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A FAST, STABLE AND ACCURATE NUMERICAL METHOD FORTHE BLACK�SCHOLES EQUATION OF AMERICAN OPTIONSMATTHIAS EHRHARDTWeierstrass Institute for Applied Analysis and StohastisMohrenstr. 39, D�10117 Berlin, Germanyehrhardt�wias-berlin.dehttp://www.wias-berlin.de/�ehrhardtRONALD E. MICKENSDepartment of Physis, Clark Atlanta University,Atlanta, GA 30314, USArohrs�math.gateh.eduReeived (Day Month Year)Revised (Day Month Year)In this work we improve the algorithm of Han and Wu (SIAM J. Numer. Anal. 41(2003), 2081�2095) for Amerian Options with respet to stability, auray and orderof omputational e�ort. We derive an exat disrete arti�ial boundary ondition (ABC)for the Crank�Niolson sheme for solving the Blak�Sholes equation for the valuationof Amerian options. To ensure stability and to avoid any numerial re�etions we derivethe ABC on a purely disrete level.Sine the exat disrete ABC inludes a onvolution with respet to time with aweakly deaying kernel, its numerial evaluation beomes very ostly for large�time sim-ulations. As a remedy we onstrut approximate ABCs with a kernel having the formof a �nite sum�of�exponentials, whih an be evaluated in a very e�ient reursion. Weprove a simple stability riteria for the approximated arti�ial boundary onditions.Finally, we illustrate the e�ieny and auray of the proposed method on severalbenhmark examples and ompare it to previously obtained disretized ABCs of May�eldand Han and Wu.Keywords: Blak�Sholes equation; omputational �nane; option priing; �nite di�er-ene method; arti�ial boundary ondition; free boundary problem; Amerian option.1. IntrodutionThe famous Blak�Sholes equation is an e�etive model for option priing. It wasnamed after the pioneers Blak, Sholes and Merton who suggested it 1973 [9℄,[29℄ and reeived in 1997 the Nobel Prize in Eonomis for their disovery [16℄.Mathematially it is a �nal value problem for a seond order paraboli equation. Aonise derivation of the Blak�Sholes equation an be found in [39℄.An option is a ontrat that admits the owner the right (not the duty) to buy(`all option' ) or to sell (`put option' ) an asset (typially a stok or a parel of1



2 Matthias Ehrhardt and Ronald E. Mikensshares of a ompany) for a prespei�ed prie E (`strike prie' ) by the date T toreeive some payo�s. The basi problem here is to speify a fair prie to harge forpermitting these rights. A losely related question is how to hedge the risks thatarises when selling these options. `European' options an only be exerised at theexpiration date T . For `Amerian' options exerise is permitted at any time until theexpiry date. The notion European or Amerian are not meant geographially, theyjust delare the type of option. We remark that most of the options traded in stokexhanges are of Amerian style. While for European options the Blak�Sholesequation results after a standard transformation in a boundary value problem (thatan be solved expliitly for ases with onstant oe�ients and simple payo�s [39℄),for Amerian options it results in a free boundary problem for the heat equation.In general, losed�form solutions do not exist (espeially for Amerian options)and the solution has to be omputed numerially (f. the referenes given in [20℄).The standard approah for solving the Blak�Sholes equation for Amerian optionsonsists in transforming the original equation to a heat equation posed on a semi�unbounded domain with a free boundary [34℄, [39℄. For a new alternative diretmethod using the Mellin transformation we refer the reader to [23℄, [31℄.Usually �nite di�erenes [37℄ or �nite elements [1℄ are used to disretize this heatequation and an arti�ial boundary ondition (ABC) is introdued in order to on-�ne the omputational domain appropriately. If the solution on the omputationaldomain oinides with the exat solution on the unbounded domain (restrited tothe �nite domain), one refers to this boundary ondition as a transparent boundaryondition (TBC). While the numerial treatment of the free boundary has attrateda lot of attention and di�erent strategies were developed (e.g. [11℄) less attention waspayed to the aurate treatment of the arti�ial boundary even though the analytiTBC for the heat equation is well�known, f. [19℄, [32℄, [41℄. In fat, many textbookspropose to use a homogeneous Dirihlet boundary ondition at some (su�ientlylarge) �nite distane [39℄.This very simple method is learly stable and widely used in pratie oftenjointly with an unequally spaed grid, that beomes oarser towards the arti�ialboundary. While these frequently used approah might be easy to use and to ex-tend for more general settings, from a mathematial point of view one must arguethat using a Dirihlet boundary ondition means solving a quite di�erent model ofequation. I.e. using Dirihlet onditions ommits an error in the model right fromthe beginning and there exists no error estimate for the Amerian Option problemthat tells in advane how far this Dirihlet boundary should be for a presribederror tolerane. Moreover, unequally spaed grids (as mentionend above) lead towell�known internal grid re�etions [26℄; another fator that must be inluded inan error estimate.Hene the "orret" way of solving this kind of problem is to limit the domainby arti�ial BCs (instead of solving a di�erent model with Dirihlet BCs) and im-plement/approximate the arti�ial BC suh that one an prove stability, does not



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 3inrease the overall e�ort and have a high auray. Kangro and Niolaides on-sidered in [24℄ a multidimensional Blak�Sholes equation for European optionsand derived pointwise bounds for the error aused by various boundary onditionsimposed on the arti�ial boundary. Windli�, Forsyth and Vetzal [40℄ derived ne-essary stability onditions for a �nite di�erene disretization of the Blak�Sholesequation for European options with the ommon linear asymptoti boundary on-dition, i.e. assuming that the seond derivative of the option value vanishes as themarket prie beomes large. Reently, Han and Wu [20℄ proposed a disretizationstrategy of the analyti TBC to solve the Blak�Sholes equation for the Amerianoption problem in onjuntion with the Crank�Niolson sheme. The authors alsointrodued a simple expliit treatment of the free boundary.However, ad-ho disretizations of an analyti TBC may indue numerial re-�etions at this arti�ial boundary and also may destroy the unonditional stabilityof the Crank�Niolson �nite di�erene method. To overome both problems a so�alled disrete TBC (DTBC) is derived from the fully disretized problem on theunbounded domain. This disrete TBC is ompletely re�etion�free and onservesthe stability property of the underlying sheme. Sine the disrete TBC inludes aonvolution with respet to time with a weakly deaying kernel, its numerial eval-uation beomes very ostly for large�time simulations. As a remedy we onstrutan approximate disrete TBC with a kernel having the form of a �nite sum-of-exponentials [5℄, whih an be evaluated by a very e�ient reursion formula.While we fous here on the standard linear Blak�Sholes model in one dimen-sions we want to point out that our new disrete approah generalizes to non�onstant oe�ients (e.g. if the volatility is a funtion of (S, t) obtained by alibra-tion to market pries) using themodi�ed Lentz's method in the Z�transformed spae[15℄, the 'iteration from in�nity' method [6℄ or by extration of sets of limiting so-lutions [42℄. Moreover, this approah an be extended to systems of equations [44℄,higher�dimensions (multi�asset options) [4℄ and even to nonlinear Blak�Sholesmodels [3℄, [45℄.This paper is organized as follows: �rst we introdue the Blak�Sholes equationand reall the standard transformations to a forward�in�time heat equation. In�3 we derive the analyti TBC for the heat equation and for the ase of time�dependent parameters. To inorporate the TBC into a �nite di�erene method wereview in �4 two approahes to disretize the analyti TBC and onstrut a DTBCfor the Crank�Niolson disretization. In �6 we disuss the numerial treatmentof the free boundary. To redue the numerial e�ort we present in �5 an e�ientimplementation by the sum-of-exponentials approximation. Afterwards we analyzein �7 the stability of the resulting numerial sheme. Finally we illustrate in �8 theauray and e�ieny of the new method with a numerial example and ompareit to the known disretized TBCs of May�eld [27℄ and Han and Wu [20℄.



