ondition (7.3) holds for some β0, it also holds for all β > β0.8. Numeri
al examplesIn this se
tion we 
onsider the two examples of Ameri
an 
all options from [11℄,whi
h were also used in [20℄. We 
ompare the numeri
al result from using our new(approximated) dis
rete TBC to the solution using the dis
retized TBC (4.3) or(4.6) and use the expli
it free boundary treatment from [20℄ des
ribed in �6. Sin
ethe method of [20℄ turned out to be superior to the proje
ted SOR method withasymptoti
 boundary 
onditions we will 
ompare our results only to the method ofHan and Wu. In the sequel the dimension of time is year and dimension of value isUS dollar.Example 8.1. We 
onsider an Ameri
an 
all with an expiry of T = 0.5 years anda dividend yield D0 = 0.03. The risk�free interest rate is r = 0.03, the volatility is
σ = 40% p.a. and the exer
ise pri
e is E = $100. We 
hoose a mesh ratio ρ = 1 and
omputed N = 400 time steps with di�erent arti�
ial boundary 
onditions at theleft boundary a = x0 = −1.0 whi
h 
orresponds to an asset pri
e S = Eea ≈ 36.79.Fig. 3 shows the option values V (S, 0) 
al
ulated with the exa
t dis
rete TBC (4.11).We re
all the fa
t that all option values for x < a 
an be 
al
ulated using (3.5) atthe �nal time τ = T̃ , i.e. at t = 0.An upper bound of the free boundary xf (τ) was 
al
ulated by (2.5) as x∗

f = 1.5.However the largest value of xf (τ) is mu
h smaller; it is about 0.62. The timeevolution of the nonde
reasing free boundary xf (τ) is plotted in Fig. 4.Next we want to investigate the stability of the s
heme using the approximateddis
rete TBC (5.1) with L = 20 exponentials. Thus we have to 
he
k numeri
ally thegrowth 
ondition (7.3) needed for stability. It turned out that (7.3) is ful�lled for all
β ≥ 1.42. In Fig. 5 the real part of the transformed kernel ˆ̃

ℓ(z) of the approximatedDTBC on the 
ir
le z = β eiϕ with β = −1.42 is presented.Finally we want to 
ompare the error when using the di�erent arti�
ial boundary
onditions des
ribed previously. Sin
e the dis
rete TBC (4.11) yields the exa
t nu-meri
al solution to the dis
rete problem (4.1) (up to round�o� errors), we will take
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 23this solution as a referen
e solution vref . In order to make the indu
ed errors moreapparent we redu
e the 
omputational domain using a = −0.2 (whi
h 
orrespondsto an asset pri
e S = Eea ≈ 81.87). We plot in Fig. 6 the errors ‖v(n) − v
(n)
ref‖2

2measured in the dis
rete ℓ2�norm (
f. (7.2)) on the 
omputational interval.
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Fig. 3. Option values V at time t = 0 (i.e. at τ = eT ).
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Fig. 5. Growth 
ondition ℜ
ˆ̃
ℓ(z = β eiϕ) ≥ 1 for the approximated dis
rete transparent boundary
ondition of �5 with L = 20. The stability 
ondition (7.3) is satis�ed for all β ≥ 1.42
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k�S
holes Equation of Ameri
an Options 25The dis
retized TBC of Han & Wu (4.6) indu
ed a smaller error than the dis-
retized TBC of May�eld (4.3) and the approximated dis
rete TBC (5.1) with
L = 10. However, in
reasing the number of exponentials to L = 20 the approxi-mated dis
rete TBC outperforms all other boundary 
onditions in this 
omparison.In the se
ond example we will 
onsider a longer expiry time whi
h is a more
hallenging task for the arti�
ial boundary 
onditions.Example 8.2. Now the parameters are expiry T = 3 years, risk�free interest rate
r = 0.03, dividend yield D0 = 0.07, volatility σ = 40% p.a., exer
ise pri
e E = $100,number of time steps N = 400 and mesh ratio ρ = 1. Fig. 7 shows the option values
V (S, 0) 
al
ulated with the exa
t dis
rete TBC (4.11) and a = −1.0.The upper bound of the free boundary xf (τ) was 
al
ulated to be x∗

