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Abstract. We consider possibly degenerate and singular elliptic equations in a possibly
anisotropic medium.

We obtain monotonicity results for the energy density, rigidity results for the solutions
and classi�cation results for the singularity/degeneracy/anisotropy allowed.

As far as we know, these results are new even in the case of non-singular and non-
degenerate anisotropic equations.

1. Introduction and main results

1.1. Description of the model and mathematical setting. The goal of this paper is

to consider partial di�erential equations in a possibly anisotropic medium.

The interest in the study of anisotropic media is twofold. First, at a purely mathematical

level, the lack of isotropy re�ects into a rich geometric structure in which the basic objects

of investigation do not possess the usual Euclidean properties. Then, from the point of

view of concrete applications, anisotropic media naturally arise in the study of crystals, see

e.g. [C84] and the references therein. The interplay between the concrete physical problems

and the geometric structures is clearly discussed, for instance, in [T78, TCH92]. We also

refer to Appendix C in [CFV14] for a simple physical application.

The equations that we consider in the present paper have a variational structure and they

are of elliptic type, though the ellipticity is allowed to be possibly singular or degenerate.

The forcing term only depends on the values of the solution, i.e., in jargon, the equation

is quasilinear, and the elliptic operator is constant along the level sets of the solution. This

feature imposes strong geometric restrictions on the solution, and the purpose of this paper

is to better understand some of these properties.

In this setting we present a variety of results from di�erent perspectives, such as:

• a monotonicity formula for the energy functional (i.e., the energy of an anisotropic

ball, suitably rescaled, will be shown to be non-decreasing with respect to the size

of such ball);

• a rigidity result of Liouville type (namely, if the potential is integrable, then the

solution needs to be constant);

• a precise classi�cation of some of the assumptions given in the literature, with con-

crete examples and some simpli�cations.

The formal mathematical notation introduces the solution u of an anisotropic equation

driven by a possibly nonlinear operator. The anisotropic term is encoded into a homogeneous

function H, that will be often referred to as �the anisotropy�. The nonlinearity feature of

the operator is given by a function B (e.g., the function B can be a power and produce an

equation of p-Laplace type). Also, the nonlinear source term arises from a potential F .

More precisely, given measurable set Ω ⊂ Rn, with n > 2, we consider the Wul� type

energy functional

WΩ(u) :=
∫

Ω
B(H(∇u(x)))− F (u(x)) dx, (1.1)

and the associated Euler-Lagrange equation

∂

∂xi

(
B′(H(∇u))Hi(∇u)

)
+ F ′(u) = 0. (1.2)
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Here, the function B belongs to C3,β
loc ((0,+∞))∩C1([0,+∞)), with β ∈ (0, 1), and is such

that B(0) = B′(0) = 0 and

B(t), B′(t), B′′(t) > 0 for any t > 0. (1.3)

Moreover, H is a positive homogeneous function of degree 1, of class C3,β
loc (Rn \ {0}) and for

which

H(ξ) > 0 for any ξ ∈ Rn \ {0}. (1.4)

Using its homogeneity properties, we infer that H can be naturally extended to a continuous

function on the whole of Rn by setting H(0) = 0. Moreover, the forcing term F is required

to be C2,β
loc (R).

In addition to these hypotheses we also assume one of the following conditions to hold:

(A) There exist p > 1, κ ∈ [0, 1) and positive γ,Γ such that, for any ξ ∈ Rn \ {0}, ζ ∈ Rn,

[Hess (B ◦H)(ξ)]ij ζiζj > γ(κ+ |ξ|)p−2|ζ|2,
and

n∑

i,j=1

∣∣∣[Hess (B ◦H)(ξ)]ij
∣∣∣ 6 Γ(κ+ |ξ|)p−2.

(B) The composition B ◦ H is of class C3,β
loc (Rn) and for any K > 0 there exist a positive

constant γ such that, for any ξ, ζ ∈ Rn, with |ξ| 6 K, we have

[Hess (B ◦H)(ξ)]ij ζiζj > γ |ζ|2.
In [CFV14, Appendix A] we showed that hypothesis (A) is ful�lled for instance by tak-

ing B(t) = tp/p together with an H whose anisotropic unit ball

BH
1 = {ξ ∈ Rn : H(ξ) < 1} , (1.5)

is uniformly convex, i.e. such that the principal curvatures of its boundary are bounded away

from zero. Every anisotropy H having uniformly convex unit ball will be called uniformly

elliptic. We remark that, since the second fundamental form of ∂BH
1 at a point ξ ∈ ∂BH

1 is

given by

IIξ(ζ, υ) =
Hij(ξ)ζiυj
|∇H(ξ)| for any ζ, υ ∈ ∇H(ξ)⊥,

as can bee seen for instance in [CFV14, Appendix A], and being ∂BH
1 compact, the uniform

ellipticity of H is equivalent to ask

Hij(ξ)ζiζj > λ|ζ|2 for any ξ ∈ ∂BH
1 , ζ ∈ ∇H(ξ)⊥, (1.6)

for some λ > 0. Any positive λ for which (1.6) is satis�ed will be said to be an ellipticity

constant for H. Notice that, by homogeneity, (1.6) actually extends to

Hij(ξ)ζiζj > λ|ξ|−1|ζ|2 for any ξ ∈ Rn \ {0}, ζ ∈ ∇H(ξ)⊥. (1.7)

We associate to our solution u ∈ L∞(Rn) the �nite quantities

u∗ := sup
Rn

u and u∗ := inf
Rn
u,

and the gauge

cu := sup {F (t) : t ∈ [u∗, u∗]} . (1.8)

Finally, for t ∈ R we set

G(t) := cu − F (t). (1.9)

Notice that such G is a non-negative function on the range of u and that putting it in place

of −F in (1.1) does not change at all the setting, once u is �xed.

In the forthcoming Subsections 1.2�1.5, we give precise statements of our main results.

We point out that, to the best of our knowledge, these results are new even in the case in
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which B(t) = t2/2 (i.e. even in the case in which the elliptic operator is non-singular and

non-degenerate).

1.2. A monotonicity formula. Monotonicity formulae are a classical topic in geometric

variational analysis. Roughly speaking, the idea of monotonicity formulae is that a suitably

rescaled energy functional in a ball possesses some monotonicity properties with respect to

the radius of the ball (in our case, the situation is geometrically more complicated, since the

ball is non-Euclidean).

Of course, monotonicity formulae are important, since they provide a quantitative infor-

mation on the energy of the problem; moreover, they often provide additional information on

the asymptotic behaviour of the solutions, also in connection with blow-up and blow-down

limits, and they play a special role in rigidity and classi�cation results.

One of the main results of the present paper consists in a monotonicity formula for a

suitable rescaled version of the functional (1.1), over the family of sets indexed by R > 0,

WH
R = WR := {x ∈ Rn : H∗(x) < R} , (1.10)

where, for x ∈ Rn,

H∗(x) := sup
ξ∈Sn−1

〈x, ξ〉
H(ξ)

, (1.11)

is the dual function of H. Notice that H∗ is a positive homogeneous function of degree 1
and that it is at least of class C2(Rn \ {0}), as showed in Lemma 2.3 below. The set WR is

the so-called Wul� shape of radius R associated to H. We refer to [CS09, WX11] for some

basic properties of this set and to [T78] for a nice geometrical construction. The precise

statement is given by

Theorem 1.1. Assume that one of the following conditions to be valid:

(i) Assumption (A) holds and u ∈ L∞(Rn) ∩W 1,p
loc (Rn) is a weak solution of (1.2) in Rn;

(ii) Assumption (B) holds and u ∈ W 1,∞(Rn) weakly solves (1.2) in Rn.

If (i) is in force, assume in addition that H satis�es, for any ξ, x ∈ Rn,

sgn〈H(ξ)∇H(ξ), H∗(x)∇H∗(x)〉 = sgn〈ξ, x〉. (1.12)

Then, the rescaled energy de�ned by

E (u; R) = E (R) :=
1

Rn−1

∫

WR

B(H(∇u(x))) + G(u(x)) dx, (1.13)

for any R > 0, is monotone non-decreasing.

Observe that when B(t) = t2/2 and H(x) = |x| (i.e. when the operator is simply the

Laplacian and the equation is isotropic), then the result of Theorem 1.1 reduces to the

classical monotonicity formula proved in [M89]. Then, if H(x) = |x|, the results of [M89]

were extended to the non-linear case in [CGS94]. Di�erently from the existing literature,

here we introduce the presence of a general non-Euclidean anisotropy H (also, we remove

an unnecessary assumption on the sign of F ).

We remark that the anisotropic term in the monotonicity formula provides a number of

geometric complications. Indeed, in our case, the unit ball BH
1 is not Euclidean and it does

not coincide with its dual ball WH
1 , and a point on the unit sphere does not coincide in

general with the normal to the sphere.

Also, we mention that Theorem 1.1 relies on the pointwise gradient estimate proved

in [CFV14, Theorem 1.1].
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1.3. Geometric conditions on the anisotropy and classi�cation results. In the state-

ment of the monotonicity formula the new condition (1.12) is assumed on H. Here, we plan

to shed some light on its origin and to better understand its implications.

First, we point out that this assumption comes as a weaker form of the more restrictive

〈H(ξ)∇H(ξ), H∗(x)∇H∗(x)〉 = 〈ξ, x〉, (1.14)

for any ξ, x ∈ Rn. To the authors' knowledge, this latter condition has been �rst introduced

in [FK09] to recover the validity of the mean value property for Q-harmonic functions, that

are the solutions of the equation

Qu :=
∂

∂xi

(
H(∇u)Hi(∇u)

)
= 0. (1.15)

Notice that such solutions are the counterparts of harmonic functions in the anisotropic

framework and that equation (1.15) is a particular case of our setting by taking B(t) = t2/2
and F = 0.

Examples of homogeneous functions H for which (1.14) is valid are the norms displayed

in (1.16), as showed by Lemma 6.2. Note that we do not assume (1.12) in case (ii) of

Theorem 1.1. Indeed, hypothesis (B) forces H to be of the form (1.16), as shown in [CFV14,

Appendix B] (this can also be deduced from the forthcoming Theorem 1.5). In the next

result we emphasize that anisotropies as the one in (1.16) are actually the only ones which

satisfy (1.14).

Theorem 1.2. Let H ∈ C1(Rn \ {0}) be a positive homogeneous function of degree 1 sat-

isfying (1.4). Assume that its unit ball BH
1 , as de�ned by (1.5), is strictly convex. Then,

condition (1.14) is equivalent to asking H to be of the form

HM (ξ) =
√
〈Mξ, ξ〉, (1.16)

for some symmetric and positive de�nite matrix M ∈ Matn(R).