4 Matthias Ehrhardt and Ronald E. Mikens2. The Blak�Sholes equationIn this paper we onsider an Amerian all option. The treatment of an Amerianput option is analogous. The value of a all option is denoted by V and depends onthe urrent market prie of the underlying asset, S, and the remaining time t untilthe option expires: V = V (S, t). The Blak�Sholes equation is a bakward�in�timeparaboli equation and posed on a time�dependent domain
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+(r−D0)S

∂V

∂S
−rV = 0, 0 < S < Sf (t), 0 ≤ t < T, (2.1a)where σ denotes the annual volatility of the asset prie, r the risk�free interest rateand T is the expiry date (t = 0 means 'today'). We assume that dividends are paidwith a ontinuous yields of onstant level D0 > 0. Note that we have to inlude thepayment of dividends. Otherwise, for D0 = 0 early exerise does not make senseand the Amerian all would be equivalent to the European one [29℄.In (2.1a) Sf (t) denotes the (a priori unknown) free boundary and is also alled`early exerise boundary' or 'optimal exerise prie'. The Amerian all optionshould be exerised if the value of the asset S is equal or greater than Sf (t) attime t; otherwise the option should be held. Thus the free boundary Sf (t) separatesthe holding region (S < Sf (t)) from the exerise region (S ≥ Sf (t)).The �nal ondition (`payo� ondition') at the expiry t = T an be written as

V (S, T ) = (S − E)+, 0 ≤ S < Sf (T ), (2.1b)with the notation f+ = max(f, 0). Here E > 0 denotes the previously agreedexerise prie or `strike', of the ontrat and Sf (T ) = max(E, rE/D0).The `spatial' or asset�prie boundary onditions at S = 0, and S = Sf (t) are
V (0, t) = 0, 0 ≤ t ≤ T, (2.1)

V (Sf (t), t) = (Sf (t) − E)+,
∂V

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T, (2.1d)i.e. at S = 0 the option is worthless. Note that we need two onditions at the freeboundary S = Sf (t). One ondition is neessary for the solution of (2.1a) and theother one is needed for determining the position of the free boundary Sf (t) itself.The �rst ondition in (2.1d) ('value mathing' ondition) is the ontinuity of themapping S 7→ V (S, t) sine V (S, t) = (S − E)+ = S − E, in the exerise region

S ≥ Sf(t). At S = Sf (t) one requires additionally that V (S, t) touhes the payo�funtion tangentially ('high ontat ondition'), i.e. the funtion S 7→ ∂V (S, t)/∂Sshould be ontinuous at S = Sf (t). The onditions (2.1d) are jointly referred as the'smooth�pasting onditions'. Note that the later ondition an be derived from anarbitrage argument [37℄, [39℄.Sine Amerian options an be exerised at any time, we have the a priori bound
V (S, t) ≥ (S − E)+, S ≥ 0, 0 ≤ t ≤ T.If V (S, t) < (S − E)+ for one value S > E and t ≤ T then the purhase of aall for V and the immediate exerise of this option to buy the underlying asset



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 5for E (although its value is S) would lead to an instantaneous risk�free pro�t of
S − V −E > 0, in violation to the no�arbitrage priniple. Of ourse, this reasoningignores transation osts.2.1. The transformation to the heat equationIn the sequel we shall show how to transform (2.1a) into a pure di�usion equation(f. [39, � 5.4℄). First it is onvenient to apply a time reversal and transform (2.1)to a forward�in�time equation by the hange of variable t = T − 2τ/σ2. The newtime variable τ stands for (up to the saling by σ2/2) the remaining life time of theoption. We denote the new variables by:

Ṽ (S, τ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, S̃f (τ) = Sf

(
T − 2τ

σ2

)
,

r̃ =
2

σ2
r, D̃0 =

2

σ2
D0, T̃ =

σ2

2
T.The resulting forward�in�time equation then reads:

∂Ṽ

∂τ
= S2 ∂2Ṽ

∂S2
+ (r̃ − D̃0)S

∂Ṽ

∂S
− r̃ Ṽ , 0 < S < S̃f (τ), 0 ≤ τ < T̃ , (2.2a)with the initial ondition

Ṽ (S, 0) = (S − E)+, 0 ≤ S < S̃f (0) = S0, (2.2b)and the boundary onditions
lim
S→0

Ṽ (S, τ) = 0, 0 ≤ τ ≤ T̃ , (2.2)
Ṽ (S̃f (τ), τ) = (S̃f (τ) − E)+,

∂Ṽ

∂S
(S̃f (τ), τ) = 1, 0 ≤ τ ≤ T̃ . (2.2d)The right hand side of (2.2a) is a well�known Euler`s di�erential equation andtherefore it is standard pratie (f. [34, � 4.1℄) to transform (2.2a) to the heatequation. To do so, we let

α = −1

2
(r̃ − D̃0 − 1), β = −α2 − r̃,and use the hange of variables

S = Eex, Ṽ (S, τ) = Eeαx+βτv(x, τ). (2.3)Then problem (2.2) is equivalent to the free boundary problem for the heat equation:
∂v

∂τ
=

∂2v

∂x2
, −∞ < x < xf (τ), 0 ≤ τ < T̃ , (2.4a)where xf (τ) = ln(S̃f (τ)/E). The equation (2.4a) is supplied with the initial ondi-tion

v(x, 0) = g(x, 0) =
(
e

1
2 (r̃− eD0+1)x − e

1
2 (r̃− eD0−1)x

)+
, x < xf (0), (2.4b)



