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optimization algorithms.

we survey recent developments within the class of projection-free methods, and proximal versions of primal-
dual schemes. We give complete proofs for various key results, and highlight the unifying aspects of several

1. Introduction

The traditional standard in convex optimization was to trans-
late a problem into a conic program and solve it using a primal-
dual interior point method (IPM). The monograph Nesterov and Ne-
mirovski (1994) was instrumental in setting this standard. The primal-
dual formulation is a mathematically elegant and powerful approach as
these conic problems can then be solved to high accuracy when the di-
mension of the problem is of moderate size. This philosophy culminated
into the development of a robust technology for solving convex opti-
mization problems which is nowadays the computational backbone of
many specialized solution packages like MOSEK (Andersen and Ander-
sen, 2000), or SeDuMi (Sturm, 1999). However, in general, the iteration
costs of interior point methods grow non-linearly with the problem’s di-
mension. As aresult, as the dimension » of optimization problems grows,
off-the shelve interior point methods eventually become impractical. As
an illustration, the computational complexity of a single step of many
standardized IPMs scales like n*, corresponding roughly to the complex-

* Corresponding author.

ity of inverting an n x n matrix. This means that for already quite small
problems of size like n = 102, we would need roughly 10° arithmetic op-
erations just to compute a single iterate. From a practical viewpoint,
such a scaling is not acceptable. An alternative solution approach, par-
ticularly attractive for such ”large-scale” problems, are first-order meth-
ods (FOMs). These are iterative schemes with computationally cheap
iterations usually known to yield low-precision solutions within reason-
able computation time. The success-story of FOMs went hand-in-hand
with the fast progresses made in data science, analytics and machine
learning. In such data-driven optimization problems, the trade-off be-
tween fast iterations and low accuracy is particularly pronounced, as
these problems usually feature high-dimensional decision variables. In
these application domains precision is usually considered to be a sub-
ordinate goal because of the inherent randomness of the problem data,
which makes it unreasonable to minimize with accuracy below the sta-
tistical error.

The development of first-order methods for convex optimization
problems is still a very vibrant field, with a lot of stimulus from the
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already mentioned applications in machine learning, statistics, optimal
control, signal processing, imaging, and many more, see e.g. the recent
review papers on optimization for machine learning (Bottou et al., 2018;
Jain and Kar, 2017; Wright, 2018). Naturally, any attempt to try to sur-
vey this lively scientific field is already doomed from the beginning to
be a failure, if one is not willing to make restrictions on the topics cov-
ered. Hence, in this survey we tried to give a largely self-contained and
concise summary of some important families of FOMs, which we believe
have had an ever-lasting impact on the modern perspective of continu-
ous optimization. Before we give an outline of what is covered in this
survey, it is therefore fair to mention explicitly, what is NOT covered
in the pages to come. One major restriction we imposed on ourselves
is the concentration on deterministic optimization algorithms. This is in-
deed a significant cut in terms of topics, since the field of stochastic op-
timization and randomized algorithms has particularly been at the fore-
front of recent progresses made. Nonetheless, we intentionally made this
cut, since most of the developments within stochastic optimization al-
gorithms are based on deterministic counterparts, and actually in many
cases one can think of deterministic algorithms as the mean-field equiv-
alent of a stochastic optimization technique. As a well-known example,
we can mention the celebrated stochastic approximation theory initi-
ated by Robbins and Monro (1951), with its close connection to deter-
ministic gradient descent. See Benveniste et al. (1990); Kushner (1984);
Ljung et al. (2012), for classical references from the point of view of
systems theory and optimization, and Benaim, 1998 for its deep con-
nection with deterministic dynamical systems. This link has gained sig-
nificant relevance in various stochastic optimization models recently
(Davis et al., 2020; Duchi and Ruan, 2018; Mertikopoulos and Staudigl,
2018a; 2018b). Some excellent references on stochastic optimization
are Shapiro et al., 2009 and Lan, 2020. Furthermore, we excluded some
important classes of alternating minimization methods, such as block-
coordinate descent, and variations thereof. Section 14 in the beautiful
book (Beck, 2017) gives a thorough account of these methods, and we
urge the interested reader to start reading there.

So, what is it that we actually do in this survey? Four seemingly dif-
ferent optimization algorithms are surveyed, all of which belong now
to the standard toolkit of mathematical programmers. After introduc-
ing the (standard) notation that will be used in this survey, we give
a precise formulation of the model problem for which modern convex
optimization algorithms are developed. In particular, we focus on the
general composite convex optimization model, including smooth and
non-smooth terms. This model is rich enough to capture a significant
class of convex optimization problems. Non-smoothness is an impor-
tant feature of the model, as it allows us to incorporate constraints via
penalty and barrier functions. Non-smooth optimization methods also
gained a lot of attention in statistical and machine learning where regu-
larization functions are usually included in the estimation part in order
to promote sparsity or other a-priori relevant information about the es-
timator to be obtained. An efficient way to deal with non-smoothness is
provided by the use of proximal operators, a key methodological contri-
bution born within convex analysis (see Rockafellar and Wets (1998) for
an historical overview). Section 3 introduces the general non-Euclidean
proximal setup, which describes the mathematical framework within
which the celebrated Mirror Descent and Bregman proximal gradient meth-
ods are analyzed nowadays. These tools achieved extreme popularity in
online learning and convex optimization (Bubeck, 2015; Juditsky and
Nemirovski, 2011a; 2011b). The main idea behind this technology is to
exploit favorable structure in the problem’s geometry to boost the prac-
tical performance of gradient-based methods. The proximal revolution
has also influenced the further development of primal-dual optimization
methods based on augmented Lagrangians. We review proximal variants
of the celebrated Alternating Direction Method of Multipliers (ADMM)
in Section 4. We then move on to give an in-depth presentation of
projection-free optimization methods based on linear minimization ora-
cles, the classical Conditional Gradient (CG) (a.k.a Frank-Wolfe) method
and its recent variants. CG gained extreme popularity in large-scale op-
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timization, mainly because of its good scalability properties and small
iteration costs. Conceptually, it is an interesting optimization method,
as it allows us to solve convex programming problems with complicated
geometry on which proximal operators are not easy to evaluate. This,
in fact, applies to many important domains, like the Spectrahedron, or
domains defined via intersections of several half spaces. CG is also rele-
vant when the iterates should preserve structural features of the desired
solution, like sparsity. Section 5 gives a comprehensive account of this
versatile method.

All the methods we discussed so far generally provide sublinear con-
vergence guarantees in terms of function values with iteration complex-
ity of O(1/¢). In his influential paper (Nesterov, 1983), Nesterov pub-
lished an optimal method with iteration complexity of O(1/ \/E) to reach
an e-optimal solution. This was the starting point for the development
of acceleration techniques for given FOMs. Section 6 summarizes the
recent developments in this field.

With writing this survey, we tried to give a holistic presentation of
the main methods in use. At various stages in the survey, we establish
connections, if not equivalences, between various methods. For many of
the key results we provide self-contained proofs.

Notation We use standard notation and concepts from convex and
variational analysis, which, unless otherwise specified, can all be found
in the monographs (Bauschke and Combettes, 2016; Hiriart-Urrut and
Lemaréchal, 2001; Rockafellar and Wets, 1998). Throughout this article,
we let V represent a finite-dimensional vector space of dimension » with
norm || - ||. We will write V* for the (algebraic) dual space of V with
duality pairing (y, x) between y € V* and x € V. The dual norm of y € V*
is ||yl = sup{{y,x)| |Ix|]| < 1}. The set of proper lower semi-continuous
functions f : V — (-0, 0] is denoted as I'j(V). The (effective) domain
of a function f € I'j(V) is defined as dom f = {x € V|f(x) < =}. For a
given continuously differentiable function f : X C V — R we denote its
gradient vector

of 0f>T

s
0x4 Jx,,

Vflxy,....x,) = (

The subdifferential at a point x € X C V of a convex function f : V —
R U {+0} is denoted as

Afx)={peVIf» 2 f®)+(p,y—x) VyeV} (1.1

The elements of df(x) are called subgradients.

As a notational convention, we write matrices in bold capital fonts.
Given some set X C V, denote its relative interior as relint(X). Recall
that, if the dimension of the set X agrees with the dimension of the
ground space V, then the relative interior coincides with the topological
interior, which we denote as int(X). Hence, the two notions differ only
in situations where X is contained in a lower-dimensional submanifold.
We denote the closure as cl(X). The boundary of X is defined in the usual
way bd(X) = cl(X) \ int(X).

2. Composite convex optimization

In this survey we focus on the generic optimization problem
glei)f(l{‘l’(x) =)+ r(x0)} P)

At many stages of this survey, the following properties are imposed on
the data of the minimization problem (P):

Assumption 1.

(@) XCV is a nonempty closed convex set embedded in a finite-
dimensional real vector space V;

(b) f : V — Ris convex and continuously differentiable on a neighbor-
hood of X. Furthermore, it possesses a L ,-Lipschitz continuous gra-
dient on X:

x,x"€X): IVFx) = VDI < Lyllx = x|l @.n
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(c) reTy(V) and u-strongly convex on V for some y > 0 with respect
to a norm || - || on V. This means that for all x, y € domr, and any
selection r/(x) € dr(x), we have

r) 2 1)+ (7 (0. y = ) + Sllx = 1P

If 4 = 0 then the function r is called convex.

We are interested in problems which are feasible.
Assumption 2. domrn X # @.

In many recent applications, the smooth function f represents a data
fidelity term and the non-smooth part r takes the role of a penalty func-
tion or regularizer. The most important examples of function r are as
follows:

e ris an indicator function of a closed convex set C Cc V with Cn X #
[}
0 if x e C,

+o0 ifxgC. 22

r(x) = 6c(x) 1= {

r is a self-concordant barrier (Nesterov, 2018b; Nesterov and Ne-
mirovski, 1994) for a closed convex set C ¢ V with Cn X # @.

e r is a nonsmooth convex function with relatively simple structure.
For example, it could be a norm regularization like the celebrated
¢,-regularizer r(x) = ||x||,. This regularizer plays a fundamental role
in high-dimensional statistics (Bithlmann and van de Geer, 2011) and
signal processing (Bruckstein et al., 2009; Daubechies et al., 2004).

For characterizing solutions to our problem (P), define the tangent
cone associated with the closed convex set X C V as

TC, () 1= { 1P — 0 X201 CVifxeX,
XA else

and the normal cone

NCy(x) <= {p € V| supyercy v (pv) <0} ifxeX
xR %) else.

We remark that ddy(x) = NCy(x) for all x € X.
Given the feasible set X C V, we denote the value function

W (X) 1= inf W(x). 2.3)
xeX

We are focusing in this survey on problems which are solvable.

Assumption 3. X* := {x € X|¥(x) = ¥,;n(X)} # @.

Given the standing hypothesis on the functions f and r, it is easy
to see that X* is always a closed convex set. Moreover, if u > 0, then
problem (P) is strongly convex, and so X* is a singleton.

Optimality conditions for problem (P) can be formulated using dif-
ferential calculus tools from convex analysis. (P) can be treated as an
unconstrained problem by augmenting the objective function ¥ = r + f
by the non-smooth penalty 5yx. Our main problem becomes then

min(f (x) + r(x) + 8 (x))- 24

Fermat’s rule says that x* € V is a solution to (2.4) if and only if 0 €
0P(x*) + NCy (x*) (Rockafellar and Wets (1998, Theorem 8.15)). In gen-
eral, the subdifferential operator is not linear, and we only have a "fuzzy
sum rule” 0¥(x) C Vf(x) + dr(x). However, we know that r is finite at x*
and f is smooth on a neighborhood containing X (Assumptions 1(b)).
Hence, by Rockafellar and Wets (1998, Exercise 8.8c), we have d¥(x*) =
V f(x*) + or(x*). Therefore, Fermat’s optimality condition becomes

0 € Vf(x*)+ or(x™) + NCx(x*). 2.5)
This means that there exists & € dr(x*) such that

(VF(x*)+ &0y >0 Yu € TCx(x™). (2.6)

The structured composite optimization problem (P) has attracted
a lot of interest in convex programming over the last 20 years moti-
vated by a number of important applications, see, e.g. Combettes and

EURO Journal on Computational Optimization 9 (2021) 100015

Wajs (2005). This led to a rich interplay between convex programming
on the one hand and machine learning and signal/image processing on
the other hand. Indeed, several work-horse models in these application
domains are of the composite type

Y(x) = g(Ax) + r(x) 2.7

where g : E — R is a smooth function defined on a finite-dimensional
set E (usually of lower dimension than V), and A € BL(V,E) is bounded
linear operator mapping points x € V to elements Ax € E. Convexity al-
lows us to switch between primal and dual formulations freely, so that
the above problem can be equivalently considered as a convex-concave
minimax problem

min max{r(x) + (Ax,y) — g*(»)} 28)
xeX yeE

Such minimax formulations have been of key importance in signal pro-
cessing and machine learning (Juditsky et al., 2013; Juditsky and Ne-
mirovski, 2011b), game theory (Sorin, 2000), decomposition methods
(Tseng, 1991) and its very recent innovation around generative adver-
sarial networks (Goodfellow et al., 2014).

Another canonical class of optimization problems in machine learn-
ing is the finite-sum model

N
W) = XS0 + ) 2.9)
i=1

which comes from supervised learning, where f;(x) corresponds to the
loss incurred on the i-th data sample using a hypothesis parameter-
ized by the decision variable x. Typically, N is an extremely large
number as it corresponds to the size of the data set. The recent liter-
ature on variance reduction techniques and distributed optimization is
very active in making such large scale optimization problems tractable.
Surveys on the latest developments in these fields can be found in
Gower et al. (2020) and the recent comprehensive textbook Lan (2020).

3. The Proximal Gradient Method
3.1. Motivation

In the context of the composite optimization problem (P), a classical
and very powerful idea is to construct numerical optimization meth-
ods by exploiting problem structure. Following this philosophy, we de-
termine the position of the next iterate by minimizing the sum of the
linearization of the smooth part, the non-smooth part r € I';(V), and a
quadratic regularization term with weight y > 0:

X* () = argmin{ £() + (V£ (), = ) @) + 5l = x1). G.1)
uex Y

Disregarding terms which do not influence the computation of the so-
lution of this strongly convex minimization problem, and absorbing the
set constraint into the non-smooth part by defining ¢(x) = r(x) + 6x(x),
we see that (3.1) can be equivalently written as

x+(r) = argmin { 760+ 2 llu = (x =V SCIE }. (32)
uev

This way of writing the updating scheme immediately reveals some
interesting geometric principles acting here. Indeed, if » would be a
finite constant on X (say O for concreteness), then the rule (3.2) is
nothing else than the Euclidean projection of the directional vector
x —yV f(x) onto the set X. In this case, the minimization routine re-
turns the classical projected gradient step x*(y) = Py(x — yVf(x)), where
Py(x) = argminy,ex %lly — xllg. Iterating the map x — Pyxo(Id—yV f) gen-
erates the classical gradient projection method. A new obstacle arises in
cases where the non-smooth function r is non-trivial over the domain
X. A fundamental idea, going back to Moreau (1965), is to define the
proximity operator Prox, : V — V associated with a function ¢ € T'o(V)
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as!

o . 1.
Prox ,(x) .—arugen\}ln{¢(u)+2||u x||2}‘ (3.3)

Remark 3.1. The classical Moreau proximity operator of ¢ is, in gen-
eral, explicitly computable when ¢ is norm like, or when ¢ is the in-
dicator function of sets whose geometry is favorable to Euclidean pro-
jections. Although quite frequent in applications (orthant, second-order
cone, #; norm), these prox-friendly functions are very scarce, see, e.g.,
Combettes and Wajs (2005, Section 2.6). A significant improvement will
be made in Section 3.2, where a general Bregman proximal framework
will be introduced.

The value function
. 1
b, (x) = inf {pw) + = [lu — x||*}
u 2y

is called the Moreau envelope of the function ¢, and is an important
smoothing and regularization tool, frequently employed in numerical
analysis. Indeed, for a function ¢ € I'j(V) and y > 0, its Moreau enve-
lope is finite everywhere, convex and has y~!-Lipschitz continuous gra-
dient on V given by V¢, (x) = %(x = Prox, 4(x)) Bauschke and Combettes
(2016, Prop. 12.30).

In the context of minimization the composite model ¥ = f +r, the
proximity operator is the key actor in generating a large family of
gradient-based methods. Choosing ¢ = r + 6, in (3.3), and replacing the
generic input with the specific input x — yV f(x), we are in the frame-
work of the Proximal Gradient Method (PGM). PGM is a very powerful
method which received enormous interest in optimization and its ap-
plications. For a survey in the context of signal processing we refer the
reader to Combettes and Pesquet (2011). A general survey on proximal
operators can be found in Beck (2017); Parikh and Boyd (2014).