From Theorem 1.2, it follows that assumption (1.14) imposes some severe restrictions on

the geometric structure of its unit ball, which is always an Euclidean ellipsoid. A natural

question is therefore to understand in which sense our condition (1.12) is more general.

For this scope, we will discuss condition (1.12) in detail, by making concrete examples

and obtaining a complete characterization in the plane. Roughly speaking, the unit ball

in the plane under condition (1.12) can be constructed by considering a curve in the �rst

quadrant that satis�es a suitable, explicit di�erential inequality, and then re�ecting this

curve in the other quadrants (of course, if higher regularity on the ball is required, this gives

further conditions on the derivatives of the curve at the re�ection points). The detailed

characterization of condition (1.12) in the plane is given by the following technical but

operational result.

Proposition 1.3. Let r : [0, π/2] → (0,+∞) be a given C2 function satisfying

r(θ)r′′(θ) < 2r′(θ)2 + r(θ)2 for a.a. θ ∈
[
0,
π

2

]
, (1.17)

and

r(0) = 1, r(π/2) = r∗, r′(0) = r′(π/2) = 0, (1.18)

for some r∗ > 1. Consider the π-periodic function r̃ : R → (0,+∞) de�ned on [0, π] by

r̃(θ) :=





r(θ) if 0 6 θ 6 π

2
,

r∗
√
r(τ−1(θ))2 + r′(τ−1(θ))2

r(τ−1(θ))2
if
π

2
6 θ 6 π,

where τ : [0, π/2] → [π/2, π] is the bijective map given by

τ(η) =
π

2
+ η − arctan

r′(η)
r(η)

.
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Then, r̃ is of class C1(R), the set

{(ρ cos θ, ρ sin θ) : ρ ∈ [0, r̃(θ)), θ ∈ [0, 2π]} , (1.19)

is strictly convex and its supporting function

H̃(ρ cos θ, ρ sin θ) :=
ρ

r̃(θ)
, ,

de�ned for ρ > 0 and θ ∈ [0, 2π], satis�es (1.12).

Furthermore, up to a rotation and a homothety of the plane R2, any even positive 1-
homogeneous function H ∈ C2(R2 \{0}) satisfying (1.4), having strictly convex unit ball BH

1

and for which condition (1.12) holds true is such that BH
1 is of the form (1.19), for some

positive r ∈ C2([0, π/2]) satisfying (1.17) and (1.18).

In addition, if H ∈ C3,α
loc (R2 \ {0}), for some α ∈ (0, 1], we have that H is uniformly

elliptic and satis�es condition (1.12) if and only if r ∈ C3,α([0, π/2]), inequality (1.17) is

satis�ed at any θ ∈ [0, π/2] and

r′′
(π

2

)
= − r∗r′′(0)

1− r′′(0)
, r′′′

(π

2

)
= − r∗r′′′(0)

(1− r′′(0))3
,

hold along with (1.18).

With this characterization, it is easy to construct examples satisfying condition (1.12)

whose corresponding ball is not an Euclidean ellipsoid, see Remark 7.5.

1.4. A rigidity result. As an application of Theorem 1.1 we have the following Liouville-

type result.

Theorem 1.4. Let H and u be as in Theorem 1.1. If
∫

WR

G(u(x)) dx = o(Rn−1) as R → +∞, (1.20)

then u is constant.

In particular, if G(u) ∈ L1(Rn), then u is constant.

We remark that Theorem 1.4 is a sort of rigidity result. The condition that G(u) has

�nite mass - or, more generally, that the mass has controlled growth - may be seen as a

prescription of the values of the solution at in�nity (at least, in a suitably averaged sense):

the result of Theorem 1.4 gives that the only solution that can satisfy such prescription is

the trivial one. In this spirit, Theorem 1.4 may be seen as a variant of the classical Liouville

Theorem for harmonic functions (set here in a nonlinear, anisotropic, singular or degenerate

framework).

1.5. Equivalent conditions. We remark that the assumptions in (A) and (B) that we made

on the anisotropic and nonlinear part of the operator are somehow classical in the literature,

see e.g. [CGS94, CFV14] and the references therein (roughly speaking, these conditions are

the necessary ones to obtain some regularity of the solutions using, or adapting, the elliptic

regularity theory).

In spite of their classical �avour, we think that in some cases these conditions can be

made more explicit or more concrete. For this, in this paper we provide some equivalent

characterizations. In particular, we will observe that condition (B) puts some important

restrictions on the structure of the ambient medium, due to the regularity requirement on

the composition B ◦H. More precisely, the following result holds true:

Theorem 1.5. Assumption (A) is equivalent to



6

(A)′ There exist p > 1, κ̄ ∈ [0, 1) and positive γ̄, Γ̄, λ such that

H is uniformly elliptic with constant λ,

and

γ̄(κ̄+ t)p−2t 6B′(t) 6 Γ̄(κ̄+ t)p−2t,

γ̄(κ̄+ t)p−2 6B′′(t) 6 Γ̄(κ̄+ t)p−2,

for any t > 0.
Assumption (B) is equivalent to

(B)′ The function B is of class C3,β
loc ([0,+∞)), with B′′′(0) = 0,

B′′(0) > 0, (1.21)

and H is of the type (1.16), for some M ∈ Matn(R) symmetric and positive de�nite.

1.6. Organization of the paper. The rest of the paper is organized as follows.

In Section 2 we gather several auxiliary lemmata, most of which are related to basic

properties of the anisotropy H. At the end of the section we also brie�y comment on the

regularity of the solutions of (1.2).

In Section 3 we establish the equivalence of the two sets of conditions (A)-(B) and (A)′-
(B)′, thus proving Theorem 1.5.

The proof of the main result of the paper, Theorem 1.1, is the content of Section 4. In

the subsequent Section 5 we then deduce Theorem 1.4 as a corollary of the monotonicity

formula.

The last two sections deal with the characterizations of conditions (1.14) and (1.12). In

Section 6 we address Theorem 1.2, while the following Section 7 is devoted to the proof of

Proposition 1.3.

2. Some auxiliary results

We collect here some preliminary results which will be abundantly used in the forthcoming

sections. Most of them are very well known results, so that we will not comment much on

their proofs. Nevertheless, precise references will be given.

Every result in this section is clearly meant to be applied to the functions H and B above

introduced. However, when possible we state them under slightly lighter hypotheses.

The �rst lemma provides three useful identities for the derivatives of positive homogeneous

functions. We recall that, given d ∈ R, a function H : Rn \ {0} → R is said to be positive

homogeneous of degree d if

H(tξ) = |t|dH(ξ) for any t > 0, ξ ∈ Rn \ {0}.
Lemma 2.1. If H ∈ C3(Rn \ {0}) is positive homogeneous of degree 1, we have that

Hi(ξ)ξi = H(ξ), (2.1)

Hij(ξ)ξi = 0, (2.2)

Hijk(ξ)ξi = −Hjk(ξ). (2.3)

We refer to the Appendix of [FV14] for a proof. The second result of this section deals

with the regularity up to the origin of both the anisotropy H and the composition B ◦H.

Lemma 2.2. Let H ∈ C1(Rn\{0}) be a positive homogeneous function of degree d admitting

non-negative values and B ∈ C1([0,+∞)), with B(0) = 0. Assume that either d > 1 or d = 1
and B′(0) = 0. Then H can be extended by setting H(0) := 0 to a continuous function, such

that B ◦H ∈ C1(Rn) and

∂i(B ◦H)(0) = 0 = lim
x→0

B′(H(x))Hi(x).
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A proof of Lemma 2.2 can be found in [CFV14, Section 2]. Next is a lemma which gathers

some results on H and its dual H∗.

Lemma 2.3. Let B ∈ C2((0,+∞)) and H ∈ C2(Rn \ {0}). Assume B to satisfy (1.3), the

function H to be positive homogeneous of degree 1 satisfying (1.4) and Hess(B ◦ H) to be

positive de�nite in Rn \ {0}. Then, the ball BH
1 de�ned by (1.5) is strictly convex.

Furthermore, the dual function H∗ de�ned by (1.11) is of class C2(Rn \ {0}), the formulae

H∗(∇H(ξ)) = H(∇H∗(ξ)) = 1, (2.4)

hold true for any ξ ∈ Rn \ {0} and the map ΨH : Rn → Rn, de�ned by setting

ΨH(ξ) := H(ξ)∇H(ξ),

for any ξ ∈ Rn, is a global homeomorphism of Rn, with inverse ΨH∗.

Proof. Notice that B ◦ H ∈ C2(Rn \ {0}) ∩ C0(Rn) and its Hessian is positive de�nite

in Rn \ {0}. Hence B ◦H is strictly convex in the whole of Rn. Moreover, being B′ positive
by (1.3), the ball BH

1 is also a sublevel set of B ◦H and thus strictly convex.

The other claims are valid by virtue of [CS09, Lemma 3.1]. Note that H is assumed to

be even in [CS09], but this assumption is not used in the proof of Lemma 3.1 there. Hence

this result is valid also in our setting.

Moreover, H∗ is of class C2 outside of the origin, since so is the di�eomorphism ΨH . �
Next we see that if B is of the type of the regularized p-Laplacian, i.e. when (A)′ holds

with κ̄ > 0, then it is close to being quadratic. In particular, we show that B can modi�ed

far from the origin to make it satisfy (A)′ with p = 2. We will need such a trick in Section 4

in order to overcome a technical di�culty along the proof of Proposition 4.3.

Lemma 2.4. Let B ∈ C2((0,+∞)) ∩ C1([0,+∞)) be a function satisfying both (1.3)

and B(0) = B′(0) = 0. Assume in addition that B satis�es the inequalities displayed in (A)′

for some p > 1 and κ̄ > 0. Let M > 0 be �xed and de�ne

B̂(t) :=

{
B(t), if t ∈ [0,M),
a(t−M)2 + b(t−M) + c, if t > M,

(2.5)

where a = B′′(M)/2, b = B′(M) and c = B(M). Then, B̂ ∈ C2((0,+∞)) ∩ C1([0,+∞))
and it satis�es the inequalities in (A)′ with p = 2.

Proof. The function B̂ is of class C2((0,+∞))∩C1([0,+∞)) by construction. Moreover, the

estimates concerning B̂′ in (A)′ result from the analogous for B̂′′ by integration, since B̂′(0) =
0. Thus, we only need to check that there exist Γ̂ > γ̂ > 0 for which

γ̂ 6 B̂′′(t) 6 Γ̂ for any t > 0.

