
PAPER • OPEN ACCESS

Nonlinear dynamical properties of frequency swept
fiber-based semiconductor lasers
To cite this article: Svetlana Slepneva and Alexander Pimenov 2021 J. Phys. Photonics 3 044002

 

View the article online for updates and enhancements.

You may also like
All-fiber wavelength-swept optical
parametric oscillator at 1 m band
Yi Yang, Si-Gang Yang, Hong-Wei Chen
et al.

-

Optic axis determination by fibre-based
polarization-sensitive swept-source optical
coherence tomography
Zenghai Lu, Deepa K Kasaragod and
Stephen J Matcher

-

2022 Roadmap on integrated quantum
photonics
Galan Moody, Volker J Sorger, Daniel J
Blumenthal et al.

-

This content was downloaded from IP address 89.245.22.201 on 17/06/2022 at 09:38

https://doi.org/10.1088/2515-7647/ac1324
/article/10.1088/2040-8986/aa8d5f
/article/10.1088/2040-8986/aa8d5f
/article/10.1088/2040-8986/aa8d5f
/article/10.1088/2040-8986/aa8d5f
/article/10.1088/0031-9155/56/4/014
/article/10.1088/0031-9155/56/4/014
/article/10.1088/0031-9155/56/4/014
/article/10.1088/2515-7647/ac1ef4
/article/10.1088/2515-7647/ac1ef4
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsunvwJ-ie7SvP-zX_z0zBzCq8KSE5beM1TzdsX96hQBco69au-KfBYejcSAH9cg8FOndxYevutsSolVr_GjastYWnznAlOuEewqB478ScyclZkLSkKZMuVNuzDEIN_wgWZb0iW0o30K3E1kED7qkcruU1zMf5tVchqlGU-TkTnH0mS556Nl1bcEFf_cYPoHGSMS7HciBZOxK2fzEl40hb8ccMDJNShNZis0ieT3-dTMmSjGw7MJQVcoUsQozU2lpa2t5ZEiQvjsrTj48XggvxBfABhDO_NU4yk&sig=Cg0ArKJSzH1-kbSti5BN&fbs_aeid=[gw_fbsaeid]&adurl=https://physicsworld.com/c/medical-physics/


J. Phys. Photonics 3 (2021) 044002 https://doi.org/10.1088/2515-7647/ac1324

Journal of Physics: Photonics

OPEN ACCESS

RECEIVED

30 December 2020

REVISED

9 April 2021

ACCEPTED FOR PUBLICATION

7 May 2021

PUBLISHED

27 September 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Nonlinear dynamical properties of frequency swept fiber-based
semiconductor lasers
Svetlana Slepneva1,2,3,∗ and Alexander Pimenov4
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Abstract
We investigate dynamics of semiconductor lasers with fiber-based unidirectional ring cavity that
can be used as frequency swept sources. We identify key factors behind the reach dynamical
behavior of such lasers using state-of-the-art experimental and analytical methods. Experimentally,
we study the laser in static, quasi-static and synchronization regimes. We apply experimental
methods such as optical heterodyne or electric field reconstruction in order to characterize these
regimes or study the mechanisms of transition between them. Using a delay differential equation
model, we demonstrate that the presence of chromatic dispersion can lead to destabilization of the
laser modes through modulational instability, which results in undesirable chaotic emission. We
characterize the instability threshold both theoretically and experimentally, and demonstrate
deterioration of the Fourier domain mode locking regime near the threshold.

1. Introduction

The interest in swept source lasers is mostly driven by the variety of their applications, especially in such
actively developing areas as optical coherence tomography imaging [1, 2] and LiDARs [3]. Swept source
lasers generate coherent radiation that sweeps over a broad optical bandwidth in infrared range at high
speed. In some applications the use of an optical sweep eliminates the need for mechanical scanning, thus
increasing the speed and quality of imaging. The tuning bandwidth can exceed 100 nm and the sweep rate
reaches 5 MHz [4] with a narrow instantaneous linewidth on the order of MHz [5]. While the leading swept
source technologies in the market are based on semiconductor gain medium, the mechanisms of sweep
generation are different [6]. In order to meet the requirements of a particular application, one can choose
between swept sources with a single mode tuning, such as in micro-electro-mechanical system
(MEMS)-based tunable vertical cavity surface emitting lasers [5], or pulsed output, which can be achieved
using different approaches [7–9], or get advantage of all-electrically controlled sweep, such as in akinetic
multi-section swept source lasers [10]. Understanding the physics of sweep generation is important to
overcome current limitations and broaden the area of applications of swept source lasers.

