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Connection intervals in multi-scale dynamic networks
Christian Hirsch, Benedikt Jahnel, Elie Cali

Abstract

We consider a hybrid spatial communication system in which mobile nodes can
connect to static sinks in a bounded number of intermediate relaying hops. We describe
the distribution of the connection intervals of a typical mobile node, i.e., the intervals of
uninterrupted connection to the family of sinks. This is achieved in the limit of many
hops, sparse sinks and growing time horizons. We identify three regimes illustrating that
the limiting distribution depends sensitively on the scaling of the time horizon.

1 Introduction

Starting with the landmark paper [5] in the early 1960s by Gilbert, stochastic geometry has
been employed to model and analyze spatial communication systems in which the network
nodes directly exchange data with other nodes in their vicinity. In the absence of any refined
information about the spatial locations of nodes the null model is that they are sca�ered
entirely at random in space, i.e., form a homogeneous Poisson point process, where the single
scalar parameter represents the expected number of vertices per unit volume. Concerning the
communication structure, the simplest model is the Gilbert graph where connections between
nodes are represented by links between any pair of nodes with a certain maximal distance.

Basic questions about the connectivity of such peer-to-peer networks provide a key
motivation for fruitful research in the realm of continuum percolation. At the center of
this field stands the percolation phase transition, meaning that if the intensity of network
participants is su�iciently high, then a positive proportion of all nodes form a giant
communicating cluster [11].

However, only a small set of use cases such as sensor networks or disaster-rescue ad-hoc
network rely on peer-to-peer networks in its purest sense. In the bulk of applications, peer-to-
peer communications appears as an extension for more traditional cellular networks, forming
a variety of hybrid systems [7]. Such systems have the potential to successfully mitigate many
of the problems of the pure systems, such as for example delay, ji�er, routing or operational
control.

Another essential aspect is mobility. The vast majority of the available literature on stochastic
models for spatial communication networks investigate static systems. However, already
in the landmark paper [6], the impact of mobility on the capacity of communication
networks has been evaluated in an information-theoretic context. These findings have
inspired subsequent studies of spatial random networks with mobility, and we refer the reader
to [2, 3] for an overview in this area.

When designing and evaluating hybrid communication networks, arguably the most basic
network characteristic is the total connection time. That is, the overall time that a typical
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network node is connected to some infrastructure. The key achievement of our earlier work
[7] is to describe the asymptotic behavior of this quantity over long time horizons, many hops
and sparse infrastructure nodes. However, in real communication networks, maximizing the
total connection time does not necessarily lead to networks o�ering an acceptable quality of
service. Indeed, if the connection times are highly fragmented over the entire time horizon,
then it is not possible to o�er the typical node a large coherent block of uninterrupted service,
and the system faces a substantial overhead caused by the cost of frequently re-establishing
lost connections to the typical node. Therefore, in the present work, we move beyond the
total connection time and provide more refined descriptions of the connection intervals, i.e.,
the time intervals when the typical mobile node is guaranteed uninterrupted connection. In
particular, this distribution can be used to answer questions of the following form.

1 What is the proportion of time that a typical mobile node is guaranteed uninterrupted
communication of at least a given time duration?

2 What is the number of reconnections of a typical mobile node in the hybrid system?

The rest of the manuscript is organized as follows. In Section 2, we introduce precisely
the hybrid model and state Theorem 2.1 as the main result on the weak convergence of
the connection-interval measure under three di�erent coupled limits. We also present a
simulation study to illustrate how the results can be applied for designing wireless networks.
In Section 3, we outline the proof of Theorem 2.1 and establish a number of supporting results
that feature several approximations. Finally, Section 4 contains the detailed proofs of the
supporting results.

2 Se�ing and main result

2.1 System model

In this manuscript, we study an infrastructure-enhanced model for a wireless communication
network in Rd, which is observed over a time horizon [0, T ]. More precisely, the infrastructure
nodes or sinks form a homogeneous Poisson point process Y = {Yj}j≥1 with some intensity
λS > 0.

Furthermore, at every time instant t ≤ T also the mobile nodes X(t) = {Xi(t)}i≥1 form
a homogeneous Poisson point process with intensity λ > 0. The nodes move over time
according to a mobility model specified further below.

We work with a simple distance-based connection model, where nodes and sinks
communicate directly if they are closer than a certain fixed communication radius. By the
scaling properties of the Poisson point process, we may henceforth fix this distance to be
equal to 1. Moreover, also the nodes can communicate among themselves at this distance and
they may forward data over several relaying hops. Figure 1 (le�) illustrates such a network
without any sinks. Thus, a k-hop connection with a sink can be established even if the la�er
is outside the range of direct connectivity.
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2.2 Connection intervals

In this work, we go beyond the se�ing of empirical k-hop connection times as studied in [7]
and investigate the connection intervals. More precisely, we let I(t, S) ⊆ R denote the length
of the connected component of a set S ⊆ R containing a time point t ∈ R. In symbols,

I(t, S) := sup
a≤b : t∈[a,b]⊆S

(b− a),

where I(t, S) := 0 if t 6∈ S.

In the specific se�ing of the network model from Section 2.1, S represents the set of all times
where a typical moving nodeX0(·) started at the origin is k-hop connected to some sink. Note
that we may add this extra point, due to the Slivnyak theorem, and a�er applying mobility
to this point as well as to the other points, it remains typical at every instant. More precisely,

Ξk(Yj) := {t ∈ R : X0(t)
k

!t Yj}
denotes the set of all times when the typical node connects to the sink Yj in at most k hops
using the nodes in X . Then,

Ξk :=
⋃
j≥1

Ξk(Yj)

is the set where it connects to some sink. In particular, this definition allows for hand-overs
between di�erent sinks.

Writing δ for the Dirac measure, the central objective of this work is the k-hop connection-
interval measure

τT (d`, dt) :=
1

T

∫
[0,T ]∩Ξk

δ(I(s,Ξk),s/T )(d`, dt)ds,

which is a random probability measure on [0,∞)× [0, T ]. In order to highlight the richness of
information encoded in the connection interval measure, we now describe three key network
statistics derived from it.

Example 1 (Network statistics). Consider τT (f) :=
∫

[0,∞)×[0,T ]
f(`, t)τT (d`, dt) for

1 f1(`, t) := 1. Then, this is the time-averaged connection time of the typical node.
Hence, we recover the se�ing from [7].

2 f2(`, t) := `. As elucidated in Section 1, connection times cannot be used e�ectively
if they are highly fragmented over the time horizon. One approach is to use f(`, t) =
1{` ≥ tmin}, i.e., to discard connection times contained in intervals shorter than
a minimum duration tmin. However, this hard threshold might cause undesirable
threshold phenomena tied to the specific choice of tmin. Hence, it may be more desirable
to rely on a so� weighting of the form f2(`, t) = `, where connection times in longer
intervals receive a higher weight. Then, the network characteristic τT (f) takes into
account that a network should not only o�er a high amount of connectivity on average
but also guarantee connections that are uninterrupted for a substantial time.

