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ABSTRACT

Though extensive, the literature on electrical load forecasting lacks reports on studies focused on existing re-
sidential micro-neighbourhoods comprising small numbers of single-family houses equipped with solar panels.
This paper provides a full description of an ANN-based model designed to predict short-term high-resolution (15-
min intervals) micro-scale residential net load profiles. Since it seems especially relevant due to the specificity of
local autocorrelations in load signal, in this paper we put stress on the systematic approach to feature selection in
the context of lagged signal. We performed a case study of a real micro-neighbourhood comprising only 75
single-family houses. The obtained average prediction error was equivalent to 5.4 per cent of the maximal
measured net load. The issues, i.e.: (1) the feasibility of micro-scale residential load forecasting taking into
account renewable energy penetration, (2) the feasibility to predict net load with dense temporal resolution of
15 min, (3) the feature selection problem, (4) the proposed prosumption- and comparison-oriented prediction
model key performance measure, could be of interest to engineers designing energy balancing systems for local

smart grids.

1. Introduction

Efficient electrical load forecasting is one of prerequisites for suc-
cessful management of power system operation [1]. Decentralization of
electricity generation causes changes in power grids, forcing operators
to seek technical and economic solutions requiring efficient energy
balancing at local level [2-9]. Hence the need for research on micro-
scale load forecasting. In this paper, we present a case study of suc-
cessful short-term net load profile forecasting for a micro-neighbour-
hood comprising of 75 single-family houses located in the Netherlands.
Most of the houses under study were equipped with photovoltaic panels
and were contracted to feed the surplus energy back into the local smart
grid. After having put substantial effort towards proper selection of
endogenous inputs for a prediction model, we employed an Artificial
Neural Network (ANN)-a Multilayer Perceptron (MLP)-as a tool for
load profile forecasting. The work has been done in the course of the
European Unions Seventh Framework Programme under the e-balance
project [10]. The prediction problem defined in the project involved
estimation of a 24-h ahead net load profile at high, 15-min resolution.
These two parameters of the predictor were defined by the project re-
quirements, together with the size of the neighbourhood and the

* Corresponding author.

suggestion to apply a neural network for the task. Additionally, due to
limited computational resources of the target deployment system the
complexity of the neural network used by the solution should be as
small as possible. The predicted profile was further used by an energy
management algorithm to plan the control of the smart (or just con-
trollable) appliances available in the deployment. This set-up is a
common approach for the Smart Grid applications and allows opti-
mizing the future energy systems with distributed energy production
sites and controllable loads.

2. Motivation and state of the art

Throughout the years the problem of large-scale load forecasting at
national, regional, or city level has been extensively examined. It is
already widely used for years, e.g. in power plant control or in other
large-scale approaches in the area of power system operation. For these
purposes satisfactory forecasting solutions have been proposed and
implemented. There are many approaches based on different mechan-
isms that work for scenarios with a defined temporal resolution on a
defined scale. These two parameters are the most critical dimensions in
the energy related forecasting problem statement. And it is important to
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mention, that for both these dimensions aggregation reduces the overall
dynamics that needs to be captured by the forecasting mechanism. The
temporal resolution defines the duration of a single amount of time, for
which the forecasting is being made, i.e. energy related values re-
presenting their respective periods form a time-series that shall be ex-
tended with values located in the future. And it makes a significant
difference, if it is done for 15-min, hour, or day values, since shorter
time intervals express higher variance in the individual values, for
longer ones the values are averaged, reducing the variance. Similar,
with respect to the scale, covering only a single household by the
forecasting causes the task to be less trivial. As we have pointed out
elsewhere [11], uncertainties introduced into energy load profiles by
randomly timed human behavior can limit or-in the worst-case sce-
nario—preclude efficient high-resolution energy load profile forecasting
at single-family house scale, even in the short term. Such a conclusion
leads to an important question on the minimum aggregation scale al-
lowing for efficient short-term energy load profile forecasting. This
relation has been already investigated [12] and it was confirmed that
for larger scale the prediction results are significantly better. Though
we may not be able to provide here either exact or universal answer to
this question, in this work we describe a successful solution for load
forecasting at micro-neighborhood scale comprising only 75 single-fa-
mily houses.