6 Matthias Ehrhardt and Ronald E. Mikenswith xf (0) = ln(max(1, r/D0)) and the boundary onditions
lim

x→−∞
v(x, τ) = 0, 0 ≤ τ ≤ T̃ , (2.4)

v(xf (τ), τ) = g(xf (τ), τ), 0 ≤ τ ≤ T̃ , (2.4d)
e(α−1)x+βτ

(
αv(xf (τ), τ) +

∂v(xf (τ), τ)

∂x

)
= 1, 0 ≤ τ ≤ T̃ , (2.4e)where

g(x, τ) = e−αx−βτ(ex − 1)+,It is well�known [29℄ that the free boundary Sf (t) is a nondereasing funtion and
Sf(T ) ≤ Sf (t) ≤ S∗

f , 0 ≤ t ≤ T, (2.5)with
S∗

f =

√−β + α√
−β + α − 1

E.Thus if we set x∗
f = ln(S∗

f/E), then the free boundary xf (τ) has the property [1℄:
0 ≤ xf (τ) ≤ x∗

f , 0 ≤ τ ≤ T̃ . (2.6)Remark 2.1. We remark that the original Blak�Sholes equation (2.1a) is de-generate at S = 0. However, the hange of variables (2.3) transformed it into auniformly paraboli initial boundary value problem (2.4).3. The transparent boundary onditionThe boundary problem (2.4) is posed on an unbounded and time�dependent domain
Ω(τ):

Ω(τ) = {(x, τ) ∈ R
2 |x < xf (τ), 0 ≤ τ ≤ T̃}.In the following we brie�y present the derivation of the (analyti) TBC at thearti�ial boundary x = a. For this purpose we split the domain Ω(τ) into thebounded time�dependent interior domain

Ωint(τ) = {(x, τ) ∈ R
2 | a < x < xf (τ), 0 ≤ τ ≤ T̃},and the unbounded time�independent exterior domain

Ωext = {(x, τ) ∈ R
2 |x < a, 0 ≤ τ ≤ T̃}.



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 73.1. Derivation of the TBCHere we determine the TBC at x = a < 0 suh that the solution of the resultinginitial boundary value problem oinides with the solution of the problem (2.4)restrited to Ωint. For simpliity we assume that the initial data v(x, 0) is ompatlysupported in the interior domain Ωint, i.e. g(x, 0) = 0 for x < a. A strategy tooverome this restrition an be found in [14℄.The analyti TBC for the heat equation was derived by several authors, e.g. [1℄,[19℄, [20℄. Historially, this TBC was �rst derived by Papadakis [32℄ in the ontext ofthe Shrödinger equation. We remark that the derivation of the TBC for a parabolionvetion di�usion equation with reation term an be found in [13℄, [14℄.For the derivation of the TBC at x = a we onsider the interior problem
∂v

∂τ
=

∂2v

∂x2
, (x, τ) ∈ Ωint(τ),

v(x, 0) = g(x, 0), a < x < xf (0),

vx(a, τ) = (Tav)(a, τ), 0 ≤ τ ≤ T̃ ,

(3.1)together with the boundary onditions (2.4d), (2.4e) at the free boundary x = xf (τ).We obtain the Dirihlet�to�Neumann map Ta by solving the exterior problem:
∂u

∂τ
=

∂2u

∂x2
, (x, τ) ∈ Ωext,

u(x, 0) = 0, x < a,

u(a, τ) = Φ(τ), 0 ≤ τ ≤ T̃ , Φ(0) = 0,

u(−∞, τ) = 0, 0 ≤ τ ≤ T̃ ,

(TaΦ)(τ) = ux(a, τ), 0 ≤ τ ≤ T̃ .

(3.2)The problem on the exterior domain Ωext is oupled to the problem on the inte-rior domain Ωint by the assumption that v, vx are ontinuous aross the arti�ialboundary at x = a. One an solve (3.2) expliitly by the Laplae�method, i.e. weuse the Laplae transformation of u

û(x, s) =

∫ ∞

0

u(x, τ) e−sτ dτ,where we set s = ζ + iξ, ξ ∈ R, and ζ > 0 is �xed, with the idea to later performthe limit ζ → 0. Now the exterior problem (3.2) is transformed to
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).
(3.3)The solution to (3.3) whih deays as x → −∞ is simply û(x, s) = Φ̂(s) e

+
√

s(x−a),
x < a, where +

√ denotes the branh of the square root with nonnegative real part.Consequently, the transformed TBC is:
ûx(a, s) = +

√
s û(a, s),



8 Matthias Ehrhardt and Ronald E. Mikensand after an inverse Laplae transformation (f. [8℄) the TBC at x = a reads:
vx(a, τ) =

1√
π

∫ τ

0

vτ (a, ξ)√
τ − ξ

dξ. (3.4)We observe that (3.4) has a weakly singular kernel and is a memory�type non�loalfuntion of τ , i.e. the omputation of the solution at some time uses the solution atall previous times.Remark 3.1. As noted in [20℄ the solution in Ωext an also be omputed with
v(x, τ) = −x − a

2
√

π

∫ τ

0

e−
(x−a)2

4(τ−ξ)
v(a, ξ)

(τ − ξ)3/2
dξ, x < a. (3.5)Remark 3.2. The treatment of an Amerian put option is ompletely analogous.Now one has to onsider the Blak�Sholes equation (2.1a) on the domain S > Sf (t).The terminal ondition at the expiry date t = T then reads

V (S, T ) = (E − S)+, S > Sf (T ), (3.6a)and the `spatial' boundary onditions at S = Sf (t), S → ∞ are given by
V (Sf (t), t) = (E − Sf (t))+,

∂V

∂S
(Sf (t), t) = −1, 0 ≤ t ≤ T, (3.6b)

lim
S→∞

V (S, t) = 0, 0 ≤ t ≤ T. (3.6)Thus the TBC has to be onstruted at x = b with b > Sf (t), for all 0 ≤ t ≤ T .3.2. Time�dependent parametersIt is possible to derive a TBC for Amerian all options with time�varying interestrate r = r(t), dividend yield D = D(t) and volatility σ = σ(t). This situation ismore realisti but the time�dependene of the parameters r = r(t) and σ = σ(t)is unknown and must be modeled stohastially. In this ase the Blak�Sholesequation reads (f. [39, �6.5℄)
∂V

∂t
+

1

2
σ2(t)S2 ∂2V

∂S2
+ (r(t) − D(t))S

∂V

∂S
− r(t)V = 0, (3.7)

0 < S < Sf (t), 0 ≤ t < T . Making the substitutions
S̄ = Seα(t), V̄ = V eβ(t), t̄ = γ(t),with

α(t) =

∫ T

t

(
r(τ) − D(τ)

)
dτ, β(t) =

∫ T

t

r(τ) dτ, γ(t) =

∫ T

t

σ2(τ) dτ,then (3.7) beomes
∂V̄

∂t̄
=

1

2
S̄2 ∂2V̄

∂S̄2
, 0 < S̄ < S̄f (t̄), 0 ≤ t̄ ≤ T̄ = γ(0). (3.8)



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 9supplied with the initial ondition V̄ (S̄, 0) = V (S, T ) beause γ(T ) = 0. Sine theright hand side of (3.8) is again of Euler�type one an proeed analogously to �3.1.The Laplae�transformed exterior problem reads:
x2

2
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).