3 f3(`, t) := 1{` > 0}/`. Then, TτT (f) is the number of connection intervals in [0, T ]
with the first and last such interval possibly counted only partially. Hence, TτT (f) can
be interpreted as the number of reconnections that are needed within the time horizon.
For network operators this characteristic is of high interest since each such reconnection
requires additional resources.
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2.3 Asymptotic k-hop connection-interval measure

We analyze the connection measure τT asymptotically over a growing time horizon T ↑ ∞
when simultaneously the admissible number of hops k and the sink intensity λS scale with
T . More precisely,

λc := inf
{
λ > 0: P(o!∞) > 0

}
denotes the critical intensity for percolation of the node process. Forλ > λc we write C∞ = Cλ∞
for the unique connected component in a Poisson point process with intensity λ. We will rely
on a key finding from continuum first-passage percolation, namely that above λc, the number
of hops needed to travel inside the infinite connected component of nodes grows linearly in
the Euclidean distance, see [14]. More precisely, there exists a stretch factor µ > 0 such that
almost surely

T (x, y)

|x− y|
|x−y|↑∞−−−−−→ µ,

where T (x, y) denotes the smallest number of hops that are needed to connect q(x) and q(y),
the points in Cλ∞ that are closest to x and y in Euclidean distance.

Henceforth, we assume that k ↑ ∞ and λS ↓ 0 such that

λS(k/µ)d|B1(o)| = nS, (2.1)

for some fixed nS > 0, which may be interpreted as the expected number of sinks that are
within k-hop range of a typical node at the origin. Indeed, since the stretch factor converts
the k-hop distance to the Euclidean distance, any such sink is contained in the ball Bk/µ(o).
Thus, the expected number of sinks is λS|Bk/µ(o)|.
To work out the impact of mobility cleanly, we need to take into account the sink-densities
relation to the considered time horizon. More precisely, we investigate scalings of the form

λS(T ) := T−α, (2.2)

for some parameter α > 0 governing the sink density.

Concerning mobility, we assume that nodes choose random waypoints sequentially according
to some isotropic probability measure κ(dv) and directly jump to them a�er exponentially
distributed waiting times. In particular, X(t) remains a Poisson point process with the same
intensity. We assume that the trace of the coordinate-covariance matrix associated with
random vectors from κ(dv) equals d. This normalization will later ensure convergence to a
standard Brownian motion.

In Theorem 2.1, we identify the connection measure a�er the scaling. To that end, let Ξ∞ :=
{t : X0(t)!t∞} be the set of all times when the typical node is part of the infinite component
of nodes. Similarly, Ξ∞o := {t : o!t∞} denotes the set of all times when the static origin is
part of the infinite component of nodes. Further we write Y ′(A) for the number of points of
a point process Y ′ in the measurable set A ⊂ Rd.

Theorem 2.1 (Asymptotic weighted k-hop connection-interval measure). Let λ > λc and
assume the multi-scale regime encoded by (2.1) and (2.2).

Dense sinks. If α < d/2, then, as T ↑ ∞,

τT (d`, dt)
D−−→ E[δIo(N)(d`)]dt, (2.3)
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where Io(N) := I(0,Ξ∞ ∩ (∪j≤NΞj,∞
o )) with N an independent Poisson random variable with

intensity nS and (Ξj,∞
o )j≥1 iid copies of Ξ∞o .

Sparse sinks. If α > d/2, then, as T ↑ ∞,

τT (d`, dt)
D−−→ E[δIo(N)(d`) |N ]dt, (2.4)

with all definitions as in the dense case.
Critical density. If α = d/2, then, as T ↑ ∞,

τT
D−−→ E[δIo(Y ′(Bn′

S
(Wt)))(d`) |Y ′(Bn′

S
(Wt))]dt, (2.5)

where n′S := (nS/|B1(o)|)1/d and Y ′ is a unit-intensity homogeneous Poisson point process and
Wt is a standard Brownian motion.

We note that convergence of the distribution of random measures is defined by the
convergence of integrals with respect to bounded continuous test functions. Hence, the
statistics described in items (2) and (3) of Example 1 should be truncated at some large value
M > 0. In practice, when relying on such statistics as metrics for the network performance,
the truncation at large M is of li�le concern.

We conclude this section by expounding on how the asymptotic results presented in
Theorem 2.1 can be applied in the design and analysis of wireless networks. To that end,
we concentrate on the dense case and present a simulation study where we describe the
dependence of E[f(Io(N))] on the expected number of in-range sinks nS for the three
characteristics f1, f2, f3 discussed in Example 1.

More precisely, the network nodes form a homogeneous Poisson point process with intensity
λ = 150 in a 5 × 5-sampling window, thus giving rise to a communication network with
an expected number of 3,750 nodes and the communication radius is set to 0.1. Although
not needed for the computation of E[f(Io(N))], for completeness, we note that the critical
intensity for percolation is λc ≈ 143.7 [12] and that the stretch factor is µ ≈ 8.1 (own
simulations). Observe that on the right-hand side in Theorem 2.1 the parameters λS, k, T
are sent to the limit and therefore do not appear in the simulation. Figure 1 (le�) shows a
realization of this system.

Each node jumps according to a sequence of rate 1 exponential waiting times, and the jump
locations are selected uniformly at random at distance 0.005. Figure 1 (right) illustrates the
changes of the network topology under these dynamics.

Now, we generate 1,000 realizations of this model and evaluate the quantity E[f(Io(N))]
appearing in Theorem 2.1 for the three di�erent choices of the test function. Figure 2 illustrates
the Monte Carlo estimates for E[fi(Io(N))] as a function of E[N ] = nS, the expected number
of sinks in range.

Both f1 and f2 lead to increasing functions in nS approaching a saturation level as nS becomes
large. We note that with respect to f1 the system is already close to a saturation value of
approximately 0.6 for nS ≥ 2. That is, the typical node is connected approximately 60%
of the time. We note that this saturation value corresponds to the percolation probability
at the considered intensity: if the typical node cannot form a connection to other devices
outside a local neighborhood, then increasing the sink density does not help improving the
total connectivity.
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Figure 1: Sample of the simulated network at time 0 (le�). Node displacement a�er time 100
(right). In order to illustrate the mobility more clearly, we only show a cut-out of the full
network. The network structure at time 0 is marked by blue do�ed edges.

Figure 2: Average connection time (le�), average weighted connection time (center), and
reconnection rate (right) based on 1,000 simulations.

Concerning f2, increasing nS may improve the system quality substantially, even beyond
nS ≥ 2. We hypothesize that this is due to the following e�ect. Although a�er nS ≥ 2, adding
further sinks may not improve the total connection time substantially, still a few additional
sinks may be enough to merge several smaller connection intervals into a very long one. This
will boost the weighted connection time massively.

Although the function f3(`, t) is neither increasing nor decreasing in `, Figure 2.1 still
illustrates that it increases rapidly for small values of nS before reaching a plateau at around
0.075 when nS ≥ 2. Loosely speaking, this means that if the typical node performs a jump on
average once every second, then we see 0.075 reconnections per second. Our interpretation is
as follows: for low nS, the number of reconnections is small simply because the typical device
is in any event disconnected for most of the time. Then, as we increase nS, the number of
chances for the typical device to connect surges rapidly. Conceptually there is also a tendency
in the opposite direction since an increase of nS eliminates some reconnections by merging
two smaller intervals into a larger one. However, the plot suggests that the e�ect coming from
the addition of new intervals is much stronger.

DOI 10.20347/WIAS.PREPRINT.2895 Berlin 2021
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As a global conclusion of the considered simulation study, we may say that increasing nS

past a very high value does not lead to further connectivity gains. However, we stress that
the impact of increasing the number of admissible hops k is a bit more subtle. Then, also Ξ∞

becomes larger so that implementing this measure may boost connectivity even in situations
where increasing nS does not help.