Several papers provide an analysis of the approaches proposed in
the area of energy related forecasting. An earlier survey [13] provides
an overview describing the state of the art as it was in 2002. The ap-
proaches using different techniques, like multiple regression, ex-
ponential smoothing, iterative reweighted least-squares, adaptive load
forecasting, stochastic time series, ARMAX models based on genetic
algorithms, fuzzy logic, neural networks and expert systems are pre-
sented there, together with the explanation of the respective technique.
More recent surveys present the advances in the field of energy related
forecasting [14-23]. The techniques mentioned in there are already
more oriented towards the state-of-the-art problems in the energy grids.

These techniques can be divided in several classes, like: statistical
approaches, artificial intelligence approaches, knowledge-based expert
systems, and hybrid approaches combining the others. Each of the class
depends on its own way for building the model of the system to esti-
mate its future behaviour based on a set of defined input parameters.
The statistical methods include mathematical models, like the multiple
regression or exponential smoothing, just to mention a few. These ap-
proaches require prior analysis of the historical data and applying dif-
ferent procedures to predict the future behaviour of the system. Expert
system solutions also require prior analysis of the system behaviour in
order to identify a set of rules that can then be further used to foresee
how the system will behave in the future based on a set of events or
triggers defined by the input parameters. The solutions from the arti-
ficial intelligence area try to model the system using techniques like
neural networks, where an identified set of parameters is used to train
the model. Simple solutions from that area require prior analysis of the
problem and identifying the relevant system parameters, but more
complex ones can even find these parameters. Indeed the ability to train
the model about the system behaviour as the system runs and to do that
with limited computational effort was the reason why we decided to use
a simple artificial neural network (ANN) for the purpose of energy
exchange predictor. Further, in the training sessions the ANN identifies
the most important and less important input parameters by defining the
weights related to these and by that it is possible to evaluate the initial
choice of input parameters. The last class of solutions are the hybrid
ones, for instance, the current expert system solutions migrate into the
direction of artificial intelligence, where the rule set definitions are less
digital (if-then like), but more fuzzy and for instance based on neural
networks.

Todays power system operators face challenges concerning the de-
centralization of electricity generation. Power grids are undergoing a
substantial change towards the prosumer model, where either
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individual clients or local community stakeholders introduce power
coming from renewable energy sources into their energy demand pro-
files [2,3,5]. Though the literature on electrical load forecasting is ex-
tensive, it lacks reports on studies dedicated to examination of existing
residential micro-neighbourhoods comprising small numbers of single-
family houses equipped with solar panels. Actually, there are some
works on micro-grids [24,2,5-8,16,17,25-28], some investigate even
individual households [12,29-31], but they do not take into account
single-family-house estates that feed solar panel (or other) energy back
to the grid. This aspect connects the consumption and production of the
household in one action being indeed the energy exchange. Depending
on the metering way applied in the deployment the consumption and
production can be investigated separately, or not. Our settings required
us to investigate the worst case scenario-the net metering—where these
two values are merged in one. The energy exchange prediction is not
mentioned so far as it causes the predicted values to be both positive
and negative, as well as zero, for ideally balanced households. Besides,
literature on micro-scale forecasting usually reports research on micro-
grids able to disconnect from macro-grids and to operate autonomously
under some conditions.

The prosumer model also creates a growing technical and eco-
nomical need for load forecasting at a high spatial resolution. Micro-
scale forecasting deals with energy load profiles which lack smoothness
of large-scale aggregations and involve autocorrelations specific to in-
dividual customs and/or local conditions [32]. The existing literature
on micro-grid load predictions does not concern endeavours to examine
prediction models with the temporal resolution as low as 15 min. Before
testing our case it was unclear to us if such temporal density, combined
with the small number of single-family prosumers involved, would not
preclude successful predictions. A denser temporal scale yields better
boundary conditions for efficient optimization of micro-grid power
system operation.

We also find that available reports on load forecasting methodology
propose arbitrary solutions regarding the number of, and the lag be-
tween, measurements of electrical load serving as inputs to prediction
models [6,7,15,16,18,28,33], any additional parameter that is con-
sidered in the model, like solar radiation or air temperature, plays a role
and can influence the accuracy of the forecasting. Since it seems
especially relevant to the specificity of micro-scale load profiles shaped
partially by local customs and conditions, in this paper we put stress on
the systematic approach to feature selection in the context of lagged
signal. We hope that by emphasising our approach and by reporting
explicit heuristics we are able to fill the gap in literature and to give
example of how to reduce chaos in feature selection decisions.