(3.9)The solution to (3.9) whih deays as x → −∞ is simply
û(x, s) = Φ̂(s)

(x

a

)( 1
2−

1
2

+
√

1+8s)

, x < a,and therefore the transformed TBC is:
ûx(a, s) = a−1

(
1

2
−
√

2
+

√
s +

1

8

)
û(a, s).Finally an inverse Laplae transformation yields the desired TBC at x = a:

V̄x(a, t̄) =
V̄ (a, t̄)

2a
−

√
2

a
√

π

∫ t̄

0

(
V̄t̄(a, ξ) +

V̄ (a, ξ)

8

)
e−(t̄−ξ)/8

√
t̄ − ξ

dξ. (3.10)Remark 3.3. Most dividend payments on an index (e.g. the Dow Jones IndustrialAverage (DJIA) or the Standard and Poor's 500 (S&P500)) are so frequent that theyan be modeled as a ontinuous payment. However, if ompanies make two or fourpayments per year then one has to treat the dividend payments disretely and thequestion is how to inorporate disrete dividend payments into the Blak�Sholesequation. In the sequel we brie�y review the results from [39℄. We assume that thereis only one dividend payment during the lifetime of the option at the dividend date
td. Negleting other fators like taxes, the asset prie S must derease exatly bythe amount of the dividend payment d0. Thus we have the jump ondition

S(t+d ) = (1 − d0)S(t−d ),where t−d , t+d denotes the moments just before and after td. This leads to the fol-lowing e�et on the option prie
V (S, t−d ) = V ((1 − d0)S, t+d ), (3.11)i.e. the value of the option at S and time t−d is the same as the value immediatelyafter the dividend date td but at the asset value (1 − d0)S. To value a all optionwith one divident payment we solve the Blak�Sholes equation from expiry t = Tuntil t = t+d and use the relation (3.11) to ompute the values at t = t−d . Finally,we ontinue to solve the Blak�Sholes equation bakwards starting at t = t−dusing these values as initial data. The transparent boundary onditions need not bemodi�ed for this ase.



10 Matthias Ehrhardt and Ronald E. Mikens4. Disrete Transparent Boundary ConditionsIn this setion we shall address the question how to adequately disretize the an-alyti TBC (3.4) for a hosen full disretization of (2.4a) whih in this examplewill be the Crank�Niolson sheme. This sheme has been extremely popular fornumerial solutions in �nane sine it is unonditionally stable and has seond orderauray in time and spae. Furthermore it obeys a disrete maximum priniple.Instead of disretizing the analyti TBC (3.4) with its singularity our strategy isto derive the disrete TBC of the fully disretized problem. With the uniform gridpoints xj = a + j∆x, j = 0, 1, . . . , τn = n∆τ , n = 0, 1, . . . and the approximation
v
(n)
j ≈ v(xj , τn) the Crank�Niolson sheme for solving the heat equation (2.4a) is:

v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, (4.1)with the abbreviation v

(n+1/2)
j = (v

(n+1)
j + v

(n)
j )/2 and the paraboli mesh ratio

ρ = ∆τ/(∆x)2. While a uniform grid in x is neessary in the exterior domain, theinterior grid may be nonuniform (e.g. logarithmi) in x. In the sequel we presentdi�erent strategies to inorporate the analyti TBC (3.4) into the �nite di�erenesheme (4.1).4.1. Disretization strategies for the TBCHere we want to ompare three strategies to disretize the TBC (3.4) whih is arather deliate question with its mildly singular onvolution kernel. First we reviewtwo known disretization tehniques from May�eld [27℄ and Han and Wu [20℄.Disretized TBC of May�eldTo ompare our results we �rst review the ad-ho disretization strategy of May�eldapplied to the heat equation (2.4a). Aording to the approah of May�eld [27℄ forthe Shrödinger equation, one way to disretize the analyti TBC (3.4), at x = a,in the equivalent form
v(a, τ) =

1√
π

∫ τ

0

vx(a, ξ)√
τ − ξ

dξ (4.2)is
∫ τn

0

vx(a, τn − ξ)√
ξ

dξ ≈ 1

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )

∫ τm+1

τm

dξ√
ξ

=
2
√

∆τ

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )√

m + 1 +
√

m
.This approah leads to the following disretized TBC for the heat equation:

v
(n)
1 − v

(n)
0 =

√
π∆x

2
√

∆τ
v
(n)
0 −

n−1∑

m=1

ℓ̃(m)
(
v
(n−m)
1 − v

(n−m)
0

)
, (4.3)
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ℓ̃(m) =

1√
m + 1 +

√
m

. (4.4)Disretized TBC of Han and WuReently a very similar disretization strategy was introdued in [20℄. The authorsdisretized the analyti TBC (3.4) in the following way
∫ τn

0

vτ (a, ξ)√
τn − ξ

dξ ≈
n−1∑

m=0

vτ (a, ξm)

∫ τm+1

τm

dξ√
τn − ξ

= 2∆τ

n−1∑

m=0

vτ (a, ξm)√
τn − τm+1 +

√
τn − τm

.This approah leads to the ondition
v
(n)
1 − v

(n)
−1 =

4√
π

1√
ρ

n∑

m=1

v
(m)
0 − v

(m−1)
0√

n − m +
√

n − m + 1
. (4.5)By applying a purely impliit sheme to the heat equation at the arti�ial boundary

x0 = a, i.e.
v
(n)
0 − v

(n−1)
0 = ρ

(
v
(n)
1 − 2v

(n)
0 + v

(n)
−1

)
,one an eliminate the �titious value v

(n)
−1 in (4.5) to obtain the disretized TBC ofHan and Wu [20℄:

(1 + 2ρ + B) v
(n)
0 − 2ρ v

(n)
1 = (1 + B) v

(n−1)
0 −B

n−1∑

m=1

ℓ̃(n−m)
(
v
(m)
0 − v

(m−1)
0

)
, (4.6)with the abbreviation B = 4

√
ρ/

√
π and the onvolution oe�ients given in (4.4).On the fully disrete level the disretized TBCs like (4.3), (4.6) are not exatlytransparent any more and an lead to an unstable numerial sheme. This wasproven for a disretized TBC of the form (4.3) by May�eld [27℄ in the ase of theShrödinger equation.The disrete transparent boundary onditionIn order to avoid any numerial re�etions at the arti�ial boundary and to ensureunonditional stability of the resulting sheme we will onstrut in the next sub-setion a disrete TBC instead of hoosing an ad�ho disretization of the analytiTBC (3.4) like May�elds approah [27℄ or the approah of Han and Wu [20℄. Thedisrete TBC ompletely avoids any numerial re�etions at the boundary at noadditional omputational osts (ompared to ad�ho disretization strategies like(4.3), (4.6)).