Here, we present a study on the dynamical regimes of a swept source laser based on long ring fiber
including a semiconductor optical amplifier (SOA) as a gain medium and a Fabry–Pérot tunable filter whose
transmission is periodically modulated. The fastest tuning speed and a narrow linewidth of a long cavity laser
can be achieved when the filter transmission is modulated in resonance with the cavity roundtrip time,
which is implemented by introducing a long single mode fiber (SMF) delay into the cavity. This regime is
known as Fourier domain mode locking (FDML) [11]. The pioneering characteristics of FDML lasers were
possible to attain by introducing precise dispersion compensation [12] or buffering [13]. Furthermore, the
laser configuration can be modified to generate pulsed output in infrared [8] or visible [9] range.

Recently, active application driven development of long cavity lasers has inspired a new perspective of
research on such devices, particularly, in the field of nonlinear dynamics. A typical FDML laser can have a
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cavity length of tens of km and intra-cavity bandpass filter of several gigahertz, therefore such lasers can
simultaneously generate a huge amount of modes, making them excellent test beds to study nonlinear effects
in complex systems. Such lasers have recently demonstrated their ability to operate in various dynamical
regimes under controlled parameters [14–21]. Long ring cavity semiconductor lasers can emit stable or
turbulent radiation [14, 22] and can be used to study the transition to turbulence in analogy with
hydrodynamical systems [23]. Recent studies have shown that unstable localized structures mediate the
transition from stable to turbulent regimes in the case of normal dispersion [15], while only turbulent
regime occurs in anomalous dispersion [22]. Understanding nonlinear properties of long fiber cavity lasers
with a semiconductor gain medium provides background for a number of potential applications, such as
optical reservoir computing [24], photonics information processing [25] and optical networks for studying
complex systems [26].

Different theoretical models were developed to describe semiconductor long cavity lasers [17, 18, 27].
Remarkably, a simple system of two delay differential equations (DDEs) can capture the full variety of
nonlinear dynamical regimes of short [28] and long cavity swept sources [14, 16] in the case of normal
dispersion, whereas anomalous dispersion of a long fiber delay line can be accurately accounted for using an
additional distributed delay term [22]. Stability analysis of the constant wave (CW) regimes of a static laser
(lasing modes) in the limit of large delay can help to explain appearance of the turbulence during sweeping as
the result of modulational instability (MI) of CW regimes. Since turbulence in anomalous dispersion is
caused by an MI of all the laser modes, this distributed term can be theoretically replaced by a single ordinary
differential equation preserving the same effect [19]. We perform numerical simulations of an FDML laser in
quasi-static regime under the influence of noise using the DDE model and discuss the effect of MI on the
quality of the laser output in direct comparison with the experimental data.

2. Experimental characterization of long cavity swept source laser

2.1. The laser
The configuration of the laser is shown in figure 1. The laser consisted of a SMF-based ring cavity that
included an SOA as a gain medium with 88.1 nm optical 3 dB bandwidth, 32.1 dB small signal gain, and a
narrow transmission bandwidth (8 GHz) tunable Fabry–Pérot filter. The filter transmission was modulated
by a signal generator. Several optical isolators in the cavity ensured unidirectional light propagation. A part
of the light from the cavity was tapped out using 50:50 coupler. The total length of the basic cavity was
composed of the total length of all the fiber pigtails of all the components, corresponding to about 30 m. The
polarization was controlled with polarizaton paddles. The length of the cavity could be varied by including
additional SMF-28. The measured loss of 20 km of fiber (required for FDML regime) was 8.94 dB. The
manufacturer specified the zero dispersion wavelength within the range of 1302–1322 nm.

2.2. Characterization techniques
The temporal evolution of the laser intensity was measured by coupling the laser output to a fast detector and
fast real time oscilloscope with the 12 GHz matching bandwidth. The intra-sweep optical properties were
measured using the optical heterodyne technique. The output of the swept source was mixed in a fiber
coupler with a single mode tunable laser source (TLS) of a narrow (100 kHz) linewidth, which served as a
local oscillator. The beating signal was observed over the part of the sweep corresponding to the detection
bandwidth, and by varying the output wavelength of the TLS, the entire sweep was scanned. Despite of the
simplicity of such technique, it is a useful tool to provide the reference measurement of the intra-sweep
evolution of the optical frequency and estimate the linewidth [28, 29].