3 Outline

The goal of Theorem 2.1 is to prove that the random measure τT converges in distribution to
a suitable random measure Λ on [0,∞)× [0, 1]. As a preliminary step, we reduce this task to
proving this convergence when integrating with respect to product-form test functions. More
precisely, we consider integrals of the form

τT (gh) =

∫ 1

0

g
(
I(tT,Ξk)

)
h(t)dt

for continuous test functions g : [0,∞)→ [0, 1] and h : [0, 1]→ [0, 1]. The following auxiliary
result then shows that it su�ices to prove that the random variables τT (gh) converge to Λ(gh)
in distribution as T ↑ ∞.

Lemma 3.1 (Product-form test functions). Let Λ be a random probability measure on [0,∞)×
[0, 1] such that τT (gh) converges in distribution to Λ(gh) for every continuous g : [0,∞)→ [0, 1]
and h : [0, 1] → [0, 1]. Then, the random measure τT converges weakly in distribution to the
random measure Λ.

We present the proof of Lemma 3.1 at the end of this section. The next preparatory step,
is to show that we may replace the original expression g

(
I(tT,Ξk)

)
by a finite-range

approximation. More precisely, this involves three steps. First, we truncate long connection
intervals. That is, we replace I(tT,Ξk) by I(tT,Ξk) ∧M for a large truncation level M > 0.
Second, we introduce δ-discretizations of I(tT,Ξk), where we only check the connectivity at
discretized time points. For this, we put

Iδ,M(t,Ξk) := sup
a≤b∈Jδ,M (t)

[a,b]⊆Ξk

(b− a),

where we rely on the finitely-many discrete time points

Jδ,M(t) := t+ {−dM/δeδ, . . . ,−δ, 0, δ, . . . , dM/δeδ}

around t. Third, we replace the actual k-hop connection event by the event of percolation
beyond bounded neighborhoods. To that end, we write

CL(t) :=
{
x ∈ Rd : x!t ∂QL(x)

}
for the family of all locations percolating beyond an L-neighborhood via nodes in X(t).

First, in Section 4.1, we show that passing to the approximations incurs a negligible
approximation error in the sense of Lemma 3.2 below. To make this precise, we let

Y (t, k) := Y (t, k,X0) := Bk/µ(X0(t)) ∩ Y

DOI 10.20347/WIAS.PREPRINT.2895 Berlin 2021
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denote the family of all relevant sinks at time t. Then, we write s ∈ ΞL(Y (t, k)) if and only if
X0(s) ∈ CL(s) and Yj ∈ CL(s) for some sink Yj ∈ Y (t, k). Moreover, for L,M, δ > 0, we set

Ik,L,δ,M(tT ) := Iδ,M(tT,ΞL(Y (tT, k))).

Proposition 3.2 (Finite-range approximation of connection intervals). Let t ≤ 1. Then,

lim sup
M↑∞

lim sup
δ↓0

lim sup
L↑∞

lim sup
T↑∞

E
[∣∣I(tT,Ξk)− Ik,L,δ,M(tT )

∣∣] = 0.

A�er integrating with respect to the functions g and h and inserting the approximations, the
first key step is to prove the following finite-range variant of Theorem 2.1.

Proposition 3.3 (Approximate connection intervals). Let λ > λc and assume the multi-scale
regime encoded by (2.1) and (2.2).

Dense sinks. If α < d/2, then, for all L,M, δ > 0, as T ↑ ∞,∫ 1

0

g
(
Ik,L,δ,M(tT )

)
h(t)dt

D−−→
∫ 1

0

E[g
(
Io,L,δ,M(N)

)
]h(t)dt, (3.1)

where

Io,L,δ,M(N) := Iδ,M

(
0, {s ∈ R : X0(s) ∈ CL(s)} ∩ {s ∈ R : o ∈ ∪j≤NC(j)

L (s)}
)
.

Here, N is an independent Poisson random variable with intensity nS and the C(j)
L are iid copies

of CL.
Sparse sinks. If α > d/2, then, for all L,M, δ > 0, as T ↑ ∞,∫ 1

0

g
(
Ik,L,δ,M(tT )

)
h(t)dt

D−−→
∫ 1

0

E
[
g
(
Io,L,δ,M(N)

)
|N
]
h(t)dt, (3.2)

with all definitions as in the dense case.
Critical density. If α = d/2, then, for all L,M, δ > 0, as T ↑ ∞,∫ 1

0

g
(
Ik,L,δ,M(tT )

)
h(t)dt

D−−→
∫ 1

0

E
[
g
(
Io,L,δ,M(Y ′(Bn′

S
(Wt)))

)
|Y ′(Bn′

S
(Wt))

]
h(t)dt (3.3)

where n′S := (nS/|B1(o)|)1/d and Y ′ is a unit-intensity homogeneous Poisson point process and
Wt is a standard Brownian motion.

We now explain how to deduce Theorem 2.1 from Propositions 3.2 and 3.3.

Proof of Theorem 2.1. We explain how to argue for α > d/2, noting that the other two cases
are similar. Let F : [0, 1]→ [0, 1] be Lipschitz with Lipschitz constant 1. We want to show that

lim
T↑∞

E
[
F
(∫ 1

0

g
(
I(tT,Ξk)

)
h(t)dt

)]
= E

[
F
(
E[g
(
Io(N)

)
|N ]

∫ 1

0

h(t)dt
)]
.
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To that end, we consider the decomposition∣∣∣E[F(∫ 1

0

g
(
I(tT,Ξk)

)
h(t)dt

)]
− E

[
F
(
E[g
(
Io(N)

)
|N ]

∫ 1

0

h(t)dt
)]∣∣∣

≤
∣∣∣E[F(∫ 1

0

g
(
Iδ,M(tT,ΞL(Y (tT, k)))

)
h(t)dt

)]
− E

[
F
(
E[g
(
Io,L,δ,M(N)

)
|N ]

∫ 1

0

h(t)dt
)]∣∣∣

+ E
[∣∣∣F(∫ 1

0

g
(
I(tT,Ξk)

)
h(t)dt

)
− F

(∫ 1

0

g
(
Iδ,M(tT,ΞL(Y (tT, k)))

)
h(t)dt

)∣∣∣]
+ E

[∣∣∣F(E[g
(
Io,L,δ,M(N)

)
|N ]

∫ 1

0

h(t)dt
)
− F

(
E[g
(
Io(N)

)
|N ]

∫ 1

0

h(t)dt
)∣∣∣]

≤
∣∣∣E[F(∫ 1

0

g
(
Iδ,M(tT,ΞL(Y (tT, k)))

)
h(t)dt

)]
− E

[
F
(
E[g
(
Io,L,δ,M(N)

)
|N ]

∫ 1

0

h(t)dt
)]∣∣∣

+ E
[∣∣∣g(I(0,Ξk)

)
− g
(
Iδ,M(0,ΞL(Y (0, k)))

)∣∣∣]+ E
[∣∣∣g(Io,L,δ,M(N)

)
− g
(
Io(N)

)∣∣∣],
where in the last inequality we used that the model is time-stationary. By Proposition 3.3, the
first expression on the right-hand side tends to 0 as T ↑ ∞. Since g is continuous, Proposition
3.2 allows us to chooseM,L, δ > 0 such that the second expression becomes arbitrarily small
as T ↑ ∞. Finally, a similar argument applies to the third contribution, thereby concluding
the proof.