12 Matthias Ehrhardt and Ronald E. Mikens4.2. Derivation of the DTBCWe mimi the derivation from �3 on a purely disrete level: we obtain the DTBCby solving the disrete exterior problem, i.e. (4.1) for j ≤ 1.We apply for j �xed the Z�transformation:
Z{v(n)

j } = v̂j(z) :=
∞∑

n=0

v
(n)
j z−n, |z| > Rv̂j

,(Rv̂j
denotes the onvergene radius of the Laurent series) to solve (4.1) for j ≤ 1expliitly. Again we assume for the initial data, v

(0)
j = 0, j ≤ 1 and obtain thetransformed exterior sheme

2

ρ

z − 1

z + 1
v̂j(z) = v̂j+1 − 2v̂j + v̂j−1, j ≤ 1. (4.7)The two linearly independent solutions of the resulting seond order di�erene equa-tion (4.7) take the form

v̂j(z) = (ν1,2)
j+1(z), j ≤ 1,where ν1,2(z) are the solutions of the quadrati equation

ν2 − 2
[
1 +

1

ρ

z − 1

z + 1

]
ν + 1 = 0.Sine we are seeking dereasing modes as j → −∞ we have to require |ν1| > 1 andobtain the Z�transformed disrete TBC as

v̂1(z) = ν1(z) v̂0(z). (4.8)It only remains to alulate the inverse Z�transform of ν1(z) to obtain thedisrete TBC from (4.8). In a tedious alulation this an be performed expliitly(f. [14℄) and the disrete TBC beomes:
v
(n)
1 = ℓ(n) ∗ v

(n)
0 =

n∑

k=1

ℓ(n−k)v
(k)
0 , n ≥ 1, (4.9)with onvolution oe�ients ℓ(n) given in [14℄. Sine the asymptotial behaviour

ℓ(n) ∼ 4(−1)n/ρ of the onvolution oe�ients may lead to subtrative anellationin (4.9) we prefer to use the following summed oe�ients in the implementation
s(n) := ℓ(n) + ℓ(n−1), n ≥ 1, s(0) := ℓ(0). (4.10)The DTBC then reads

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=1

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.11)with the onvolution oe�ients

s(0) = 1 +
1 +

√
1 + 2ρ

ρ
, s(1) = 1 − 1

ρ
− 1

ρ
√

1 + 2ρ
,

s(n) = −
√

1 + 2ρ

ρ

P̃n(µ) − λ−2P̃n−2(µ)

2n − 1
, n ≥ 2,

(4.12)



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 13where P̃n(µ) := λ−nPn(µ) denotes the �damped� Legendre polynomials (P̃0 ≡ λ−1,
P̃−1 ≡ 0). The parameters λ, µ are given by

λ =

√
1 + 2ρ

+
√

1 − 2ρ
, µ =

1√
1 + 2ρ +

√
1 − 2ρ

.Alternatively, the onvolution oe�ients an be omputed by the reursion formula
s(n+1) =

2n − 1

n + 1
µλ−1s(n) − n − 2

n + 1
λ−2s(n−1), n ≥ 2, (4.13)whih an be used after alulating s(n), n = 0, 1, 2 by the formula (4.12).In Fig. 1 the values of the summed oe�ients s(n) are presented in a logarithmiplot. One learly observes their rapid deay property s(n) = O(n−3/2) [14℄ whihmotivates a simpli�ed disrete TBC by restriting (4.11) to a onvolution over the�reent past� (last M time levels):

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=n−M

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.14)We note that the stability of the resulting sheme is still not proven yet.For a onise disussion of several disretization strategies of analyti TBCs, thederivation of the DTBC for a lass of di�erene shemes for a general onvetiondi�usion equation and a stability proof of the reursion formula (4.13) we refer to[14℄.
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Fig. 1. Convolution oe�ients s(n) (4.12) (left axis, dashed line) and error |s(n) − s̃(n)| of theapproximated onvolution oe�ients (5.1) (right axis, solid line); ρ = 1, L = 20.



14 Matthias Ehrhardt and Ronald E. Mikens5. Approximation by Sums of ExponentialsAn ad-ho implementation of the disrete onvolution (4.11), with onvolution o-e�ients s(n) from (4.12), has still one disadvantage. The boundary ondition isnon�loal in time and therefore omputationally expensive. In fat, the evaluationof (4.11) is as expensive as for the disretized TBCs (4.3), (4.6). As a remedy, weproposed in [5℄ the sum-of-exponentials ansatz. In the work to ome, we brie�yreview this approah.In order to derive a fast numerial method to alulate the disrete onvolution in(4.11), we approximate the oe�ients s(n) by the following (sum of exponentials):
s(n) ≈ s̃(n) :=






s(n), n = 0, 1
L∑

l=1

bl q−n
l , n = 2, 3, . . . ,

(5.1)where L ∈ N is a �xed number. Note that the approximation properties of s̃(n)depend on L, and the orresponding set {bl, ql}. Below we propose a deterministimethod of �nding {bl, ql} for �xed L.The �split� de�nition of {s̃(n)} in (5.1) is motivated by the di�erent nature of the�rst two oe�ients in (4.12). Inluding them into the disrete sum-of-exponentialwould then yield less aurate approximation results.Let us �x L and onsider the formal power series:
f(x) := s(2) + s(3)x + s(4)x2 + . . . , |x| ≤ 1. (5.2)If there exists the [L − 1|L] Padé approximation

f̃(x) :=
PL−1(x)

QL(x)of (5.2), then its Taylor series
f̃(x) = s̃(2) + s̃(3)x + s̃(4)x2 + . . .satis�es the onditions

s̃(n) = s(n), n = 2, 3, . . . , 2L + 1, (5.3)due to the de�nition of the Padé approximation rule.Theorem 5.1 ([5℄). Let QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L.Then
s̃(n) =

L∑

l=1

bl q−n
l , n = 2, 3, . . . , (5.4)where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L. (5.5)