For the full characterization of light emitted by a laser, both the amplitude and phase of the electric field
needed to be measured. For example, in order to characterize a mode locked laser, the electric field can be
reconstructed using techniques such as frequency resolved optical gating [30]. However, this and similar
techniques could not be applied to swept source lasers, as they allowed for measuring the average pulse
intensity and phase profile, and it was demonstrated that such approach was not suitable for reconstruction
of aperiodic dynamics similar to that observed in quantum dot mode-locked lasers when they emit aperiodic
pulses above threshold [31]. In order to study swept source lasers we used another technique which provided
access to the complex electric field along a single sweep [32]. This technique has proven to be a useful tool for
characterization of different swept source lasers [29, 32], in particular, access to the full electric field allowed
calculation of such properties as coherence time, instantaneous linewidth, instantaneous spectra, as well as
demonstrate the modal interaction [33]. In addition, key performance parameters important for
applications such as coherence roll-off and point spread function can also be obtained from this
measurement by numerical simulation of Mach-Zehnder interferometer [32]. The technique was based on
mixing an output sweep with the delayed version of itself in a fiber coupler with three identical inputs and
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Figure 1. Experimental setup of a long cavity semiconductor laser.

outputs (a 3× 3 coupler) [34]. The difference between the phase ϕ(t) and the delayed phase ϕ(t− τ) was
calculated from the intensity time traces recorded at the three outputs of the coupler [35], and then,
temporal evolution of the phase was retrieved following [36]. Simultaneous reading of the laser intensity
allowed for the reconstruction of the electric field. When the sweep was narrow enough or when the laser
operated at a fixed wavelength, the TLS was used as a reference laser at one of the inputs of the 3× 3 coupler
to obtain the phase of the laser in the frame of the reference laser. This approach was initially applied to
characterize excitable pulses in lasers with external optical injection [35]. In the context of swept source
lasers, it was used for characterization of localized structures emitted by a long laser [15, 16].

2.3. Experimental results and discussion
We analyzed the dynamics of the long cavity laser operating in three regimes: a static regime when the filter
transmission was fixed and the output frequency was constant, a quasistatic tuning when the filter
transmission was slowly modulated, and the regime of synchronization (FDML).

First, the filter transmission was fixed in normal dispersion region at 1290 nm. The variable parameter
was the bias current of the SOA. At the bias current just above its threshold value, the laser emitted multiple
drops per roundtrip and the number of drops reduced with increase of the bias current. These drops
demonstrated turbulent structure and at the fixed parameters, they remained stable for many roundtrips.
Recently, the stability of the drops was investigated using the electric field reconstruction technique [16]. The
analysis of the reconstructed optical frequency revealed that the drops remained outside of the filter
resonance, therefore, as they circulated in the cavity and amplified by the SOA, they still experienced
non-compensated losses, which explained their long term stability. Such structures known as Nozaki–Bekki
holes were previously theoretically predicted as solution to complex Ginzburg–Landau equation and have
not been previously demonstrated in an optical system [37, 38]. At higher bias current values (about 2.5
times the laser threshold current value) the laser operated in CW regime with no drops (figure 2(a)). At the
fixed parameters, the laser remained stable, but a slight blue shift of the filter frequency, which could be
induced either manually or due to noise, destabilized the CW regime and the laser behaved
chaotically (figure 2(b)). The laser was re-stabilized by the red shifting of the filter transmission. In addition,
at the same parameters, a random switching between these two regimes was observed (figure 2(c)).

When the filter transmission was set to a longer wavelength (1345 nm) in order to achieve lasing in
anomalous dispersion regime, the laser output remained always chaotic (figures 2(d) and (e)). No stable
lasing was achieved after the filter passed the zero dispersion point disregarding the bias current, however,
the transition wavelength varied as a function of the cavity length indicating the influence of dispersion [22].
The measured threshold wavelength as a function of the length of the fiber at which the transition from
bi-stable to chaotic dynamic occurred is shown in figure 2(f). Such an observation indicated that the
dispersion of the optical fiber played an important role in the stability of the laser output as it led to a
wavelength dependent roundtrip time as shown in figure 2(g).

In a quasistatic regime, the filter was slowly modulated at a few hundreds of mHz. In a normal dispersion
regime, when the filter transmission wavelength was constantly increasing (forward sweep), the laser emitted
a sequence of jumps form one stable output to another with power dropouts in between (figure 3(a)). By
applying an optical heterodyne technique, it was shown that each stable region was associated with a single
mode emission of the laser. The frequency difference between the consecutive steady-state solutions was
∼4 GHz. This value was several orders of magnitude larger than the cavity mode spacing, but of the same
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Figure 2. Laser intensity time traces in static regime for the case of normal dispersion demonstrating cw lasing (a), chaotic lasing
(b) and random switching between stable and chaotic lasing (c). Intensity time trace (d) and corresponding power spectra
measured by electrical spectrum analyser (e) in the case of anomalous dispersion demonstrating chaotic emission. Instability
threshold as a function of fiber length (f). The insets in (b) and (d) show zooms of the chaotic signals. (g) Shows the measured
roundtrip time in the reference of its minimum value as a function of wavelength for 20 km fiber delay (points) and its quadratic
fit (solid line).