Notice that when t > M this fact is obviously true. On the other hand, if t ∈ (0,M) we

compute

B̂′′(t) = B′′(t) > γ̄(κ̄+ t)p−2 > γ̄min
{
κ̄p−2, (κ̄+M)p−2

}
=: γ̂,

and

B̂′′(t) = B′′(t) 6 Γ̄(κ̄+ t)p−2 6 Γ̄max
{
κ̄p−2, (κ̄+M)p−2

}
=: Γ̂.

This �nishes the proof. �
To conclude the section, we comment on the regularity of bounded weak solutions to (1.2).

The result is an application of the standard interior degenerate (or non-degenerate) elliptic

regularity theory of [LU68], [DiB83] and [T84]. See [CFV14, Section 3] for more details.

Proposition 2.5. Let u be as in Theorem 1.1. Then, u ∈ C1,α
loc (Rn) ∩ C3 ({∇u 6= 0}), for

some α ∈ (0, 1), and ∇u ∈ L∞(Rn).
Moreover, if (ii) of Theorem 1.1 is in force, then u is of class C3,α

loc (Rn).
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3. On the equivalence between assumptions (A)-(B) and (A)′-(B)′

In this second preliminary section we prove the equivalence of the two couples of structural

conditions stated in the introduction. We show that both (A) and (B) respectively boil down

to the simpler and more operational (A)′ and (B)′. First, we have

Proposition 3.1. Let B ∈ C2((0,+∞)) be a function satisfying (1.3) and H ∈ C2(Rn\{0})
be positive homogeneous of degree 1, such that (1.4) is true. Then, assumptions (A) and (A)′

are equivalent. Moreover, we may take

κ̄ = κ, (3.1)

and the constants γ̄, Γ̄, λ and γ,Γ to be independent of κ.

Proof. First of all, denote with C > 1 a constant for which

C−1|ξ| 6 H(ξ) 6 C|ξ|, |∇H(ξ)| 6 C and |Hess(H)| 6 C|ξ|−1,

hold for any ξ ∈ Rn \{0}. Then, observe that the ellipticity and growth conditions displayed

in (A) are respectively equivalent to
[
B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)

]
ζiζj > γ (κ+ |ξ|)p−2 |ζ|2, (3.2)

n∑

i,j=1

∣∣B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)
∣∣ 6 Γ (κ+ |ξ|)p−2 , (3.3)

for any ξ ∈ Rn \ {0} and ζ ∈ Rn.

We start by showing that (A)′ implies (A), in its above mentioned equivalent form. First,

we check that (3.3) is true. We have

n∑

i,j=1

∣∣B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)
∣∣ 6 Γ̄(κ̄+H(ξ))p−2

[
C2 + CH(ξ)|ξ|−1

]

6 2Γ̄C2(κ̄+ c∗|ξ|)p−2

= 2Γ̄C2cp−2
∗ (c−1

∗ κ̄+ |ξ|)p−2,

with

c∗ :=

{
C if p > 2,
1/C if 1 < p < 2.

(3.4)

The proof of (3.2) is a bit more involved. We write

ζ = αξ + η, (3.5)

for some α ∈ R and η ∈ ∇H(ξ)⊥. We stress that ξ and ∇H(ξ)⊥ span the whole Rn in

view of (2.1). Thus, decomposition (3.5) is admissible. We distinguish between the two

cases: 2|αξ| 6 |ζ| and 2|αξ| > |ζ|. In the �rst situation, we have

|η|2 = |ζ − αξ|2 = |ζ|2 − 2α〈ζ, ξ〉+ α2|ξ|2 > (|ζ| − |αξ|)2 > |ζ|2
4
.

Therefore, by applying (2.1), (2.2) and (1.7), we get
[
B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)

]
ζiζj

= B′′(H(ξ))(Hi(ξ)ζi)2 +B′(H(ξ))Hij(ξ)ηiηj > 0 + γ̄(κ̄+H(ξ))p−2H(ξ)λ|ξ|−1|η|2

> 4−1γ̄λC−1(κ̄+ c−1
∗ |ξ|)p−2|ζ|2 = 4−1γ̄λC−1c2−p∗ (c∗κ̄+ |ξ|)p−2|ζ|2

> 4−1γ̄λC−1c2−p∗ (c−1
∗ κ̄+ |ξ|)p−2|ζ|2,

where in last line we recognized that, for every p > 1,

(c∗κ̄+ s)p−2 > (c−1
∗ κ̄+ s)p−2

for any s > 0, (3.6)
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being C > 1. On the other hand, if the opposite inequality occurs we deduce that, by (2.1),

|〈∇H(ξ), ζ〉| = |〈∇H(ξ), αξ + η〉| = |α|H(ξ) > |α||ξ|
C

> |ζ|
2C

,

so that, we compute
[
B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)

]
ζiζj

= B′′(H(ξ))(Hi(ξ)ζi)2 +B′(H(ξ))Hij(ξ)ηiηj > γ̄(κ̄+H(ξ))p−2(2C)−2|ζ|2 + 0

> 4−1γ̄C−2(κ̄+ c−1
∗ |ξ|)p−2|ζ|2 = 4−1γ̄C−2c2−p∗ (c∗κ̄+ |ξ|)p−2|ζ|2

> 4−1γ̄C−2c2−p∗ (c−1
∗ κ̄+ |ξ|)p−2|ζ|2,

and thus the proof of (3.2) is complete.

Now, we focus on the opposite implication, i.e. that (A) implies (A)′. Let t > 0 and

take ξ ∈ Rn \ {0} such that t = H(ξ). Plugging ζ = ξ in (3.2), by (2.1) and (2.2) we obtain

γ (κ+ |ξ|)p−2 |ξ|2 6
[
B′′(t)Hi(ξ)Hj(ξ) +B′(t)Hij(ξ)

]
ξiξj = B′′(t)H2(ξ),

and hence that

B′′(t) > γC−2(κ+ c−1
∗ t)p−2 = γC−2c2−p∗ (c∗κ+ t)p−2.

On the other hand, the choice ζ ∈ ∇H(ξ)⊥ in (3.2) leads to

γ (κ+ |ξ|)p−2 |ζ|2 6
[
B′′(t)Hi(ξ)Hj(ξ) +B′(t)Hij(ξ)

]
ζiζj = B′(t)Hij(ξ)ζiζj

6 CB′(t)|ξ|−1|ζ|2 6 C2B′(t)t−1|ζ|2.
(3.7)

As before we deduce

B′(t) > γC−2c2−p∗ (c∗κ+ t)p−2t.

The remaining inequalities involving B′ and B′′ in (A)′ can be similarly deduced from (3.3).

Indeed, notice that (2.1) and (2.2) respectively yield

H1(e1) = 〈∇H(e1), e1〉 = H(e1),

H11(e1) = 〈∇2H(e1)e1, e1〉 = 0.

Hence, if we take µ > 0 such that t = H(µe1), setting ξ = µe1 in (3.3) we get

Γ (κ+ |ξ|)p−2 >
n∑

i,j=1

∣∣B′′(t)Hi(µe1)Hj(µe1) +B′(t)Hij(µe1)
∣∣

> B′′(t)H1(e1)H1(e1) +B′(t)µ−1H11(e1)

= B′′(t)H2(e1).

Consequently, recalling (3.6) we obtain

B′′(t) 6 ΓC2(κ+ c∗t)p−2 = ΓC2cp−2
∗ (c−1

∗ κ+ t)p−2 6 ΓC2cp−2
∗ (c∗κ+ t)p−2.

As a byproduct, the previous inequality implies in particular that

B′(1) =
∫ 1

0
B′′(t) dt 6 ΓC2cp−2

∗
p− 1

(c∗κ+ 1)p−1.

Hence, by taking t = 1 in the �rst line of (3.7) we see that H is uniformly elliptic, with

constant

λ =
(p− 1)c2(2−p)∗ γ

2C2(c∗ + 1)Γ
. (3.8)

Note that we took advantage of the fact that κ < 1, along with de�nition (3.4), to deduce

this bound. Finally, the growth condition on B′ can be obtained as follows. Select ξ ∈
Rn \ {0} in a way that e1 ∈ ∇H(ξ)⊥ and H(ξ) = t. This can be easily done for instance
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by taking ξ = t∇H∗(e2). Indeed, by Lemma 2.3, together with the homogeneity properties

of H and ∇H, we have

0 = 〈e2, e1〉 = H(H∗(e2)∇H∗(e2))〈∇H(H∗(e2)∇H∗(e2)), e1〉
= H∗(e2)H(∇H∗(e2))〈∇H(∇H∗(e2)), e1〉 = H∗(e2)〈∇H(∇H∗(e2)), e1〉.

Such a choice implies that

〈∇H(ξ), e1〉 = 〈∇H(∇H∗(e2)), e1〉 = 0.

Moreover, it is easy to see that H(ξ) = t. From (3.3) we may then compute

Γ (κ+ |ξ|)p−2 >
n∑

i,j=1

∣∣B′′(t)Hi(ξ)Hj(ξ) +B′(t)Hij(ξ)
∣∣

> B′′(t)H1(ξ)H1(ξ) +B′(t)H11(ξ)

= B′(t)H11(ξ) > B′(t)λ|ξ|−1,

from which we get, as before,

B′(t) 6 Γλ−1Ccp−2
∗ (c∗κ+ t)p−2t,

with λ as in (3.8). This concludes the proof of the second part of our claim.

The fact that we may assume (3.1) to hold - up to relabeling the constants γ,Γ or γ̄, Γ̄ in

dependence of C - is a consequence of the inequalities

(κ+ t)p−2 6 (c∗κ+ t)p−2 6 cp−2
∗ (κ+ t)p−2,

and

c2−p∗ (κ̄+ |ξ|)p−2 6 (c−1
∗ κ̄+ |ξ|)p−2 6 (κ̄+ |ξ|)p−2. �

On the other hand, the characterization of (B) in terms of (B)′ is the content of the

following

Proposition 3.2. Let B ∈ C3((0,+∞)) ∩C1([0,+∞)) be a function satisfying (1.3) along

with B(0) = B′(0) = 0 and H ∈ C3(Rn \ {0}) be positive homogeneous of degree 1, such

that (1.4) is true. Then, hypotheses (B) and (B)′ are equivalent.