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 15It follows from (5.3) and (5.4) that the set {bl, ql} de�ned in Theorem 5.1 anbe used in (5.1) at least for n = 2, 3, .., 2L + 1. The main question now is: Is itpossible to use these {bl, ql} also for n > 2L + 1? In other words, how good is theapproximation
s̃(n) ≈ s(n), n > 2L + 1.The above analysis permits us to give the following desription of the approx-imation to the onvolution oe�ients s(n) by the representation (5.1) if we use a

[L−1|L] Padé approximant for (5.2): the �rst 2L oe�ients are reprodued exatly,see (5.3); however, the asymptoti behaviour of s(n) and s̃(n) (as n → ∞) di�ersstrongly (algebrai versus exponential deay). A typial graph of |s(n) − s̃(n)| versus
n for L = 20 is shown in Fig. 1.So far we have disussed how to alulate and approximate the DTBC for one�xed disretization. However, a nie property of this approah onsists of the fol-lowing: one the approximate onvolution oe�ients {s̃(n)} are alulated for apartiular mesh ratio ρ, it is easy to transform them into appropriate oe�ientsfor any mesh ratio ρ∗.Theorem 5.2 ([5℄). Let a rational funtion

ˆ̃s(z) := s(0) +
s(1)

z
+

L∑

l=1

bl

qlz − 1
(5.6)approximate the Z-transform of the onvolution kernel {s(n)}∞n=0 orresponding toa DTBC for the equation (4.1) with a given mesh ratio ρ (ˆ̃s is the Z-transform of

{s̃(n)} from (5.1)). Then, for another mesh ratio ρ⋆, one an take the approximation
ˆ̃s⋆(z) := s

(0)
⋆ +

s
(1)
⋆

z
+

L∑

l=1

b⋆
l

q⋆
l z − 1

, (5.7)where
s
(0)
⋆ := ˆ̃s(a/b) (:= s(0) if b = 0),

b⋆
l := blql

a2 − b2

(a − qlb)(qla − b)

1 + q⋆
l

1 + ql
, q⋆

l :=
qla − b

a − qlb
, (5.8)

a := (
1

ρ
+

1

ρ⋆
), b := (

1

ρ
− 1

ρ⋆
).While the Padé�algorithm provides a method to alulate approximate onvo-lution oe�ients s̃(n) for a �xed mesh ratio ρ, this transformation rule yields thenatural link between di�erent mesh ratios ρ⋆ (and L �xed).Example 5.1. For L = 20 we alulated the oe�ients {bl, ql} with the mesh ratio

ρ = 1 and then used the Transformation rule 5.2 to alulate the oe�ients {b∗l , q∗l }for the mesh ratio ρ⋆ = 0.8. Fig. 2 shows that the resulting onvolution oe�ients
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s̃
(n)
∗ are in this example even better approximations to the exat oe�ients s(n)than the oe�ients s̃(n), whih are obtained diretly from the Padé algorithmdisussed in Theorem 5.1. Hene, the numerial solution of the orresponding heatequation is also more aurate.5.1. Fast Evaluation of the Disrete Convolution.Let us onsider the approximation (5.1) of the disrete onvolution kernel appearingin the DTBC (4.11). With these �exponential� oe�ients the onvolution

C(n) :=

n−1∑

m=1

s̃(n−m)v
(m)
0 , s̃(n) =

L∑

l=1

bl q−n
l , (5.9)where |ql| > 1, of a disrete funtion v

(m)
0 , m = 1, 2, . . . , with the kernel oe�ients

s̃(n), an be alulated by reurrene formulas, and this will redue the numeriale�ort signi�antly.A straightforward alulation (f. [5℄) yields: The value C(n), from (5.9) for
n ≥ 2, an be represented by

C(n) =
L∑

l=1

C
(n)
l , (5.10)
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Fig. 2. Approximation error of the approximate onvolution oe�ients for ρ = 0.8: The error of
s̃
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∗

(- - -) obtained from the transformation rule and the error of s̃(n) (�) obtained from a diretPadé approximation of the exat oe�ients s(n).
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C

(1)
l ≡ 0,

C
(n)
l = q−1

l C
(n−1)
l + bl q−1

l v
(n−1)
0 , n = 2, 3, . . . , l = 1, . . . , L. (5.11)In summary we now list the steps of the proposed method to evaluate an ap-proximate DTBC:1. Presribe L in (5.1), take ρ = 1, and alulate s(n), n = 0, . . . , 2L+1, by formula(4.12).2. Use the [L − 1|L]�Padé algorithm for the series (5.2) with s̃(n) := s(n), n =

2, 3, . . . , 2L+1 in order to �nd {bl, ql} for (5.1) in aordane with Theorem 5.1.The steps 1. and 2. are made one and for all; see Appendix with the tableof oe�ients for L = 5, 10.3. For given ratio ρ⋆, use formulas (5.8), with ρ = 1 and {bl, ql} from step 2, forthe alulation of {b⋆
l , q

⋆
l }.4. Implement the reurrene formulas (5.10)�(5.11) to alulate the approximateonvolutions in (4.11). The oe�ients s

(0)
∗ , s

(1)
∗ have to be alulated by use of(4.12).We remark that the Padé approximation must be performed with high preision(2L − 1 digits mantissa length) to avoid a `nearly breakdown' by ill onditionedsteps in the Lanzos algorithm. If suh problems still our or if one root of thedenominator is smaller than 1 in absolute value, the orders of the numerator anddenominator polynomials are suessively redued.6. Numerial treatment of the free boundaryIn this setion we shall desribe brie�y how to treat numerially the free boundary

xf (τ) in (2.4). For more details on the optimal exerise time we refer the reader to[7℄. Up to now no exat analytial formula for the free boundary pro�le xf (τ) in(2.4) is known but several authors derived approximate expressions for valuingAmerian all and put options, e.g. [18℄. Reently, in a promising approah [33℄,�ev£ovi£ obtained a semi�expliit formula for an Amerian all in the ase r > D0.By transforming (2.1) to a nonlinear paraboli equation on a �xed domain andapplying Fourier sine and osine transformations he derived a nonlinear singularintegral equation determining the shape of the free boundary. This integral equationan be solved e�etively by means of suessive iterations.However, sine the Blak�Sholes equation (2.1a) ouples V (S, t) to Sf (t) weprefer to determine the option value numerially in onnetion with the free bound-ary. To do this, many di�erent numerial methods are developed, e.g. the standardmethod onsists in the reformulation to a linear omplementary problem and solu-tion by the projeted SOR method of Cryer [12℄. Alternatively, penalty and front��xing methods were developed (e.g. in [17℄, [30℄). A disadvantage of these methods