The key step in the proof of Proposition 3.3 is the conditional second-moment method.
Hence, we need to control conditional expectations and covariances for expressions like
g
(
Ik,L,δ,M(tT )

)
, t ≤ 1.

Proposition 3.4 (Asymptotic conditional decorrelation). Let 0 < t < 1. Then, under the
scalings (2.1) and (2.2),

lim
T↑∞

E
[
Cov
(
g
(
Ik,L,δ,M(0)

)
, g
(
Ik,L,δ,M(tT )

)
|X0, Y

)]
= 0. (3.4)

To describe concisely the asymptotic conditional expectation givenX0 and Y , we need a more
explicit representation of Ik,L,δ,M . By definition, Ik,L,δ,M(tT ), is determined by certain finite-
range percolation events of the typical node X0, and of sinks in range Y (tT, k) at the times
Jδ,M(tT ). More precisely, to make this dependence explicit, we will also write

Iδ,M

(
{s ∈ Jδ,M(tT ) : X0(s) ∈ CL(s)}, {s ∈ Jδ,M(tT ) : Yj ∈ CL(s)}Yj∈Y (tT,k)

)
instead of Ik,L,δ,M(tT ).

Proposition 3.5 (Asymptotic conditional expectation). Let t ≤ 1. Then, under the scalings
(2.1) and (2.2), we have the L1-convergence

E[g(Ik,L,δ,M(tT )) |X0, Y ]
T↑∞−−−→ S

(
{X0(s)−X0(tT )}s∈Jδ,M (tT ),#Y (tT, k)

)
,

where

S
(
{xs}s∈Jδ,M (tT ), n

)
:= E

[
g
(
Iδ,M

(
{s : xs ∈ CL(s)}, {s : o ∈ C(j)

L (s)}j≤n
}))]

(3.5)
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We prove Proposition 3.4 and 3.5 in Section 4.2. A�er that, we will elucidate in Sections 4.3–4.5
below how to complete the proof of Proposition 3.3 in the di�erent regimes for the parameter
α. We conclude this section with a proof of Lemma 3.1.

Proof of Lemma 3.1. We follow the proof of [8, Theorem 4.11]. First, we show the tightness
of the random probability measures τT . To that end, we note that by assumption, the
random variable τT (gh) converges to Λ(gh) in distribution for every g, h as above. Thus,
also limT↑∞ E[τT (gh)] = E[Λ(gh)] for every g, h as above. Since the underlying space
[0,∞) × [0, 1] is a product space, we deduce from [8, Lemma 4.1] that the expectation
measure E[τT ] converges weakly to E[Λ]. Thus, by Prohorov’s theorem (see [8, Theorem 4.2]),
limM↑∞ supT≥1 E[τT ([M,∞) × [0, 1])] = 0. By [8, Theorem 4.10] this yields tightness of the
random measures {τT}T≥1. Now, we conclude as in the proof of [8, Theorem 4.11].

4 Proofs

In Section, 4.1, we establish the finite-range approximation of the connection intervals from
Proposition 3.2. In Section 4.2, we establish the asymptotic conditional?expectations and
covariances statements of the Propositions 3.4 and 3.5.

4.1 Finite-range approximation – proof of Proposition 3.2

First, we may truncate long connection intervals. More precisely, the typical connection
intervals are tight.

Lemma 4.1 (Tightness). Under (2.1) and (2.2), the random variables {I(0,Ξk)}k≥1 are tight.

Second, the discretization error vanishes as δ ↓ 0.

Lemma 4.2 (Discretization). Let M > 0. Then, under (2.1) and (2.2),

lim
δ↓0

lim sup
k↑∞

E
[
|Iδ,M(0,Ξk)− I(0,Ξk) ∧M |

]
= 0.

Finally, we show how to approximate the k-connection event by the percolation outside finite
boxes.

Lemma 4.3 (Finite-range percolation). Let M, δ > 0. Then, under (2.1), (2.2),

lim
L↑∞

lim sup
k↑∞

E
[
|Iδ,M(0,Ξk)− Ik,L,δ,M(0)|

]
= 0.

In the rest of this section, we prove Lemmas 4.1–4.3. We start with Lemma 4.3 since it follows
from a short argument based on the shape theorem for continuum first-passage percolation.
The la�er allows to replace the k-hop connection event by suitable percolation events.

Proof of Lemma 4.3. First, note that limk↑∞ P
(
Y (t′, k) = Y (0, k) for all t′ ∈ [−M,M ]

)
= 1.

Thus, by the shape theorem for continuum first-passage percolation in the form of [7, Lemma
15],

lim
k↑∞

E
[∣∣Iδ,M(0,Ξk)− Iδ,M(0,Ξ∗(X0, Y (0, k)))

∣∣] = 0,
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where t′ ∈ Ξ∗(X0, Y (0, k)) if X0(t′) ∈ C∞(t′) and Yj ∈ C∞(t′) for some sink Yj ∈ Y (tT, k).

Now, by the uniqueness of the connected component, X0(t′) ∈ C∞(t′) if and only if X0(t′) ∈
CL(t′) for every L ≥ 1 and similarly Yj ∈ C∞(t′) if Yj ∈ CL(t′) for every L ≥ 1. Hence, we
may replace Ξ∗(X0, Y (0, k)) by ΞL(Y (0, k)), thereby concluding the proof.

Next, we prove Lemma 4.1. As a pivotal observation, we note that since nodes perform a
random walk, the node movement is di�use in the sense that it is highly unlikely that a�er a
time of order T , the typical node is contained in a set of bounded diameter.

Lemma 4.4 (Di�useness of node locations). Let t, L > 0. Then, under (2.1) and (2.2)

lim
T↑∞

sup
x∈Rd

P
(
X0(tT ) ∈ QL(x)

)
= 0.

Proof. Fix ε > 0 and note that we may assume L > 1. First, by the central limit theorem,
X0(tT )/

√
T converges in distribution to a Gaussian vector Z . Then, for M ≥ 1 partition

the box QM into M2d boxes Q1/M(z1,M), . . . , Q1/M(zM2d,M) of side lengths 1/M centered at
points z1,M , . . . , zM2d,M ∈ QM . In particular, we may fixM so large that P(Z 6∈ QM) < ε and
supi≤M2d P(Z ∈ Q3/M(zi,M)) < ε.

Now, if T is so large that
√
T/M ≥ L, then every Borel set B of diameter at most L

is contained in Rd \ Q√TM or in Q3
√
T/M(zi,M) for some i ≤ M2d. Hence, invoking the

distributional convergence of X0(tT )/
√
T concludes the proof.

The key observation for the tightness assertion in Lemma 4.1 is to use that a large connection
interval means that the typical node needs to be in the unbounded connected component for
many temporally distant time steps.

Proof of Lemma 4.1. We show tightness of the connection interval I+(0,Ξk) := I(0,Ξk ∩
[0,∞)) for positive connection times. The arguments for negative connection times are
symmetric.

Let ε > 0. Then, by discretization, for any n0, t0 ≥ 1,

P
(
I+(0,Ξk) > n0t0

)
≤ P

(
{0, t0, . . . , n0t0} ⊆ Ξk

)
.

Since limL↑∞ θL := limL↑∞ P(o ∈ CL) = θ < 1, we may fix L0, n0 ≥ 1 such that θn0
L0
< ε.