Proof. We begin by showing that (B)′ implies (B). First, we deal with the regularity of the

composition B ◦ H. By the general assumptions on B and H, it is clear that B ◦ H ∈
C3,β

loc (Rn \ {0}) ∩ C1(Rn). Thus, we only need to check the second and third derivatives

of B ◦H at the origin. For any e ∈ Sn−1 and t > 0, by the homogeneity of H we have

(B ◦H)ij(te) = B′′(H(te))Hi(te)Hj(te) +B′(H(te))Hij(te)

= B′′(tH(e))Hi(e)Hj(e) +
B′(tH(e))
tH(e)

H(e)Hij(e).

Hence, taking the limit as t→ 0+

lim
t→0+

(B ◦H)ij(te) = B′′(0) [Hi(e)Hj(e) +H(e)Hij(e)] . (3.9)

Now, observe that, being H of the special form (1.16), we may explicitly compute

Mij = ∂ij

(
H2

2

)
(ξ) = Hi(ξ)Hj(ξ) +H(ξ)Hij(ξ), (3.10)

for any ξ ∈ Rn. As a consequence of (3.10), the right hand side of (3.9) does not depend

on e ∈ Sn−1 and so

(B ◦H)ij(0) = B′′(0)Mij .

Now we focus on the third derivative. First, by di�erentiating (3.10) we deduce the identity

Hi(ξ)Hjk(ξ) +Hj(ξ)Hik(ξ) +Hk(ξ)Hij(ξ) = −H(ξ)Hijk(ξ).
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With this in hand we compute

(B ◦H)ijk(te) = B′′′(H(te))Hi(te)Hj(te)Hk(te)

+B′′(H(te)) [Hi(te)Hjk(te) +Hj(te)Hik(te) +Hk(te)Hij(te)]

+B′(H(te))Hijk(te)

= B′′′(tH(e))Hi(e)Hj(e)Hk(e)

+
1

tH(e)

[
B′(tH(e))
tH(e)

−B′′(tH(e))
]
H2(e)Hijk(e).

(3.11)

Now, we claim that

lim
s→0+

1
s

[
B′(s)
s

−B′′(s)
]

= 0. (3.12)

Indeed, since B′(0) = B′′′(0) = 0, the Taylor expansions of B′ and B′′ are

B′(s) = B′′(0)s+ o(s2) and B′′(s) = B′′(0) + o(s),

as s→ 0+. Therefore

B′(s)
s

−B′′(s) =
B′′(0)s
s

−B′′(0) + o(s) = o(s),

and (3.12) follows. Thus, letting t→ 0+ in (3.11), we get

lim
t→0+

(B ◦H)ijk(te) = B′′′(0)Hi(e)Hj(e)Hk(e) + 0 ·H2(e)Hijk(e) = 0,

for any e ∈ Sn−1. We may thence conclude that B ◦ H ∈ C3,β
loc (Rn). Finally, we prove

that Hess (B ◦H) is uniformly elliptic on compact subsets, as required in (B). Let

C := max
ξ∈Sn−1

H(ξ). (3.13)

By (1.3) and (1.21), for any K > 0, there exists γ̄ > 0 such that

B′′(t) > γ̄, (3.14)

for any t ∈ [0, CK]. Since B′(0) = 0, we also infer that

B′(t) =
∫ t

0
B′′(s) ds > γ̄t, (3.15)

for any t ∈ [0, CK]. Let ξ, η ∈ Rn, with |ξ| 6 K. Observe that, by (3.13), it holds

H(ξ) 6 |ξ|H
(
ξ

|ξ|

)
6 CK.

Then, by (3.14), (3.15) and (3.10),

(B ◦H)ij(ξ)ηiηj =
[
B′′(H(ξ))Hi(ξ)Hj(ξ) +B′(H(ξ))Hij(ξ)

]
ηiηj

> γ̄ [Hi(ξ)Hj(ξ) +H(ξ)Hij(ξ)] ηiηj
= γ̄Mijηiηj ,

and the result follows from the positive de�niteness of M .

Now, we turn to the converse implication, i.e. that (B) implies (B)′. First, we observe

that H needs to be of the type (1.16), in view of [CFV14, Appendix B]. Then, we address

the regularity of B. Being H even and using (2.1), we have

B′′(0) = lim
t→0+

B′(t)
t

= lim
s→0

B′(H(se1))
H(se1)

= lim
s→0

(B ◦H)1(se1)
H(se1)H1(se1)

= lim
s→0

s

sH(e1)H1(e1)
(B ◦H)1(se1)− (B ◦H)1(0)

s

= H−2(e1)(B ◦H)11(0),
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so that B ∈ C2([0,+∞)). Moreover, B′′(0) > 0, as can be seen by testing with ξ = 0, ζ = e1
the ellipticity condition of (B). On the other hand, by (2.1) and (2.2) we compute

(B ◦H)111(0) = lim
t→0

(B ◦H)11(te1)− (B ◦H)11(0)
t

= lim
t→0

B′′(H(te1))H1(te1)H1(te1) +B′(H(te1))H11(te1)−B′′(0)H2(e1)
t

= ±H3(e1) lim
t→0±

B′′(|t|H(e1))−B′′(0)
|t|H(e1)

= ±H3(e1) lim
s→0+

B′′(s)−B′′(0)
s

.

Since the left hand side exists �nite, the same should be true for the right one, too. Thus,

we obtain that B ∈ C3([0,+∞)) with B′′′(0) = 0. This concludes the proof, as the local

Hölderianity of B up to 0 may be easily deduced from that of B ◦H. �
We remark that Theorem 1.5 now follows easily from Propositions 3.1 and 3.2.

4. The monotonicity formula

In this section we prove Theorem 1.1. Our argument is similar to that presented in [M89]

and [CGS94, Theorem 1.4]. Yet, we develop several technical adjustments in order to cope

with the di�culties arising in the anisotropic setting. In particular, in the classical, isotropic

setting, the monotonicity formulae implicitly rely on some Euclidean geometric features, such

as that a point on the unit sphere coincides with the normal of the sphere at that point, as

well as the one of the dual sphere (that in the isotropic setting coincides with the original

one). These Euclidean geometric properties are lost in our case, therefore we need some

more re�ned geometrical and analytical studies.

The strategy we adopt to show the monotonicity of E basically relies on taking its de-

rivative and then checking that it is non-negative. To complete this task, however, we

make some integral manipulation involving the Hessian of u. Hence, we need u to be twice

di�erentiable, at least in the weak sense.

If (ii) is assumed to hold, this is not an issue, since u is C3 (see Proposition 2.5). Therefore,

we only focus on case (i). In this framework the solution u is, in general, no more than C1,α
loc .

To circumvent this lack of regularity, we introduce a sequence of approximating problems

and perform the computation on their solutions. Passing to the limit, we then recover the

result for u. If one is interested in the proof under hypothesis (ii), he should simply ignore

the perturbation argument and directly work with u.
Prior to the proper proof of Theorem 1.1, we present some preparatory results about the

above mentioned approximation technique. In every statement the functions B, H and u
are assumed to be satisfy assumption (i).

Let ε ∈ (0, 1) and consider the function Bε de�ned by

Bε(t) := B
(√

ε2 + t2
)
−B(ε), (4.1)

for any t > 0.
First, we present a result which addresses the regularity and growth properties of Bε.

Lemma 4.1. The function Bε is of class C2([0,+∞)) and it satis�es Bε(0) = B′ε(0) = 0
and (1.3). Moreover

cpγ̄ (κ̄+ ε+ t)p−2 t 6B′ε(t) 6 CpΓ̄ (κ̄+ ε+ t)p−2 t,

cpγ̄ (κ̄+ ε+ t)p−2 6B′′ε (t) 6 CpΓ̄ (κ̄+ ε+ t)p−2 ,
(4.2)

for any t > 0, where γ̄, Γ̄ are as in (A)′ and

cp := min
{

1, 2
2−p
2

}
, Cp := max

{
1, 2

2−p
2

}
.
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In addition, the composition Bε ◦H is of class C1,1
loc (Rn) and it holds, for any ξ ∈ Rn,

(Bε ◦H)(ξ) > γ

2(p− 1)p
|ξ|p − c?, (4.3)

where γ is as in (A) and c? is a non-negative constant independent of ε.

Proof. It is immediate to check from de�nition (4.1) that Bε ∈ C2([0,+∞)). For any t > 0,
we compute

B′ε(t) = B′
(√

ε2 + t2
) t√

ε2 + t2
,

B′′ε (t) = B′′
(√

ε2 + t2
) t2

ε2 + t2
+B′

(√
ε2 + t2

) ε2

(ε2 + t2)3/2
.

Thus, inequalities (1.3) are valid and Bε(0) = B′ε(0) = 0. Furthermore, formulae (4.2) can

be recovered from the ellipticity and growth conditions of (A)′ which B satis�es.

Then, we address the compositionBε◦H. Notice that we already know that it is of class C1

on the whole Rn, by virtue of Lemma 2.2, and C2 outside of the origin, by de�nition. Thus

we only need to check that its gradient is Lipschitz in a neighbourhood of the origin. By

using (4.2), for any 0 < |ξ| 6 1 we get

|∂i(Bε ◦H)(ξ)|
|ξ| =

|B′ε(H(ξ))Hi(ξ)|
|ξ| 6 CpΓ̄(κ̄+ ε+H(ξ))p−2Hi(ξ)

H(ξ)
|ξ| 6 c,

for some positive c.
Finally, we establish (4.3). As a preliminary observation, we stress that the Hessian

of Bε ◦ H satis�es (A) with κ = κ̄ + ε. This can be seen as a consequence of (4.2), the

uniform ellipticity of H and Proposition 3.1 (recall in particular relation (3.1)). We consider

separately the two possibilities p > 2 and 1 < p < 2. In the �rst case, we simply compute

(Bε ◦H)(ξ) =
∫ 1

0

∫ t

0
(Bε ◦H)ij(sξ)ξiξj dsdt > γ

∫ 1

0

∫ t

0
(κ+ s|ξ|)p−2|ξ|2 dsdt

> γ|ξ|p
∫ 1

0

∫ t

0
sp−2 dsdt =

γ

(p− 1)p
|ξ|p.

If, on the other hand, 1 < p < 2, we have

(Bε ◦H)(ξ) =
∫ 1

0

∫ t

0
(Bε ◦H)ij(sξ)ξiξj dsdt > γ

∫ 1

0

∫ t

0
(κ+ s|ξ|)p−2|ξ|2 dsdt

=
γ

p− 1

[
(κ+ |ξ|)p − κp

p
− κp−1|ξ|

]
> γ

p− 1

[ |ξ|p − κp

p
− κp−1|ξ|

]
.

(4.4)

Notice that, by Young's inequality, we estimate

κp−1|ξ| 6 |ξ|p
2p

+
p− 1
p

21/(p−1)κp.