The Proximal Gradient Method (PGM)
Input: x° € X.
General step: For k =0, 1, ... do:
Choose y, > 0.
set XKt = Prox,, , (x* =, V.f(x5)).

Remark 3.2. In the fully non-smooth case, i.e. when f = 0 in our model
problem, PGM reduces to a classical recursion known as the proximal
point method:
. 1

Xkl = Proxykd)(xk) = argmin{¢(u) + 5 lu — x*|1?}.

uev Yk
This scheme has been first proposed by Martinet (1970) and
Rockafellar (1976b).

3.2. Bregman Proximal Setup

The basic idea behind non-Euclidean extensions of PGM is to replace
the #,-norm %HM — x||? by a different distance-like function which is tai-
lored to the geometry of the feasible set X C V. These non-Euclidean
distance-like functions that will be used are Bregman divergences. The
transition from Euclidean to non-Euclidean distance measures is mo-
tivated by the usefulness and flexibility of the latter in computational
perspectives and potentials for improving convergence properties for
specific application domains. In particular, the move from Euclidean to
non-Euclidean distance measures allows to adapt the algorithm to the
underlying geometry, typically explicitly embodied in the description

1 The repository http://proximity-operator.net/index.html provides codes
and explicit expressions for proximity operators of many standard functions. A
useful MATLAB implementation of proximal methods is described in Beck and
Guttmann-Beck (2019).
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of the domain X, see e.g. Auslender and Teboulle (2009). This can not
only positively affect the per-iteration complexity, but also will have a
footprint on the overall iteration complexity of the method, as we will
demonstrate in this section. The point of departure of Bregman Proximal
algorithms is to introduce a distance generating function h : V — (—o0, 0],
which is a barrier-type mapping suitably chosen to capture geometric
features of the set X.

Definition 3.1. Let X be a closed convex subset of V. We say that 1 €
Iy(V) is a distance generating function (DGF) with modulus « > 0 with
respect to || - || on X if

(a) h is closed, convex and proper;

(b) X C dom h;

(c) the set X° = {x € X|0h(x) # @} is nonempty and convex;

(d) A restricted to X° is continuously differentiable and strongly convex
under the norm || - || with parameter a:

Vx,x' €X°) 1 (Vh(x) - Vh(x'),x —x') > allx — x|

We denote by H,(X) the set of DGFs on X.

From classical differential theory of convex functions Rockafellar
(1970, Section 23-25), we know that dom(oh) C dom h. Hence, X° =
dom(0h) N X is contained in the set dom 2 N X, which in turn agrees with
X thanks to property (b). Restricted to X° the DGF 4 is continuously
differentiable.

In many proximal settings we are interested in DGFs which act as
barriers on the feasible set X. Naturally, the barrier properties of the
function h are captured by its scaling near bd(X), usually encoded in
terms of the notion of essential smoothness (Rockafellar (1970, Section
26).)

Definition 3.2 (Essential smoothness). i € H,(X) is essentially smooth
if it satisfies the following three conditions:

(a) int(dom h) # @;

(b) A is differentiable throughout int(dom h);

() lim;_, [IVA(x)|l = +o0 whenever x|, x,, ... is a sequence in int(dom /)
converging to a boundary point x of int(dom A).

Given h € H,(X), its Bregman divergence D, : dom h X dom(dh) - R
is defined as

Dy (u,x) 1= h(u) — h(x) — (Vh(x),u — x). (3.4
The a-strong convexity of the DGF ensures that
(¥x € dom(dh),Vu € domh) : D (u,x) > %Hu — x| (3.5)

Hence, D, (x,x) = 0 for x € dom(dh), but in general it is not a symmetric
function and it does not satisfy a triangle inequality. This disqualifies
D,, from carrying the label of a metric, but it can still be interpreted as
a distance measure.

The convex conjugate h*(y) = sup,cy{(x, ¥) — h(x)} for a function h €
H,(X) is known to be differentiable on V* with a i-LipschitZ continuous
gradient (Rockafellar and Wets (1998, Proposition 12.60)):

* s * 1
R ) SR D)+ (VA G y2 = 91) + 5172 = 1 [ (3.6)

for all y,,y, € V*.

It will be instructive to go over some standard examples of dis-
tance generating functions. See also Combettes and Wajs (2005),
Bauschke and Combettes (2016), and Ben-Tal and Nemirovski (2020).

Example 3.1 (Euclidean Projection). We begin by revisiting the #,-
projection on some closed convex subset X C V =R". Letting h(x) =
%||x||§ for x € V, we readily see that X° = X. Moreover, for x € X°,
the DGF is 1-strongly convex and continuously differentiable with
Vh(x) = x. The associated Bregman divergence is the Euclidean distance
Dy (u,x) = %Hu - X||§ for all u, x € X.
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Example 3.2 (Entropic Regularization). Let X = {x e R7| ¥  x, =
1} =R n{x €R"| Zf’zl x; = 1} denote the unit simplex in V = R". De-
fine the function w : R — [0, c0] as

tin(t)—t ift >0,
w() =<0 ift =0,
+00 else.

As DGF consider the Boltzmann-Shannon entropy h(x) := Zf’zl w(x;). En-
dowing the ground space V with the #; norm || -|| = - ||, it can be
shown that € H;(X) with domh =R" and X° = {x e R | ¥!  x; =
1}. Indeed, on X° the function A is continuously differentiable with
Vh(x) = [In(x)), ... , In(x,)] . Furthermore, dh(0) = @, so that dom(dh) =
R” .. The resulting Bregman divergence is the Kullback-Leibler diver-
gence

Dy(u,x) = i u; In (%) + i(xi - u;).
i i=1

i=1

Example 3.3 (Box Constraints). Let V = R" and X = H:.’zl [a;, b;], where
0 < a; < b;. Given parameters 0 < a < b, define the Fermi-Dirac entropy

(t—a)n(t—a)+(b-1)In(b—1t) ift € (a,b),
W) =10 if t € {a, b},
+00 else

Note that for 7 € (a, b), we have "’;Ab(t) =In (;’T‘: ), and oy, ,(t) = @ fort €
R\ (a, b). Accordingly, the function h(x) = Z?=1 Wb, (%) isaDGFon X =
dom A with X° = H;’=l(a,~,b,-). On X°, the gradient mapping is Vh(x) =

W), 0], G-

Example 3.4 (Semidefinite Constraints). Let V = S" be the set of real
symmetric matrices and X = S/} be the cone of real symmetric positive
semi-definite matrices equipped with the inner product (A, B) = tr(AB).
Define the negative von Neumann entropy A(X) = tr[Xlog(X)], which
can be seen as the matrix-equivalent of the negative Boltzmann-Shannon
entropy. It can be verified that domi = X and VA(X) = log(X) +1I for
X €8, . Hence, domh = X, and X° = St the cone of positive definite
matrices. For X’ € S}, the corresponding Bregman divergence is given
by

DX, X) = tr[X’ log(X) — X’ log(X) + X' — X]

See Doljansky and Teboulle (1998) for further examples on matrix do-
mains. Pinsker’s inequality (Cesa-Bianchi and Lugosi (2006) ) says that A
is %-strongly convex with respect to the nuclear norm ||X]|; = Y, |4,X)|
for X € §", i.e.

1
DX/, X) 2 S IX' = X[l

Example 3.5 (2nd order cone constraints). Let V =R" and Ly, =
{x €V|x, > (x% +.+ xi_l)l/z} the interior of the second-order cone.
Let X =cl(L;,). Denote by J, be the nxn diagonal matrix with —1
in its first n — 1 diagonal entries and 1 in the last one. Define A(x) =
—In({J,x, x)) + §||x||§. Then h € H,(X) withdomh = X° = L" | c X. The
associated Bregman divergence is

Jnx, X>> Jnx, u)
(Jpts u) (St u)

The proximal framework for general conic constraints has been devel-
oped in Auslender and Teboulle (2006b).

o
Dh(x,u):—ln< —2+§||x—u||§.

Once we endow our set X with a DGF, the technology generating a
gradient method in this non-Euclidean setting is the Bregman proximal
operator (Teboulle, 1992) applied to the function ¢ € Iy(V):

Proxg(x) = argn\}in{zp(u) + Dy, (1, x)}. (3.7
Ueg

If ¢p(x) = 6x(x) is the indicator function of the closed convex set X C V,
then the Bregman proximal operator defines the Bregman projection
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(Bauschke et al., 2003; Censor and Zenios, 1992) onto the set X. It should
be pointed out that under the standard Euclidean setup described in
Example 3.1 the Bregman proximal operator boils down to the Moreau
proximal operator (3.3). As we already alluded to, the main rationale
for the introduction of Bregman proximal operators is that it allows us
to define a projection framework which can be adapted to the geometry
of X. Below, we give examples for which Prox(’;’(x) is easy to compute in
closed form, whereas the standard Moreau proximal map is not explic-
itly known (and would thus require a numerical procedure, implying a
nested scheme if used in an algorithm).

Example 3.6. In the following examples we assume that V = R for sim-

plicity.

1. Let ¢(x) = y|x — &| where y, &€ > 0. Take h(x) = x In(x),dom A = [0, o).
Then

exp(y)x if x < exp(-y)¢,
Prox)j(x) = 1 £ if x € [exp(~)¢, exp(r)é],
exp(—y)x if x > exp(y)&.

2. Let ¢(x) = gxz for y >0, and A(x) = —In(x),dom i = (0, o). Then

Prox,(x) = 2L (\/1 +4dyx2 — 1).
X
3.3. Bregman proximal gradient method

For solving our main problem (P), a special selection of the function
¢ €T(V) in (3.7) is ¢p(u) = y(r + 6x)(u) + (yVf(x),u — x). Replacing the
gradient yV f(x) with a general dual vector y € V*, we obtain the prox-
mapping

Pyhr(x, y) 1= argmin{yru) + (y,u — x) + Dj(u, x)}. 3.8)
ueX

The prox-mapping takes as inputs a ”primal-dual” pair (x, y) € X° x V*
where x is the current iterate, and y is a dual variable representing a
“gradient signal” we obtain on the smooth part of the minimization
problem (P) (usually obtained after consulting a black-box oracle). Var-
ious conditions on the well-posedness of the prox-mapping have been
stated in the literature. We will not repeat them here, but rather refer
to the recent survey (Teboulle, 2018). Below we give some examples.

Example 3.7 (Moreau Proximal Operator). Let V=R" and X a
nonempty, closed and convex set in V. Let |- || =l - |l,, and A(x) =
%llxll%. The prox-mapping (3.8) reduces in this case to

Ph(x, 1) = ProX,(rys(x = ).

Example 3.8 (Simplex Constraints). Let V =R"” with #;-norm || - || =
I - Il;. Consider the set X = {x € R/| Zf’zl x; =1} and endow this set
with the Boltzmann-Shannon entropy A(x) = ZL 1 X; In(x;). For r(x) = 0,
a standard calculation gives rise to the prox-mapping

e p—

x’ s TN —
ox Y Z;‘:l Xj i
This mapping plays a key role in optimization, where it is known as ex-
ponentiated gradient descent (Beck and Teboulle, 2003; Juditsky et al.,
2005).

1<i<nmxeX,yeV". (3.9)

Example 3.9 (Box Constraints). Consider the setting introduced in
Example 3.3. For r(x) = 0, one can compute

b, —a;

bi—x;
L oxpn)

X

[Pg'x(x,y)]l:a,.+ 1<i<nmxeXyeV:

1+

If y > 0 is a step-size parameter and y = yV f(x), then we obtain the
Bregman proximal map Ty"(x) = Pyhr(x,yV f(x)) for all x € X. Iterating
this map generates a discrete-time dynamical system known as the Breg-
man proximal gradient method (BPGM).

Remark 3.3. For simple implementation, BPGM relies on the structural
assumption that the prox-mapping P (x, y) can be evaluated efficiently
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The Bregman Proximal Gradient Method (BPGM)
Input: h € H,(X). Pick x° € dom(r) n X°.
General step: For k =0, 1, ... do:

choose y; > 0.

update x¥+! = Pyhk LK 7 VF(xR)).

on the trajectory {(x,7, Vf(x*))|0 < k < K € N*}. This, often somewhat
hidden, assumption is known in the literature as the ”prox-friendliness”
assumption, a terminology apparently coined by Cox et al. (2014)).

3.3.1. Basic Complexity Properties

To assess the iteration complexity of BPGM, let us start with some
preparatory estimates. The first-order optimality condition for the point
xt = Py"r(x, yVf(x)) is given by
0 € yor(x™) + yV f(x) + VA(x") — Vh(x) + NCy (x1)

= y(ar + NCy)(x1) + yVf(x) + Vh(x') — VA(x).

Whence, there exists & € dr(x) such that, for all u € X,
(Y€ +yVf(x)+ Vh(xT) = Vh(x),xt —u) <0. (3.10)

Via the subgradient inequality for the convex function x — ¢(x), we ob-
tain for all u € X:

r(xt) = r@w) < (V) u—xt) + %(Vh(er) - Vh(X),u—x*). (3.11)

For further analysis, we need the celebrated three-point identity, due
to Chen and Teboulle (1993), whose simple proof we omit.
Lemma 3.3 (3-point lemma). For all x,y € X° and z € dom h we have
Dy(z,x) = Dp(z,¥) = Dp(y,x) = (Vh(x) = Vh(y),y — z).

O

Thanks to Lemma 3.3, relation (3.11) reads as
rr(xh) —r@) < y(VF(x),u = x*) + Dp(u, x) — Dyy(u, x*) — Dp(x*, x)
(3.12)
for all u € domh N X.

Remark 3.4. Note that if x* is calculated inexactly in the sense that
instead of (3.10), for some & € or(x"), it holds that

(r&€+yV () + Vh(x™) = Vh(x),x* —u) <A (3.13)

for some A > 0, then instead of (3.12) we have

y(r(xt) = rw) < y(Vf(x),u—x*) + Dy(u,x) — Dy(u, x*) — Dp(x*,x) + A.
(3.14)

See Auslender and Teboulle (2006b) for an explicit analysis of the error-
prone implementation.

Assumption 1(a) gives rise to the the classical ”descent Lemma”
(Nesterov, 2018b):

L
SO < £+ (VFG)x* =)+ =[xt = (3.15)

Additionally, for all u € X, differential convexity of f on V implies (cf.
(1.1)

Sz fQ)+{Vf(x),u—x).
This allows us to bound

(V@) u=xb) =(Vf(x),x =x") +(Vf(x),u - x)

(3.15) + Lf + )
< f)-fix )+7||x = x|I* +(Vf(x),u — x)

(3.16)

(3.16) L
< S@ =6+ = - x?
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(3.5) Lf
< S -+ TD;,(Xﬂx).

Using this estimate in relation (3.12), we obtain, for all u € domh n X,
+ + rLy +
y(P(x™) = ¥YW) < Dp(u, x) = Dp(u, x™) = ( 1= D,(x*,x).  (3.17)
o
If y € (0, if], then the above yields

y(P(xT) = ¥YW)) < Dy(u,x) — Dy(u,x), uedomhnX.

k

Setting x = x*, x* = x**! and y =y, one can reformulate the previous

display as

7 (PCR) = WW)) < Dy(u, x¥) = Dy(u, x*1), u € domhn X.

Choosing u = x¥, we readily see y, (P(x**1) — ¥(x¥)) < —D,(x*, x*1) <0,
i.e. the sequence of function values {¥(x¥)} ¢y is non-increasing. On the
other hand, for a general reference point u € dom 2 n X, we also see that

z

(w6t - wa) < NZ_,] L [y 5 - Dy 1)

k k=0 Tk

Il
o
oS

N-2
_1 0 1 N < 1 1 ) Kt
= L pywx® - —— Dy, L ) D Xk,
Y0 (37 YN-1 e )+,§6 Vk+1 Yk (. x )

Assuming a constant step size policy y, =y, this gives us
N-1 |
D (P = Pw) < =Dy, x°).
k=0 4
Define the function gap s* := ¥(x*) — WY(u), then s — sk = P(xk+1) -
¥(x¥) < 0, and therefore

N-1 N-1
1 1 1
sV < — ) s = — N [P — P(w)] < — D, (u, x°)

for all u € dom 2 N X. As an attractive step size choice, we may take the
greedy choicey = Li However, we need to know the Lipschitz constant

of the gradient map of the smooth part f of the minimization problem
(P) to make this an implementable solution strategy.

Proposition 3.4. Consider problem (P) with Assumptions 1-3 in place. Let
h € H,(X). If BPGM is run with the constant step size y; = Li, then for any
s

x* € X*, we have

L
YK =W (X) < —liph(x*, x0). (3.18)
a
This global sublinear rate of convergence for the Euclidean setting is
due to Beck and Teboulle (2009b); Nesterov (2013).

Remark 3.5. Under additional assumption that the objective ¥ is u-
strongly-convex with y > 0 it is possible to obtain linear convergence
rate of BPGM, i.e. W(x*) = W,;,(X) < 2L exp(=kp/ L ;) Djy(x*, x°).