order of magnitude as the filter bandwidth. This indicated that as the filter was moving out of resonance, the
lasing mode was loosing its stability and occasionally jumped to another stable mode close to the maximum
gain of the filter. The increase of the modulation frequency of the filter leads to the gradual decrease of the
duration of the stable regions between the transients until the stable regions disappeared (figure 3(b)).
Similar behavior was observed in short cavity MEMS laser at slow sweeping rates [28, 39]. For the decreasing
filter transmission wavelength (backward sweep), the laser demonstrated chaotic emission and the Fourier
transform of the beating signal showed the instantaneous linewidth on the order of 5 GHz which
corresponded to the filter bandwidth. This asymmetry in the laser intensity versus the sweep direction is
associated with the SOA nonlinearity [14, 40] and is typically present in other semiconductor swept source
lasers.

In anomalous dispersion regime, when the filter was set to scan the wavelengths longer than 1319 nm, the
laser exhibited chaotic output regardless of the sweep direction (figure 3(c)) and the asymmetry between the
forward and backward sweeps only appeared when the filter frequency reached some threshold value
(figure 3(d)). At such slightly higher sweeping speeds, the time trace was similar to that observed at shorter
wavelengths except that the dynamic did not show any relaxation toward CW solutions.

Next, we considered the laser operating in FDML regime. Ideally, the filter frequency f filter and the
frequency corresponding to the roundtrip time of light in the cavity fRT =

1
TRT

should be equal for all the
wavelengths within the sweeping range and the laser emits a frequency modulated output corresponding to
single modes in the filter frame [14]. The first FDML lasers were built to sweep around 1300 nm in order to
decrease the effect of dispersion. Soon, it was demonstrated that it was possible to minimize the effect of
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Figure 3. Intensity time traces in quasistatic regime corresponding to the case of normal dispersion and modulation frequencies
of 100 mHz (a) and 1600 mHz (b), and anomalous dispersion and modulation frequencies of 200 mHz (c) and 1600 mHz (d).
Zero time indicates the change of the sweep direction from backward (negative time) to forward (positive time) sweep direction.
Only a part of the full sweep is shown. Numerically filtered traces are shown in grey.

dispersion by introducing a dispersion compensated fiber and this significantly improved the performance of
FDML, especially, the instantaneous coherence length [41]. However, this approach could only work for
either normal or anomalous dispersion regime, limiting the scanning range, and required precise
temperature and polarization control. Broadband dispersion compensation was achieved by introducing a
chirped fiber Bragg grating, tailored to compensate simultaneously normal and anomalous dispersion, into
the cavity, however, at the cost of complexity of the system [12].

In our experiment, due to the presence of chromatic dispersion, a stable output was only achieved
when sweeping a small range of wavelengths below 0.5 nm in normal dispersion regime or around a zero
dispersion point and the dynamics of the FDML laser depended on detuning parameter δ = ffilter − fRT. At a
very small value of δ (on the order of sub-mHz), the stable regime was locally destabilized and the intensity
corresponded to the CW output with inserts of turbulent regions. The transition points between CW and
turbulent regions was fixed within the sweep. As detuning increased, the sweep demonstrated asymmetry
similar to that observed in quasistatic case. In order to study the asymmetry as a function of detuning, the
laser was set to sweep a few nm in a normal dispersion regime (figure 4(a)). First, we set the frequency
modulation below the resonant frequency of the lowest wavelength, thus ffilter < fRT held for all wavelengths
and the laser was all-negatively detuned. In this case the backward sweep demonstrated steps between stable
regimes and the forward sweep demonstrated chaotic emission (figure 4(b-1)). Recently, it has been
demonstrated that the transitions between the stable regions in the stepwise regime corresponded to an
interesting example of transition between stable and turbulent radiation [15]. The electric field
reconstruction technique revealed that such transition was mediated by formation of unstable localized
structures, which were moving toward the main turbulent region and developing into turbulent puffs. When
the filter modulation frequency was increased to sweep in resonance with some wavelength within the sweep,
one part of the sweep was still negatively detuned while the other part was positively detuned. For the
backward sweep, the negatively detuned part still demonstrated steps, while the positively detuned part
started to demonstrate chaotic behavior and for the forward sweep the situation was reversed (figure 4(b-2)).
As δ was further increased, the asymmetry versus the sweep direction gradually altered (figure 4(b-3)) and
when the detuning became positive for all wavelengths, the asymmetry was fully reversed (figure 4(b-4)). By
analyzing the laser emission in the frame of the filter, it can be demonstrated that the dynamics of
all-positively and all-negatively detuned FDML is equivalent to the quasistatic tuning at a frequency equal to
the absolute value of detuning [14].