Next, if nt0 ∈ Ξk and there are no sinks in an L0-neighborhood around X0(nt0), i.e., if
Y ∩ QL0(X0(nt0)) = ∅, then it is possible to percolate beyond that neighborhood, i.e.,
X0(nt0) ∈ CL0(nt0). Thus, it su�ices to produce t0 ≥ 1 such that

P
(
X0(nt0) ∈ CL0(nt0) for all n ≤ n0

)
≤ 2ε.

To that end, we let

X−,nt0 :=
{
Xi ∈ X : {n} = {n′ ≤ n0 : Xi(n

′t0) ∈ QL0(X0(n′t0))}
}

denote the family of nodes that are contained in the L0-neighborhood of the typical node at
time nt0 but not at any other discretized times. We also introduce C−L (t) in the same way as
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CL(t) with the only di�erence that percolation exclusively relies on nodes inX−,t. In particular,
by the independence property of the Poisson point process, when conditioned on X0,

P
(
X0(nt0) ∈ C−L0

(nt0) for all n ≤ n0 |X0

)
=
∏
n≤n0

P
(
X0(nt0) ∈ C−L0

(nt0) |X0

)
.

Since P
(
X0(nt0) ∈ CL0(nt0) |X0

)
= θL0 , it therefore su�ices to show that almost surely,

lim
t0↑∞

P
(
X0(nt0) ∈ CL0(nt0) |X0

)
− P

(
X0(nt0) ∈ C−L0

(nt0)
)

= 0.

Now, the di�erence on the le�-hand side is bounded above by

P
(
X(nt0) ∩QL0(X0(nt0)) 6= X−(nt0) ∩QL0(X0(nt0))

)
≤ E

[∣∣(X(nt0) \X−(nt0)) ∩QL0(X0(nt0))
∣∣],

which tends to 0 as t0 ↑ ∞ by Lemma 4.4.

The main idea in the proof of Lemma 4.2 is that for small δ, only very few nodes move within
the time interval [iδ, (i+1)δ], and therefore we do not need to rely on them when establishing
k-hop connections.

In order to make this more precise, note that by the thinning theorem, the intensity of nodes
that are moving in an interval of the form [i0δ0, (i0 +1)δ0] form a Poisson point processX i0,δ0

with intensity (1 − e−δ0)λ, see [9, Theorem 5.8]. In particular, for su�iciently small δ0, this
process is still in the super-critical phase and we let Cδ0,∞(i0δ0) denote the associated unique
unbounded connected component for continuum percolation. We write Eglob

k,δ0
for the event

that all pairs of nodes Xj ∈ Cδ0,∞(i0δ0) ∩ Bk1/(2d) and Xj′ ∈ Cδ0,∞(i0δ0) ∩ B(1−δ0)k/µ are
connected in at most k −

√
k hops for every i0 ∈ Z with |i0| ≤ M/δ0. The first step in the

proof of Lemma 4.2 is to show that these global connections occur with a high probability
provided that δ0 is su�iciently small.

Lemma 4.5 (Global connections). If δ0 > 0 is su�iciently small, then limk↑∞ P(Eglob
k,δ0

) = 1.

In order to complete the global paths to a full k-hop connection, we still require short local
paths leading up to the unbounded connected components. To that end, we will need to refine
the above δ0-discretization and will rely on variants of Ξk that are locally determined. More
precisely, for L > 0 we write that t ∈ ΞL,δ0 if and only if X0 connects at time t to some node
of Cδ0,∞(bt/δ0cδ0) ∩ QL(X0(t)) in at most L2d hops. Then, an essential step is to show that
these local paths connect to the global path with high probability. To that end, we couple L
to the size of a finer discretization by pu�ing Lδ := δ−1/(2d). Now, we define

E loc
i,δ :=

{
X0(iδ) ∈ CLδ(iδ), X0((i+ 1)δ) ∈ CLδ((i+ 1)δ), [iδ, (i+ 1)δ] 6⊆ ΞLδ,δ0

}
as the event that there are bothX0(iδ) andX0((i+1)δ) percolate beyond anLδ-neighborhood
but that [iδ, (i+ 1)δ] 6⊆ ΞLδ,δ0 .

Lemma 4.6 (Local connections). Let M > 0. Then, sup|i|≤M/δ P
(
E loc
i,δ

)
∈ o(δ).
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Proof of Lemma 4.2. The task is to show that

lim
δ↓0

lim sup
k↑∞

P
( ⋃
|i|≤M/δ

Ei,k,δ

)
= 0, (4.1)

where
Ei,k,δ :=

{
{iδ, (i+ 1)δ} ⊆ Ξk, [iδ, (i+ 1)δ] 6⊆ Ξk

}
is the event of having k-connections at iδ and (i + 1)δ but not within the entire interval
[iδ, (i+1)δ]. Note that if iδ ∈ Ξk, thenX0(iδ) ∈ CLδ(iδ) unless some sink lies inQLδ(X0(iδ)).
However, since the sink intensity tends to 0 as k ↑ ∞ so does the probability of the la�er event.
Moreover, by Lemma 4.6,

lim sup
δ↓0

P
( ⋃
|i|≤M/δ

E loc
i,δ

)
= 2M lim sup

δ↓0

1
δ

sup
|i|≤M/δ

P
(
E loc
i,δ

)
= 0.

Noting that a similar argument applies when replacing X0(iδ) by one of the sink nodes in
Bk/µ(X0(iδ)) thus concludes the proof of identity (4.1).

Finally, we prove Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. The key ingredient in the proof is the continuity of the stretch factor
with respect to the intensity λ of the underlying Poisson point process. While in first-passage
percolation on the la�ice, results in this vein are classical and hold under very general
conditions [1], the question in the continuum only requires a small adaptation. We only show
that lim supλ′↑λ µλ′ ≤ µλ since this will be su�icient for the proof of Lemma 4.5. Once this
assertion is established, we invoke the shape theorem for continuum first-passage percolation
in the form of [7, Lemma 15] in order to deduce that limk↑∞ P(Eglob

k,δ0
) = 1 for su�iciently small

δ0.

To that end, set µλ,n := n−1E[Tλ(qλ(o), qλ(ne1))], where qλ(x) is the point in Cλ∞ that is
at smallest Euclidean distance to x ∈ Rd and Tλ(x, y) denotes the graph distance between
points x, y ∈ Cλ∞. Then, Tλ′(qλ′(o), qλ′(ne1)) converges almost surely to Tλ(qλ(o), qλ(ne1))
as λ′ ↑ λ. Hence fixing some super-critical λ0, it su�ices to show that the path lengths
Tλ′(qλ′(o), qλ′(ne1)) are uniformly integrable as λ′ ∈ [λ0, λ].

To achieve this goal, we note that

Tλ′(qλ′(o), qλ′(ne1)) ≤ Tλ0
(
qλ0(o), qλ0(ne1)

)
+ Tλ′

(
qλ′(o), qλ0(o)

)
+ Tλ′

(
qλ′(ne1), qλ0(ne1)

)
.

Hence, by stationarity, it su�ices to establish the uniform integrability of Tλ′
(
qλ′(o), qλ0(o)

)
for λ′ ∈ [λ0, λ]. For M > 0, say that the box QM is M -good if Cλ0∞ ∩ QM/2 6= ∅ and if the
unique component of the Gilbert graph on Xλ in QM of diameter more than M/8 contains
Cλ0∞ ∩ QM . In particular, if QM is M -good, then qλ′(o) and qλ0(o) are connected by a path in
QM so that Tλ′

(
qλ′(o), qλ0(o)

)
≤ Xλ(QM). Thus, for any a > 0,

P
(
Tλ′
(
qλ′(o), qλ0(o)

)
> a
)
≤ P(Xλ(Qa1/(2d)) > a) + P(Qa1/(2d) is not a1/(2d)-good).