3.3.2. Subgradient and Mirror Descent

In the previous subsections we focused on the setting of problem
(P) with smooth part f and obtained for BPGM a convergence rate
O(1/k). The same method actually works for non-smooth convex op-
timization problems when f has bounded subgradients In this setting
BPGM with a different choice of the step-size (y,), is known as the Mir-
ror Descent (MD) method (Nemirovski and Yudin, 1983). A version of
this method for convex composite non-smooth optimization was pro-
posed in Duchi et al. (2010), and an overview of Subgradient/Mirror
Descent type of methods for non-smooth problems can be found in
Beck (2017); Dvurechensky et al. (2020b); Lan (2020). The main dif-
ference between BPGM and MD is that one replaces the assumption that
V f is Lipschitz continuous with the assumption that f is subdifferen-
tiable with bounded subgradients, i.e. || f'(x)||.. < M for all x € X and
f'(x) € 0f(x). For a given sequence of step-sizes (y,), one defines the
next test point as

x**1 = argmin {(, £ (x5),u = XY + yr@) + Dy, x5} = P:Lr(xk, v ().
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A typical choice for the step size sequence is a monotonically decreasing
policy like y, ~ k='/2, Under such a specification, the MD sequence (x*),
can be shown to converge with rate O(1/ \/;) to the solution, which
is optimal in this setting. A proof of this result can be patterned via a
suitable adaption of the arguments employed in our analysis of the Dual
Averaging Method in Section 3.4.

3.3.3. Potential Improvements due to relative smoothness

A key pillar of the complexity analysis of BPGM was the
descent inequality (3.15), which is available thanks to the as-
sumed Lipschitz continuity of the gradient Vf. The influential work
Bauschke et al. (2016) introduced a very clever construction which al-
lows one to relax this restrictive assumption.? The elegant observation
made in Bauschke et al. (2016) is that the Lipschitz-gradient-based de-
scent lemma has the equivalent, but insightful, expression

L L
<7f||x||2 - f<x>> - <7f||u||2 - f(u)> >(Lu-Vf@.x-u) VxueV.

This is just the gradient inequality for the convex function x — —- ||x > -

S(x).

Definition 3.5. The family of functions £(X) is the class of DGFs h €
H,y(X) which are of Legendre type: h essentially smooth and strictly con-
vex on int dom A with cl(dom h) =

In this section we work in a Bregman proximal setting with Legendre
type distance generating function.

Assumption 4. X has nonempty interior and s € £(X).
Remark 3.6. For h € £(X), it is true that X° C int(dom &) N X.

Based on the general intuition we have gained while working with
a general proximal setup, a very tempting and natural generalization is
the following.

Definition 3.6 (Relative Smoothness, (Bauschke et al.,, 2016;
Van Nguyen, 2017)). The function f is smooth relative to h € £(X), if
there exists L’f' > 0 such that for any x,u € X°

J@) < fG) + (VS (x),u = x) + L Dy(u, x). (3.19)

Rearranging terms, a very concise and elegant way of writing the
relative smoothness condition is D, 5 ,_ f(u, x) > 0 on X°. This amounts
I

to saying that L?h — f is convex on X°. Clearly, if f and h are twice
continuously differentiable on X°, the relative smoothness condition can
be stated in terms of a positive semi-definitness condition on the set X°
as

L?Vzh(x) -VZfx)>=0  VxeX°. (3.20)

Beside providing a non-Euclidean version of the descent lemma, the no-
tion of relative smoothness allows us to rigorously apply gradient meth-
ods to problems whose smooth part admits no global Lipschitz continu-
ous gradient. This gains relevance in solving various classes of inverse
problems under Poisson noise (see Section 5.2 in Bauschke et al. (2016)),
and optimal experimental design (Lu et al., 2018), a class of problems
structurally equivalent to finding the minimum volume ellipsoid con-
taining a list of vectors (Boyd and Vandenberghe, 2004; Todd, 2016).

Assumption 5. There exists a DGF h € £(X) for which (f, h) is a rela-
tively smooth pair.

The complexity analysis of BPGM under a relative smoothness
assumption on the pair (f,h) (the so called NoLips algorithm of
Bauschke et al. (2016)), proceeds analogous to the previous analysis.

2 Variations on the same theme can be found in Lu et al. (2018) and further de-
velopments can be found in Biii and Combettes (2021); Stonyakin et al. (2020).
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The first important observation is an extended version of the fundamen-
tal inequality (3.17), which reads as

y(P(xt) = ¥Y(W)) < Dy(u, x) — Dpy(u, x*) — (1 = yL’;)Dh(x+,x) Vu € domhn X. (3.21)

The derivation of this inequality is analogous to inequality (3.17), re-
placing the Lipschitz-gradient-based descent inequality (3.15) by the
relative smoothness inequality (3.19) with parameter L?. The contin-
uation of the proof differs then in one important aspect. It relies on the
introduction of the symmetry coefficient of the DGF h as

. Dy, (x,u)
v(h) :=1nf{ |( ,u) € X° X X°, x;éu} (3.22)

D, (u,

The symmetry coefficient v(h) is confined to the interval [0,1], and

v(h) =1 applies essentially only to the energy function A(x) = %||x||2.
Choosing y = ]+Z(hh),x+ = xk+1 x = x* gives
s

1= v(h)
2

Setting u = x* gives descent of the function value sequence (‘I‘(xk))kz().
Moreover, it immediately follows that

y(PRY) — W) < Dy (u, x*) — Dy (u, x*1) — D, (x**, x5y

h

W(xk) — W) < I Dyy(u, x*1) = Dy (u, x*))

(h) T
Summing from k = 1,2,..., N, the same argument as for the BPGM give
sublinear convergence of NoLips

h

PNy - Dy (u, x°). (3.23)

YO S N v
Comparing the constants in the complexity estimates of NoLips and
BPGM we see that the relative efficiency of the two methods depends on
2Lf;/(1+v(h))

Ly/a
function is globally Lipschitz smooth (i.e. admits a Lipschitz continu-
ous gradient), exploiting the idea of relative smoothness might lead to
superior performance of NoLips.

To establish global convergence of the trajectory (x*),cy, additional
“reciprocity” conditions on the Bregman divergence must be imposed.

the relative condition number . Hence, even if the objective

Assumption 6. The DGF h € £(X) satisfies the Bregman reciprocity con-
dition: The level sets {u € X°|D,,(u,x) < } are bounded for all § € R,
and x* —» x € X° if and only if lim,_,, D, (x,x*) =0

This assumption is necessary, as in some settings Bregman reci-
procity is violated. See Example 4.1 in Doljansky and Teboulle (1998) as
a simple illustration. Under Bregman reciprocity, one can prove global
convergence in the spirit of Opial’s lemma (Opial, 1967):

Theorem 3.7 (Bauschke et al. (2016), Theorem 2). Suppose Assumptions

1-6 hold. Let (x), < be the sequence generated by BPGM with the relatively

smooth pair (f,h) with y € (0, 1++,fh)) and h € E(X). Then, the sequence
i

(x*)en converges to some solution x* € X*.

Under additional assumption that f is yjf-relatively strongly convex
(Lu et al., 2018) with 4t > 0, i.e. (cf. (3.20))
Vi) -

it is possible to obtain linear convergence rate of BPGM, i.e.
P(xk) =P (X) < 2Lh exp(—ku i /L YD, (x*, x%). Stonyakin et al. (2020,
2019) show how to adapt the method to cope with inexact oracles and
inexact Bregman proximal steps.

/A?VZh(x) >0 VxeX°, (3.24)

3.4. Dual Averaging

An alternative method called Dual Averaging (DA) was proposed in
Nesterov (2009) and, on the contrary, is a primal-dual method making
alternating updates in the space of gradients and in the space of iterates.
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Below we give a self-contained complexity analysis of this scheme for
non-smooth optimization. The following assumptions shall be in place:
Assumption 7. X is a nonempty convex compact set.

Assumption 8. r=0 and f €I'((V) with X C dom(f). Furthermore,
supyex If' ()l < M, for all f'(x) € 9f(x) and some M, € (0, +c0).

Let h € H,(X) be a given DGF for the feasible set X C V. Define the
h-center x¥ = argmin,cx h(x). Without loss of generality with assume
h(x%) = 0. Denote by

0,(X) := max h(p). (3.25)

We emphasize that Assumption 7 implies that ®,(X) < oo. Define the gap
function

(Fy € V*) : g(y) = max (,x = x7), (3.26)
and
Hp(y) = max{(y, x = x°) = ph(x)}. (3.27)

Note that g(y) > 0 for all y € V*, finite thanks to compactness of X.
Also, observe that for g, > g, > 0, it holds Hy (y) < Hp () forall y € V*.
Moreover, using the definition of the convex conjugate of the DGF
h € H,(X), one sees that

H,;(y) =
= Bl + 8" (/B = (v, x")
for every y € V* and f > 0. Define the mirror map

Qp(y) 1= argmax {(y, x) — ph(x)}.
xeX

max{(y, x) = (h + 80} = (.x°)

(3.28)

Then, from (3.6), one obtains the important identity

(Vy € V) 1 VHy(») = Qp(») = x°.

In particular, in view of (3.6), the function H(y) is seen to have a ﬁ

Lipschitz continuous gradient. Given the current primal-dual pair (x, y),
DA performs a gradient step in the dual space V* to produce a new gradi-
ent feedback point y* = y — Af/(x), where 4 > 0 is a step size parameter.
Taking this as a new signal, we update the primal state by applying the
mirror map x* = Q,4(y").

The Dual Averaging method (DA)
Input: pick y° =0,x" = Q ,(0), nondecreasing learning sequence
(Bken, and non-increasing step-size sequence (4;)en,
General step: For k =0, 1, ... do:
dual update y¥*1 = yk — 4, f1(x¥),
set xk+! = Qﬂk (yk+1).

+1

We now assess the iteration complexity of DA, showing that it fea-
tures the same order convergence rate O(1/ \/E), just as BPGM and MD.
The function y — Hj(y) is convex and continuously differentiable
with
Hy(y+w) < Hp(y) +(VHg(y), w) + —||w||2 Vy,w € V*. (3.29)

Thanks to the monotonicity in the parameters, we get through some
elementary manipulations the relation

Hy MY < Hp  O0F = 4/ (59)

Pr+1
2

< Hy, 1)+ (VHy 09, =4/ 69) + ||f C ][

2

= Hy, (%) = A (xF = x° SO+ 5 ||f(x")||2
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Rearranging and summing over k = 1,2,..., N, we get
2
ZA (F1(e), xk = x%) < Hy V1) = Hy (v "“>+Z 5l IR
k=1
Observe
Hy (y") = Hy (=Aof' <x°>><Hﬁ )+ (VH, (0), =4 f <x°>>+ Hf COI2
IIf GOIE < 52 ﬂ I O
Therefore,
N 1 N
2 Al =2 < = 2 5 Yz OI2 - H,, M. (330)
k=0 k=0 Fk
Note that

N
DA (), = 50 ZA (), 2k = x) + Z/Mf (), x = x°)

k=0 k=0

= 2 Bl R, 6k = x) = (N x = X0),
k=0
for all x € X. This shows
N
Zﬂm @ -x) < 3o 3 fllf GO = Hy 0N+ (N x = x0)
k=U
for all x € X. Defining 6, := max,x Zi:() A7), xT = x), (3.31) gives
the estimate
1 N
Oy < 5= 2 3 IIf GOIZ = Hy, N + g,
=0 Pk

(3.31)

A simple application of the min-max inequality shows
g(y) = max (y, x - x°)

= max rﬁmn{(y x = X% + f(©,(X) — h(x))}

< min | (mas = 2") = 90 ) + 50,00

< BO,(X)+ Hy(y)
for all y € V* and p > 0. Hence, (3.31) gives
N

On < Pns19x(X) + — : Z

IIf( I
2a k=0 B

Define Ay :=
The subgradient inequality (1.1) applied to f gives

N : - ._ 1 §N
Yieo k> and the ergodic average Xy := yv Do MX

Z A f () x = x) > Z A SR = Ay f(x) 2 Ay (f(Ey) = £(2)).

k=0

Therefore, Oy > Ay (f(Xy) — ¥pin(X)), and we conclude

N
P(Ey) = Ppin(X) < ﬁ”“ 0,00+ 72 i\ Z—Mf( I
N k=0 ﬂk

Let us now make the concrete choice of parameters g, = # > 0 and 4, =
—L_forall k > 0. Then,

Vil

N N+1 1

dx > \/N_+1 s
o Varl

as well as
N/l_z_ i LIV 4D
k=0 By k: k+17 B
Theorem 3.8. Suppose Assumptions 3, 7 and Assumption 8 hold true. Let
(x*), be generated by DA with parameters f3, = § > 0 and 4, = \/k;? Then,
Wry) = Wy < LX) MV 1) (3.32)

VN +1 2afV/N +1
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A slightly better bound can be obtained if we decide to run DA over a
fixed time window k € {0, 1, ..., N }. Committing over this time interval
on the constant parameter sequences f, = > 0 and 4, = 4> 0 yields

B0, (X) 122

ly()_CN) - \Pmin(x) < m 2(1 ﬁ

Optimizing with respect to 4 > 0 gives the choice 4 = ML 1/ %, and
s
the complexity upper bound

W) = W (¥) < 1] 2ty
(Zn) = Prin(X) < PO A

The effectiveness of non-Euclidean setups With the help of the explicit rate
estimate (3.32) we are now in the position to evaluate the potential
efficiency gains we can make by adopting the non-Euclidean framework.
We will do so by focusing on the geometry X = {x e R?| ¥ | x; = 1}.
There are two natural projection frameworks for the unit simplex:

e Consider the ¢, setup in which || || =1 -], and A(x) = %llx“% -
—. Then x0 =(1/n,...,1/n) and h(x") = 0. The h-diameter of X is
Gh(X) . We denote by M, the bound on the subgradients

of the functlon f under the #Z,-norm. The corresponding complexity
estimate is

[n—1
Complexity(X, || - II,) = SI(N—_:/{;MI,II-IIz'

o A different sensible projection framework is obtained by consider the
¢;-norm || - || = || - ||, with DGF h(x) = Z:;l x; In(x;) — In(1/n). The h-
diameter is ©,(X) = In(n). We let M £l denote the bound on the
subgradients of the function f under the dual norm #_,. The corre-
sponding complexity estimate is

21
Complexity(X, || - |I}) = V (I(NLS:,)I)MM-IIW‘

To compare the complexity estimates implied by the two different
Bregman setups, we compute the efficiency ratio
_ Complexity(X,|I-ll) _ [n—1 My
Complexity(X, || - |I;) 2n1n(n) Mg

If R <1 then the 7, setup is more efficient than the ¢, setup Since

llalle < llall, < \/ﬁllallw for all a € R", we see that 1 < My < \/—
Myl
This implies

=1 <R< n;l
V 2nln(n) =~ V 21n(n)

The closer the efficiency ratio R gets to the upper bound, the more fa-
vorable the ¢, -setup would be compared to the standard #,-setup. This
is not an unrealistic situation in practice. Ben-Tal et al. (2001) exper-
imentally verify the significant advantages of the #, setup for large-
dimensional simplex domains.

3.4.1. On the connection between Dual Averaging and Mirror Descent

A deep and important connection between the Dual Averaging and
Mirror Descent algorithms for convex non-smooth optimization has been
observed in Beck and Teboulle (2003). To relate these iterates to BPGM,
we assume that 4 € £(X), in the sense of Definition 3.5. Let us recall
that A is essentially smooth if and only if its Fenchel conjugate 4* is es-
sentially smooth. Moreover, VA : int(dom ) — int(dom 4*) is a bijection
with

(Vh)™! = Vi* and VA*(VA(X)) = (x, Vh(x)) — h(x) (3.33)

Since X = cl(dom h), it follows

dom 0h = int(dom h) = int(X) with 0h(x) = {Vh(x)} Vx € int(X).

EURO Journal on Computational Optimization 9 (2021) 100015

Assuming that the penalty function 4 is of Legendre type, the primal
projection step is seen to be the regularized maximization step

xF = argmax{(3¥,u) — fLh(w)} & y* = B VA(x").

ueX
Using the definition of the dual trajectory, we see that for all £ > 0 the
primal-dual relation obeys:

0= 4 VLE) + By VAR = B VA(x5).
Assuming that g, = 1, this implies

e argmin{ (4, V£ (x*),u = x*) + Dy (u, x*)} = Py (x*, 4,V £ ().

uex
We have thus shown that DA and BPGM/MD agree if all parameters and
initial conditions are chosen in the same way.