Another important issue is selection of metric that allows to eval-
uate the results of a forecasting approach, i.e. its accuracy, represented
by the error rate related to the achieved prediction. The accuracy of the
forecasting strongly depends on the temporal resolution and the sca-
le-as it was already mentioned. Aggregation in these two domains
simplifies the forecasting task. With respect to the applied technique, of
course those based on artificial neural networks (ANN) are the most
interesting to us, but any other approach achieving great accuracy is
interesting. There are ANN-based approaches that operate on monthly
energy data and provide forecasts reaching two years in the future,
while achieving mean absolute percentage error (MAPE) at the level
between 3 and 5 per cent [34,35]. But these approaches also operate on
a very large scale, e.g. country level energy consumption.

Slightly better results were achieved by the approach [36]. It uses
data with temporal resolution of an hour, operates on the building scale
and achieves MAPE of 2.88 per cent for short-term energy load pre-
diction. Another ANN-based approach [37] proposed for the same
temporal resolution and operating on multiple building level (college)
achieves with its ANN MAPE of 5.31 per cent. Yet other research [29]
reports an MAPE error of down to 6.69 per cent for 15-min data re-
solution and 190 households.

For individual households the accuracy is much worse. The best
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Fig. 1. Neighbourhood net load data (Ey) as a function of time interval (1 unit = 15min) and hour.

result in [31] achieved for one of the settings is MAPE of 22 per cent for
30-min data resolution. Further, this approach used a huge recurrent
neural network with hundreds of neurons, resulting in enormous
training time. Our setting assumed live training as new data is available
from the energy meter, so the size and complexity of the network is of
utmost importance.

Since traditional prediction accuracy measures found in the litera-
ture do not allow to reliably compare models created for various scales,
performing predictions for various future times, and involving net load
values of different magnitude, especially values oscillating around the
zero in micro-grid prosumption cases, we propose our own key per-
formance indicator based on normalization of net load values. We
strongly advise to use the measure reported in this paper in future re-
ports concerning net energy load predictions. Similar error indicator
approach for the case on predicting heating consumption was proposed
in [23], the authors called it the MARNE indicator and the values are
normalized by the maximum capacity of the supply. The aim of the
accuracy measure is to allow comparing one approach with others, but
also to evaluate applicability of individual approaches in a specific
deployment context. The former aim is a complex task, because most of
the research groups working on the prediction problem use their own
data sets expressing different level of predictability. And different set-
tings for temporal and spatial scale of the data processing, combined
with the use of different error indicators cause inability to reliably
compare approaches with one other. For the latter aim, it is important
to estimate the needed flexibility margin on the energy management
side in order to compensate for forecasting errors. The management
level may be the grid network operator, who then operates on the ag-
gregated level with multiple households, but it may also be the man-
agement at the level of individual households that is very possible in
future smart energy networks. There are several ways to cope with the
prediction errors. Again, it is all deployment specific and different ap-
proaches are possible, depending on the available equipment, its fea-
tures, as well as the required responsiveness of the undertaken actions
and running algorithms. Taking the e-balance target scenario as an
example, the smart grid approach operates on two different levels. First,
it estimates (predicts) the required energy amount for 24 h ahead in 15-
min chunks and reports these as a kind of order for the energy man-
agement on the higher level in the grid. Then, in case there are dif-
ferences between the prediction and the real energy exchange, real-time
actions are taken by the energy management algorithm on the smart
appliances to fit to the prediction. This step is of course only applied if
necessary (critical) and only to the possible level, depending on the
available flexibility.

All four issues, i.e. the feasibility of micro-scale residential load
forecasting taking into account solar energy penetration, the feasibility
to predict net load with denser temporal resolution, the feature

selection problem as well as the proposed prosumption- and compar-
ison-oriented key performance measure could be of interest to en-
gineers designing energy balancing systems for smart grids.