f = 0.8722and the largest value of xf (τ) is about 0.71. Thus the estimate (2.5) is quite goodin this example. In Fig. 8 the time evolution of the free boundary xf (τ) is plotted.As in the previous example we 
ompare the error when using the di�erent ar-ti�
ial boundary 
onditions and shrink the domain using a = −0.2 to make thedi�eren
es in the approa
hes more visible. The resulting errors ‖v(n) − v
(n)
ref‖2

2 inthe dis
rete ℓ2�norm are shown in Fig. 9. The results are 
omparable to the onesof Example 1 (
f. Fig. 6). The dis
retized TBC of Han & Wu (4.6) yielded morea

urate results than the dis
retized TBC of May�eld (4.3) and the approximatedDTBC (5.1) with L = 10. Again the approximated DTBC with L = 20 exponentialsturned out to be the best in this example. Note that the a

ura
y of the approxi-mated DTBCs 
an be easily improved by in
reasing the parameter L in (5.1).
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urate method for the Bla
k�S
holes Equation of Ameri
an Options 279. Con
lusions and OutlookIn this paper we have derived an exa
t dis
rete arti�
ial boundary 
ondition forthe Crank�Ni
olson s
heme for solving the Bla
k�S
holes equation for the pri
ingof Ameri
an options.To redu
e the numeri
al e�ort we introdu
ed a sum�of�exponentials approxi-mation that leads to an arti�
ial boundary 
ondition that 
an be evaluated verye�
iently. To ensure stability we proved a simple 
riteria and showed that it heldfor the exa
t arti�
ial boundary 
ondition. In the numeri
al examples all 
onsideredarti�
ial boundary 
onditions yielded satisfa
tory results. However, the introdu
edapproximated dis
rete TBC is faster (it does not in
rease the order of 
omplexity ofthe interior s
heme) and more a

urate than existing dis
retized TBCs. Moreoverits stability 
an be 
he
ked numeri
ally in advan
e.In this work we fo
used on standard options (known as plain�vanilla options) ofAmeri
an type. However, future work will deal with extensions: forward and future
ontra
ts, options on futures, general pay�o� fun
tions (e.g. `
ash�or�nothing 
all')with transa
tion 
osts and instalment options. Also, we will derive our DTBC forother s
hemes like Crandall�Douglas S
heme [28℄ whi
h is fourth-order a

urate in`spa
e' (i.e. asset pri
e) or the high�order 
ompa
t methods proposed in [35℄, [36℄,[43℄. Espe
ially, the method of [36℄ is promising, sin
e it is already an improvementof the Han and Wu method [20℄ with a higher order interior s
heme and morea

urate tra
king of the free boundary.AppendixIn the following table we list the 
oe�
ients {ql, bl} of the sum�of�exponentialsboundary 
ondition with the 
onvolution kernel (5.1) for the 
ases L = 5, and
L = 10 with the �normalized� mesh ratio ρ = 1.The 
oe�
ients b∗l , q

∗
l for another mesh ratio ρ∗ 
an then be obtained from theexpli
it formulas in the Transformation rule 5.2. A Maple Code that was used to to
al
ulate the 
oe�
ients ql, bl in the approximation (5.1) 
an be downloaded fromthe �rst author's homepage: www.math.tu-berlin.de/�ehrhardt/.A
knowledgmentThe �rst author was supported by the DFG Resear
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kensTable 1. Coe�
ients {ql, bl} of the sum�of�exponentials ansatz (5.1).
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urate
ompa
t s
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k�S
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an Options , in:M. Ehrhardt (ed.), Nonlinear Models in Mathemati
al Finan
e: New Resear
h Trendsin Option Pri
ing, Nova S
ien
e Publishers, In
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