3.4.2. Links to continuous-time dynamical systems

The connection between numerical algorithms and continuous-time
dynamical systems for optimization is classical and well-documented
in the literature (see e.g. Helmke and Moore (1996) for a textbook
reference). Here we describe an interesting link between dual av-
eraging and a class or Riemannian gradient flows originally intro-
duced in Alvarez et al. (2004); Attouch et al. (2004); Attouch and
Teboulle (2004) and further studied in Bolte and Teboulle (2003).
A complexity analysis of discretized versions of these gradient flows
has recently been obtained in Bomze et al. (2019). Our point of
departure is the following continuous-time dynamical system based
on dual averaging, which has been introduced in Mertikopoulos and
Staudigl (2018a) in the context of convex programming and in
Mertikopoulos and Staudigl (2018b) for general monotone variational
inequality problems. The main ingredient of this dynamical system is a
pair of primal-dual trajectories (x(), y(1)),»o evolving in continuous time
according to the differential-projection system

V(@) = 20 = i)V f(x(1),

x(1) = Q|('1(f)y(t)) =: Q(n(®y(1).
In this formulation, Assumption 1(a) is in place, in order to ensure
that the dynamical system is well-posed, thanks to the Picard-Lindelof
theorem. To relate this scheme formally to its discrete-time counter-
part DA, let us perform an Euler discretization of the dual trajectory
by y¥ — y¥1 = -4, Vf(x¥), and project the resulting point to the pri-
mal space by applying the mirror map Q(— y*+1), where ﬁk | is the

(3.34)

discrete-time learning rate appropriately sampled from the function 5(z).
As in Section 3.4.1, let us assume that the mirror map is generated by a
Legendre function h € £(X), so that

x(t) = VA* (n()y(0)).

Let us further assume that & is twice continuously differentiable and
n(t) = 1. Differentiating the previous equation with respect to time ¢
gives

X' (1) = V2R ()Y (1) = =AOVER* Y)Y £ (x(D)).

To make headway, recall the basic properties of Legendre function say-
ing VA*(Vh(x)) = x for all x € intdom & (cf. (3.33)). Differentiating im-
plicitly this identity, we obtain V2A*(Vh(x)) = Id, or

VZR*(Vh(x)) = [VZh()] ™ =1 Hx)™L. (3.35)

As in Section 3.4.1, it holds true that y(r) = VA(x(t)) for all t > 0, we
therefore obtain the interesting characterization of the primal trajectory
as

X' (1) = —AOH (x®))™'V f(x(1)).

If X is a smooth manifold, we can define a Riemannian metric

g, (u,v) 1= (H(X)u,v) V(x,u,0) € X* XV X V.

The gradient of a smooth function ¢ with respect to the metric g is then
given by V,¢(x) = H (x)"!V¢(x). Hence, the continuous-time version of
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the dual averaging method gives rise the class of primal Riemannian-
Hessian gradient flows

X' () + ANV f(x(1) = 0,

This class of continuous-time dynamical systems gave rise to a vigorous
literature in connection with Nesterov’s optimal method, which we will
thoroughly discuss in Section 6. As an appetizer, consider the system of
differential equations

Y0 = -2V (@), X' =yOIO@®y®) - x@)].
Suppose that in (3.37) we take Q(y) = y, n(t) = 1. This corresponds to the

Legendre function h(x) = %||x||§ + 6y (x) for a given closed convex set X.
Under this specification, the dynamical system (3.37) becomes

Y0 = =2V (x@), x'@) = O - x@]

Combining the primal and the dual trajectory, we easily derive a purely
primal second-order in time dynamical system given by

r@* —y'®
y(@®)
Setting y(¢t) = f/t and A(t) = 1/y(t) and rearranging gives
P lvw+vram =0,
which corresponds to the continuous-time version of the Heavy-ball
method of Polyak Polyak (1964). For = 2 this gives the continuous-
time formulation of Nesterov’s accelerated scheme, as shown by
Su et al. (2016).
More generally, suppose that 4 is a twice continuously differentiable
Legendre function and #(r) = 1. Then a direct calculation shows that

Y@

y(®)

x(0) € X°. (3.36)

(3.37)

X (1) - x'(t)( ) + AV f(x(1)) = 0.

xX'(@) +

x" () + (y(t) - > ") + yOAOV R L QEONV £ (x(1) = 0.

Using the identity (3.35), as well as ’;’((Z’)) + x(t) = Vh*(¥(1)), it follows
that
. FOV(XO  (_TOY ) - a 40!
\% h(x(1)+ 70 )( 70 + (1 o )x (r)> =—-AOVf(x@®) & 7 Vh(x(t)+ y(t)>

This shows that for n = 1, the dynamic coincides with the Lagrangian
family of second-order systems constructed in Wibisono et al. (2016).
These ideas are now investigated heavily when combined with numer-
ical discretization schemes for dynamical system with the hope to get
insights how to construct new and more efficient algorithmic formula-
tion of gradient-methods. This literature grew quite fastly over the last
years, and we mention (Attouch et al., 2020; 2018; Bah et al., 2019; Shi
et al., 2019).

4. The Proximal Method of Multipliers and ADMM

In this section we turn our attention to a classical method for solv-
ing linearly constrained optimization problems building on the classi-
cal idea of the celebrated method of multipliers. An extremely powerful
proponent of this class of algorithms is the Alternating Direction Method
of Multipliers (ADMM), which has received enormous interest from dif-
ferent directions, including PDEs (Attouch et al., 2011; 2007), mixed-
integer programming (Feizollahi et al., 2017), optimal control (Lin et al.,
2012) and signal processing (Yang and Zhang, 2011; Yuan, 2012). The
very influential monograph (Boyd et al., 2011) contains over 180 refer-
ences, reflecting the deep impact of alternating methods on optimization
theory and its applications. Following the general spirit of this survey,
we introduce alternating direction methods in a proximal framework,
as pioneered by Rockafellar Rockafellar (1976a,b), and due to Shefi and
Teboulle (2014). See also Banert et al. (2021) for some further important
elaborations.

To set the stage, consider the composite convex optimization prob-
lem (P), in its special form (2.7):

Y(x) = g(Ax) + r(x),

—AOV f(x(1)).
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for a given bounded linear operator A. To streamline the presentation,
we directly assume in this section that V = V* = R", and the underly-
ing metric structure is generated by the Euclidean norm ||a|| = ||all, =
(a,a)'? = (30, a,-)l/ ?. Introducing the auxiliary variable z = Ax, this

problem can be equivalently written as
inf{®(x,z) =g(z) +r(x)|IAx—z=0,x € X,z € Z}, 4.1)

where X = R" and Z = R"™. We will call this the primal problem. The
Lagrangian associated to (4.1) is
L(x,z,y) = g(2) + r(x) + (y,Ax — z),

where y € R™ is the Lagrange multiplier associated with the linear con-
straint. The dual function is accordingly defined as

40) = inf L(x.z,y) = inf(g(2) = (3. 2)) +inf (r(x) + (Ax, )

—sup{(y, z) — g(2)} — sup{{ — Ax,y) — r(x)}

—g*(y) = r*(-=ATy).

Hence, we can represent the dual problem as the minimization problem

min(P() = g* () + 1" (-A"y) “42)
A classical implicit method for solving this minimization problem is the
proximal point method:

. 1
Y € argmin{ () + S-lly = 1P @3)
y C
where ¢ > 0 is a regularization parameter controlling the effects of the
quadratic penalty term. By Fermat’s optimality condition, the point y<+!
satisfied the monotone inclusion

0 € ag* (YD) — Adr* (AT yF+!) + %(ykﬂ — k).

This means that there exists x**! € 9r*(—ATy**!) and z¥*! € 9g*(y**!)
such that

0 = k1 _ Axk+ 4 %(ykﬂ k).

This means that the proximal point method can be implemented for the
given instance as the implicit method

1 € argmin{r(x) + (Ax, Y1)},
X

21 e argmin{g(z) + ( — z, y**1)}
V4

yk+] - yk + c(Axk'H _ Zk+1).

This defines a fully implicit iteration, which requires to compute the it-
erates xk*1, zk+1 yk+1 simultaneously. Of course, this does not give rise
to a practical algorithm. The main idea behind alternating methods is to
organize the computations in a Gauss-Seidel kind of iterations in which
the sequences are updated sequentially using the most recent informa-
tion available. To set the stage, observe that (x**!, zt¢*1) defined above
is the coordinate-wise minimum of the function

c 1
F(x,z,)) = g(z) + r(x) + S llAx -z + ;y"llz.

In that sense, the proximal point method applied to the dual can be
represented more compactly as
R+ 29 € argmin F(x, z, y9), Y1 = ) 4+ e(AxkH! = 2641,
(x,2)
This scheme is known as the augmented Lagrangian method.
Observe that minimizers of the function F(x,z, y¥) with respect to
(x, z) agree with the minimizers of the function

c 1
Lo(x,2,5%) = g(2) +r(x) + S| Ax = 2+ ;ykllz,

which is known as the augmented Lagrangian of problem (4.1). Using the
augmented Lagrangian, an alternating minimization procedure build-
ing on the proximal point idea gives rise to the celebrated Alternating
Direction of Method of Multipliers (ADMM).
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The Alternating Direction of Method of Multipliers (ADMM)
Input: pick (2%, y) € Z x R” and penalty parameter ¢ > 0;
General step: For k =0, 1, ... do:

. 1
Xkl = argmin, oy {r(x) + %HAX —zk 4 zyk“%} “4.4)

. ¢ 1
k! = argmin, 7 {g(z) + 3 |AXK* — 2z + Eyk||§} 4.5
YL = pf 4 e(Axkt! — 2, (4.6)

Remark 4.1. ADMM updates the decision variables in a sequential man-
ner, and thus is not capable of featuring parallel updates unless the ma-
trix A is of special structure. In the context of the AC optimal power
flow problem in electric power grid optimization (Sun et al., 2013) pro-
vide such a modification of ADMM. Furthermore, the ADMM can be
extended to consider formulations with general linear constraints of the
form A;x + A,z = b. For ease of exposition we stick to the simplified
problem formulation above.

4.1. The Douglas-Rachford algorithm and ADMM

The Douglas-Rachford (DR) algorithm is a fundamental method to
solve general monotone inclusion problems where the task is to find ze-
ros of the sum of two maximally monotone operators (see Bauschke and
Combettes (2016) and Auslender and Teboulle (2006a)). To keep the fo-
cus on convex programming, we introduce this method for solving the
dual problem (4.2). To that end, let us define the matrix K = —AT, so
that our aim is to solve the convex programming problem

mzin g*(2) + r*(Kz). [CN))]
Any solution z € dom(r*) satisfies the monotone inclusion

0 € K"or*(Kz) + dg* (). 4.8)
The DR algorithm aims to determine such a point z by iteratively con-
structing a sequence {(u¥, v¥, y*), k > 0} determined by

oM = (1d +cK T 00r* oK)~ (2% — ),

R B

Y = (Id+eog®) ™ (* ).
To bring this into an equivalent form, let us focus on the definition of
the y**! update, which reads as the inclusion

1 *
0e E(yk+l WMy g ogr (R,

This is clearly recognizable as the first-order optimality condition of
the min,{g*(y) + ill y —uk*1|2}. Therefore, we can rewrite the above
iteration in terms of convex optimization subroutines as:

. 1
o**1 = argmin{r* (Kv) + Z||u - @y =d"I3}, 4.9)
v
S R S Y (4.10)
. 1
Y = argmin{g*(y) + z—clly—u"“ I3} @.11)
y

Via Fenchel-Rockafellar duality, the dual problem to (4.9) reads as

X = argmin{r(x) + %”Ax + Lo - LlHR
x c

where the coupling between the primal and the dual variables is
U= K AR
The dual to step (4.11) reads as

. c 1
Zk+ = argmin{g(z) + Ellz — Sy ||§}.
z ¢
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The coupling between primal and dual variables reads as

S s B

Combining all these relations, we can write the dual minimization prob-
lem as

X"t = argmin{r(x) + %HAX -zf+ lyk||§},
x c

. 1
ZM*1 = argmin{g(z) + %lle"“ —z+ =y |13},
z c

yk+1 — yk + C(Axk+1 _ Zk+1)

which is just the standard ADMM. By this we have recovered a classi-
cal result on connection between the DR and ADMM algorithms due to
Gabay (1983) and Eckstein and Bertsekas (1992).

4.2. Proximal Variant of ADMM

One of the limitations of the ADMM comes from the presence of
the term Ax in the update of x**!. The presence of this factor makes
it impossible to implement the algorithm in parallel, which makes it
slightly unattractive for large-scale problems in distributed optimiza-
tion. Moreover, due to the result of Chen et al. (2016) the conver-
gence of ADMM for general linear constraints does not generalize to
more than two blocks. Leaving parallelization issues aside, Shefi and
Teboulle Shefi and Teboulle (2014) proposed an interesting extension
of the ADMM by adding further quadratic penalty terms, which allows
much flexibility by suitably choosing the norms employed in the algo-
rithm. Given some point (x¥, z¥, y¥) € X x Z x R” and two positive def-
inite matrices M, M,, we define the proximal augmented Lagrangian of

(4.1) as
_ 1 k)2 1 k2
P (x,z,y) = L.(x,z,y) + Ellx— iy, + Ellz =2 |y, (4.12)

Here, ||u||§/l = (u,Mu) is the semi-norm induced by M, which is a norm
if M is positive definite.

The Alternating Direction proximal Method of Multipliers
(AD-PMM)

Input: pick (x°, z°, %) € X x Z x R” and penalty parameter ¢ > 0;
General step: For k =0, 1, ... do:

. c 1 1
xM*1 = argmin o {F(x) + 5 llAx - ZF 4 zy"||§ +5lx - x"||§41 } (4.13)

. 1 1
21 = argmin, ., (g(z) + §||Ax’<+1 —z+ Zy’<||§ + 50z - zk||§42} (4.14)

k

Y= pk 4 e(AxFH = 2Ky @.15).

AD-PMM allows for various choices of the matrices M;, M,.

e With M, = M, = 0, we recover the classical ADMM. For any ¢ > 0,
it is known (Gabay, 1983; Glowinski and Tallec, 1989) that conver-
gence in function values as well as global convergence to to dual
multiplier are warranted. To ensure convergence of the primal se-
quence (x¥),, one needs to assume that A has full column rank.
With the choice M, = y,I,,M, = u,I,, with y;, u, > 0, the AD-PMM
of (Eckstein, 1994) is recovered.

We give a brief analysis of the complexity of AD-PMM in the special
case of problem (4.1). Recall that a standing hypothesis in this survey
is that the smooth part f of the composite convex programming prob-
lem (P) admits a Lipschitz continuous gradient. Since f(x) = g(Ax), the
Lipschitz constant of V f is determined by a corresponding Lipschitz as-
sumption on Vg, with the constant henceforth denoted as L,, and a
bound on spectrum of the matrix A. To highlight the primal-dual na-
ture of the algorithm, a key element in the complexity analysis is the
bifunction

S(Cx,y) =r(x) — gy + (y,Ax) = L(x,0,y).
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Our derivation of an iteration complexity estimate of AD-PMM proceeds
in two steps. First, we present an interesting “Meta-Theorem”, due to
Shefi and Teboulle (2014), and stated here as Proposition 4.2. It for-
mulates general convergence guarantees for any primal-dual algorithms
satisfying a specific per-iteration bound. We then apply this general re-
sult to AD-PMM, by verifying that this scheme actually satisfies these
mentioned per-iteration bounds.
We start with an auxiliary technical fact.