Now, we conclude from the quantitative uniqueness in the form of [13, Theorem 2] thatQM is
M -good with high probability. Hence, the right-hand side becomes arbitrarily small for large
a, thereby concluding the proof of the uniform integrability.
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The proof of Lemma 4.6 relies heavily on the observation that it is highly unlikely to see a
time interval of a small length δ where two or more nodes are moving. To make this precise,
we let

Edisc
i,δ :=

{
X(t) ∩QLδ(X0(t)) ∈

{
X(iδ) ∩QLδ(X0(iδ)) : j ∈ {i, i+ 1}

}
∀t ∈ [iδ, (i+ 1)δ]

}
be the event that for any t ∈ [iδ, (i + 1)δ] the configuration of X(t) ∩ QL(X0(t)) coincides
with X(iδ) ∩ QLδ(X0(iδ)) or X((i + 1)δ) ∩ QLδ(X0((i + 1)δ)). By stationarity, P

(
(Edisc

i,δ )c
)

does not depend on i.

Lemma 4.7 (Edisc
i,δ occurs whp). Let M > 0. Then, sup|i|≤M/δ P

(
(Edisc

i,δ )c
)
∈ o(δ).

Proof. First, the probability that the typical node X0 jumps at least twice in [iδ, (i + 1)δ] is
1 − e−δ − δe−δ ∈ O(δ2). Hence, we may assume that X0(t) ∈ {X0(iδ), X0((i + 1)δ)} for
all t ∈ [iδ, (i + 1)δ]. We now distinguish between the cases whether or not the typical node
moves in the interval [iδ, (i+ 1)δ].

X0(iδ) 6= X0((i+ 1)δ). First, note that P
(
X0(iδ) 6= X0((i+ 1)δ)

)
= 1− e−δ ∈ O(δ). Hence,

it su�ices to show that conditioned on X0, the probability that either of X(t) ∩QLδ(X0(iδ))
or X(t)∩QLδ(X0((i+ 1)δ)) changes within the time interval t ∈ [iδ, (i+ 1)δ] is of order o(1)
as δ ↓ 0. By time reversibility, it su�ices to consider the case iδ; by independence of X0 and
X , we may assume that X0(iδ) = o.

The expected number of nodes ofX(iδ)∩QLδ(o) moving in the time interval [iδ, (i+1)δ] is at
most Ldδ(1−e−δ), and therefore of order o(1). In order to bound the number of nodes entering
QLδ(o) from the outside, we apply the mass-transport principle [4, 10]. More precisely, for
z, z′ ∈ Zd, we let S(z, z′) denote the total number of visits in QLδ(Lδz

′) within the time
interval [iδ, (i+ 1)δ] of nodes that are contained in QLδ(Lδz) at time iδ. Then, the number of
entering nodes is bounded above by the incoming mass at the origin. Conversely, the expected
outgoing mass at the node o is at most Ldδδ ∈ o(1). Since the mass-transport principle implies
that the expected incoming mass equals the expected outgoing mass, we conclude the proof
in the case X0(iδ) 6= X0((i+ 1)δ).

X0(iδ) = X0((i + 1)δ). In this case, we need to show that the probability that there is more
than one change of X(t) ∩ QLδ(X0(iδ)) in the time interval [iδ, (i + 1)δ] is of order o(δ). If
there is more than one change, then this may be either because several nodes move or because
some node moves multiple times.

First, consider the situation involving multiple nodes. Similarly, as in the previous case,
conditioned on X0, the collection of nodes in X(iδ) ∩ QLδ(X0(iδ)) moving in [iδ, (i + 1)δ]
is a Poisson point process with intensity 1− e−δ . Hence, the probability of more than one of
those nodes moves is of orderO(δ2). Next, conditioned onX0, the nodes enteringQLδ(X0(iδ))
form a Poisson point process. Again, using the mass-transport principle the intensity of this
process is of order at most O(Ldδδ). Hence, the probability of seeing more than one entering
node is of order at most O(L2d

δ δ
2) and therefore in o(δ). Finally, it may happen that in the

interval [iδ, (i + 1)δ] at least one node from X(iδ) ∩ QLδ(X0(iδ)) moves, and at least one
node from X(iδ) \QLδ(X0(iδ)) enters QLδ(X0(iδ)). Conditioned on X0, these two processes
are independent, and by the arguments derived above there intensities are of order at most
O
(
Ldδ(1 − e−δ)

)
and O

(
Ldδδ
)
, respectively. Thus, the asserted probability is of order at most

O
(
L2d
δ (1− e−δ)δ

)
, as asserted.

Second, consider the situation of some nodes moving multiple times. Here, we again apply the
mass-transport principle similarly to the se�ing whereX0(iδ) 6= X0((i+1)δ). More precisely,
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for z, z′ ∈ Zd, we now let S ′(z, z′) denote the total number of visits in QLδ(Lδz
′) within the

time interval [iδ, (i+1)δ] of nodes that are contained inQLδ(Lδz) at time iδ and that jump at
least twice in the interval [iδ, (i + 1)δ]. Then, the number of relevant nodes moving multiple
times is bounded above by the incoming mass at the origin. Conversely, the expected outgoing
mass at the node o is of the order at most O(L2d

δ δ
2) ∈ o(δ). Hence, another application of the

mass-transport principle concludes the proof.

Proof of Lemma 4.6. For δ > 0 with δ0/δ ∈ Z and |i| ≤ M/δ let i0 = i0(i, δ) be such that
[iδ, (i+ 1)δ] ⊆ [i0δ0, (i0 + 1)δ0].

A key ingredient is the strong quantitative uniqueness in the form of [13, Theorem 2]: For
δ > 0 and i ∈ Z write Euniq

i,δ for the event that for every j ∈ {i, i+ 1}, it holds that

1 inside QLδ(X0(jδ)) there exists a unique component of nodes in X(jδ) of diameter at
least Lδ/8;

2 inside QLδ(X0(jδ)) there exists a unique component of nodes in X i0,δ0(jδ) of diameter
at least Lδ/8. Moreover, this component intersects Cδ0,∞(i0δ0).

Then, [13, Theorem 2] provides a c > 0 such that 1 − P
(
Euniq
i,δ

)
≤ exp(−cLδ). Again by

stationarity, the la�er probability does not depend on i.

We now claim that E loc
i,δ cannot occur under the event{

Xλ(QLδ(X0(iδ))) ≤ L2d
δ

}
∩
{
Xλ(QLδ(X0((i+ 1)δ))) ≤ L2d

δ

}
∩ Euniq

i,δ ∩ E
disc
i,δ ,

which will conclude the proof of the lemma since each of the probabilities 1 − P(Edisc
i,δ ),

1 − P(Euniq
i,δ ) and 1 − P(Xλ(QLδ(X0(iδ))) ≤ L2d

δ ) is at most o(δ). Now, suppose that
X0(iδ) ∈ CLδ(iδ),X0((i+1)δ) ∈ CLδ((i+1)δ) and let t ∈ [iδ, (i+1)δ] arbitrary. In particular,
under the event Euniq

i,δ , we conclude that X0(jδ) connects within QLδ(X0(jδ)) to a vertex in
Cδ0,∞(i0) for every j ∈ {i, i+ 1}. Then, iδ, (i+ 1)δ ∈ ΞLδ,δ0 . Again, under the event Edisc

i,δ this
means that t ∈ ΞLδ,δ0 . Hence, the event E loc

i,δ does not occur.