An interesting case was observed when the FDML laser was sweeping around the zero dispersion point
(figure 4(c)). For the value of detuning δ negative for all the wavelengths, a usual asymmetry within the
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Figure 4. Optical spectra (red) of FDML laser in normal dispersion (a), around zero dispersion (c) and anomalous
dispersion (d). Black curve∆T corresponds to the measured variation of the cavity roundtrip time (see figure 1(b)). The time
traces below show the intensity for the increasing values of detuning starting from its lowest value f 1 at the top trace and
successively increased by indicated values in normal dispersion (b-1)–(b-4), around zero dispersion (d-1)–(d-4) and anomalous
dispersion (f-1)–(f-3) regimes.

sweep was observed (figure 4(d-1)) and the asymmetry was reversed for δ positive for all the
wavelengths (figure 4(d-4)). However, for intermediate values of detuning, the filter modulation was in
resonance not only with one wavelength within the sweep, but with two, thus the forward sweep
demonstrated three regimes: chaotic—steps—chaotic, the backward sweep demonstrates three regimes:
steps—chaotic—steps, and the transition points between different regimes indicated the location of the
resonant wavelengths (figures 4(d-2) and (d-3)).

Finally, the filter was set to sweep in anomalous dispersion regime (figure 4(e)). The CW output was not
possible to achieve when the laser operated above the zero dispersion point. The synchronization with some
wavelength within a sweep demonstrated chaotic emission similarity to the static case (figure 4(f-2)) while in
the case of detuning, the asymmetry appeared (figures 4(f-1) and (f-2)) reminiscent of the quasistatic
tuning (compare with figures 3(c) and (d)).

These results indicate that the lasing regimes in normal dispersion region and around zero dispersion are
similar, but the presence of anomalous dispersion leads to additional instabilities. Hence, in order to describe
the laser theoretically, one can neglect the presence of dispersion for the laser operating in normal dispersion
regime, however, the dispersion term must be present in the model in order to include the effect of
anomalous dispersion.

3. Theoretical model

3.1. DDEmodel
We consider a delayed model of the laser comprising a short SOA section, linear frequency selective spectral
filter, and a long dispersive fiber delay line. This device can be described using a DDE model
reference [14, 22]

dA

dt
+(γ− iw)A= γ

√
κe(1−iα)G/2+iφB(t−T)+ ϵξ(t), (1)

dG

dt
= γg

[
g0 −G− (eG − 1) |B(t−T)|2

]
, (2)

where A(t) and B(t) are the electric field envelopes at the entrance and at the output of the fiber delay line,
respectively; G(t) represents saturable gain in the SOA section, and T is the cavity round-trip time. The
parameters γ and w describe the spectral filter bandwidth and the central frequency of the filter, κ< 1
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represents linear nonresonant losses in the SOA, α is the linewidth enhancement factor, φ describes the
detuning between a reference frequency and the considered cavity mode, γg is the the carrier relaxation rate
in SOA, and g0 is the pump parameter. Sweeping can be achieved by changing central frequency of the filter
w=∆(t) periodically in time. The last term in equation (1) describes spontaneous emission noise using a
complex Gaussian white noise term ξ = ξ1 + iξ2 with strength ε satisfying ⟨ξi⟩= 0 and ⟨ξi(t)ξj(t ′)⟩=
δi,jδ(t− t ′).

For zero dispersion we can account for linear losses in the fiber delay line using the parameter κ and
assume B(t) = A(t), thus closing the system (1) and (2) [14]. This model represents well the most important
dynamical features of the FDML laser, and can successfully detect various regimes of operation with different
patterns of both short-cavity swept sources [28] and long-cavity lasers near the lasing threshold [16]. On the
other hand, the dispersion in the fiber delay line can be quite strong in a long cavity laser and it can affect its
dynamics very strongly. It was recently shown [22] that the evolution of the optical field in a linear fiber delay
line can be described using a distributed term

B(t) = A(t)+ P(t), P(t) =−σ

ˆ ∞

0

J1(2
√
σs)√

σs
e−(Γ−iΩ)sA(t− s)ds,

where J1 is the Bessel function, Γ and Ω represent full width at half maximum and central frequency of a
Lorentzian absorption line, and σ represents total dispersion strength, which is proportional to the depth of
Lorentzian absorption line and to the length of the fiber delay line L.