Lemma 4.1. Let h : R" — R be a proper convex and L,-Lipschitz contin-
uous. Then, for any ¢ € R" we have

h(&) < max{(&,u) = h* (W) : llully < L) 4.16)

Proof. Since 4 is convex and continuous, it agrees with its biconjugate:
h** = h. By Corollary 13.3.3 in Rockafellar (1970), dom ~* is bounded
with dom~* C {u : ||ull, < L,}. Hence, the definition of the conjugate
gives

h& = sup {(ué)-h"w)}<

uedom h*

u:ﬁlu";’éLh{@’”)_h (W}

O

Proposition 4.2. Let (x*,y*,z*) be a saddle point for L. Let
{(x*,y*,z%);k > 0} be a sequence generated by some algorithm for
which the following estimate holds for any y € R™:

Lk 25 = W) < 5[C6 2+ )01 @.17)
2k c
for some constant C(x*, z*) > 0. Then
k) ey < D0 )
X X < K .
where C,(x*,z*, L,) = C(x*,z*) + %(Lg +1°12).
Proof. Thanks to the Fenchel inequality
L(x,z,y) = SCx,y) = g(2) + " (») — (y.2) 2 0.
By the definition of the convex conjugate

P(x) = g(Ax) + r(x) = sup{r(x) + (y,Ax) — g"(3)} = sup S(x, y).
y y

Now, since g is convex and continuous on R”, we know g = g**, and we
can apply Lemma 4.1 to obtain the string of inequalities:

sup  (SGK,y) - W) < (LK, 28, y) -

yilylla<Lg

sup

W(xk) - W(x*) = sup{ S(x¥, y) — P(x*)<
y yilylla<Lg

{

1

**1_02}L[**2 02]
sz (cer 2+ 2y =302) } < o et 2+ 2+ 101

< sup
yillylla<Lg

To apply this Meta-Theorem, we need to verify that AD-PMM satis-
fies the condition (4.17). To make progress towards that end, Lemma

4.2 in Shefi and Teboulle (2014) proves that
LM, 254 y) — L(x, 2, YY) < Ty(x, 2, x5 + Ry(x, v, 2) (4.18)

for all (x, z,y) € X X Z x R™ and some explicitly given functions 7, and
R,. Furthermore, it is shown that

Tix, 2 x61) < 2 (1A% = 2413 = lAx = 24| + S IAxF! = 212, and
1 1 c

Ry 2.3) < 3 (MG M) + A2 M) + A, 0.1) ) = SIAX = 22

where for any point z and positive semi-definite matrix M,

1

1
Bg@ M) = Sz = 241y = Sz = 1Ry

Using these bounds and summing inequality (4.18) over k =0, 1, ...
1, we get

N -

N-1
1 1
P F N e e P e A e 1
= 2 M, M, T ¢ 2

12
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Dividing both sides by N and using the convexity of the Lagrangian with
respect to (x, z) and the linearity in y, we easily get

o _ 1
L(%y.Zy.¥) = L(x,2,5y) < C(x,2) + ;Ily—y()ll%)

L (
2N
in terms of the ergodic average

11v71 lN—l 11\/71
- k = k 5 k
Xy=— ), x jyn=— VEIN= 5 Q7
N Nkz=;) YN N;)y N Nkz::,)

and the constant C(x,z)=c||Ax -z +|x — x0||12\41 +lz - z0||§42.
Therefore, we can apply Proposition 4.2 to the sequence of ergodic
averages (X;,Z,¥,) generated by AD-PMM, and derive a O(1/N)
convergence rate in terms of the function value.

4.3. Relation to the Chambolle-Pock primal-dual splitting
In this subsection we discuss the relation between ADMM and the

celebrated Chambolle-Pock (a.k.a Primal-Dual Hybrid Gradient) method
(Chambolle and Pock, 2011), designed for problems in the form (2.8).

The Chambolle-Pock primal-dual algorithm (CP)
Input: pick (x°,)°,p°) € R” x R” x R” and ¢,z > 0,0 € [0, 1];
General step: For k =0, 1, ... do:

k+1

1 = argmin, {r(x) + 2l||x — (xk = cATph)|13 (4.19)
T

k+

. 1
Y = argmin, {g*(y) + v - OF + cAX |5} (4.20)

pk+1 — yk+1 + 6‘(yk+1 _yk) @.21).

For later references it is instructive to write this algorithm slightly
differently in operator-theoretic notation. From the optimality condition
of the step x**!, we see

0 € ar(xF1y + l(xk+1 —wh) e 0 e dd+ror)(x**) — wk
T

where w* = x* — zAT p*. Hence, we can give an explicit expression of

the update as

1 = (1d +70r) (W) = (Id +70r) 1 (xF — zAT p*).
Similarly, we can write the update y**! explicitly as
Y = (Id +cag*) " (F + cAxFHD,

When 6 =0 we obtain the classical Arrow-Hurwicz primal-dual algo-
rithm (Arrow et al.,, 1958). For # =1 the last line in CP becomes
pktl = 2yk+1 _ yk which corresponds to a simple linear extrapolation
based on the current and previous iterates. In this case, Chambolle and
Pock (2011) provide a O(1/N) non-asymptotic convergence guarantees
in terms of the primal-dual gap function of the corresponding saddle-
point problem. The CP primal-dual splitting method has been of im-
mense importance in imaging and signal processing and constitutes
nowadays a standard method for tackling large-scale instances in these
application domains. Interestingly, if 6 = 1, CP is a special case of the
proximal version of ADMM (AD-PMM). To establish this connection, let
us set M, % Id—cATA and M, = 0. After some elementary manipula-

tions, we arrive at the update formula for x**! in AD-PMM (4.13) as

k

x*1 = argmin{r(x) + ZL llx = (x* = AT OF + c(AxF — zk)))llg}.
™ T

Introducing the variable p* = y* + c(Ax¥ — z¥), the above reads equiva-
lently as

xk+1

= argmin{r(x) + 21_1- llx — (x* — TATpF)|12} = Prox . (x* — 7ATp).
X
For M, = 0, the second update step in AD-PMM (4.14) reads as

2l = (Id+lag)_1 (Axk'*'1 + lyk) = Proxlg (l(chk+1 + yk)>,
c c & \e¢



P. Dvurechensky, S. Shtern and M. Staudigl

Moreau’s identity Bauschke and Combettes (2016, Proposition 23.18)
states that

c Proxlg(u/c) +Prox «(u) =u Vu€eV. 4.22)

Applying this fundamental identity, we see
czF 4 Prox, g« OF + cAxXFy = yF 4 cAXFHT

The second summand is just the y**!-update in the CP algorithm, so that
we deduce

CZk+1 + yk+l — yk + chk+l o yk+l — yk + c(Axk+1 _ Zk+1).

Consequently,
P = PR (AR gk Z g Rk

and hence we recover the three-step iteration defining CP:

. 1
1 = argmin{r(x) + —||x — (x* - TATpk)H%}
X 2T
. 1
Y = argmin{g" () + ooy = OF + cAX DG}
y
PRl 2k k

Given the above derivations, we can summarize this subsection by
the following interesting observation.

Proposition 4.3 (Proposition 3.1, Shefi and Teboulle (2014)). Let
(x*, y¥, p*) be a sequence generated by CP with 6 = 1. Then, the y**'-update
(4.20) is equivalent to

. c 1
ZK*1 = argmin{g(z) + §||Axk+l —-z+ Zyk||§},
z

yk+l — yk +c(Axk+1 _ Zk+l)

which corresponds to the primal z¥*!-minimization step (4.14) with M, = 0,
and to the dual multiplier update for y**! (4.15) of AD-PMM, respectively.
Moreover, the minimization step with respect to x in the CP algorithm given
in (4.19) together with (4.15) reduces to (4.13) of AD-PMM with M, =
7Id—cATA.

5. The Conditional Gradient Method

The efficiency of the Bregman proximal gradient method stands and
falls with the relative ease of evaluating the Bregman proximal operator
(3.7). In this section, we present a class of first-order methods which
gain relevance in large-scale problems for which the computation of the
projection-like operators is a significant computational bottleneck. We
describe conditional gradient (CG) methods, a family of methods which,
originating in the 1960’s, have received much attention in both machine
learning and optimization in the last 20 years. CG is designed to solve
convex programming problems over compact convex sets. Therefore, we
assume in this section that the feasible set X is a compact convex set.

Assumption 9. The set X is a compact convex subset in a finite-
dimensional real vector space V.

5.1. Classical Conditional gradient

CG, also known as the Frank-Wolfe method, was independently de-
veloped by Frank and Wolfe Frank and Wolfe (1956) for linearly con-
strained quadratic problems, and by Levitin and Polyak Levitin and
Polyak (1966) for general smooth convex optimization problems over
compact domains:

Phin(X) 1= min{f(x)|x € X}. (5.1
CG attempts to solve problem (5.1) by sequentially calling a linear oracle
(LO), a fundamental notion we introduce next.

Definition 5.1. The Operator Ly : V* — X is a linear oracle (LO) over
set X if for any vector y € V* we have that

Ly (y) € argmin (y, s). 5.2)
seX
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The practical application of an LO requires to make a selection from
the set of solutions of the defining linear minimization problem. The
precise definition of such a selection mechanism is not of any impor-
tance, and thus we are just concerned with any answer Ly (y) revealed
by the oracle.

The information-theoretic assumption that the optimizer can only
query a linear minimization oracle is clearly the main difference be-
tween CG and other gradient-based methods discussed in Section 3. For
instance, the dual averaging algorithm solves at each iteration a strongly
convex subproblem of the form

min{(,u) + h(w). (5.3)

where h € H,(X), whereas CG solves a single linear minimization prob-
lem at each iteration. This difference in the updating mechanism yields
the following potential advantages of the CG method.

1. Low iteration costs: In many cases it is much easier to construct an
LO rather than solving the non-linear subproblem (5.3). We empha-
size that this potential benefit of CG does not depend on the struc-
ture of the objective function f, but rather on the geometry of the
feasible set X. To illustrate this point, consider the spectrahedron
X={Xe R;’;QX > 0,tr(X) < 1}. Computing the orthogonal projec-
tion of some symmetric matrix Y onto the spectrahedron requires
first to compute the full spectral decomposition Y = UDU”, and then
for the diagonal matrix D computing the projection of its diagonal el-
ements onto the simplex. The resulting projection is therefore given
by

Py(Y) = UDiag(P, (diag(D))U".

In contrast, computing a linear oracle over X for the symmetric
matrix Y involves finding the eigenvector of Y corresponding to
the minimal eigenvalue, that is £y (Y) = uu', where u' Yu = 4,;,(Y).
This operation can be typically done using numerical linear algebra
techniques such as Power, Lanczos or Kaczmarz, and randomized
versions thereof (see Kuczynski and WozZniakowski (1992) for gen-
eral complexity results). For large-scale problems, computing such a
leading eigenvector to a predefined accuracy is much more efficient
than a full spectral decomposition.

2. Simplicity: The definition of an LO does not rely on a specific DGF
mand makes the update affine invariant.

3. Structural properties of the updates: When the feasible set X can be
represented as the convex hull of a countable set of atoms (”gener-
ators”), then CG often leads to simple updates, activating only few
atoms at each iteration. In particular, in the case of the spectrahe-
dron, the LO returns a matrix of rank one, which allows for sparsity
preserving iterates.

The classical form of CG takes the answer obtained from querying
the LO at a given gradient feedback y = Vf(x), and returns the target
vector

p(x) = Lyx(Vf(x)

It proposes then to move in the direction p(x) — x. As in every opti-
mization routine, a key question is how to design efficient step-size
rules to guarantee reasonable numerical performance. Letting x*~! and
pk = p(x¥~1) be a current position of the method together with its im-
plied target vector, the following policies are standard choices:

1

Vx € X. 54

Standard: = —, 5.5
Yk 2+ k (5.5)
Exact line search: y, € argmin f(x*~" + r(p* — x*71y), (5.6)
1€(0,1]
. ) (Vf(xk_l),xk_l _ pk>
Adaptive: = min R 5.7
p Yk { LT~ 7P (CN))
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Exact line search is conceptually attractive, but can be costly in large-
scale applications when computing the function value is computation-
ally expensive. To understand the construction of the adaptive step-size
scheme, it is instructive to introduce a primal gap (merit) function to
the problem defined as

e(x) :=sup(Vf(x),x —u). (5.8)
ueX
This merit function is just the gap program (see e.g. Facchinei and
Pang (2003)) associated to the monotone variational inequality (2.6) in
which the non-smooth part is trivial. In terms of this merit function, the
descent lemma (3.15) yields immediately
L 5

St 1(p(x) = 2)) < f() + KV (), p(x) = x) + ——[Ip(x) = x|

L2 5
=S = 1e(x) + ——Ilp(x) = xI* = £(x) = n(0),

where 7, (1) 1= re(x) — LfTﬂ [lp(x) = x||?. Optimizing this function with re-
spect to ¢ € [0, 1] yields the largest-possible per-iteration decrease and
returns the adaptive step-size rule in (5.7). Once the optimizer decided
upon the specific step-size policy, the classical CG picks one of the step
sizes (5.5), (5.6), or (5.7), and performs the update

xk — xk—l + yk(p(xk) _ xk—l)_

The classical conditional gradient (CG)
Input: A linear oracle Ly, a starting point x° € X.
Output: A solution x such that ¥(x) — ¥;,(X) < e.
General step: For k = 1,2, ...
Compute p* = Ly (Vf(x*"1));
Choose a step-size y, either by (5.5), (5.6), (5.7);
Update x* = x*=1 4y, (p¥ — x*=1);
Compute e* = e(x*1).
If % < € return x*.

The convergence properties of classical CG under either of the step-
size variants above is well documented in the literature (see e.g. the
recent text by Lan (2020), or Jaggi (2013)). We will obtain a full con-
vergence and complexity theory under our more general analysis of the
generalized CG scheme.

5.1.1. Relative smoothness
The basic ingredient in proving convergence and complexity results
on the classical CG is the fundamental inequality

L2 5
flx+1(p(x) — x)) < f(x) —te(x) + TIIP(X) - x|~

Based on the relative smoothness analysis in Section 3.3.3, it seems to
be intuitively clear that we could easily prove also convergence of CG
when instead of the restrictive Lipschitz gradient assumption we make
a relative smoothness assumption in terms of the pair (f, h) for some
DGF h € H,(X). Indeed, if we are able to estimate a scalar L’/". > 0 such

that L" h(x) — f(x) is convex on X, then the modified Descent Lemma
(3.19) yields the overestimation

S +1(p = x)) < f(x) = 16(x) + LY Djy(x + 1(p = x), x). (5.9)

Instead of requiring that f has a Lipschitz continuous gradient over the
convex compact set X, let us alternatively require the following:

Assumption 10. There exists a DGF h € H,(X) and a constant L’} >0,

such that L?h — f is convex on X, and 4 has a finite curvature on X,
that is,

2D, (tu+ (1 = )x, x)
—_— <

2 e
QX) 1= 5

sup (5.10)

xueX,rel0,1]
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Note that when choosing 4 to be the squared Euclidean norm A(x) =
%||x||2 and L'/l. = L, then Assumption 10 is equivalent to the Lipschitz
gradient assumption, where Q,(X) is the diameter of set X. On the other
hand, choosing A(x) = f(x) and L? = L, we essentially retrieve the fi-
nite curvature assumption used by Jaggi Jaggi (2013).

Remark 5.1. It is clear that the finite curvature assumption (5.10) is
not compatible with the DGF to be essentially smooth on X. We are
therefore forced to work with non-steep distance-generating functions.

The analysis of CG under a relative smoothness condition and
Assumption 10 runs in the same way as for the classical CG. However,
the adaptive step-size is reformulated as

. {<Vf<x“>,x“—pk> }
Yx = min 1.

h o2
LhQ2(X)

This can be easily seen by replacing the upper model function f(x)—
te(x) + L? D, (x +t(p — x), x), with its more conservative bound f(x)—
L

te(x) + %Qi(X). Of course, in the case of the Euclidean norm this re-
sults in a smaller step-size than the adaptive step, which hints towards a
deterioration of performance. Nevertheless, this trick allows us to han-
dle convex programming problems outside the Lipschitz smooth case,
which is not uncommon in various applications (Bian and Chen, 2015;

Bian et al., 2015; Haeser et al., 2018).

5.2. Generalized Conditional Gradient

Introduced by Bach Bach (2015) and Nesterov (2018a), the general-
ized conditional gradient (GCG) method, is targeted to solve our master
problem (P) over a compact set X. To handle the composite case, we
need to modify our definition of a linear oracle accordingly.

Definition 5.2. Operator Ly, : V* — X is a generalized linear oracle
(GLO) over set X with respect to function r if for any vector y € V* we
have that

Ly () € argmin (y, x) + r(x).
xeX

Besides this more demanding oracle assumption, the resulting gener-
alized conditional gradient method is formally identical to the classical
CG. In particular, we can consider the target vector

p(x) = Ly (Vf(x)

and the same three step size policies as in the classical CG, with the
standard step size remaining the same and the obvious modifications
for the two other step size policies:

vx € X .11

7, € argmin Pk + t(pk —xk=1y),
1€[0,1]

Exact line search: (5.12)

k=1y _ (5% 4+ (V£ (ck=1), xk=1 _ ph
Adaptive: y, = min r(x*) = r(") + (V1) x » >,1 .
Lyllxk=t = pk||2

(5.13)

The adaptive step size variant is derived from an augmented merit func-
tion, taking into consideration the non-smooth composite nature of the
underlying optimization problem. Indeed, as again can be learned from
the basic theory of variational inequalities (see Nesterov (2007)), the
natural merit function for the composite model problem (P) is the non-
smooth function

e(x) = sup['(x,u), where ['(x,u) := r(x) — r(u) + (Vf(x),x — u).
ueX

(5.14)

By definition, we see that e(x) > 0 for all x € X, with equality if and
only if x € X*. These basic properties justify our terminology, calling
e(x) a merit function. Of course, e(-) is also easily seen to be convex.
Furthermore, using the convexity of f, one first sees that

(Vi) x—u) 2 f(x) = fw),
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so that for all x,u € dom(r),
FGu) 2 r(x) = r@) + f(x) = fw) = ¥(x) = P(w).
From here, one immediately arrives at the relation

e(x) 2 W(x) = Wpyin(X). (5.15)

Clearly, with r = 0, the above specification yields the classical CG.