4.2 Asymptotic conditional expectations and covariances – proofs of
Propositions 3.4 and 3.5

The key to achieving asymptotic independence will be the di�useness of the node movement.
More precisely, it is highly unlikely to find a node contained in two specific neighborhoods at
two distant points in time.

Lemma 4.8 (Asymptotic decorrelation of node locations). Let δ,M,K, t > 0. Then,

lim
T↑∞

sup
h

sup
ϕ,ϕ′

Cov
(
h
(
{X(s) ∩QK(ϕ)}s∈Jδ,M (0)

)
, h
(
{X(s) ∩QK(ϕ′)}s∈Jδ,M (tT )

))
= 0,

where the suprema run over all measurable [0, 1]-valued functions h and all K-element subsets
ϕ, ϕ′ ⊆ Rd.

Before establishing Lemma 4.8, we elucidate how it enters the proof of Proposition 3.4.
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Proof of Proposition 3.4. First, by choosingK ≥ 1 su�iciently large, we may assume that both
Y (0, k) and Y (tT, k) have at most K elements. More precisely, we replace

E
[
Cov
(
g
(
Ik,L,δ,M(0)

)
, g
(
Ik,L,δ,M(tT )

)
|X0, Y

)]
by

E
[
Cov
(
g
(
Ik,L,δ,M(0)

)
, g
(
Ik,L,δ,M(tT )

)
|X0, Y

)
1{#Y (0, k) ∨#Y (tT, k) ≤ K}

]
.

A�er constraining the number of elements of Y (0, k) and Y (tT, k) they become eligible
choices for ϕ and ϕ′ in Lemma 4.8. Thus, that result allows us to conclude the proof.

Next, we establish the asymptotic representation of the conditional expectation from
Proposition 3.5. The proof idea is to use that the sinks are so sparse that no moving node
can visit neighborhoods of two distinct sinks.

Proof of Proposition 3.5. First, by stationarity, we may assume that t = 0. Next, we let

E inert
k :=

{
sup

s∈Jδ,M (0)

|X0(s)| ≤
√
k/4
}

denote the high-probability event that the typical node does not move further than
√
k within

the times s ∈ Jδ,M(0). Moreover, we note that the high-probability event

Edisj
k :=

{
|x− x′| ≥

√
k for all x 6= x′ ∈ Y (0, k) ∪ {o}

}
implies the disjointness of the L-neighborhoods relevant for the percolation events encoded
in s ∈ ΞL(Y (tT, k)). Also the events Edisj

k occur whp.

For s ∈ Jδ,M(0), we now let

Xexc :=
{
Xi ∈ X : sup

s′∈Jδ,M (0)

|Xi(s
′)−Xi(0)| ≥

√
k/4
}

denote the family of all nodes that move a distance further than
√
k/4 within the times. By

the thinning theorem [9, Corollary 5.9], Xexc is a homogeneous Poisson point process with a
vanishing intensity as k ↑ ∞.

Next, we define the percolation sets C−L (s) precisely as CL(s) except that the connections are
only formed through nodes in X \ Xexc instead of X . Thus, by relying on these modified
percolation sets, we can introduce the sets Ξ−,L(Y (0, k)).

Now, when conditioning onX0 and Y , then under the eventEdisj
k ∩E inert

k , by the independence
property of the Poisson point process on disjoint sets, the random vectors Z0 :=

{
1{X0(s) ∈

C−L (s)}
}
s∈Jδ,M (0)

and Z(Yi) :=
{
1{Yi ∈ C−L (s)}

}
s∈Jδ,M (0)

, Yi ∈ Y (0, k) are independent.

Therefore, under Edisj
k ∩ E inert

k we have

E[g(Iδ,M(0,Ξ−,L(Y (0, k)))) |X0, Y ] = S−
(
{X0(s)}s∈Jδ,M (0),#Y (0, k)

)
,

where

S−
(
{xs}s∈Jδ,M (0), n

)
:= E

[
g
(
Iδ,M

(
{s : xs ∈ C−L (s)}, {s : o ∈ C−,(j)L (s)}j≤n

}))]
.

Since the events Edisj
k ∩ E inert

k occur whp, and since the intensity of Xexc vanishes as k ↑ ∞,
we deduce that we may replace S− by S, thereby concluding the proof.
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Lemma 4.4 is the key ingredient for the proof of Lemma 4.8.

Proof of Lemma 4.8. By the thinning theorem, the family

X t,ϕ :=
{
Xi ∈ X : Xi(s) ∈ QK(ϕ) for some s ∈ Jδ,M(t)

}
of nodes contained in QK(ϕ) at some time point s ∈ Jδ,M(t) forms a Poisson point process.
Moreover,

Cov
(
h
(
{X(s) ∩QK(ϕ)}s∈Jδ,M (0)

)
, h
(
{X(s) ∩QK(ϕ′)}s∈Jδ,M (tT )

))
= Cov

(
h
(
{X0,ϕ(s) ∩QK(ϕ)}s∈Jδ,M (0)

)
, h
(
{X tT,ϕ′

(s) ∩QK(ϕ′)}s∈Jδ,M (tT )

))
.

Furthermore, by the independence property of the Poisson point process,

Cov
(
h
(
{X0,ϕ(s) ∩QK(ϕ)}s∈Jδ,M (0)

)
, h
(
{(X tT,ϕ′ \X0,ϕ)(s) ∩QK(ϕ′)}s∈Jδ,M (tT )

))
= 0.

Therefore, it su�ices to show that limT↑∞ supϕ,ϕ′ P
(
X0,ϕ ∩ X tT,ϕ′ 6= ∅

)
= 0. Writing ϕ and

ϕ′ as finite sets of points, the claim reduces to

lim
T↑∞

sup
x,x′∈Rd

E
[
#(X0,{x} ∩X tT,{x′})

)
= 0.

But now Lemma 4.4 gives that limt↑∞ supx′′∈Rd P(X0(t) ∈ QK(x′′)) = 0 so that an application
of Palm calculus concludes the proof.

4.3 Dense regime

As announced in Section 3, the key step to prove Proposition 3.3 is the second moment
method. To carry out this program, we need decorrelation of the connection intervals at
distant time points. Whereas Proposition 3.4 provides such a decorrelation property in a
conditional se�ing, in the dense regime α < d/2 this decorrelation needs to be strengthened
into an unconditional result. This will be achieved by applying the law of total covariances,
i.e.,

Cov(X,X ′) = E[Cov(X,X ′ | F)] + Cov(E[X | F ],E[X ′ | F ])],

for any square-integrable random variables X,X ′ and σ-algebra F .

Proof of Proposition 3.3, α < d/2. Let t ≤ 1 be arbitrary. We want to show that

lim
T↑∞

Cov
(
g
(
Ik,L,δ,M(0)

)
, g
(
Ik,L,δ,M(tT )

))
= 0.

To achieve this goal, we will apply two times the law of total covariance.