This time delay system was simulated numerically to demonstrate dynamics qualitatively similar to the
experimentally observed output of various frequency-swept lasers, including static and quasistatic regimes
[14, 16, 22, 28]. Moreover, it was shown that the most important dynamical features of the FDML laser can
be explained using linear stability analysis of the CW regimes of a static laser (lasing modes) [14, 22]. In
particular, in the FDML regime, the laser produces chaotic output in one sweep direction and regular output
with jumps between CW states with different frequencies that are closer to the frequency of the filter in
another sweep direction (see figures 4(b-1) and (b-4)), where the jumps correspond to a short wavelength
MI and chaotic output—to a long wavelength MI of lasing modes on the sides of the emission spectrum [14].
Finally, in the anomalous dispersion regime of the fiber delay line, all or some of the CW states can become
unstable with respect to a long wavelength MI, thus impacting the quality of the output of a FDML laser [22].

This effect can be accurately captured by a more simple relation for the evolution of the field in the fiber,
which can be obtained using the Padé approximant of the Lorentzian kernel [19]

B(t) =

[
−σ+ 2iΩ

σ− 2iΩ
A(t)+ P(t)

]
, (3)

dP

dt
= iw̃P− 2

Ω2

σ− 2iΩ
P− 4 σΩ2A

(σ− 2iΩ)2
. (4)

We note that here we set Γ = 0 because polarization P(t) decays due to Landau damping, which appears due
to Padé approximant. In the distributed case this effect is absent and Γmust be greater than zero. Since the
approximation is valid for frequencies near 0, polarization frequency is also shifted by w̃≈ w to allow for
near-constant dispersion strength inside the sweeping interval.

3.2. Modulational instability
In this section we analyze the stability of the lasing modes of a long-cavity laser, which helps us to understand
its undesirable properties such as turbulent output. For that we substitute the CW solution A(t) = A0eiνt,
G(t) = G0, P(t) = P0eiνt into the DDE system (1)–(4) to obtain

P0 =
4iσΩ2A0

(σ− 2iΩ)(2iΩ2 − (ν− w̃)(σ− 2iΩ))
,

B(t) = B0 = A0e
iνt−i(ν− w̃)σ+ 2(ν− w̃)Ω+ 2 Ω2

i(ν− w̃)σ+ 2(ν− w̃)Ω+ 2 Ω2
,

G0 = 2 log
γ2 +(w− ν)2

γ2 κ
,

A0 =

√
g0 −G0

eG0 − 1
.

Here, |B0|= |A0| and for ν ̸= w̃ the CW field exhibits an additional phase shift after going through fiber
delay line. Since our approximation requires |ν− w̃| ≪ |Ω|, this shift is small and can be neglected, thus we
assume ν = w̃ from now on.

7



J. Phys. Photonics 3 (2021) 044002 S Slepneva and A Pimenov

Figure 5. Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) for the CW solutions (relative steady states) of
(1)–(4) with κ= 0.2, γg = 0.1, g0 = 2, ν = w= w̃= φ= 0,Ω=−2 obtained using equation (5), for the case of weak dispersion
σ= 1 (left) and strong anomalous dispersion σ= 4 (right), where CW solution lost stability via an MI.

Next, we linearize the system (1)–(4) near the CW state A= (A0 + δAeλt)eiνt, G= G0 + δGeλt, and
P= (P0 + δPeλt)eiνt to obtain the following characteristic equation for the eigenvalues λ describing the
stability of the CW solution:

a2(λ)Y
2 + a1(λ)Y+ a0(λ) = 0, (5)

where

a2(λ) =−
((
λ2 σ2 + 4 λΩ2(λ−σ)+ 4 Ω4

)(
γ2 +(w− ν)2

)((
A2
0 + 1

)
γg0 +λ

))
,

a0(λ) =−
((
λ2 σ2 + 4 λΩ2(λ+σ)+ 4 Ω4

)(
(γ+λ)2 +(w− ν)2

)((
A2
0e

G0 + 1
)
γg0 +λ

))
,

a1(λ) = 2 λ

(
γ(γ+λ)