5.2.1. Basic Complexity Properties of GCG

We now turn to prove that the GCG method with one of the above
mentioned step-sizes converges at a rate of O(i). We will derive this rate
under the standard Lipschitz smoothness assumption on f. This gives us
access to the classical descent lemma (3.15). Combining this with the
assumed convexity of the non-smooth function r(-), we readily obtain

2
t°L

Sk k=112
—— " =Xl

W 1 — X)) < RN = (VR pE = X + 5

+ (1 = 0r(x " + 1r(p*)

2
ﬁ”

=Wk —re(x*1) + K — xk=1)2.

P
Based on this fundamental inequality of the per-iteration decrease, we
can deduce the iteration complexity via an induction argument. First,
one observes that for each of the three introduced step-size rules (stan-
dard, line search and adaptive), one obtains a recursion of the form
L,y?

Sk ok k2
LRIt -,

ek =e(x

W+ 7 (pF = X)) <P - pe(xF T +

When denoting ¥ :=P(xF) — ¥, ;,(X), and Q=

(X) = max, ,ex Ilx — ul?, this gives us

k—l)
522

1

e

L 2
sk <kt - ykek + —j;/k Q2.
Applying to this recursion Lemma 13.13 in Beck (2017), we deduce the
next iteration complexity result for GCG.
Theorem 5.3. Consider algorithm GCG with one of the step size rules: stan-
dard (5.5), line search (5.12), or adaptive (5.13). Then
2max{¥(x°) — ¥, (X), LfQZ}
k

Proof. We give a self-contained proof of this result for the adaptive
step-size policy (5.13).
If y, = 1, the per-iteration progress is easily seen that e* > L ||p* —

min

Py — W (X) < k> 1.

C L ok
x¥=1]|2 which implies —e* + Tfllp" —xk112 < % and thus
P AT R AR IR VS G B
PSS et —|pf = XTTF <8 - et <5 - =T = s
2 2 2 2
where for the last inequality we wuse (5.15). For y,=

r(xk)—r(pk)+<Vf(xkil),xk71—pk> _ ek
L, [T |2 L lF T2

a simple computation re-
veals

(C
2Lyl - TP

Summarizing these two cases, we see

k=142
sk Smax{%skl,skl - ) }

2
2L,Q
Thus, the convergence is split into two periods, which are split by K :=
0
10g2 <[m]). If k < K then Sk_] > Lsz and thus Sk < %Sk_l,
Q25

(e’
2L, T

(sk—l)Z
2L,Q2

k k-1

k-1 k-1

which implies
£ <2750 ke {0,1,...,K}.

However, if k>K then s*'<min{L,Q?s%} and s*<s*!-

ﬁ(sk‘l)z, which by induction (see for example Dunn (1979,

Lemma 5.1)) implies that
. SK 2L,Q?

s i Sr k-6
1+ k- K)

max{K,Z}L/Q2 2max{s°,L,Qz}
<

,k>K+1,
3 = X +

15

EURO Journal on Computational Optimization 9 (2021) 100015

where the second inequality follows from s¥ < min{ L ;Q?, s°}, the third
inequality follows from m being a monotonic function in a > 0 for
any k > K + 1, and the last inequality follows from K < max {2, L°—(;22 }
1

Combining these two results, we have that

2 max{s°, Lfﬂz}
S
O

sk

5.2.2. Alternative assumptions and step-sizes

A key takeaway from the analysis of the generalized conditional gra-
dient is that one needs to have a bound on the quadratic term of the
upper model

L2 )
1 O(x, p(x),t, Ly) 1= P(x) —te(x) + TIIIJ(X) - x|~

Such a bound was given to us essentially for free under the compactness
assumption of the domain X, and the Lipschitz-smoothness assumption
on the smooth part f. The resulting complexity constant is then de-
termined by LfQZ. Moreover, this constant will be involved in lower
bounds of the adaptive step-size rule (5.13). However, such a constant
may not be known, or may be expensive to compute. Moreover, a global
estimate of this constant is not actually needed for obtaining an upper
bound. To see this, we proceed formally as follows. Consider an alter-
native quadratic function of the form

. M
O(x,p,t, M) :=P(x) - te(x) + Tq(p, X),
where ¢(p, x) is a positive function bounded by some constant C, and

choose y(x, M) :=min{1, %}, for p(x) = Ly, (V/(x)). Let M >0

be a constant such that the point obtained by using this step-size is upper

bounded by the corresponding quadratic function, i.e.,

P((1 = y(x, M))x + y(x, M)p(x)) < Q(x, p(x), 7 (x, M), M) < P(x). (5.16)

Thus applying the update x* := (1 — y(x, M))x + y(x, M)p(x), we obtain
1 1

Px) = ¥hin(X) < W) = ¥ pin(X) — Ee(x) < E(T(X) = ¥rin(X)

if y(x, M) = 1, and

y—w S — ey _
P(xT) = Wi (X) < W(x) — ¥ (X) 2]‘/Iq(p(x)’x)e(X) <) = ¥in(X)
— 71 —_ . 2
2MC (P0x) = ¥ in (X))
. _ e(x) k . . . . . e
if y(x, M) = TR If (x*);5 is the trajectory defined in this specific

way, we get the familiar recursion

k—1

sk < min{%s sk = ;(sk‘l)z}

2M,C

in terms of the approximation error s* := W(x¥) — ¥, (X), and the local
estimates (M );»(. Thus, as we are able to bound M, from above for all
iterations of the algorithm, the same convergence as for GCG can be
achieved.

Based on this observation, and knowing that M, must be bounded for
Lipschitz smooth objective functions, we can try to determine M, via a
backtracking procedure, as suggested in Pedregosa et al. (2020). By con-
struction, the resulting iterates x* will induce monotonically decreasing
function values so that the whole trajectory x* will be contained in the
level set {x € X|¥(x) < ¥(x°)}. Hence, it is sufficient for Q(x*, p¥, 1, M) to
be an upper bound on ¥(x,) for any point x, = (1 — £)x*~! + 1p¥ such that
¥(x,) < W(x). Thus, the Lipschitz continuity (or curvature) can be as-
sumed only on the appropriate level set and there is no need to insist on
global Lipschitz smoothness on the entire set X. This insight enabled, for
example, proving the O(1/k) convergence rate of CG with adaptive and
exact step-size rules when applied to self-concordant functions, which
are not necessarily Lipschitz smooth on the predefined set X (Carderera
et al., 2021; Dvurechensky et al., 2020a; 2020; Zhao and Freund, 2020).
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However, this observation need not apply to the standard step size rule
(5.5), since the standard step-size choice does not guarantee that all the
iterates remain in the appropriate level set.

To conclude, we reiterate that the step-size choices analyzed here
are the most common, but there may be many more choices of step-
size which provide similar guarantees. For example, Freund and Gri-
gas (2016) suggests new step-size rules based on an alternative analysis
of the CG method that utilizes an updated duality gap. (Nesterov, 2018a)
discusses recursive step-size rules, and in Dvurechensky et al. (2020a);
Odor et al. (2016) new step-size rules are suggested based on additional
assumptions on the problem structure.

5.3. Variants of CG

One of the main drawbacks of CG method is that, in general, it
comes with worse complexity bounds than BPGM for strongly convex
functions. Indeed, it was shown as early as in 1968 by Canon and Cul-
lum (1968) (see also Lan (2013, 2020)) that the rate of O(i) is in fact
tight, even when the function f is strongly convex. This slow conver-
gence is due to the well-documented zig-zagging effect between dif-
ferent extreme points in X. In the smooth case, where r = 0, and the
objective function f and the feasible set X are both strongly convex,
only a rate of O(klz) can be shown (Garber and Hazan, 2015), whereas

(Nesterov, 2018a) showed an accelerated O(klz) rate of convergence
for GCG with strongly convex r (u > 0). Linear convergence of the CG
method can only be proved under additional assumptions regarding the
problem structure or location of the optimal solution (see e.g. Beck and
Teboulle (2004); Dunn (1979); Epelman and Freund (2000); Guélat and
Marcotte (1986); Levitin and Polyak (1966)).

Departing from these somewhat negative results, variants of the clas-
sical CG were suggested in order to obtain the desired linear conver-
gence in the case of strongly convex function f. We will discuss four of
these variants: Away-step CG, Fully-corrective CG, CG based on a local
linear optimization oracle (LLOO), and CG with sliding.

5.3.1. Away-step CG

The away-step variation of CG (AW-CG), first suggested by
Wolfe (1970), treats the case where X is a polyhedron. It requires
two calls of the LO at each iteration. The first call generates p* =
Ly(Vf(x*"1)), defined in the original CG algorithm, while the second
call generates an additional vector u* = L4 (—=V f(x*1)). The two vec-
tors p* and u* define the forward direction d¥ ,, = p* — x*=! and the away
direction d¥ = x*~! — u¥, respectively. By construction, both of this di-
rections are non-ascent directions. The effectively chosen direction at
iteration k is obtained by

d* = argmax (- VfxF,d),

k k
de{dk,, k)

ensuring the chosen direction is a descent direction for non optimal x*~!,
with a corresponding updating step

xk =K1y ykdk.

Here, the choice of the step-size y, will also depend on the direc-
tion chosen. The first analysis of this algorithm by Guélat and Mar-
cotte (1986) assumes that the step-size is chosen using exact line search
over 7 € [0, 7max)s Where yu. :=max{r >0 : x*~! +¢d* € X}. Under
this step-size choice, they prove linear convergence of CG for strongly
convex f. However, this rate estimate depends on the distance between
the optimal solution and the boundary of set T C X, which is the minimal
face of X containing the optimal solution. This result was later extended
in Lacoste-Julien and Jaggi (2015), with a slight variation on the original
algorithm. In this variation, the set X is represented as the convex hull of
a finite set of atoms A (not necessarily containing only its vertices), and
a representation of the current iterate as a convex combination of these
atoms is maintained throughout the algorithm, i.e., x* = ¥ ¢« AXa where
Sk ={ae A: >0} is defined as the set of active atoms. Thus, the
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AW-CG produces p* € A and/lu" € S¥, and the away step maximal step
k
away-step step-size will not necessarily result on a point on the bound-
ary of X. Thus, when f is strongly convex, Jaggi and Lacoste-Julian
Lacoste-Julien and Jaggi (2015) show a linear convergence of AW-CG
with a rate that only depends on the geometry of set X, which is cap-
tured by the pyramidal width parameter. The Pairwise variant of AW-CG,
which is also presented and analyzed in Lacoste-Julien and Jaggi (2015),

takes d* = u¥ — p* and y,,,, = A, and has similar analysis.

In Beck and Shtern (2017), Beck and Shtern extend the linear con-
vergence results of AS-CG to functions of the form f(x) = g(Ax) + (b, x)
where g is a strongly convex function. The linear rate depends on a
parameter based on the Hoffman constant, which captures both on
the geometry of X as well as matrix A. It is also worth mentioning, a
stream of work which shows linear convergence of AS-CG where the
strong convexity assumption is replaced by the assumption that suffi-
cient second order optimality conditions, known as Robinson conditions
(Robinson, 1982), are satisfied (see for example Damla et al. (2008)).

size is respecified as y,, = . This implies, that using the maximal

5.3.2. Fully-corrective CG

The Fully-corrective variant of CG (FC-CG) also involves polyhedral
X, and aims to reduce the number of calls to the linear oracle, by re-
placing them with a more accurate minimization over a convex-hull of
some subset A¥ C A. The heart of the method is a correction routine,
which updates the correction atoms A* and iterate x*, and satisfy the
following:

Sk c Ak
FGR < min £((1 = 0x*" +1pb)
t€[0,1]

€ > max (V f(x¥), s — x)
sesk

where p¥ = Ly(V f(x*=1)), and ¢ is a given accuracy parameter. The FC-
CG was known by various names depending on the updating scheme of
AK and x* (Holloway, 1974; Von Hohenbalken, 1977), and was uni-
fied and analyzed to show linear convergence in Lacoste-Julien and
Jaggi (2015). The convergence analysis of FC-CG is similar to that of
AW-CG, and is based on the correction routine guaranteeing that the
forward step is larger than the away-step computed in the previous it-
eration.

In order to apply FC-CG one must choose a correction routine, and
the linear convergence analysis does not take into account the computa-
tional cost of this routine. One choice of a correction routine is to apply
AS-CG on the subset A* = §¥~1 y {p*} until the conditions are satisfied.
This correction routine is wise only if efficient linear oracles £ 4« can
be constructed for all k£ such that their low computational cost balances
the routine’s iteration complexity.

5.3.3. Enhanced LO based CG

A variant of CG which is based on an enhanced linear minimization
oracle, was suggested by Garber and Hazan Garber and Hazan (2016).
In this variant, the linear oracle Ly(c) is replaced by a local oracle
Ly ,(c, x,8) with some constant p > 1, which takes an additional radius
input 6 and returns a point p € X satisfying

llp — x|l < po

(p,c) < (u, c).

min
ueX: |lu—x||<é
Thus, the only deviation from the CG algorithm is that p* is obtained by
applying Ly ,(Vf(x*),x*,5,) for a suitably chosen sequence (5;);. The
linear convergence for the case where the smooth part f is strongly con-
vex, is obtained by a specific update of 6, at each step of the algorithm.
This update depends on the Lipschitz constant L, the strong convex-
ity constant of f, and the parameter p. Moreover, despite the fact that
LLOO-CG can theoretically be applied to any set X, constructing a gen-
eral LLOO is challenging. In Garber and Hazan (2016), the authors sug-
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gest an LLOO with p = \/ﬁ when the set X is the unit simplex, and gen-
eralize it for convex polytopes with p = ﬁﬁ where j depends on some
geometric properties the polytope which may generally not tractably
computed. Thus, while the strong convexity and geometric properties
of the problem are only used for the analysis of the AW-CG and FC-CG,
the associated parameters are explicitly used in the execution of LLOO-
CG. The difficulty of accurately estimating the strong convexity and the
geometric parameters renders the LLOO-CG less applicable in practice.

5.3.4. CG with gradient sliding

Each iteration of CG requires one call to the linear minimization or-
acle and one gradient evaluation. Coupled with our knowledge about
the iteration complexity of CG, this fact implies that CG requires O(1/¢)
gradient evaluations of the objective function. This is suboptimal, when
compared with the O(1/ \/E) gradient evaluations for smooth convex op-
timization, as we will see in Section 6. While it is known that within the
linear minimization oracle, the order estimate O(1/¢) for the number
of calls of the LO is unimprovable, in this section we review a method
based on the linear minimization oracle which can skip the computa-
tion of gradients from time to time. This improves the complexity of
LO-based methods and leads us to the conditional gradient sliding (S-CG)
algorithm introduced by Lan and Zhou Lan and Zhou (2016). S-CG is a
numerical optimization method which runs in epochs and overall con-
tains some similarities with accelerated methods, to be thoroughly sur-
veyed in Section 6. S-CG has been described in the context of the smooth
convex programming problem for which r = 0.

The conditional gradient sliding methods (S-CG)
Input: A linear oracle £ a starting point x° € X.
(Brs (7). parameter sequence such that

= 1, Lf)’k < ﬁ/w

Brvi > ﬂk—l]’k—],
Iy Loy
where
1 ifk=1
r, = ’ 1
k {F,H(l—yk) if k > 2. .17

General step: For k = 1,2, ...
Compute

2K =1 =y )y 4y
x* = CndG(V £ (z5), x*71, By, mp),

Y= 1=y 4k

Similarly to accelerated methods, S-CG keeps track of three sequen-
tially updated sequences. The update of the sequence (x¥) is stated in
terms of a procedure CndG, which describes an inner loop of condi-
tional gradient steps. This subroutine aims at approximately solving for
the proximal step

min £(z4) + (V)% - 25) 4+ 2o - w1 2
x€X 2

up to an accuracy of #,. As will become clear later, the S-CG can thus
be thought of as an approximate version of the accelerated scheme pre-
sented in Section 6.1.

The main performance guarantee of the algorithm S-CG is summa-
rized in the following theorem:

Theorem 5.4. For all k > 1 and u € X, we have

Q2 LI
F6H— fw < ﬂy"Tﬂ"kZ%, (5.18)
i=1 t
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The procedure CndG(g, u, ,7)

Input: u; =u,t=1.

Output: point u™ = CndG(g, u, f,7).

General step: Let v, = argmax,x(g + By, — u),u, — x)
IV, p0) = (g+ P, —w),u, —v,) <y, setu® =u;
else, set u,, = (1 — a)u, + a,v,, where

—u)—g,v, —
a; =min{l, (Plu—u) =80~ uw)
where Q = Q II-IIZ(X)' The number of calls of the linear minimization oracle
2

2
ﬁ””r_uz”

Set t < 7 + 1. Repeat General step.