Plugging this into (4.4) �nally leads to the desired

(Bε ◦H)(ξ) > γ

2(p− 1)p
|ξ|p − γ

(p− 1)p

(
1 + (p− 1)21/(p−1)

)
κp

> γ

2(p− 1)p
|ξ|p − γ

(p− 1)p

(
1 + (p− 1)21/(p−1)

)
(κ̄+ 1)p.

Hence, (4.3) holds in both cases and the proof of the lemma is complete. �

In the following lemma we compare Bε to B. We study their modulus of continuity and

discuss some uniform convergence properties.
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Lemma 4.2. Introduce, for t > 0, the functions β(t) := B′(t)t, βε(t) := B′ε(t)t.
Then, the Lipschitz norms of both Bε and βε on compact sets of [0,+∞) are bounded by

a constant independent of ε. More explicitly, for any M > 1 we estimate

‖Bε‖C0,1([0,M ]) 6 ‖B‖C0,1([0,2M ]),

‖βε‖C0,1([0,M ]) 6 2‖B′‖C0([0,2M ]) + ‖β‖C0,1([0,2M ]).
(4.5)

Moreover, Bε → B and βε → β uniformly on compact sets of [0,+∞). Quantitatively, we

have

‖Bε −B‖C0([0,M ]) 6 2‖B′‖C0([0,2M ])ε,

‖βε − β‖C0([0,M ]) 6
(
‖B′‖C0([0,2M ]) + ‖β‖C0,1([0,2M ])

)
ε.

(4.6)

Proof. First of all, we stress that, while βε ∈ C1([0,+∞)) in view of Lemma 4.1, the same

is true also for β, as one can easily deduce from hypothesis (A)′.
We begin to establish (4.5). It is easy to see that the C0 norms of Bε and βε are bounded

by those of B and β respectively. Thus, we may concentrate on the estimates of their

Lipschitz seminorms. Let M > 1 and 0 6 s, t 6 M . We have

|Bε(t)−Bε(s)| =
∣∣∣B
(√

ε2 + t2
)
−B

(√
ε2 + s2

)∣∣∣

6 ‖B‖C0,1([0,2M ])

∣∣∣
√
ε2 + t2 −

√
ε2 + s2

∣∣∣
6 ‖B‖C0,1([0,2M ])|t− s|,

so that the �rst relation in (4.5) is proved. The second inequality needs a little more care.

Assuming without loss of generality s 6 t, we compute

|βε(t)− βε(s)| =
∣∣∣∣B′
(√

ε2 + t2
) t2√

ε2 + t2
−B′

(√
ε2 + s2

) s2√
ε2 + s2

∣∣∣∣

6 B′
(√

ε2 + t2
)√

ε2 + t2
∣∣∣∣

t2

ε2 + t2
− s2

ε2 + s2

∣∣∣∣

+
s2

ε2 + s2

∣∣∣β
(√

ε2 + t2
)
− β

(√
ε2 + s2

)∣∣∣

6 ‖B′‖C0([0,2M ])
|t2 − s2|√
ε2 + t2

+ ‖β‖C0,1([0,2M ])

∣∣∣
√
ε2 + t2 −

√
ε2 + s2

∣∣∣

6
(
2‖B′‖C0([0,2M ]) + ‖β‖C0,1([0,2M ])

)
|t− s|.

Estimates (4.6) are proved in a similar fashion. Indeed, for any 0 6 t 6 M ,

|Bε(t)−B(t)| =
∣∣∣B
(√

ε2 + t2
)
−B(ε)−B(t)

∣∣∣

6 ‖B‖C0,1([0,2M ])

(∣∣∣
√
ε2 + t2 − t

∣∣∣+ ε
)

6 2‖B‖C0,1([0,2M ])ε,

and

|βε(t)− β(t)| 6 B′
(√

ε2 + t2
) ∣∣∣∣

t2√
ε2 + t2

−
√
ε2 + t2

∣∣∣∣+
∣∣∣β
(√

ε2 + t2
)
− β(t)

∣∣∣

6
(
‖B′‖C0([0,2M ]) + ‖β‖C0,1([0,2M ])

)
ε.

Thus, the proof is complete. �

Next is the key proposition of the approximation argument. Basically, we consider some

perturbed problems driven by Bε. We prove that their solutions are H2 regular and that

they converge to u.
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Proposition 4.3. Let Ω be a bounded open set of Rn with C1,α boundary. The problem
{
div
(
B′

ε(H(∇uε))∇H(∇uε)
)

+ F ′(u) = 0, in Ω,

uε = u, on ∂Ω,
(4.7)

admits a strong solution uε ∈ C1,α′(Ω) ∩ H2(Ω), for some α′ ∈ (0, 1] independent of ε.
Furthermore, uε converges to u in C1(Ω), as ε → 0+.

Proof. By using standard methods - see, for instance, [D07, Theorem 3.30] - we know that

the functional

Fε(v) :=
∫

Ω
Bε(H(∇v(x)))− F ′(u(x))v(x) dx,

admits the existence of a minimizer uε ∈ W 1,p(Ω), with uε − u ∈ W 1,p
0 (Ω). Note that Fε

is coercive, thanks to (4.3), the continuity of F ′ and the boundedness of u. Clearly, uε

satis�es (4.7) in the weak sense.

In view of (4.3), we see that the minimizer uε is bounded in Ω (use e.g. [S63, Theorems 6.1-

6.2] or [LU68, Theorem 3.2, p. 328]). Moreover, the L∞ norm of uε is uniform in ε.

With this in hand, we can now verify that uε ∈ C1,α′ . For this, we notice that Lemma 4.1

and Proposition 3.1 ensure that hypothesis (A) is veri�ed by Bε ◦ H. Hence, by the uni-

form L∞ estimates, we may appeal to [L88, Theorem 1] to deduce that uε ∈ C1,α′(Ω), for
some α′ ∈ (0, 1]. Notice that α′ is independent of ε and ‖uε‖C1,α′ (Ω) is uniformly bounded

in ε.
Consequently, by Arzelà-Ascoli Theorem, the sequence {uε} converges in C1(Ω) to a

function v, as ε → 0+. With the aid of Lemma 4.2, we see that v is the unique solution of
{
div (B′(H(∇v))∇H(∇v)) + F ′(u) = 0, in Ω,

v = u, on ∂Ω.

Therefore, v = u in the whole Ω.
Now we prove the H2 regularity of uε. To this aim we employ [T84, Proposition 1]. Notice

that we need to check the validity of condition (2.4) there, in order to apply such result.

If p > 2 it is an immediate consequence of the fact that Bε ◦ H satis�es (A). Indeed, for

any η ∈ Rn \ {0}, ζ ∈ Rn, we deduce that

[Hess (Bε ◦H)(ξ)]ij ζiζj > γ(κ̄ + ε + |ξ|)p−2|ζ|2 > γ̃|ζ|2,
for some γ̃ > 0. In case 1 < p < 2, we set M := ‖∇uε‖L∞(Ω) and modify Bε accordingly to

Lemma 2.4. The new function B̂ε obtained this way satis�es assumption (A)′, and thus (A),

with p = 2. Moreover, uε is still a weak solution to (4.7) with Bε replaced by B̂ε. This is

enough to conclude that uε ∈ H2(Ω) also when 1 < p < 2.
From the additional Sobolev regularity we deduce that uε is actually a strong solution

of (4.7). Indeed, it is su�cient to observe that, for any i = 1, . . . , n,

B′
ε(H(∇uε))Hi(∇uε) = (Bε ◦H)i (∇uε) ∈ H1(Ω),

being (Bε ◦H)i locally uniformly Lipschitz, by Lemma 4.1. �

After all these preliminary results, we may �nally head to the

Proof of Theorem 1.1. First, using the coarea formula we compute

E ′(R) =
1− n

R
E (R) +

1
Rn−1

∫

∂WR

[B(H(∇u)) + G(u)] |∇H∗|−1 dHn−1.

Then, notice that the exterior unit normal vector to ∂WR at x ∈ ∂WR is given by

ν(x) =
∇H∗(x)
|∇H∗(x)| . (4.8)
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Thus, by the homogeneity of H and the second identity in (2.4) we have

H(ν(x)) = |∇H∗(x)|−1H(∇H∗(x)) = |∇H∗(x)|−1.

As a consequence, the derivative of E at R becomes

E ′(R) =
1− n

R
E (R) +

1
Rn−1

∫

∂WR

[B(H(∇u)) + G(u)] H(ν) dHn−1. (4.9)

For any ε ∈ (0, 1), let now uε ∈ C1,α′(WR) ∩ H2(WR) be the strong solutions of (4.7),

with Ω = WR. Notice that ∂WR is of class C2 in view of Lemma 2.3. Hence, we are

allowed to apply Proposition 4.3 to obtain such a uε. By the results of Proposition 4.3 and

Lemma 4.2, along with the C2 regularity of G, it is immediate to check that

Bε(H(∇uε)) −→ B(H(∇u)),

B′
ε(H(∇uε))H(∇uε) −→ B′(H(∇u))H(∇u),

G(uε) −→ G(u) and F ′(uε) −→ F ′(u),

(4.10)

uniformly on WR.

In view of Lemma 2.3 the function H∇H is bijective and its inverse is given by H∗∇H∗.
Hence, exploiting the homogeneity properties of H and ∇H together with (2.4), it follows

that the identity

x = H(H∗(x)∇H∗(x))∇H(H∗(x)∇H∗(x)) = H∗(x)H(∇H∗(x))∇H(∇H∗(x))

= H∗(x)∇H(∇H∗(x)),

is true for any x ∈ Rn \ {0}. Consequently, using (2.1), (4.8), the homogeneity of ∇H, the

de�nition of ∂WR and the divergence theorem, we compute

∫

∂WR

Bε(H(∇uε))H(ν) dHn−1 =
1
R

∫

∂WR

Bε(H(∇uε))H∗〈∇H(ν), ν〉 dHn−1

=
1
R

∫

WR

div
(
Bε(H(∇uε))H∗∇H(∇H∗)

)
dx =

1
R

∫

WR

div
(
Bε(H(∇uε))x

)
dx

=
1
R

∫

WR

B′
ε(H(∇uε))Hj(∇uε)uε

ijxi dx +
n

R

∫

WR

Bε(H(∇uε)) dx.

With a completely analogous argument we also deduce that

∫

∂WR

G(uε)H(ν) dHn−1 = − 1
R

∫

WR

F ′(uε)uε
ixi dx +

n

R

∫

WR

G(uε) dx.