3. Problem definition

Let Ec > 0 denote the sum of energy consumed by a neighbourhood,
let Eg > 0 denote the sum of energy generated by a neighbourhood, let
Ep, > 0 denote the sum of energy lost by a neighbourhood, let Ey > 0
denote the sum of energy withdrawn from the macro-grid to a neigh-
bourhood, and finally let Er > 0 denote the sum of energy fed to the
macro-grid from a neighbourhood. A variable Ey representing the net
energy load of a neighbourhood can be defined as follows:

Ey =Ec — Eg + EL = Ew — Er (@)

The variable Ey was subject to prediction modelling and its com-
ponents define the aspects that have to be taken into account while
designing the parameters that influence Ey. The requirements of the e-
balance project determined high, 15-min resolution of the Ey variable
[38]. Data compatible with this requirement had been provided by one
of the e-balance project partners, Liander [39]. Aggregation of the data
collected throughout the whole year 2013 from smart meters mounted
in 75 single-family houses adding up to the micro-neighbourhood re-
sulted in a time series comprising 365 * 96 = 35040 net energy load
values measured in Wh per 15 min. Fig. 1 illustrates the net load time
series data as a function of time interval and hour. As can be seen in the
visualization, during the mid-year season at mid-day hours solar gen-
eration happened to cover nearly all the neighbourhoods demand for
energy, and at a few points in time the neighbourhood was able to feed
some surplus energy back to the macro-grid. Irradiation data from a
weather station covering the neighbourhood area was also available.
The data was collected in 1-h intervals throughout the whole year 2013
and measured in J/cm2 per hour. The forecasting problem boiled down
to the estimation of a future Ey value, located 24 h ahead (or more
specifically: ninety-six 15-min time intervals ahead), based primarily on
other available Ey values: one measured at the present interval ¢, and
several values measured at past intervals.

4. Model Description

An Artificial Neural Network (ANN)—a Multilayer Perceptron
(MLP)—served us as a tool for load profile forecasting [6,16,17,20,40].
Reports on using several other methods can be found in literature, yet
the ANN family seems to hold a prominent position among them due to
its inherent ability to deal with non-linearity [1,15,19,40]. Systematic
effort had been put into establishing both a proper number and a proper
structure of endogenous (lagged) ANN inputs. The heuristic employed
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Fig. 2. Normalized mutual information of binned net load signal and lagged binned net load signal as a function of the number of signal lags.

to find the number of Ey measurements to include as predictors of the
future value comprised three steps: (1) treating the time series as a
realization of a dynamical system; (2) identifying the fractal dimension
D of the dynamical system; (3) setting the number of predictor inputs
n > 2 * D + 1. With the use of the correlation integral method we de-
termined the fractal dimension D = 3 and established the number of
endogenous inputs n = 2 * D + 2 = 8 [41,42].

As to the structure of the endogenous ANN inputs, an optimal lag
between consecutive Ey measurements had to be found. Generally
speaking, lags are optimal when they minimize the inter-input re-
dundancy in information fed to the ANN. The heuristic employed to
solve this second question comprised two steps: (1) calculating n au-
tocorrelation measures representing correlations between the original
load signal and n lagged signals, where the consecutive lags rise from 1
to n 15-min intervals; (2) establishing the lag at which autocorrelation
measure treated as a function of the number of lags reaches its first
minimum [42,43]. We opted for a normalized mutual information
index as an autocorrelation measure [44]. We calculated the index as
the quotient of the mutual information index and the joint entropy
index [45], after having windowed the Ey values into 40 bins. As a
result, the number of eighteen 15-min intervals was determined as the
optimal lag (Fig. 2).

Following this approach combining and adapting the methodology
of several other approaches we obtained the optimal (minimal) struc-
ture of the ANN and also identified optimal energy related values to be
applied on its inputs. These features are crucial for the computational
complexity reasons, as we wanted to be able to train the networks also
in the individual households on devices with limited resources.

We put careful stress on the choice of the normalization method for
the Ey ANN inputs. We found it important to set a normalization for-
mula which leaves the 0 value unchanged:

ER’™(t) = Ex(t)/max(IExy (1)1, IExy(2)1,...,IEx(n)]) 2)

The established number and structure of the endogenous inputs (Ey)
are visible in Fig. 3.

Exogenous variables were also taken into consideration to account
for weather conditions, natural cycles and calendar days. As already
mentioned, besides the historical energy exchange values it is necessary
to identify other parameters that may influence the Ey. The influence of
the calendar effects is obvious [30], thus calendar and time related
parameters form the largest group of inputs in our ANN structure.
Further, we decided to consider irradiation as it mainly influences the
energy production by PV that was the main energy production source in
our set-up. For other energy sources, like wind mills or combined heat
and power devices there may be a need to introduce additional para-
meters to better capture their influence on the energy exchange in the
system, e.g., wind speed or air temperature.