2

is bounded by [%]. In particular, if the parameter sequences in S-CG are
k
chosen as
2
ﬂ=3Lf 7, =Lyl =i
e+ U0 T k127 T ke 1)

then

15L Q2

S/

GO

<—.
T < S ha+ 2
As a consequence, the total number of calls of the function gradients and the

2
LO oracle is bounded by 0(\/ # ), and O(LfQ2 /€), respectively.

6. Accelerated Methods

In previous sections we focused on simple first-order methods with
sublinear convergence guarantees in the convex case, and linear con-
vergence in the strongly convex case. Towards the end of the discussion
in Section 3, we pointed out the possibility to accelerate simple itera-
tive schemes via suitably defined extrapolation steps. In this last section
of the survey, we are focusing on such accelerated methods. The idea of
acceleration dates back to 1980’s. The rationale for this research direc-
tion is the desire to understand the computational boundaries of solv-
ing optimization problems. Of particular interest has been the uncon-
strained smooth, and strongly convex optimization problem. This would
be covered by our generic model (P) by setting r =0,X =V =R" and f
strongly convex with parameter u, >0 and L -smooth. The standard
approach to quantify the computational hardness of optimization prob-
lems is through the oracle model of optimization; Upon receiving a query
point x, the oracle reports the corresponding function value f(x), and in
first-order models, the function gradient V f(x) as well. In their seminal
work, Nemirovski and Yudin (1983) showed that for any first-oder opti-
mization algorithm, there exists an L f-smooth (with some L r>0) and
convex function f : R" —» R such that the number of queries required
to obtain an e-optimal solution x* which satisfies

SO <min f(x) + e,

is at least of the order of min{n /L /u;}In(1/e) if u;>0
and min{nin(1/¢),\/L,/€}, if u,=0. This bound, obtained by
information-theoretical arguments, turned out to be tight. Nemirovski
Nemirovski (1982) proposed a method achieving the optimal rate
O(1/k®) via a combination of standard gradient steps with the
classical center of gravity method, which required additional small-
dimensional minimization, see also a recent paper (Nesterov et al.,
2020). Nesterov (1983) proposed an optimal method with explicit
step-sizes, which is nowadays known as Nesterov’s accelerated gradient
method.

6.1. Accelerated Gradient Method

In this section we consider one of the multiple variants of an Acceler-
ated Gradient Method. This variant is close to the accelerated proximal
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method in Tseng (2008), which has been very influential to the field. An-
other very influential version of the accelerated method, especially in
applications, is the FISTA algorithm (Beck and Teboulle, 2009a), which
is excellently described in Beck (2017). A recent review on accelerated
methods is d’Aspremont et al., 2021. The version we present here is in-
spired by the Method of Similar Triangles (Gasnikov and Nesterov, 2018;
Nesterov, 2018b). For an illustration see Figure 1

Accelerated schemes generically produce three sequences (u¥, x¥, y¥),
which are iteratively constructed via specifically designed inertial, re-
laxation and gradient steps. The relative magnitude of inertia and relax-
ations are governed by control sequences (A,), and (a; ).

The version we present below, is very flexible and allows one to
obtain accelerated methods for many settings. As a particular example,
below in Section 6.4, we show how a slight modification of this method
allows one to obtain universal accelerated gradient method.

Our aim is to solve the composite model problem (P) within a general
Bregman proximal setup, formulated in Section 3.2. We are given a DGF
h € H,(X). The scaling of the strong convexity parameter to the value
1 actually is without loss of generality, modulo a constant rescaling of
the employed DGF

The Accelerated Bregman Proximal Gradient Method
(A-BPGM)
Input: pick x° = u® = »° € dom(r) N X°, set A4, =0
General step: For k =0, 1, ... do:

Find a;,, from quadratic equation A; + a;,; = L a2

a1 Set
Apyl = A + @y

A
Set yk+l = Zexl k4 Ak ok
: A1 At
et

=Pl W VIO

u =

= argmin, ey {a; 4 (f(yk+1)+(Vf(yk+1), x = Yy 4r(x))+ Dy (x, uk)}.

A
Lk ok,

Set xk+l = Zktl  k+l
A At

k+1

We start the analysis A-BPGM applying the descent Lemma property
(3.15) which holds for any two points due to L f—smoothness:

L
\y(xk+l> - f(xk-H) + r(xk+1) < f(yk“) + (Vf(yk+1),xk+1 _ yk+l> + 7/ ka+l _ yk+1 ”Z + r(xk+
6.1)
Let us next consider the squared norm term. Using the definition of
x*+1,y%+1 and the quadratic equation for a,,, given in the listing of A-
BPGM, as well as the 1-strong convexity of the Bregman divergence, i.e.
(3.5), we obtain
Xk)uz

_r D+l uk),
Akl

A @, A
k Xk_( ktl ko, Ak

Lkt CkH 2 2 Lflllmkfﬂuk“
Aks1 A1 At

= I
2 2 Akl

Lyal

k+1 1

- 7”’4k+1 —ukHz - 7\\141“’1 —uk||2 <
2 24

2Ak+l

(6.2)

Next, we consider the remaining terms in the r.h.s. of (6.1). Substituting
xk*1 and using A, = A, + oy, we obtain

f(yk+l)+ (Vf(yk+l),xk+1 _ yk+l> + r(XkH)
Ak
Ak+1

At A

Ak+1

+

Ay
)f(y“‘> (VFOR, Sy
Ak+1 Ak+1

=

Ak+l

Fhtl gyl Ay k)
+r| — + —
’( Ak+1 “ Ak+1 x
A
< (SO (VLG F = ) 4 ()
k+1
+ @ (f(yk+l) + (Vf(yk+l), ukt — yk+1> + r(uk+l))
Ak+1
< () r69) + B (F) 4+ (VR0 ) )
A A

= AAik‘P(x") + Zkﬂ (f(yk+1)+ (VAR k! = ety +r(uk+l))q 6.3)
k+1 k1

n,

)y"*'>
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where in the first inequality used the convexity of r, and in the second
inequality we used the convexity of f. Now we plug (6.2) and (6.3) into
(6.1) to obtain

A
.I,(xlm) < _klll(xk)+ E(f(ykﬂ)_'_ <Vf(yk+1)’uk+l _yk+l> +r(uk+l))
k+1 A
1 k+1  k
+ D, ", u")
Ak+] "
A 1
= PO + [ (SO (VO = ) 4wt h)
k+1 k+1

+D, ", ub)]. (6.4)

Given the definition of u**! as a Prox-Mapping, we can apply (3.12) by
substituting x* = uk*!, x = u¥, y = a,. In this way, we obtain, for any
ueX,

\Ij(xk+|) < AA_k\I;(xk) + (ak+l(f(yk+l) + (Vf(yk+l),uk+l _ yk+l> + r(uk+1))

1
Kt Agp
+D, 1 ub)
G2 Ay k 1 k+1 Kty kel
< V) + — (@ O+ (VLD = Y + r(w))
A Apti
+Dy,(u,u*) = D)y (u, u**h))

Ay

IA

(4
W) + S (f) + (W) + —— Dy, ut) — —— Dy i)
k+1 Ak+] Ak+] Ak+]

Ay ey 1 k 1 k+1

—L Wk + =)+ —— D, (u, u¥) — —— D, (u, "),  (6.5)
Ak+l Ak+l Ak+l " Ak+l g

where we also used convexity of f. Multiplying both sides of the last
inequality by A, ;, summing these inequalities fromk =0tok = N — 1,

and using that Ay — Ay = Z,ii‘ol a1, We obtain

ANPGN) £ AP0 + (Ay — ADP @) + D, (u, u®) — Dyy(u,u™).  (6.6)

Since A, = 0, we can choose u = x* € argmin{ D), (u, u’)|u € X*} C X* and
D, (x*,uN) > 0, so that, for all N > 1,
D, (x*,u°
W) — W (00 < 200D,
Ay

Dy(x*,u™) < D (x*,u0). (6.7)
So, we see from the second inequality that the Bregman distance be-
tween the iterates {u"V} v, and the solution x* is bounded by the Breg-
man distance between the starting point and the solution x*. Then,
from the inequality Dj,(x*,u") > %llx* —uM|)? it follows that ||x* — u™ ||
is bounded for any N, which leads to the existence of a subsequence
converging to x* by the continuity of ¥. To obtain the convergence rate
in terms of the objective residual it remains to estimate the sequence
Ay from below.

2
We prove by induction that A4; > %. For k =1 this inequality
s
holds as equality since A, =0, and, hence, A, = a; = LLf Let us prove
the induction step. From the quadratic equation A + &, = L, ai L we
have

1 1 Ay 1 Ay 1
i Y e Sy i
BTV [FTFI PR TR PR T

k+D? k42 _ K +2k+142k+4  (kK+2)
aL, oL, aL, aL,
(6.9)

Thus, combining (6.9) with (6.7), we obtain that the A-BPGM has opti-
mal convergence rate:

k+1  k+2

2L, 2L
(6.8)

A=A+ apy 2

4L Dj(x*,u0)

N p— .
W) = Win (0 < — s

(6.10)

Closing Remarks Mainly driven by applications in imaging and ma-
chine learning, the research on acceleration techniques has been very
productive in the last 20 years. During this time span it received exten-
sions to composite optimization (Beck and Teboulle, 2009a; Nesterov,



P. Dvurechensky, S. Shtern and M. Staudigl

2013), general proximal setups (Nesterov, 2005b; 2018b), stochastic
optimization problems (Dvurechensky et al., 2018a; Dvurechensky and
Gasnikov, 2016; Ghadimi and Lan, 2012; 2013; Lan, 2012), optimiza-
tion with inexact oracle (Cohen et al., 2018; d’Aspremont, 2008; De-
volder et al., 2014; Dvurechensky and Gasnikov, 2016; Stonyakin et al.,
2020), variance reduction methods (Allen-Zhu, 2017; Frostig et al.,
2015; Lan and Zhou, 2017; Lin et al., 2015; Zhang and Xiao, 2015),
random coordinate descent (Fercoq and Richtarik, 2015; Lee and Sid-
ford, 2013; Lin et al., 2014; Nesterov, 2012; Nesterov and Stich, 2017;
Shalev-Shwartz and Zhang, 2014) and other randomized methods such
as randomized derivative-free methods (Dvurechensky et al., 2017; Gor-
bunov et al., 2018; Nesterov and Spokoiny, 2017; Vorontsova et al.,
2019b) and randomized directional search (Dvurechensky et al., 2017;
2021; Vorontsova et al., 2019a), second-order methods (Monteiro and
Svaiter, 2013; Nesterov, 2008), and even high-order methods (Baes,
2009; Gasnikov et al., 2019; Nesterov, 2019). Under additional assump-
tions on the Bregman divergence it is possible to propose accelerated
Bregman proximal gradient method in the setting of relative smooth-
ness (Hanzely et al., 2021) and relative strong convexity (Dvurechensky
etal., 2021; Hendrikx et al., 2020) (see Section 3.3.3 for the definition of
relative smoothness). Yet, the negative result of (Dragomir et al., 2021)
suggest that, in general, the acceleration in the relative smoothness set-
ting is not possible.

As it was mentioned above, accelerated gradient method in the form
of A-BPGM can serve as a template for many acceleration techniques.
The examples of accelerated methods which have a close form include
primal-dual accelerated methods (Dvurechensky et al., 2018b; Lin et al.,
2019; Tseng, 2008), random coordinate descent and other random-
ized algorithms (Diakonikolas and Orecchia, 2018; Dvurechensky et al.,
2017; Fercoq and Richtarik, 2015), methods for stochastic optimization
(Dvurechensky et al., 2018a; Lan, 2012), methods with inexact oracle
(Cohen et al., 2018) and inexact model of the objective (Gasnikov and
Tyurin, 2019; Stonyakin et al., 2020). Moreover, only using this one-
projection version it was possible to obtain accelerated gradient meth-
ods with inexact model of the objective (Gasnikov and Tyurin, 2019),
accelerated decentralized distributed algorithms for stochastic convex
optimization (Dvinskikh et al., 2019; Gorbunov et al., 2019; Rogozin
et al., 2021), and accelerated method for stochastic optimization with
heavy-tailed noise (Gorbunov et al., 2020; 2021). The key to the last two
results is the proof that the sequence generated by the one-projection ac-
celerated gradient method is bounded with large probability, which, to
our knowledge, is not possible to prove for other types of accelerated
methods applied to stochastic optimization problems.

6.2. Linear Convergence

Under additional assumptions, we can use the scheme A-BPGM to
obtain a linear convergence rate, or, in other words, logarithmic in the
desired accuracy complexity bound. One such possible assumption is
that W(x) satisfies a quadratic error bound condition for some y > 0:
() = W) 2 S llx = 11, (6.11)
This is a weaker assumption than the assumption that W(x) is u-strongly
convex with x> 0. For a review of different additional conditions
which allow to obtain linear convergence rate we refer the reader to
Bolte et al. (2017); Necoara et al. (2019). The linear convergence rate
can be obtained under quadratic error bound condition by a widely used
restart technique, which dates back to Nemirovskii and Nesterov (1985);
Nesterov (1983).

To apply the restart technique, we make several additional as-
sumptions. First, without loss of generality, we assume that 0 € X,
0 = argmin,yx h(x) and h(0) = 0. Second, we assume that we are given
a starting point x’ € X and a number R, > 0 such that ||x? — x*||? < Ré.
Finally, we make the assumption that 4 is bounded on the unit ball
(Juditsky and Nesterov, 2014) in the following sense. Assume that x* is
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some fixed point and x is such that ||x — x*||> < R?, then
ok
h(x X ) < Q
R
where Q is some known number. For example, in the Euclidean setup

=5
Q =1, and other examples are given in Juditsky and Nesterov (2014,
Section 2.3), where typically Q = O(Inn).

(6.12)

The Restarted Accelerated Bregman Proximal Gradient
Method (R-A-BPGM)
Input: z° € dom(r) N X° such that [|2° — x*||> < R3, Q, L, p.
General step: For p=0,1,... do:
)
Set h,(x) = Rph(

x—zP
R,

Make N = [21 / Qﬂﬁ} — 1 steps of A-BPGM with starting

point x° = z” and proximal setup given by DFG hy(x)
Set zP*! = xN.

>, where R, :=R,_/2=Ry-27".

We next use the above assumptions to show the accelerated loga-
rithmic complexity of R-A-BPGM, i.e. that the number of Bregman prox-
imal steps to find a point £ such that f(&) — f(x*) < € is proportional to
V/L;/ulog,(1/e) instead of (L ;/u)logy(1/¢) for the BPGM under the er-
ror bound condition. The idea of the proof is to show by induction that,
forall p > 0, ||z2 — x*||* < R3. For p = 0 this holds by the assumption on
z0 and R,. So, next we prove an induction step from p — 1 to p. Using the
definition of h assumptions about 4, and the inductive assumption,
we have

p—1>

2
p=1 _ ) (6;2) QRp_l .

R, 2
Thus, applying the error bound condition (6.11), the bound (6.10) and
our choice of the number of steps N, we obtain

D, () < hy () = Ri_]h(z (6.13)

(6.10) LfDA",l(X*’ZPfl) (6.13) Lf(zRi_1

B2 L ey - w0 = WYy - (x) %
B = xS WED — W00 = W) = W0 S ST

IR R
<= -
So, we obtain that ||z’ —x*[| < R, =Ry-27" and ¥(z") — ¥;(X) <
;AR%Q’Z"

. To estimate the total number of basic steps of A-BPGM to
W(zP) — ¥ in(X) < &, we need to multiply the sufficient num-

R2
ber of restarts p = [% log, ;42_80] by the number of A-BPGM steps N in

2
achieve

. . . QL R?
each restart. This leads to the complexity estimate O<\ / Tf log, %

which is optimal (Nemirovski and Yudin, 1983; Nesterov, 2018b) for
first-order methods applied to smooth strongly convex optimization
problems.

Closing Remarks The restart technique which we used above was
extended in the past 20 years to many settings including problems
with non-quadratic error bound condition (Juditsky and Nesterov,
2014; Roulet and d’Aspremont, 2017), stochastic optimization prob-
lems (Bayandina et al., 2018; Dvurechensky and Gasnikov, 2016; Gas-
nikov and Dvurechensky, 2016; Ghadimi and Lan, 2013; Juditsky and
Nesterov, 2014), methods with inexact oracle (Dvurechensky and Gas-
nikov, 2016; Gasnikov and Dvurechensky, 2016), randomized methods
(Allen-Zhu and Hazan, 2016; Fercoq and Qu, 2020), conditional gra-
dient (Kerdreux et al., 2019; Lan, 2013), variational inequalities and
saddle-point problems (Stonyakin et al., 2018; 2020), methods for con-
strained optimization problems (Bayandina et al., 2018). There are ver-
sions of this technique even for discrete and submodular optimization
problems (Pokutta, 2020).