Putting these last two identities together we obtain

∫

∂WR

[Bε(H(∇uε)) + G(uε)] H(ν) dHn−1 =
n

R

∫

WR

Bε(H(∇uε)) + G(uε) dx +
Iε

R
, (4.11)

where

Iε :=
∫

WR

[
B′

ε(H(∇uε))Hj(∇uε)uε
ij − F ′(uε)uε

i

]
xi dx.

Recalling that uε is a strong solution of (4.7), we compute

Iε =
∫

WR

[(
B′

ε(H(∇uε))Hj(∇uε)uε
i

)
j
−
(
B′

ε(H(∇uε))Hj(∇uε)
)
j
uε

i − F ′(uε)uε
i

]
xi dx

=
∫

WR

(
B′

ε(H(∇uε))Hj(∇uε)uε
i

)
j
xi dx +

∫

WR

[
F ′(u)− F ′(uε)

]
uε

ixi dx.
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By the divergence theorem, formulae (2.1), (4.8) and condition (1.12) we �nd

Iε =
∫

WR

(
B′
ε(H(∇uε))Hj(∇uε)uεixi

)
j

dx−
∫

WR

B′
ε(H(∇uε))Hj(∇uε)uεi δij dx

+
∫

WR

[
F ′(u)− F ′(uε)

]
uεixi dx

=
∫

∂WR

B′
ε(H(∇uε))
|∇H∗| 〈∇H(∇uε),∇H∗〉〈∇uε, x〉 dHn−1

−
∫

WR

B′
ε(H(∇uε))〈∇H(∇uε),∇uε〉 dx +

∫

WR

[
F ′(u)− F ′(uε)

]
〈∇uε, x〉 dx

> −
∫

WR

B′
ε(H(∇uε))H(∇uε) dx +

∫

WR

[
F ′(u)− F ′(uε)

]
〈∇uε, x〉 dx.

(4.12)

Taking the limit as ε → 0+ in (4.11) and (4.12), by (4.10) we obtain
∫

∂WR

[B(H(∇u)) + G(u)] H(ν) dHn−1 > n

R

∫

WR

B(H(∇u)) + G(u) dx

− 1
R

∫

WR

B′(H(∇u))H(∇u) dx.

By plugging this last identity in (4.9) and recalling (1.13) we �nally get

E ′(R) > 1
Rn

∫

WR

B(H(∇u)) + G(u)−B′(H(∇u))H(∇u) dx.

The result now follows since the integral on the right hand side is non-negative by virtue

of [CFV14, Theorem 1.1]. �

5. The Liouville-type theorem

Here we prove Theorem 1.4. In order to obtain that u is constant, our �rst goal is to show

that, thanks to the gradient estimate contained in [CFV14, Theorem 1.1], the gradient term

in (1.13) is bounded by the potential. Then, the monotonicity formula of Theorem 1.1 and

the growth assumption on G(u) conclude the argument.

The following general result allows us to accomplish the �rst step.

Lemma 5.1. Let B ∈ C2(0, +∞) ∩ C1([0, +∞)) be a function satisfying (1.3) and B(0) =
B′(0) = 0. Assume in addition that B satis�es either (A)′ or (B)′. Then, for any K > 0
there exists a constant δ > 0 such that

B′(t)t−B(t) > δB(t), (5.1)

for any t ∈ [0, K]. In particular, under assumption (A)′, inequality (5.1) holds for any t > 0.

Proof. We begin by proving (5.1) when (A)′ is in force. Since B(0) = B′(0) = 0, we have

B′(t)t−B(t) =
∫ t

0
B′′(s)s ds > γ̄

∫ t

0
(κ̄ + s)p−2 s ds.

On the other hand,

B(t) =
∫ t

0
B′(s) ds 6 Γ̄

∫ t

0
(κ̄ + s)p−2 s ds.

By comparing these two expressions, we see that (5.1) holds for any t > 0, with δ = γ̄/Γ̄.
Then, we deal with case (B)′. Fix K > 0. Being B′′(0) > 0 and B(0) = B′(0) = 0, it

clearly exist Γ̄ > γ̄ > 0 such that B′′(t) ∈
[
γ̄, Γ̄

]
, for any t ∈ [0, K]. Hence, as before we

compute

B′(t)t−B(t) =
∫ t

0
B′′(s)s ds > γ̄

∫ t

0
s ds =

γ̄

2
t2,
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for any t ∈ [0, K]. Also,

B(t) =
∫ t

0

∫ s

0
B′′(σ) dσds 6 Γ̄

2
t2,

for any t ∈ [0, K], and again (5.1) is proved. �
Proof of Theorem 1.4. Combining Lemma 5.1 and [CFV14, Theorem 1.1], we deduce that

B(H(∇u(x))) 6 CG(u(x)) for any x ∈ Rn, (5.2)

for some constant C > 0. We stress that, under hypothesis (ii) of Theorem 1.1, it is

crucial that ∇u is globally L∞ in order to pro�tably apply Lemma 5.1. Recalling the

de�nition (1.13) of the rescaled energy functional E , in view of (5.2) and (1.20) we may

conclude that

lim
R→+∞

E (R) 6 (C + 1) lim
R→+∞

1
Rn−1

∫

WR

G(u(x)) dx = 0.

But then, Theorem 1.1 tells that E is non-decreasing in R ∈ (0, +∞) and, hence, for

any r > 0, we have
0 6 E (r) 6 lim

R→+∞
E (R) = 0,

which yields E ≡ 0. Consequently, ∇u ≡ 0, i.e. u is constant. �

6. On conditions (1.16) and (1.14)

In the present section we prove Theorem 1.2, thus establishing a characterization of the

anisotropies H which satisfy

〈H(ξ)∇H(ξ), H∗(x)∇H∗(x)〉 = 〈ξ, x〉, (1.14)

for any ξ, x ∈ Rn. Indeed, we show that such requirement is necessary and su�cient for H
to assume the form

HM (ξ) =
√
〈Mξ, ξ〉, (1.16)

for some symmetric and positive de�nite matrix M ∈ Matn(R).
We begin by showing the necessity of (1.14). As a �rst step towards this aim, we compute

the dual function H∗
M .

Lemma 6.1. Let M ∈ Matn(R) be symmetric and positive de�nite. Then, H∗
M = HM−1.

Proof. Being M positive de�nite and symmetric, the assignment

〈ξ, η〉M := 〈Mξ, η〉,
de�nes an inner product in Rn. We denote the induced norm by ‖ · ‖M . Also notice that M
is invertible, so that HM−1 is well de�ned.

Recalling de�nition (1.11) of dual function and applying the Cauchy-Schwarz inequality

to the inner product 〈·, ·〉M , we obtain

H∗
M (x) = sup

ξ 6=0

〈x, ξ〉√
〈Mξ, ξ〉

= sup
ξ 6=0

〈M(M−1x), ξ〉√
〈Mξ, ξ〉

= sup
ξ 6=0

〈M−1x, ξ〉M
‖ξ‖M

6 sup
ξ 6=0

‖M−1x‖M‖ξ‖M

‖ξ‖M
= ‖M−1x‖M

=
√
〈M−1x, x〉.

On the other hand, the choice ξ := M−1x yields

H∗
M (x) > 〈x, M−1x〉√

〈MM−1x, M−1x〉
=
√
〈M−1x, x〉.

Hence, recalling de�nition (1.16), the thesis follows. �
With this in hand, we are now able to prove the following



19

Lemma 6.2. Let M ∈ Matn(R) be a symmetric and positive de�nite matrix. Then, the

norm HM satis�es (1.14).

Proof. The proof is a simple computation. Notice that for any symmetric A ∈ Matn(R) we
have

∂i

(
H2

A(ξ)
)

= ∂i (Ajkξjξk) = Ajkδjiξk + Ajkξjδki = 2Aijξj ,

for any ξ ∈ Rn, i = 1, . . . , n. Thus, we get

HA(ξ)∂iHA(ξ) =
∂i

(
H2

A(ξ)
)

2
= Aijξj .

Applying then Lemma 6.1 together with the identity yet obtained with both choices A = M
and A = M−1, we obtain

〈HM (ξ)∇HM (ξ), H∗
M (η)∇H∗

M (η)〉 = 〈HM (ξ)∇HM (ξ), HM−1(η)∇HM−1(η)〉
= MijξjM

−1
ik ηk

= δjkξjηk

= 〈ξ, η〉,
which is (1.14). �

Now, we prove that the converse implication is also true. Hence, Theorem 1.2 will follow.

Before addressing the actual proof, we need just another abstract lemma. We believe that

the content of the following result will appear somewhat evident to the reader. However, we

include both the formal statement and the proof.

Lemma 6.3. Let T : Rn → Rn be symmetric with respect to the standard inner product

in Rn, that is

〈T (v), w〉 = 〈v, T (w)〉, (6.1)

for any v, w ∈ Rn. Then, T is a linear transformation, i.e.

T (v) = Tv for any v ∈ Rn,

for some symmetric T ∈ Matn(R)

Proof. The conclusion follows by simply plugging w = ei in (6.1), where {ei}i=1,...,n is the

canonical basis in Rn. Indeed, we have

[T (v)]i = 〈T (v), ei〉 = 〈v, T (ei)〉
for any v ∈ Rn, i = 1, . . . , n. Thus we may conclude that T (v) = Tv, where T = [Tij ]i,j=1,...,n

is the matrix with entries

Tij = [T (ei)]j .

The symmetry of T clearly follows by employing (6.1) again. �

Proof of Theorem 1.2. In view of Lemma 6.2, it is only left to prove that, under condi-

tion (1.14), H is forced to be of the form (1.16).

By Lemma 2.3, we know that the map ΨH : Rn → Rn, de�ned for ξ ∈ Rn by

ΨH(ξ) := H(ξ)∇H(ξ),

is invertible with inverse ΨH∗ . Under this notation identity (1.14) may be read as

〈ΨH(ξ), ΨH∗(η)〉 = 〈ξ, η〉, (6.2)

for any ξ, η ∈ Rn. Applying (6.2) with η = ΨH(ζ) we get

〈ΨH(ξ), ζ〉 = 〈ΨH(ξ), Ψ−1
H (η)〉 = 〈ΨH(ξ), ΨH∗(η)〉 = 〈ξ, η〉 = 〈ξ,ΨH(ζ)〉,
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for any ξ, ζ ∈ Rn. That is, ΨH is symmetric with respect to the standard inner product in Rn

and hence linear, by virtue of Lemma 6.3. Therefore, there exists a symmetricM ∈ Matn(R)
such that

∇
(
H2(ξ)

2

)
= H(ξ)∇H(ξ) = Mξ.