A total of 15 additional ANN inputs were defined in our design
(Fig. 3): one input for irradiation data (normalized according to formula
analogic to (2), two inputs for the yearly cycle (employing sine and
cosine functions), two inputs for daily cycle (employing again sine and
cosine functions), seven Boolean inputs for specific days of the week,
and three Boolean inputs for public holidays (one for holidays in gen-
eral, one for the first days of two-day holidays, and one for the second
days of two-day holidays). These last two inputs were experimentally
added, because we observed an influence of longer public holidays on
some of the energy profiles, due to the fact that people tend to travel at
that time, resulting in changed energy consumption. We plan to in-
vestigate the additional parameters applicable for other deployment
settings than the e-balance one. For that we need to obtain energy ex-
change values to work on.

Several decisions had to be made regarding in-depth ANN para-
meters [40]: (1) the hyperbolic tangent function serving as the activa-
tion function for hidden layer neurons introduces non-linearity to en-
hance the approximation abilities of the ANN; (2) the linear function
serving as the activation function for the output neuron adds up the
output values of the hidden neurons to calculate the final prediction; (3)
the error backpropagation algorithm served as the learning algorithm
for hyperparameters (weights) selection during the ANN training pro-
cess; (4) the second order Levenberg-Marquardt algorithm was the
choice for the gradient descent direction calculation for RMSE loss
function minimization; (5) one hidden layer of 16 neurons was settled
experimentally for the finite MLP architecture. Only one hidden layer
was used as it is generally known to be sufficient for the approximation
of functions with practically any shape [46,47], while additional
hidden layers would be expected for less complex architecture (less
hidden neurons) that improve generalization properties of the ANN
approximator by learning increasingly more abstract patterns by the
subsequent hidden layers [48]. During the training process, the optimal
number of 16 hidden neurons was selected, assuring the smallest pre-
diction error while preserving good generalization capabilities. It was
achieved by observing the training and validation errors as functions of
number of hidden neurons, and selecting the number for which the
training and validation errors became practically equal. For the eva-
luation purposes we implemented the designed ANN model using the
Stuttgart Neural Network Simulator [49]. The core part of SNNS is an
open source C kernel designed for building, training, and testing ANNs.
The R programming language [50] and R package RSNNS [51] were
used as an application programming interface to the SNNS library.

The designed ANN was finally implemented in the Java program-
ming language, using the Neuroph framework [52]. The implementa-
tion was deployed on a unit based on the Beaglebone Black [53], so a
computationally limited Linux device. This unit was also running the
application gathering data from the smart meter, as well as the one
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Fig. 4. Example GUI screen comparing the real and predicted energy exchange for a single household.

performing energy balancing operations. That was the reason for
avoiding the complexity of the prediction model, what we have
achieved with the 16 hidden neurons and one output neuron. De-
pending on the computational context it took up to 15 s to perform the
training of the network for each new incoming 15-min value from the
smart meter. The prediction was computed immediately in below one
second. Fig. 4 shows a diagram for a single household for 24 h with real
values (in green), values predicted 24 h ahead (in blue) and the im-
mediate network response for the current value (in red). This example
shows that it sometimes works well with the prediction for single
households, but it is rather an exception than a rule.

It is thus absolutely necessary to identify features that may sort the
energy exchange patterns in classes and allow to provide better pre-
dictions. These features include for instance the irradiation, a para-
meter that on one hand controls the energy production by PV systems,
but on the other defines also the consumption related to the use of light
and also sometimes heating. Further, the kind of the day defines the
pattern within the day. That is why we distinguish between different
weekdays but also between weekend days and holidays. We also cap-
ture the day of year to capture seasons. Figs. 5 and 6 show how im-
portant this categorization of different days is. These figures show a
weekend and a weekday pattern, respectively. Without distinguishing
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the day of the week the prediction error would be significantly higher,
so using this additional and available parameter helps a lot.