First, by stationarity, similarly as in (3.5), we can express the conditional expectation given
X0 in the form

E
[
g
(
Iδ,M(tT )

)
|X0

]
= S ′′

(
{1{X0(s)−X0(tT )}s∈Jδ,M (tT ))

)
for a suitable choice of S ′′. Now, note that the jump times together with the jump directions
form an independently marked Poisson point process. Since the intervals [−M,M ] and
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tT + [−M,M ] are disjoint for su�iciently large T , the independence property of the Poisson
point process gives that

Cov
(
E
[
g
(
Ik,L,δ,M(0)

)
|X0],E

[
g
(
Ik,L,δ,M(tT )

)
|X0

])
= 0.

Hence, by the law of total covariance, it su�ices to show that

lim
T↑∞

E
[
Cov
(
g
(
Ik,L,δ,M(0)

)
, g
(
Ik,L,δ,M(tT )

)
|X0

)]
= 0.

Combining the law of total covariance with Propositions 3.4 and 3.5 reduces this task to
proving that

lim
T↑∞

E
[
Cov
(
S ′
(
{X0(s)}s∈Jδ,M (0),#Y (0, k)

)
, (4.2)

S ′
(
{X0(s)−X0(tT )}s∈Jδ,M (tT ),#Y (tT, k)

)
|X0

)]
= 0. (4.3)

Now, se�ingα′ = (α+d/2)/2, in the dense regime the sinks Y (0, k) are contained inBTα
′/d(o)

whp, and the sinks Y (tT, k) do not hit BTα
′/d(o) whp. Invoking the independence property

of the Poisson process in disjoint domains, this establishes the vanishing of the covariance in
(4.2), thereby concluding the proof of Proposition 3.3 in the dense regime.

4.4 Sparse regime

The high-level proof structure of Proposition 3.3 in the sparse regime α > d/2 is similar to
that in dense regime discussed in Section 4.3. However, since the sinks Y are sparse in relation
to the movement of the typical node they are not a�ected by the long-time averaging of the
movement of the typical node. Therefore, we apply the second moment method conditioned
on Y .

Proof of Proposition 3.3, α > d/2. As announced above, the proof consists of two steps. First,
we replace τT (gh) by the conditional expectation E[τT (gh) |Y ] invoking the conditional
second moment method. Second, we derive a more concise representation of the la�er
expression. The key observation in the sparse regime is that the set of relevant sinks does
not change over time. That is, whp, Y (0, k) = Y (t, k) for all t ≤ T .

In order to carry out the second moment method, we note that the jump times together with
jump directions form a marked Poisson point process. Since [−M,M ]∩ (tT + [−M,M ]) = ∅
for su�iciently large T > 0, we deduce that

E
[
Cov
(
S
(
{X0(s)}s∈Jδ,M (0),#Y (0, k)

)
,

S
(
{X0(s)−X0(tT )}s∈Jδ,M (tT ),#Y (tT, k)

)
|Y
)]

= 0.

Hence, combining the law of total covariance with Propositions 3.4 and 3.5 we obtain the
asserted decorrelation

lim
T↑∞

E
[
Cov
(
g
(
Iδ,M(0,ΞL(Y (0, k)))

)
, g
(
Iδ,M(tT,ΞL(Y (tT, k)))

)
|Y
)]

= 0.
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The next step is the identification of the conditional expectation E[τT (gh) |Y ], i.e., of∫ 1

0

E
[
g
(
Iδ,M(tT,ΞL(Y (tT, k)))

)
|Y
]
h(t)dt.

Now, by applying Proposition 3.5 and recalling that the relevant sinks do not change over
time, the la�er integral becomes∫ 1

0

E
[
S
(
{X0(s)−X0(tT )}s∈Jδ,M (tT ),#Y (0, k)

)
|Y
]
h(t)dt

= E
[
S
(
{X0(s)}s∈Jδ,M (0),#Y (0, k)

)
|Y
] ∫ 1

0

h(t)dt,

where the identity follows from the time stationarity of the movement model. Moreover,
#Y (0, k) is a Poisson random variable with intensity nS. Thus, inserting the definition of
S leads to the limiting representation asserted in Proposition 3.3.

4.5 Critical regime

Also in the critical regime α = d/2, we follow the blueprint from Sections 4.3
and 4.4. This time, σ(X0, Y ) is the appropriate σ-algebra to condition on, so that the
conditional decorrelation has already been established in Proposition 3.4. Conversely, the limit
identification is now more involved.

Proof of Proposition 3.3, α = d/2. As explained in the preceding paragraph,
due to Propositions 3.4 and 3.5, the remaining task is the identification of the conditional
expectation ∫ 1

0

S
(
{s ∈ Jδ,M(tT ) : X0(s)−X0(tT )},#Y (tT, k)

)
h(t)dt.

as T ↑ ∞. The first step is to show that we may condition on X0(tT ), i.e., replace the la�er
expression by ∫ 1

0

S ′′(#Y (tT, k))h(t)dt,

where S ′′(n) := E
[
S
(
{s ∈ Jδ,M(tT ) : X0(s)}, n

)]
. To ease notation, we set

S̄t := S
(
{X0(s)−X0(tT )}s∈Jδ,M (tT ),#Y (tT, k)

)
− S ′′(#Y (tT, k)).

Since E[S̄t |X0(tT ), Y ] = 0, we deduce that

E
[( ∫ 1

0

S̄th(t)dt
)2]

=

∫ 1

0

∫ 1

0

E
[
Cov
(
S̄s, S̄t |Y

)]
h(s)h(t)dtds.

Again, sinceX0 is a compound Poisson process, we deduce that limT↑∞ E
[
Cov
(
S̄s, S̄t |Y

)]
=

0 for every s 6= t, thereby completing the proof of the first step.

Finally, in order to identify the distributional limit of
∫ 1

0
S ′′(#Y (tT, k))h(t)dt as T ↑ ∞, we

proceed along the lines of [7]. To render the presentation self-contained, we recall the main
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steps of the proof. Introducing the unit-intensity process Y ′ := Y/
√
T , we can represent∫ 1

0
S ′′(#Y (tT, k))h(t)dt in the form

F (Y ′, {X0(tT )/
√
T}t≤1) :=

∫ 1

0

S ′′
(
Y ′(Bn′

S
(X0(tT )/

√
T ))
)
h(t)dt.

Now, let f : [0, 1] → [0, 1] be an arbitrary Lipschitz function with Lipschitz constant 1. We
claim that

lim
T↑∞

E
[
f(F (Y ′, {X0(tT )/

√
T}t≤1))

]
= E

[
f(F (Y ′, {Wt}t≤1))

]
.

By the invariance principle and the continuous mapping theorem, it su�ices to show that the
map sending a trajectory γ to E

[
f(F (Y ′, γ))

]
is continuous outside a zero-set with respect

to Brownian motion. Now, let {γn}n be a sequence of trajectories. Then,

E
[
|f(F (Y ′, γn))− f(F (Y ′, γ))|

]
≤
∫ 1

0

E
[∣∣S ′′(Y ′(Bn′

S
(γn(t)))

)
− S ′′

(
Y ′(Bn′

S
(γ(t)))

)∣∣]dt
≤
∫ 1

0

E
[
Y ′
(
Bn′

S
(γn(t))∆Bn′

S
(γ(t))

)]
dt

=

∫ 1

0

∣∣Bn′
S
(γn(t))∆Bn′

S
(γ(t))

∣∣dt.
Now, we conclude the proof by noting that the right-hand side tends to 0 as γn → γ in the
sup norm.
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