18 Matthias Ehrhardt and Ronald E. Mikensis the hange of the underlying model. A di�erent approah [21℄ is based on a re-ursive alulation of the early exerise boundary, estimating the boundary only atsome points and then approximating the whole boundary by Rihardson extrapo-lation. Expliit boundary traking algorithms are e.g. a �nite di�erene bisetionsheme [25℄ or the front�traking strategy of Han and Wu [20℄. In this work we willuse the later approah of Han and Wu, whih will be desribed now brie�y.In [20℄ the authors applied the strong maximum priniple for paraboli equationsto the Blak�Sholes equation for the derivative ṼS and the equation (2.2a) extendedto the time�independent domain S > 0 (whih is known in the literature as theJamshidian equation [22℄). The outome is a very useful inequality [20, Eq. (30℄for the numerial determination of the loation of the free boundary xf (τ): for agiven τ the free boundary is the only point that ful�ls both the equation (2.4a)and the high ontat ondition VS(S, t) = 1, i.e. (2.4e). If the boundary ondition
v(x, τ) = g(x, τ) is posed at some point x > xf (τ) then v(x, τ) < g(x, τ) will ourfor some x < xf (τ). To solve the Crank�Niolson sheme (4.1) Han and Wu usedthe ommon Thomas algorithm [38℄ for the arising tridiagonal system. One theboundary ondition

v
(n+1)
J+1 = g

(n+1)
J+1 , (6.1)with g

(n)
J = g(xJ , τn), is given at some grid point xJ+1 then the bakward sweep ofthe Thomas algorithm alulates the solution v

(n+1)
j for all 0 ≤ j ≤ J . The index

J is simply the largest index suh that
v
(n+1)
J ≥ g

(n+1)
J (6.2)holds.Remark 6.1. For the Amerian all (in ontrast to the Amerian put) it is possibleto derive a series for the loation of the optimal exerise boundary lose to expiryusing standard asymptoti analysis (f. [2℄, [39℄). This loal analysis of the freeboundary Sf (t) yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (6.3)where ξ0 = 0.9034 . . . is a 'universal' onstant of all option priing. Equation (6.3)an be rewritten as

xf (τ) ∼ ln

[
Sf (T )

E

(
1 + ξ0

√
τ + . . .

)]
, as τ → 0. (6.4)With only a very few terms one gets a fairly aurate result and thus (6.4) willserve us as a hek of the above mentioned traking strategy of Han and Wu. Notethat this result is espeially useful in the �rst time levels of a numerial alulationwhere rapid hanges in xf (τ) in�uene the whole solution region.



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 197. Stability analysis of the arti�ial boundary onditionHere we analyze the stability of the Crank�Niolson sheme (4.1) along with theDTBC (4.11) or its approximated version. Sine we will fous on the fat that the(approximated) DTBC does not destroy the unonditional stability of the under-lying �nite di�erene sheme, we onsider the following problem on the half�spae
j ≥ 0:






v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, j ≥ 1,

v
(0)
j = g(xj , 0), j = 0, 1, 2, . . .with v
(0)
0 = v

(0)
1 = 0,

v̂1(z) = ℓ̂(z)v̂0(z),

(7.1)where the transformed boundary kernel ℓ̂(z) = ν1(z) is given by (4.8). In the sequelwe want to bound the exponential growth of solutions to the numerial sheme (7.1)for a �xed mesh ratio. We will prove an estimate of the disrete solution to (7.1) inthe disrete ℓ2�norm:
‖v(n)‖2

2 := ∆x

∞∑

j=1

|v(n)
j |2. (7.2)Theorem 7.1 (Growth ondition). Let the transformed boundary kernel ℓ̂ sat-isfy

ℜℓ̂(βeiϕ) ≥ 1, ∀ 0 ≤ ϕ ≤ 2π, (7.3)for some (su�iently large) β ≥ 1. Assume also that ℓ̂(z) is analyti for |z| ≥ β.Then, the solution of (7.1) satis�es the a-priori estimate in the disrete ℓ2�norm:
‖v(n+1)‖2 ≤ βn

(
‖v(0)‖2 +

√
(β − 1)ρ

2
‖∆−v(0)‖2

)
, n ∈ N0. (7.4)Proof. The proof is based on a disrete energy estimate for the new variable

u
(n)
j := v

(n)
j β−n,whih ful�lls

β−n
(
v
(n+1)
j ± v

(n)
j

)
= u

(n+1)
j ± u

(n)
j + (β − 1)u

(n+1)
j ,and therefore satis�es

u
(n+1)
j − u

(n)
j = ρ

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

) (7.5a)
+ (β − 1)

[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
, j ≥ 1

u
(0)
j = v

(0)
j , j = 0, 1, 2 . . . , (7.5b)

∆+û0(z) = (ℓ̂(βz) − 1) û0(z). (7.5)



20 Matthias Ehrhardt and Ronald E. MikensThe transformed disrete TBC (7.5) an be written in physial spae as
∆+u

(n)
0 =

ℓ̃(n)

βn
∗ u

(n)
0 =

n∑

m=0

(
ℓ̃(n−m) βm−n

)
u

(m)
0 ,where ℓ̃(n) := ℓ(n) − δ0

n is given in (4.9) and ∆+u
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.(7.6b)Note that we used equation (7.5a) to modify the last term of (7.6a). Next weadd (7.6a) and (7.6b), sum it up for the range j = 1, 2, . . . and obtain using thesummation by parts rule:
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(7.9)It remains to show that the boundary�memory�term in (7.9) is of positive type. Tothis end we de�ne (for N �xed) the two sequenes,
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f̂(eiϕ)ĝ(eiϕ) dϕ =
1

π

∫ π

0

ℜ
{
f̂(eiϕ) ĝ(eiϕ)
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|ĝ(eiϕ)|2
(
ℜ
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ,

(7.10)where we have used the fat that f̂(z̄) = f̂(z), ĝ(z̄) = ĝ(z), sine fn, gn ∈ R. Using(7.10) for the boundary term in (7.9) now gives:
‖u(N+1)‖2

2 ≤ β−2‖u(0)‖2
2 +

(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2πβ2

∫ π

0

|(1 + βeiϕ)û0(e
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ℜ{ℓ̂(z)} = 1 + ℜ

{
+

√
y(z)

(
2 + y(z)

)}
≥ 1,for z = eiϕ, 0 ≤ ϕ ≤ 2π, i.e. for the exat disrete TBC we have the estimate