5. Model fit analysis

In the search for a proper key performance indicator for our fore-
casting method, we excluded Mean Absolute Performance Percentage
Error (MAPE), widespread in literature on large-scale load forecasting
[16,18,19]. In the case of micro-scale load forecasting, MAPE would
take misleadingly overinflated values for small E{°"" values and infinite
values for EJ”™ = 0 [28]. We decided in favour of the Mean Absolute
Error (MAE). Eq. (2) employed for normalization of Ey values brings a
natural and informative interpretation of MAE for our forecasting
model: it represents the average absolute difference between real and
fitted (in the case of goodness of fit analysis) or predicted (in the case of
goodness of prediction analysis) values, denoted as a fraction of the
maximal absolute net load. We strongly advise to use the normalized
measure reported in this paper in future reports concerning net energy
load predictions. It would allow to reliably compare models involving
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Example energy exchange pattern and its prediction for a weekend day (03.02.2013).

net load values of different magnitude, especially values oscillating
around the zero in micro-grid prosumption cases. Goodness of fit ana-
lysis allows us to learn how well the proposed ANN model captures
regularity in the real data. Fig. 7 visualizes the detailed distribution of
fit MAE for the model trained with the whole-year data. The bottom-
most row of the heatmap illustrates the margin distribution of fit MAE
over the hour variable. The leftmost column of the heatmap illustrates
the margin distribution of fit MAE over the day of the week variable.
The bottom-left tile shows that the overall fit MAE was 0.044, denoting
4.4% of the maximal measured net load. Again, this approach is similar
to the MARNE indicator approach, proposed in [23], where the in-
dividual values are normalized using the supply capacity.

6. Model prediction test

In order to perform a prediction test for our ANN forecasting model,
we trained the ANN model with randomly chosen four-week data and
tested the model with data representing the next (fifth) week. Fig. 8
visualizes the detailed distribution of prediction MAE for this test. The

06-02-13 12:00 PM
06-02-13 12:45 PM
06-02-13 1:30PM
06-02-13 2:15PM
06-02-13 3:00 PM
06-02-13 3:45 PM
06-02-13 4:30 PM
06-02-13 5:15 PM
06-02-13 6:00 PM
06-02-13 6:45 PM
06-02-13 7:30 PM
06-02-13 8:15PM
06-02-13 9:00 PM
06-02-13 9:45 PM
06-02-13 10:30 PM
06-02-13 11:15 PM

Fig. 6. Example energy exchange pattern and its prediction for a week day (06.02.2013).
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Fig. 7. ANN model fit analysis: distribution of Mean Absolute Error over the hour and day of the week variables for the model trained with whole-year data.

bottommost row of the heatmap illustrates the margin distribution of
prediction MAE over the hour variable. The leftmost column of the
heatmap illustrates the margin distribution of prediction MAE over the
day of the week variable. The bottom-left tile shows that the overall
prediction MAE was 0.054, denoting 5.4% of the maximal measured net
load.

The prediction problem involved estimation of the 24 h net load
profile at high, 15-min resolution. Engineers designing micro-scale
energy balancing systems may want to grasp some notion of the limits
to accuracy of high-resolution net load forecasting (both in time and the
spatial domain). Thus, we found it important to present a detailed look
at the prediction error distribution. Fig. 9 visualizes the additive inverse
of absolute prediction error of the ANN model as a function of the true
normalized net load (E”™) and the hour variable. Points above the 0
value on the vertical axis represent ANNs overestimates of the true
energy load, whereas points beneath the 0 value on the vertical axis
represent ANNs underestimates of the true load at a given time. As can
be seen in the visualization, overestimates did not exceed 15.5% of the
maximal net load, underestimates did not exceed 30% of the maximal
net load, and the vast majority of prediction errors were much lower.

In order to do a fair comparison of the achieved results with results
achievable using statistical approaches we implemented an ARIMAX
model and used it to perform a prediction based on the same input data.
So, the ARIMAX model was created based on the same four weeks of
input data and it was used to predict the values for following week.
Fig. 10 presents the achieved distribution of the mean absolute error
over the hours and days of the predicted week. Compared to the results

achieved with the ANN approach (presented in Fig. 8) it can be ob-
served that the ANN results are significantly better with respect to the
prediction errors.