(
4 Ω4 −λ2

(
σ2 − 4 Ω2

))
− 4 λ3 σΩ(w− ν)+ (w− ν)2

(
4 Ω4 −λ2

(
σ2 − 4 Ω2

)))
+ γg0

(
γ2

[
4 Ω4

(
A2
0

(
eG0 + 1

)
+ 2

)
+λ2

(
4 αA2

0

(
eG0 − 1

)
σΩ+σ2

(
A2
0

(
−
(
eG0 + 1

))
− 2

)
+4 Ω2

(
A2
0

(
eG0 + 1

)
+ 2

))]
+ γλ

[
λ2

(
4 αA2

0

(
eG0 − 1

)
σΩ+σ2

(
A2
0

(
−
(
eG0 + 1

))
− 2

)
+4 Ω2

(
A2
0

(
eG0 + 1

)
+ 2

))
+ 4 Ω4

(
A2
0

(
eG0 + 1

)
+ 2

)]
− (w− ν)

[
8 λ3 σΩ+ 2 λ2 σ2(w− ν)

− 8λ2 Ω2(w− ν)−8 Ω4(w− ν)+A2
0

(
α
(
eG0 − 1

)
λ
(
λ2

(
σ2 − 4Ω2

)
− 4 λσΩ(w− ν)− 4 Ω4

)
+
(
eG0 + 1

)(
4 λ3 σΩ+λ2

(
σ2 − 4 Ω2

)
(w− ν)− 4 Ω4(w− ν)

))])
.

In the limit of large delay time T→∞ the eigenvalues belonging to the pseudo-continuous spectrum can be
represented in the form λ= iµ+ Λ

T +O(1/T 2) with real µ [42]. Keeping only the single leading term iµ in
a0(λ), a1(λ), a2(λ) and two leading terms iµ+ Λ

T in Y(λ), we obtain from (5) two branches of
pseudo-continuous spectrum given by

Λ±(µ)+ iµT=− lnY=− ln

[
−a1(iµ)±

√
a1(iµ)2 − 4a2(iµ)a0(iµ)

2a2(iµ)

]
. (6)

Due to the phase shift symmetry of equations (1)–(4) one of the two eigenvalue branches Λ±(µ) satisfies
the condition Λ(0) = 0 (and Y(0) = 1). Long wavelength MI takes place when the second derivative of this
branch d 2 ℜΛ(µ)/dµ2 changes its sign at the point µ= 0 from negative to positive, see figure 5. From

d 2 ℜΛ(µ)/dµ2 = ℜ
[
Y ′ ′(0)
Y(0) − Y ′(0)2

Y(0)2

]
and

Y ′(0) =
σ

Ω2
+

γ+α(ν−w)

γ2 +(w− ν)2

we obtain the following condition for the MI of the CW state

− 2 ασ

Ω3
−

(γ−α(w− ν))2 −
2
(
α2 + 1

)(
A02eG0 + 1

)
(w− ν)2

A02 (eG0 − 1)

(γ2 +(w− ν)2)
2 ⩾ 0. (7)
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Figure 6. Numerical simulation of equations (1)–(3) in the quasistatic regime for different values of dispersion strength σ= 0
(top-left), σ= 2 (top-right), σ= 2.2 (bottom-left), σ= 2.3 (bottom-right). Other parameters are γ= 1, T= 200, κ= 0.2, δ= 5,
ρ= 10−6, φ= 0, α= 2, ε= 0.001, γg = 0.1, g0 = 3,Ω=−2.

One can see that for zero dispersion σ= 0 the maximum gain mode ν = w is always stable. MI of the side
modes can lead to bistability between chaotic state and CW states and, therefore, to the turbulent output of
the laser during sweeping in case of normal dispersion [14].

Therefore, by choosing maximum gain mode ν = w, we can obtain necessary condition for the MI of all
the CW states in the anomalous dispersion regime Ω< 0 [22]

αD2 L⩽− 1

γ2
, (8)

where D2 =
2 σ
LΩ3 < 0 corresponds to the second-order dispersion coefficient per unit length (L). By

examining experimentally observed relations (see figures 2(e) and (f)), we can observe that with increasing
wavelength the second-order dispersion coefficient D2 < 0 increases by the absolute value, while parameters
α and γ do not change significantly, hence the instability can be observed for smaller fiber length L in full
agreement with condition (8) [22]. Moreover, this inequality coincides with the necessary condition in the
case of distributed delay [22], which suggests that the approximate DDE system (1)–(4) is suitable for the
investigation of the effect of the anomalous dispersion on the dynamics of long cavity lasers.