‖v(n)‖2 ≤ ‖v(0)‖2, n ∈ N. (7.11)Remark 7.1. Above we have assumed that the Z�transformed boundary kernel
ℓ̂(z) is analyti for |z| ≥ β. Hene its real part is a harmoni funtion there. Sinethe average of ℓ̂(z) on the irles z = βeiϕ equals ℓ(0) = ℓ̂(z = ∞), ondition (7.3)implies ℜℓ̂(z = ∞) ≥ 1. Then we have the following simple onsequene of themaximum priniple for the Laplae equation:If ondition (7.3) holds for some β0, it also holds for all β > β0.8. Numerial examplesIn this setion we onsider the two examples of Amerian all options from [11℄,whih were also used in [20℄. We ompare the numerial result from using our new(approximated) disrete TBC to the solution using the disretized TBC (4.3) or(4.6) and use the expliit free boundary treatment from [20℄ desribed in �6. Sinethe method of [20℄ turned out to be superior to the projeted SOR method withasymptoti boundary onditions we will ompare our results only to the method ofHan and Wu. In the sequel the dimension of time is year and dimension of value isUS dollar.Example 8.1. We onsider an Amerian all with an expiry of T = 0.5 years anda dividend yield D0 = 0.03. The risk�free interest rate is r = 0.03, the volatility is
σ = 40% p.a. and the exerise prie is E = $100. We hoose a mesh ratio ρ = 1 andomputed N = 400 time steps with di�erent arti�ial boundary onditions at theleft boundary a = x0 = −1.0 whih orresponds to an asset prie S = Eea ≈ 36.79.Fig. 3 shows the option values V (S, 0) alulated with the exat disrete TBC (4.11).We reall the fat that all option values for x < a an be alulated using (3.5) atthe �nal time τ = T̃ , i.e. at t = 0.An upper bound of the free boundary xf (τ) was alulated by (2.5) as x∗

f = 1.5.However the largest value of xf (τ) is muh smaller; it is about 0.62. The timeevolution of the nondereasing free boundary xf (τ) is plotted in Fig. 4.Next we want to investigate the stability of the sheme using the approximateddisrete TBC (5.1) with L = 20 exponentials. Thus we have to hek numerially thegrowth ondition (7.3) needed for stability. It turned out that (7.3) is ful�lled for all
β ≥ 1.42. In Fig. 5 the real part of the transformed kernel ˆ̃

ℓ(z) of the approximatedDTBC on the irle z = β eiϕ with β = −1.42 is presented.Finally we want to ompare the error when using the di�erent arti�ial boundaryonditions desribed previously. Sine the disrete TBC (4.11) yields the exat nu-merial solution to the disrete problem (4.1) (up to round�o� errors), we will take



Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 23this solution as a referene solution vref . In order to make the indued errors moreapparent we redue the omputational domain using a = −0.2 (whih orrespondsto an asset prie S = Eea ≈ 81.87). We plot in Fig. 6 the errors ‖v(n) − v
(n)
ref‖2

2measured in the disrete ℓ2�norm (f. (7.2)) on the omputational interval.
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Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 25The disretized TBC of Han & Wu (4.6) indued a smaller error than the dis-retized TBC of May�eld (4.3) and the approximated disrete TBC (5.1) with
L = 10. However, inreasing the number of exponentials to L = 20 the approxi-mated disrete TBC outperforms all other boundary onditions in this omparison.In the seond example we will onsider a longer expiry time whih is a morehallenging task for the arti�ial boundary onditions.Example 8.2. Now the parameters are expiry T = 3 years, risk�free interest rate
r = 0.03, dividend yield D0 = 0.07, volatility σ = 40% p.a., exerise prie E = $100,number of time steps N = 400 and mesh ratio ρ = 1. Fig. 7 shows the option values
V (S, 0) alulated with the exat disrete TBC (4.11) and a = −1.0.The upper bound of the free boundary xf (τ) was alulated to be x∗

f = 0.8722and the largest value of xf (τ) is about 0.71. Thus the estimate (2.5) is quite goodin this example. In Fig. 8 the time evolution of the free boundary xf (τ) is plotted.As in the previous example we ompare the error when using the di�erent ar-ti�ial boundary onditions and shrink the domain using a = −0.2 to make thedi�erenes in the approahes more visible. The resulting errors ‖v(n) − v
(n)
ref‖2

2 inthe disrete ℓ2�norm are shown in Fig. 9. The results are omparable to the onesof Example 1 (f. Fig. 6). The disretized TBC of Han & Wu (4.6) yielded moreaurate results than the disretized TBC of May�eld (4.3) and the approximatedDTBC (5.1) with L = 10. Again the approximated DTBC with L = 20 exponentialsturned out to be the best in this example. Note that the auray of the approxi-mated DTBCs an be easily improved by inreasing the parameter L in (5.1).
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Fast, stable and aurate method for the Blak�Sholes Equation of Amerian Options 279. Conlusions and OutlookIn this paper we have derived an exat disrete arti�ial boundary ondition forthe Crank�Niolson sheme for solving the Blak�Sholes equation for the priingof Amerian options.To redue the numerial e�ort we introdued a sum�of�exponentials approxi-mation that leads to an arti�ial boundary ondition that an be evaluated verye�iently. To ensure stability we proved a simple riteria and showed that it heldfor the exat arti�ial boundary ondition. In the numerial examples all onsideredarti�ial boundary onditions yielded satisfatory results. However, the introduedapproximated disrete TBC is faster (it does not inrease the order of omplexity ofthe interior sheme) and more aurate than existing disretized TBCs. Moreoverits stability an be heked numerially in advane.In this work we foused on standard options (known as plain�vanilla options) ofAmerian type. However, future work will deal with extensions: forward and futureontrats, options on futures, general pay�o� funtions (e.g. `ash�or�nothing all')with transation osts and instalment options. Also, we will derive our DTBC forother shemes like Crandall�Douglas Sheme [28℄ whih is fourth-order aurate in`spae' (i.e. asset prie) or the high�order ompat methods proposed in [35℄, [36℄,[43℄. Espeially, the method of [36℄ is promising, sine it is already an improvementof the Han and Wu method [20℄ with a higher order interior sheme and moreaurate traking of the free boundary.AppendixIn the following table we list the oe�ients {ql, bl} of the sum�of�exponentialsboundary ondition with the onvolution kernel (5.1) for the ases L = 5, and
L = 10 with the �normalized� mesh ratio ρ = 1.The oe�ients b∗l , q

∗
l for another mesh ratio ρ∗ an then be obtained from theexpliit formulas in the Transformation rule 5.2. A Maple Code that was used to toalulate the oe�ients ql, bl in the approximation (5.1) an be downloaded fromthe �rst author's homepage: www.math.tu-berlin.de/�ehrhardt/.AknowledgmentThe �rst author was supported by the DFG Researh Center Matheon �Math-ematis for key tehnologies" in Berlin and would like to thank Karin Mautnerfrom the Matheon projet E6 and Daniel �ev£ovi£ from Comenius University,Bratislava for many fruitful disussions. Moreover, the �rst author aknowledgefunding by the bilateral German�Slovakian DAAD�Projet Finite di�erenes forFinanial derivative models. The researh of the seond author was supported byDOE and the MBRS�SCORE Program.
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