This in turn implies that H = HM and the proof of the proposition is complete. �

7. On the weaker assumption (1.12)

In this last section we study the condition

sgn〈H(ξ)∇H(ξ), H∗(x)∇H∗(x)〉 = sgn〈ξ, x〉, (1.12)

for any ξ, x ∈ Rn, which has been introduced in the statement of Theorem 1.1. First, we have

the following general result that provides a simpler equivalent form for assumption (1.12).

Proposition 7.1. Let H be a C1(Rn \ {0}) be a positive homogeneous function of de-

gree 1 satisfying (1.4). Assume the unit ball BH
1 , as de�ned by (1.5), to be strictly convex.

Then, (1.12) is equivalent to the condition

〈H(ξ)∇H(ξ), η〉 = 0 if and only if 〈ξ,H(η)∇H(η)〉 = 0, (7.1)

for any ξ, η ∈ Rn.

Proof. First, we remark that, by arguing as in the proof of Theorem 1.2, it is immediate to

check that (1.12) can be put in the equivalent form

sgn〈H(ξ)∇H(ξ), η〉 = sgn〈ξ,H(η)∇H(η)〉, (7.2)

for any ξ, η ∈ Rn. Thus, we need to show that (7.1) is equivalent to (7.2).

Notice that (7.1) is trivially implied by (7.2). Thus, we only need to prove that the

converse is also true. To see this, assume (7.1) to hold and �x ξ ∈ Rn. If ξ = 0, then
both sides of (7.2) vanish, in view of Lemma 2.2. Suppose therefore ξ 6= 0 and consider the

hyperplane

Π := {η ∈ Rn : 〈H(ξ)∇H(ξ), η〉 = 0} ,
together with the two half-spaces

Π± := {η ∈ Rn : ±〈H(ξ)∇H(ξ), η〉 > 0} .
By virtue of (7.1), the function h : Rn → R, de�ned by setting

h(η) := 〈H(η)∇H(η), ξ〉,
vanishes precisely on Π. Furthermore, by Lemma 2.2 (with B(t) = t2/2), h is continuous

on the whole of Rn and it satis�es

h(ξ) = 〈H(ξ)∇H(ξ), ξ〉 = H2(ξ) > 0.

But ξ ∈ Π+, and so h is positive on Π+, being it connected. Analogously, it holds h(−ξ) < 0
from which we deduce that h is negative on Π−. Thence, (7.2) follows. �

With the aid of Proposition 7.1, we now restrict to the planar case n = 2 and show

that, in this case, all the even anisotropies satisfying (1.12) can be obtained by means of an

explicit and operative formula. As a result, it will then become clear that (1.12) is a weaker

assumption than (1.14).

Proposition 7.2. Let r : [0, π/2] → (0,+∞) be a given C2 function satisfying

r(θ)r′′(θ) < 2r′(θ)2 + r(θ)2 for a.a. θ ∈
[
0,
π

2

]
, (7.3)

and

r(0) = 1, r(π/2) = r∗, r′(0) = r′(π/2) = 0, (7.4)
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for some r∗ > 1. Consider the π-periodic function r̃ : R → (0,+∞) de�ned on [0, π] by

r̃(θ) :=





r(θ) if 0 6 θ 6 π

2
,

r∗
√
r(τ−1(θ))2 + r′(τ−1(θ))2

r(τ−1(θ))2
if
π

2
6 θ 6 π,

(7.5)

where τ : [0, π/2] → [π/2, π] is the bijective map given by

τ(η) =
π

2
+ η − arctan

r′(η)
r(η)

. (7.6)

Then, r̃ is of class C1(R), the set

{(ρ cos θ, ρ sin θ) : ρ ∈ [0, r̃(θ)), θ ∈ [0, 2π]} , (7.7)

is strictly convex and its supporting function

H̃(ρ cos θ, ρ sin θ) :=
ρ

r̃(θ)
,

de�ned for ρ > 0 and θ ∈ [0, 2π], satis�es (7.1).

Furthermore, up to a rotation and a homothety of the plane R2, any even positive 1-
homogeneous function H ∈ C2(R2 \{0}) satisfying (1.4), having strictly convex unit ball BH

1

and for which (7.1) holds true is such that BH
1 is of the form (7.7), for some positive r ∈

C2([0, π/2]) satisfying (7.3) and (7.4).

Before heading to the proof of this proposition, we state the following auxiliary result.

Lemma 7.3. Let r : [0, π/2] → (0,+∞) be a C2 function that satis�es condition (7.3)

and r′(0) = r′(π/2) = 0. Then,

− cot η <
r′(η)
r(η)

< tan η, (7.8)

for any η ∈ (0, π/2).

Proof. For any η ∈ (0, π/2), we set

q(η) :=
r′(η)
r(η)

Being the tangent function increasing, we see that the right inequality in (7.8) is satis�ed if

and only if

f(η) := arctan q(η) < η. (7.9)

Since

q′(η) =
r(η)r′′(η)− r′(η)2

r(η)2
,

we see that, for a.e. η ∈ (0, π/2),

f ′(η) =
q′(η)

1 + q(η)2
=
r(η)r′′(η)− r′(η)2

r(η)2 + r′(η)2
<
r(η)2 + r′(η)2

r(η)2 + r′(η)2
= 1,

by virtue of (7.3). Observing that f(0) = 0, we then conclude that

f(η) =
∫ η

0
f ′(t) dt < η,

which is (7.9). A similar argument shows that also the left inequality in (7.8) holds true. �
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Proof of Proposition 7.2. Let H ∈ C2(R2 \ {0}) be a given norm. Notice that the boundary

of its unit ball BH
1 may be written in polar coordinates as

∂BH
1 = {γ(θ) : θ ∈ [0, 2π]} ,

where

γ(θ) = (r(θ) cos θ, r(θ) sin θ), (7.10)

for some π-periodic r ∈ C2(R). Recall that the curvature of such a curve γ is given by

k(θ) =
2r′(θ)2 − r(θ)r′′(θ) + r(θ)2

[r(θ)2 + r′(θ)2]3/2
, (7.11)

for any θ ∈ [0, 2π]. Hence, hypothesis (7.3) tells us that γ has positive curvature, outside at

most a set of zero measure, and, thus, that BH
1 is strictly convex.

We also remark that condition (7.1) is equivalent to saying that, for any θ, η ∈ [0, 2π],

γ′(θ) ‖ γ(η) if and only if γ(θ) ‖ γ′(η). (7.12)

This can be seen by noticing that ∇H(γ(θ)) is orthogonal to ∂BH
1 while γ′(θ) is tangent.

At a point θ∗ ∈ [0, 2π] such that

r(θ∗) = max
θ∈R

r(θ) =: r∗,

we clearly have r′(θ∗) = 0. Assuming, up to a rotation and a homothety of R2, that θ∗ = π/2
and r(0) = 1, it is immediate to check, by computing

γ′(θ) =
(
r′(θ) cos θ − r(θ) sin θ, r′(θ) sin θ + r(θ) cos θ

)
, (7.13)

that condition (7.1), in its form (7.12), forces r to satisfy (7.4).

Now, take r ∈ C2([0, π/2]) as in the statement of the proposition. We shall show that the

function r̃ de�ned by (7.5) is the only extension of r which determines a curve γ satisfying

condition (7.12). Notice that, by the periodicity of r̃, it is enough to prove it for θ, η ∈ [0, π].
Moreover, if θ, η ∈ {0, π/2, π}, then (7.12) is implied by (7.4). Consider now η ∈ (0, π/2).
We address the problem of �nding the unique θ =: τ(η) ∈ (0, π) such that γ(θ) ‖ γ′(η).
First observe that this condition is equivalent to requiring

cot θ =
r′(η) cos η − r(η) sin η
r′(η) sin η + r(η) cos η

=
r′(η)
r(η) − tan η
r′(η)
r(η) tan η + 1

= tan
(

arctan
r′(η)
r(η)

− η

)
, (7.14)

in view of (7.10) and (7.13). Then, we see that, by (7.13) and Lemma 7.3, γ′(η) and,

therefore, γ(θ) lie in the second quadrant. Thus, we conclude that θ ∈ (π/2, π). Moreover,

with this in hand and using again Lemma 7.3, it is easy to deduce from (7.14) that

θ = τ(η) =
π

2
+ η − arctan

r′(η)
r(η)

, (7.15)

for any η ∈ [0, π/2]. Condition (7.12) then implies that γ′(θ) ‖ γ(η), which yields (7.14)

with η and θ interchanged. Comparing the two formulae, we deduce that r̃ should satisfy

r̃′(τ(η))
r̃(τ(η))

= −r
′(η)
r(η)

, (7.16)

for any η ∈ [0, π/2]. From this relation it is possible to recover the explicit form of r̃. In

order to do this, we multiply by τ ′(η) both sides of (7.16) and integrate. The left hand side

becomes ∫ η

0

r̃′(τ(t))
r̃(τ(t))

τ ′(t) dt = log
r̃(τ(η))
r̃(τ(0))

= log
r̃(τ(η))
r∗

. (7.17)

The expansion of the right hand side requires a little bit more care. For simplicity of

exposition, we will omit to evaluate r and its derivatives at η. We deduce from (7.15) that

τ ′ = 1− rr′′ − r′2

r2 + r′2
=
r2 + 2r′2 − rr′′

r2 + r′2
. (7.18)
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Then, since [
log
(
r
(
r2 + r′2

) )]′
=

3r2r′ + r′3 + 2rr′r′′

r (r2 + r′2)
,

we compute

−r
′

r
τ ′ = −r

2r′ + 2r′3 − rr′r′′

r (r2 + r′2)

=
1
2

[
log
(
r
(
r2 + r′2

) )]′
− 5

2
r2r′ + r′3

r (r2 + r′2)

=
1
2

[
log
(
r
(
r2 + r′2

) )
− 5 log r

]′

=
1
2

[
log

r2 + r′2

r4

]′
.