3.3. Numerical simulations
First, we assume w= w̃=∆(t) = δ sinρt and note that by substituting a transformation

X(t) = X̂(t)ei
´ t
t−T∆(τ)dτ

for X(t) = A(t),B(t), and P(t) into equations (1) and (3) one obtains the same equations for
X̂(t) = Â(t), B̂(t), and P̂(t) with the parameters ŵ= 0 and φ̂=−

´ t
t−T∆(τ)dτ [14]. In the case of fully

synchronous FDML regime the filter is swept with a period exactly equal to the cavity round-trip time, i.e.
ρ= 2 π/T, and φ̂≡ 0, hence this case is completely equivalent to the static regime of operation. Moreover,

9
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the most practically relevant regime of operation with the period close to the cavity round trip time
(|ρ− 2 π/T| ≪ 1/T) is formally equivalent to the quasistatic regime |ρ| ≪ 1/T, because in both cases φ̂ is a
slowly varying function of time dφ̂/dt≪ 1/T [14].

Therefore, we perform numerical simulations only for the quasistatic regime of a frequency-swept FDML
laser using the following parameters normalized to filter width (γ= 1): T= 200, κ= 0.2, δ= 5, ρ= 10−6,
φ= 0, α= 2, ε= 0.001, γg = 0.1, g0 = 3, Ω=−2. For these parameters the laser operates in anomalous
dispersion regime for σ > 0, and the MI of CW regimes can be observed according to (8) for

σ ⩾ 2.

We investigate numerically the effect of anomalous dispersion on the dynamics of the frequency-swept
FDML laser. Similarly to experimental results depicted on figure 3, we can observe on figure 6 for zero
dispersion strength σ= 0 the asymmetry of the output with respect to the sweep direction, where the output
is chaotic before∆(t) changes its sign, and after that it consists of more regular jumps between different CW
regimes selected by the frequency-swept filter [14]. At the MI threshold σ= 2 we can see the same picture
but the quality of the regular output degrades, and it further degrades for higher σ= 2.2 and σ= 2.3. We can
still observe the change of sweep direction but no jumps, and for higher σ only turbulent output can be
obtained. Therefore, we conclude that MI condition (8) can help us to determine if the FDML laser can
produce regular output in the anomalous dispersion regime.

4. Conclusions

Long cavity semiconductor swept source lasers are important devices for many applications, however, they
demonstrate different instabilities which affect their performance. In particular they can operate in a stable
regime, turbulent regime or combination of the both, or emit stable localized structures which deteriorate
their coherence. The laser cavity includes a long fiber delay which on one side is essential to ensure
synchronization between the modulation period and the cavity roundtrip time required for efficient lasing,
but on the other side introduces chromatic dispersion which leads to desynchronizaton and is responsible for
the variety of possible dynamical regimes. We study these regimes experimentally by using various
experimental techniques such as optical heterodyne or a more recent real time electric field reconstruction
technique developed to characterize lasers with sweeping frequency [32]. We demonstrate that stable and
turbulent regimes can co-exist in such lasers and investigate the stability conditions theoretically. The
transition to turbulence can also be observed in other types of lasers and other systems such as
hydrodynamical [23]. Theoretically, we propose a model of a long cavity semiconductor laser where a DDE
for the optical field is coupled to two ordinary differential equations for carrier densities of an SOA and
polarization of the fiber delay line to account for chromatic dispersion. This model can successfully describe
a variety of dynamical regimes in the output of a swept source [14, 16, 28] discussed in this paper. We
performed linear stability analysis of lasing modes to demonstrate that strong anomalous dispersion can lead
to MI of all the lasing modes and turbulent output of an FDML laser. We have derived analytically the
necessary condition for the MI in this case, identified the instability threshold in the experiment [22], and
demonstrated gradual degradation of the FDML regime for stronger anomalous dispersion experimentally
and numerically under the influence of noise. The main results of our study are the detailed description of
dynamical regimes in a long cavity semiconductor swept source laser under different parameters and
formalization of stability criteria, which are important to overcome performance limitation of such lasers.
Using our theoretical framework of DDEs, we have demonstrated analytically and numerically and
confirmed experimentally, that the key dynamical features of long cavity fiber-based semiconductor lasers
can be attributed to the basic nonlinear effects in the components of the device and their interaction in the
cavity. In particular, multistability between CW and chaotic regimes in a laser with a static filter is due to
long cavity and the SOA nonlinearity. In the quasistatic and the FDML regime, jumps between multiple CW
states are related to the destabilization of the side modes under the modulated filter with respect to a short
wavelength MI, whereas transition to the turbulent output is associated with a long wavelength MI, which
could be potentially suppressed using an optical amplifier with very low linewidth enhancement factor [14].
Strong anomalous dispersion of the fiber can result in the destabilization of all the lasing modes due to
another long wavelength MI, hence dispersion compensation mechanisms should be applied to obtain
coherent emission at corresponding wavelengths. In addition, these results can be further extended to other
systems with time delay.
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