7. Conclusions

Our paper addresses several interwoven issues: feasibility of effi-
cient short-term high-resolution (both in time and the spatial domain)
residential net load forecasting taking into account renewable energy
penetration; systematic approach to lagged feature selection for fore-
casting models, and prediction error measurement method allowing to
compare models involving net load values of different magnitude,
especially values oscillating around the zero in micro-grid prosumption
cases. We provide a full description of both an ANN-based forecasting
model and a feature selection method based on fractal dimension of the
net electrical load time series interpreted as a dynamical system. We
employ the described methodology and perform a case study of a real
micro-neighbourhood comprising only 75 single-family houses.

Nowadays, decentralization of electricity generation causes changes
in power grids, forcing operators to seek technical and economic so-
lutions requiring efficient micro-scale load balancing. However, micro-
scale load forecasting (being a prerequisite for micro-scale balancing)
deals with energy load profiles which lack smoothness of large-scale
aggregations and involve autocorrelations specific to individual cus-
toms and/or local conditions. Literature on electrical load lacks reports
on studies dedicated to existing residential micro-neighbourhoods
comprising small numbers of single-family houses equipped with solar

MEAN ABSOLUTE ERROR

DAY OF THE WEEK

10

14 18 19 20 21 22 23

13

11
HOUR

12

Fig. 8. ANN model prediction test: distribution of Mean Absolute Error over the hour and day of the week variables for the model trained with randomly chosen four-

week data and tested with data representing next (fifth) week.
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Fig. 9. ANN model prediction test: Additive inverse of absolute prediction error as a function of normalized net load (Ey”™) for the model trained with randomly

chosen four-week data and tested with data representing the next (fifth) week.

panels. Hence, our motivation was to fill this gap. The approach pre-
sented in the paper allowed us to obtain short-term predictions of high-
resolution (15-min intervals) net load profiles with reasonable average
MAE error equivalent to 5.4% of the maximal measured net load. We
managed to obtain this result after training the proposed ANN model
with data representing only four weeks of net load measurements.

Relative shortness of the time series scope needed for efficient
model training provides an optimistic perspective on future real-life
implementations of the described methodology, though one must re-
member that our study used the whole-year net load data to solve the
lagged feature selection problem. In some situations, engineers may be
forced to design energy balancing algorithms without prior access to
extensive amounts of local data. Future studies could focus on ex-
amining the described feature selection heuristic with the use of shorter
range of load measurements. Another limitation of the described re-
search lies in the fact that for the prediction test we were able to use
only historical irradiation measurements, whereas a full real-life sce-
nario would require an inclusion of historical irradiation predictions as
well. Without a doubt, future studies on short-term high-resolution load
forecasting for micro-neighbourhoods with solar energy penetration
require some more stress on the issue of exogenous weather-related
inputs to the forecasting model.

It is also to be investigated to what extent randomly chosen sub-
groups of the set of houses create groups that can be subject of the
prediction algorithm as well and what the border conditions are for the
possible application of the proposed solutions.

The energy exchange or load prediction is part of a larger smart grid
application that uses the prediction in order to plan control actions in
advance. These actions include setting the power of the power plant or
ordering energy from producers. But the energy management can also
control household or prosumer level energy control and use the pre-
diction to negotiate with the energy provider. In both cases, depending
on the consequences for the deviations between the predictions and real
energy values, there may be a need for measures that additionally act in
real-time to compensate for imbalance due to prediction errors. These
measures include controlling the smart appliances in order to adjust
their energy usage or energy production according to the negotiated
values. We plan further investigation of such measures as well as two
level energy balancing algorithms.

We were able to confirm that the simple ANN solution was able to
deliver good predictions for the defined neighbourhood. The predic-
tions we have achieved using the simple ANN model are significantly
better than the ones achieved using the ARIMAX model for the same
input data. The presented solution was applied in the e-balance project,
but we plan to further fine tune the structure of the ANN to improve the
accuracy of the prediction, especially for individual households. As it
can be seen in Fig. 4 there are relatively large differences between the
individual measurements and their predicted values for a single
household. We plan to investigate which additional parameters, from
the ones that are easy to obtain, like air temperature, to those needing
additional sensors, like status of individual appliances or motion de-
tection, influence the accuracy of the predictions and reduce the errors
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Fig. 10. ARIMAX model prediction test: distribution of Mean Absolute Error over the hour and day of the week variables for the model trained with randomly chosen

four-week data and tested with data representing next (fifth) week.
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for individual households. Here it is important to reduce the real-time
actions to handle the imbalance to the minimum.
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