Integrating this last expression we get

−
∫ η

0

r′(t)
r(t)

τ ′(t) dt =
1
2

log
(
r(η)2 + r′(η)2

r(η)4
r(0)4

r(0)2 + r′(0)2

)
=

1
2

log
r(η)2 + r′(η)2

r(η)4
. (7.19)

By comparing (7.17) and (7.19), we immediately obtain that r̃ satis�es (7.5).
Now we show that r̃ has the desired regularity properties. From its de�nition and (7.16)

is immediate to see that r̃ is continuous on the whole [0, π] and di�erentiable on (0, π/2) ∪
(π/2, π). Thus, we only need to check r̃′ at 0, π/2 and π. Using (7.16) and (7.4), we compute

r̃′
(
π

2
+
)

= −r
′(0) r̃

(
π
2

)

r(0)
= 0 = r̃′

(
π

2
−
)
, (7.20)

and

r̃′(π−) = −r
′ (π

2

)
r̃(π)

r
(
π
2

) = 0 = r̃′(0+). (7.21)

Being it π-periodic, it follows that r̃ ∈ C1(R).
Finally, we prove that the set (7.7) is strictly convex. To see this, it is enough to show

that r̃ satis�es (7.3) for almost any θ ∈ [π/2, π]. First, we check that r̃ possesses almost

everywhere second derivative. Indeed, by di�erentiating (7.16) we get
(
r̃′′(τ(θ))
r̃(τ(θ))

− r̃′(τ(θ))2

r̃(τ(θ))2

)
τ ′(θ) = −r

′′(θ)
r(θ)

+
r′(θ)2

r(θ)2
. (7.22)

Thus, if τ ′(θ) 6= 0, which is true at almost any θ ∈ [0, π/2] in view of (7.18) and (7.3), we

may solve (7.22) for r̃′′ and obtain

r̃′′(τ(θ)) =
r̃′(τ(θ))2

r̃(τ(θ))
− r̃(τ(θ))

τ ′(θ)

(
r′′(θ)
r(θ)

− r′(θ)2

r(θ)2

)

=
r̃′(τ(θ))2

r̃(τ(θ))
− r̃(τ(θ))

(
r(θ)2 + r′(θ)2

) (
r(θ)r′′(θ)− r′(θ)2

)

r(θ)2 (r(θ)2 + 2r′(θ)2 − r(θ)r′′(θ))
,

(7.23)

where in last line we made use of (7.18). With this in hand and recalling (7.16), we are able

to compute that

r̃(τ)r̃′′(τ)− 2r̃′(τ)2 − r̃(τ)2 = r̃′(τ)2 − r̃(τ)2(r2 + r′2)(rr′′ − r′2)
r2(r2 + 2r′2 − rr′′)

− 2r̃′(τ)2 − r̃(τ)2

= −r̃(τ)2
(
r′2

r2
+

(r2 + r′2)(rr′′ − r′2)
r2(r2 + 2r′2 − rr′′)

+ 1
)

= − r̃(τ)2(r2 + r′2)2

r2(r2 + 2r′2 − rr′′)
< 0,
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almost everywhere in [0, π/2]. Thus, the proof is complete. �
In view of Proposition 7.2, every even anisotropy H satisfying (1.12) is uniquely deter-

mined by its values on the �rst quadrant. Conversely, any positive r ∈ C2([0, π/2]) for

which (7.3) and (7.4) are true can be extended to [0, π] (in a unique way) to obtain a C1

norm satisfying (1.12).

An example of such an anisotropy, which is not of the trivial type (1.16), is given by

Ĥp(ξ) =

{
|ξ|p if ξ1ξ2 > 0,
|ξ|q if ξ1ξ2 < 0,

where | · |p is the standard p-norm in R2 and q = p/(p− 1) is the conjugate exponent of p,

for p ∈ (2,+∞) (see Figure 1 below). It can be easily checked that Ĥp satis�es (1.12) from

formulation (7.1).

Figure 1. The unit circles of Ĥp for the values p = 5/2, 3 and 4.

Unfortunately, Ĥp is no more than C
1,1/(p−1)
loc (R2 \ {0}). If one is interested in norms

having higher regularity properties, additional hypotheses on the behaviour of the de�ning

function r of its unit ball inside the �rst quadrant need to be imposed. In particular,

assumption (7.3) should be strengthened by requiring it to hold at any θ ∈ [0, π/2]. As a

consequence, the class of norms under analysis is restricted to those being uniformly elliptic.

In order to deal with, say, C3,α anisotropies, we have the following result.

Proposition 7.4. Let α ∈ (0, 1] and H ∈ C3,α
loc (R2 \ {0}) be an even positive homogeneous

function of degree 1 for which (1.4) holds true. Then, H is uniformly elliptic and satis-

�es (7.1) if and only if, up to a rotation and a homothety of R2, its unit ball is of the

form (7.7), where r̃ is given by (7.5) and r ∈ C3,α([0, π/2]) is a positive function satisfying

r(θ)r′′(θ) < 2r′(θ)2 + r(θ)2 for any θ ∈
[
0,
π

2

]
, (7.24)

r′′
(π

2

)
= − r∗r′′(0)

1− r′′(0)
, r′′′

(π
2

)
= − r∗r′′′(0)

(1− r′′(0))3
, (7.25)

and (7.4).

Notice that the quantities appearing in both right hand sides of condition (7.25) are �nite,

as one can see by plugging θ = 0 in (7.24) and recalling (7.4).

Proof of Proposition 7.4. In addition to the regularity properties of the extension r̃, by

Proposition 7.2 we only need to investigate the relation between (7.24) and the uniformly

convexity of the unit ball of H. Notice that in 2 dimensions this last requirement is just

asking the curvature k(θ), as de�ned by (7.11), to be positive at any angle θ ∈ [0, 2π]. Hence,
we see that it implies (7.24).

To check that also the converse implication is valid, it is enough to prove that if (7.24)

is in force, then r̃ satis�es the same inequality at any θ ∈ [π/2, π]. A careful inspection of
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the proof of Proposition 7.2 - see, in particular, the argument starting below formula (7.22)

- shows that this is true at any point θ for which τ ′(τ−1(θ)) 6= 0. But then, comparing

formula (7.18) with (7.24) we have that τ ′ > 0 on the whole interval [0, π/2] and so we are

done.

The only thing we still have to verify is that, given r ∈ C3,α([0, 2π]), then its extension r̃
belongs to C3,α(R). Arguing as in the proof of Proposition 7.2, by (7.5), (7.23) and (7.24)

we deduce that r̃ is of class C1 on the whole of R and C3,α outside of the points kπ/2,
with k ∈ Z. Moreover, by the periodicity properties of r̃, we can reduce our analysis to the

points 0, π/2 and π. Using (7.18) and (7.4), we compute

τ ′(0) = 1− r′′(0), τ ′
(π

2

)
=
r∗ − r′′

(
π
2

)

r∗
, (7.26)

and so, by (7.23), (7.15), (7.4), (7.20), (7.21) and (7.25), we have

r̃′′
(
π

2
+
)

=
r̃′
(
π
2

)2

r̃
(
π
2

) − r̃
(
π
2

)

τ ′(0)

(
r′′(0)
r(0)

− r′(0)2

r(0)2

)

= − r∗r′′(0)
1− r′′(0)

= r′′
(π

2

)
= r̃′′

(
π

2
−
)
,

and

r̃′′(π−) =
r̃′(π)2

r̃(π)
− r̃(π)
τ ′
(
π
2

)
(
r′′
(
π
2

)

r
(
π
2

) − r′
(
π
2

)2

r
(
π
2

)2

)

= − r′′
(
π
2

)

r∗ − r′′
(
π
2

) = r′′(0) = r̃′′(0+).

Hence, r̃ ∈ C2(R). Now we study the third derivative of r̃. By di�erentiating (7.23) we get

r̃′′′(τ) =
r̃′(τ)

(
2r̃(τ)r̃′′(τ)− r̃′(τ)2

)

r̃(τ)2

−
(
r̃′(τ)τ ′2 − r̃(τ)τ ′′

) (
rr′′ − r′2

)

r2τ ′3
− r̃(τ)

(
r2r′′′ − 3rr′r′′ + 2r′3

)

r3τ ′2
,

(7.27)

where every function is meant to be evaluated at θ. Moreover, from (7.18) we deduce that

τ ′′ = −(r′r′′ + rr′′′ − 2r′r′′)
(
r2 + r′2

)
− 2

(
rr′′ − r′2

)
(rr′ + r′r′′)

(r2 + r′2)2

=
3r2r′r′′ − r′3r′′ − r3r′′′ − rr′2r′′′ + 2rr′r′′2 − 2rr′3

(r2 + r′2)2
,

so that, recalling (7.4), we have

τ ′′(0) = −r′′′(0), τ ′′
(π

2

)
= −r

′′′ (π
2

)

r∗
.

Thus, by plugging these identities into (7.27), using (7.15), (7.4), (7.26), (7.20), (7.21)

and (7.25) we �nally conclude that

r̃′′′
(
π

2
+
)

=
r̃
(
π
2

)
τ ′′(0)r′′(0)

r(0)τ ′(0)3
− r̃

(
π
2

)
r′′′(0)

r(0)τ ′(0)2
= −r

∗r′′(0)r′′′(0)
(1− r′′(0))3

− r∗r′′′(0)
(1− r′′(0))2

= − r∗r′′′(0)
(1− r′′(0))3

= r′′′
(π

2

)
= r̃′′′

(
π

2
−
)
,



26

and

r̃′′′(π−) =
r̃(π)τ ′′

(
π
2

)
r′′
(
π
2

)

r
(
π
2

)
τ ′
(
π
2

)3 − r̃(π)r′′′
(
π
2

)

r
(
π
2

)
τ ′
(
π
2

)2 = −r
∗r′′
(
π
2

)
r′′′
(
π
2

)
(
r∗ − r′′

(
π
2

))3 − r∗r′′′
(
π
2

)
(
r∗ − r′′

(
π
2

))2

= − r∗2r′′′
(
π
2

)
(
r∗ − r′′

(
π
2

))3 = r′′′(0) = r̃′′′(0+).

As a result, r̃ ∈ C3,α(R) and the proof of the proposition is complete. �
We observe that Proposition 1.3 is a consequence of Propositions 7.2. and 7.4.

Remark 7.5. We point out that it is easy to construct norms which are smooth and

satisfy (1.12) as small perturbations of those of the form (1.16). For instance, �x any ψ ∈
C∞([0, π/2]) having support compactly contained in (0, π/2). Then, for ε > 0 de�ne

rψ(θ) := 1 + εψ(θ),

for any θ ∈ [0, π/2]. Observe that conditions (7.4) and (7.25) are satis�ed with r∗ = 1.
Moreover, we compute

rψr
′′
ψ − 2r′2ψ − r2ψ = ε2(1 + εψ)ψ′′ − 2ε2ψ′2 − (1 + εψ)2

= −1 + ε
(
−2ψ + ε

(
(1 + εψ)ψ′′ − 2ψ′2 − ψ2

))

6 −1 + cψε,

with cψ dependent on the C2 norm of ψ. Therefore, if we take ε small enough, then rψ
satis�es (7.24) and, by virtue of Proposition 7.4 the associated norm Hψ is as desired.
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