A possible drawback of the restart scheme is that one has to
know an estimate R, for [|z° —x*|. It is possible to avoid this by
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directly incorporating the parameter u into the steps of A-BPGM,
see e.g. d’Aspremont et al. (2021); Devolder (2013); Lan (2020);
Nesterov (2018b); Stonyakin et al. (2020). Yet, in this case, a stronger
assumption that ¥(x) is strongly convex or relatively strongly con-
vex (Lu et al., 2018) is used. The second drawback of the restart
technique and direct incorporation of u into the steps, is that both
require to know the value of the parameter u. This is in contrast
to non-accelerated BPGM, which using the same step-size as in the
non-strongly convex case automatically has linear convergence rate

and complexity O (2020,

. R2

Lﬂ—’logz #T‘]), see e.g. Stonyakin et al.
2019). Several recipes on how to restart accelerated methods with
only rough estimates of the parameter u are proposed in Fercoq and
Qu (2020) and a parameter-free accelerated method is proposed in

Carderera et al. (2021); Nesterov (2013).

6.3. Smooth minimization of non-smooth functions

An important observation made during the last 20 years of devel-
opment of first-order methods for convex programming is that there is
a large gap between the optimal convergence rate for black-box non-
smooth optimization problems, i.e. O(1/ \/N ) and the optimal conver-
gence rate for black-box smooth optimization problems, i.e. O(1/N?).
Certainly, there arises the need to understand how this significant gap
can be reduced. An important step towards that direction is Nesterov’s
smoothing technique (Nesterov, 2005b). To motivate this approach, let
us make the following thought experiment. Assume that we mini-
mize a smooth function by N steps of A-BPGM, i.e. solve problem
(P) with r = 0. Then at each iteration we observe first-order information
(fF1), V £(»**1)) and can construct a non-smooth piecewise linear ap-
proximation of f as g(x) = max,_;
we now make N steps of A- BPGM with the same starting pomt to min-
imize g(x), and choose the appropriate subgradients of g(-), the steps
will be absolutely the same as when we minimized f(x), and we will be
able to minimize a non-smooth function g with much faster rate 1/N?
than the lower bound 1/ \/F . This leads to a way of trying to find a
sufficiently wide class of non-smooth functions which can be efficiently
minimized by A-BPGM. To do so in a systematic way, we have to leave
the pure black-box model of convex programming.

Consider the model problem (P), with the added assumption that the
non-smooth part admits a Fenchel representation of the form

r(x) = max {(Ax, w) — k(w)}. (6.14)
weW

Here, W C E is a compact convex subset of a finite-dimensional real vec-
tor space E, and x : W — R is a continuous convex function on W. A is
a linear operator from V to E*. This additional structure of the problem

gives rise to a min-max formulation of (P), given by

i A - . .1
min .Tea\;(v{f(x) + (Ax, w) — k(w)} (6.15)
The main idea of Nesterov is based on the observation that the func-
tion r can be well approximated by a class of smooth convex functions,
defined as follows. Let h,, € H,(W) with a nonrestrictive assumption
that min,cyy £,,(z) = 0. For given 7 > 0, define the function

Y. (x) = fx)+ urryleav)s{(Ax, w) — k(w) — th,,(w)}. (6.16)

Since h,, is 1-strongly convex on the compact convex set W, the inner
maximization problem is strongly concave and hence admits a unique
solution. We denote by &,(x) this optimal solution for a fixed x. The

main technical lemma needed for the analysis is the following.

Proposition 6.1 (Nesterov (2005b)). The function ¥ (x) is well defined,
convex and continuously differentiable at any x € X with V¥ .(x) = Vf(x) +
A*,(x). Moreover, V¥ _(x) is Lipschitz continuous with constant L, = L r+
AN ¢

T
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Here the adjoint operator A* is defined by equality (Ax,w)g
(A*w, x)y and the norm of the operator ||A|ly g is defined by [|Allyg =

ax, , {{Ax, w) : |Ix|ly = L, |lw|lg = 1}. Since W is bounded, ¥ (x) is a
uniform approximation for the function ¥, namely, for all x € X,
Yo (x) £ V(x) < Vo (x) + 70, (W), (6.17)

where 0, (W) :=max{h,(2)|z € W}, assumed to be a finite number.
Then, the idea is to choose r sufficiently small and apply accelerated
gradient method to minimize ¥, (x) on X with a DGF A, € H;(X) with
a nonrestrictive assumption that min,cyx #,(x) = 0. Doing this, and as-
suming that 0, (X) = max{h,(uw)|u € X} < oo, we can apply the result
(6.10) to ¥, (x) and, using (6.17), to obtain

0 < W) = ¥, 00 < ¥ (xY) + 70, (W) = ¥, (x) S W, (xN) + 70, (W)

41,0, (%)
N+ 12
4|Al 0, (X) 4L, (X)
=10, W)+ VE T Ay
" AN+ 1 N+ 12
2||Ally g

Choosing 7 to minimize the r.h.s., i.e. 7 = ol

[0, .
L we obtain
HAllve /€, X0, W) 4L .0, (X)
+ .

N+1 (N+1)2°
(6.18)

0 <P(xMN) = V(X)) <

min

A more careful analysis in the proof of Nesterov (2005b, Theorem 3),
allows also to obtain an approximate solution to the conjugate problem
max {y(w) := —k(w) + min ((Ax, w) + f(x))}. (6.19)
weW xeX
In each iteration of A-BPGM,, the optimizer needs to calculate V¥, (y**1),
which requires to calculate &_(y**!). This information is aggregated to
obtain the vector N Zisl 5 (yk*1) and is used to obtain the

Zk—O Ary

following primal-dual result

4HA“V,E\/®}1\(X)®}:“ W) 4L,0, (X)
i .

N +1 (N +1)2°
(6.20)

0 <WEN) = W, (X) < PEN) — (@) <

min

In both cases using the special structure of the problem it is possible
to obtain convergence rate O(1/N) for non-smooth optimization, which
is better than the lower bound O(1/ \/N ) for general non-smooth opti-
mization problems.

We illustrate the smoothing technique by two examples of piecewise-
linear minimization; see also Figure 2

Example 6.1 (Uniform fit). Consider the problem of finding a uniform
fit of some signal b € E, given linear observations Ax. where A : V - E
is a bounded linear operator. This problem amount to minimize the non-
smooth function ||Ax — b||,. Of course, this problem can be equivalently
formulated as an LP, however in case where the dimensionality of the
parameter vector x is large, such a direct approach could turn out to be
not very practical. Adopting the just introduced smoothing technology,
the representation (6.15) can be obtained using the definition of the dual
norm || - ||, i.e. |[Ax — ||, = max <1 (Ax — b, w). Yet, a better rep-
resentation is obtained using the unit simplex W = {w € R2m| Z - Wi
1}, matrix A = [A; —A], and vector b = [b; —b]. For the set W, a natural
Bregman setup is the norm |[wl||g = ||w||, and the Boltzmann-Shannon
entropy h,,(w) =In2m+ Y | w; Inw;. This gives

w:|jwll

Y.(x) = gg’s{(/&x —b,w) — th,(w)} =7ln < Z exp <(a,, X) = >

(a;, x) — bi))

+ exp (——
T

which is recognized as a softmax function.

- ‘P,(x:) < T@,,";(W)
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uP = b — g V()

uF
Ag
Akt
E+1 _ o k+1 _ 1 k41
yktt 33+—Z/+—L—fvf(3/+)
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Agt1
ok
|— |x| — softmax — Huberl
3.
y
1’
-3 -2 -1 0 1 2 3

X

Fig. 2. Absolute value function |x|, its softmax smoothing and Huber smooth-
ing, both with r = 1.

Example 6.2 (. #,-fit) In compressed sensing Candes and Tao (2007);
Candes et al. (2006); Donoho (2006) one encounters the problem to
minimize the #, norm of the residual vector Ax — b over a given closed
convex set X. While it is well-known that this problem can in principle
again be reformulated as an LP, the typical high-dimensionality of such
problems makes this direct approach often not practicable. Adopting the
smoothing technology, it is natural to choose W = {w € R"|||w||,, < 1}
and h, (w) = % > lla;llg..w?, which gives

where . (¢) is the Huber function equal to #*/(27) for 0 <t <7 and ¢ —
t/2ift > 7.

For the particular case of smoothing the absolute value function |x|,
Figure 2 gives the plot of the original function, its softmax smooth-
ing and Huber smoothing, both with 7 = 1. Potentially, other ways
of smoothing a non-smooth function can be applied, see Beck and
Teboulle (2012) for a general framework.

Ka;, x) —

W (x) = max ((Ax = b,w) = Th,,(w)) = Z"“ ”x*‘”r( la luE*

Closing Remarks Let us make several remarks on the related literature.
A close approach is proposed in Nemirovski (2004), where the problem
(6.15) is considered directly as a min-max saddle-point problem. These
classes of equilibrium problems are typically solved via tools from mono-
tone variational inequalities, whose performance is typically worse than
the performance of optimization algorithms. In particular, contrasting
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Fig. 1. Illustration of the three sequences of the A-BPGM in the uncon-
strained case X =R", r=0, h = l||x||§. In this simple case it is easy to
see that w**! = u* — a, Vf(y**!), and the sequence u* accumulates the
previous gradient, while helping to keep momentum. Also by the similar-
ity of the triangles, x*+! = y*+! — g, V(") % = ykHl in(y"“),
i.e. y* is the sequence obtained by gradient descent steps. Finally, the se-
quence x¥ is a convex combination of the momentum step and the gra-
dient step. The illustration is inspired by personal communication with
Yu. Nesterov on the Method of Similar Triangles (Gasnikov and Nesterov,
2018; Nesterov, 2018b).

the above rate estimate with the one reported in Nemirovski (2004),
one observes that the bound in Nemirovski (2004) has a similar
to (6.20) structure, yet with the second term being non-accelerated,
i.e. proportional to 1/N. This approach was generalized to obtain
an accelerated method for a special class of variational inequali-
ties in Chen et al. (2017), where an optimal iteration complexity
o(L/ \/E) to reach an e-close solution is reported. In the original
paper (Nesterov, 2005b), the smoothing parameter is fixed and re-
quires to know the parameters of the problem in advance. This has
been improved in Nesterov (2005a), where an adaptive version of
the smoothing techniques is proposed. This framework was extended
in Alacaoglu et al. (2017); Tran-Dinh et al. (2020); Tran-Dinh and
Cevher (2014); Tran-Dinh et al. (2018) for structured composite opti-
mization problems in the form (2.7) and a related primal-dual represen-
tation (2.8). A related line of works studies minimization of strongly con-
vex functions under linear constraints. Similarly to (6.16) the objective
in the Lagrange dual problem has Lipschitz gradient, yet the challenge
is that the feasible set in the dual problem is not bounded. Despite that
it is possible to obtain accelerated primal-dual methods (Anikin et al.,
2017; Chernov et al., 2016; Dvurechensky et al., 2016; 2018b; Guminov
et al., 2021; 2019; Ivanova et al., 2020; Kroshnin et al., 2019; Nesterov
et al., 2020; Tran-Dinh and Cevher, 2014; Tran-Dinh et al., 2018). In
particular, this allows to obtain improved complexity bounds for differ-
ent types of optimal transport problems (Dvurechensky et al., 2018a;
2018b; Guminov et al., 2021; Kroshnin et al., 2019; Lin et al., 2020;
2019; 2019; Tupitsa et al., 2020; Uribe et al., 2018).

6.4. Universal Accelerated Method

As it was discussed in the previous subsection, there is a gap in the
convergence rate between the class of non-smooth convex optimization
problems and the class of smooth convex optimization problems. In this
subsection, we present a unifying framework (Nesterov, 2015) for these
two classes which allows to obtain uniformly optimal complexity bounds
for both classes by a single method without the need to know whether
the objective is smooth or non-smooth.

Consider the Problem (P) with f which belongs to the class of func-
tions with Holder-continuous subgradients, i.e. for some L, >0 and
v € [0, 1] it holds that || f'(x) = £/ WIl, < L,llx — y||¥ for all x, y € dom f
and all f/(x) €df(x) and f'(y) € 0f(y). If v=1, we recover the L;-
smoothness condition (2.1). If v = 0 we have that f has bounded varia-
tion of the subgradient, which is essentially equivalent to the bounded
subgradient Assumption 8. The main observation (Devolder et al., 2014;
Nesterov, 2015) is that this Holder condition allows to prove an inex-
act version of the ”descent Lemma” inequality (3.15). More precisely
Nesterov (2015, Lemma 2), for any x, y € dom f and any 6 > 0,

*Ily x|? +38,
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T

1.5

—
[
L
(PSR
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Fig. 3. Non-smooth function f(x) = max{x — 1,x/2}, a quadratic function con-
structed using the first-order information at the point x =2, and a shifted
quadratic function constructed using the first-order information at the point
x = 2. As one can see, adding a shift allows to obtain an upper quadratic bound
for the objective, which is then minimized to obtain a new test point.

6.21)

where

2

I-vl ) o v
I1+vo v
with the convention that 0° = 1. We illustrate this by Figure 3 where
we plot a quadratic bound in the r.h.s. of (6.21) with 6=0 and a
shifted quadratic bound in the r.h.s. of (6.21) with some 6 > 0. The first
quadratic bound can not be an upper bound for f(y) for any L > 0, and
the positive shift allows to construct an upper bound. Thus, it is suf-
ficient to equip the A-BPGM with a backtracking line-search to obtain
a universal method. The resulting algorithm is listed below as Univer-
sal Accelerated Bregman Proximal Gradient Method (U-A-BPGM). A key
step is the potentially non-monotone adjustment of the local Lipschitz
gradient estimate L.

L> L) := ( 6.22)

The Universal Accelerated Bregman Proximal Gradient
Method (U-A-BPGM)
Input: Pick x* =4 = y0 € dom(r) N X°, € > 0, 0 < L, < L(e/2), set
Ay =0
General step: For k =0, 1, ... do:

Find the smallest integer i, > 0 such that if one defines a;
from the quadratic equation A + ¢y, =2~ Ly} |, sets
A1 = A+ Gy

sets y**! = JEL b

k+1

k+l _

Ak k
—kx
A"
sets u
argmin,ex { a1 (SOFD) + (F1OF), x = YD) + r(x)) + Dy (x, ub) },
kbl = St kbl Ak ok

sets x x*,
Akl Akl
then it holds that f(x*+!) <
21y,
f(ykJrl) + (f’(yk+l),xk+l _ yk+l> + = k ||xk+l _ yk+l ”2 + ;Zl:rll .

Set L;,, = 2%"'L, and go to the next iterate k.

We first observe that for sufficiently large iy, 2«1 L, > L ( ;Z"T“] ), see

+
Nesterov (2015, p.396). This means that the process of finding i, is finite
since the condition which is checked for each i, is essentially (6.21) with

5= ;’:%. The proof of convergence of (U-A-BPGM) follows essentially
+
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the same steps as the derivation of the convergence rate for A-BPGM in
Section 6.1. The first thing which is changed is equation (6.1), where
now the inexact descent Lemma is used instead of the exact one. The
only difference is that L, is changed to its local approximation L, and

add the error term ;Z"*‘ appears in the r.h.s. In (6.2) the new quadratic
k+1

equation with L, is used and the inequality remains the same. This
eventually leads to (6.5) with the only change being an additive error
term 2EL in the r.h.s. Finally, this leads to the bound

k+1

D *, 0
weeNy —wx) < 20 e
Ay 2

After some algebraic manipulation, Nesterov (2015, p.397) obtains an
1+3v 1-v
N T+v g T+v

244y 2
2T+ LY

inequality Ay > . Substituting, we obtain

272+4VD ( * O)L%

I+v u*,u v

N h\* v

\P(x ) - lIlmin(x) < T3y I-v +
N T+v g 1+v

N[ M

Since the method does not require to know v and L, the iteration com-
plexity to achieve accuracy « is

2

L T+3v

inf (—V> ’
velo,1] \ &

It is easy to see that the oracle complexity, i.e. the number of proximal
operations, is approximately the same. Indeed, the number of oracle
calls for each k is 2(i; + 1). Further, L,,, = 2/« L,, which means that
the total number of the oracle calls up to iteration N is Z,’(V;Ol 20, +
1= 211:1:—()1 2(21og, LL"—:‘) =4N +2log, LL—’Z, i.e. is, up to a logarithmic
term, four times larger than N. The obtained oracle complexity coin-
cides up to a constant factor with the lower bound (Nemirovski and
Yudin, 1983) for first-order methods applied to minimization of func-
tions with Holder-continuous gradients. In the particular case v = 0, we

Lguh(u*,uo)
£2

I+v

N =0 (Dh(u*,uo))m .

obtain the complexity O< , which corresponds to the conver-

gence rate 1/ \/E, which is typical for general non-smooth minimization.
In the opposite case of smooth minimization corresponding to v = 1, we

obtain the complexity O(\/ M), which corresponds to the op-

timal convergence rate 1/k>. The same idea can be used to obtain uni-
versal version of BPGM (Nesterov, 2015). One can also use the strong
convexity assumption to obtain faster convergence rate of U-A-BPGM
either by restarts (Kamzolov et al., 2020; Roulet and d’Aspremont,
2017), or by incorporating the strong convexity parameter in the steps
(Stonyakin et al., 2020). The same backtracking line-search can be ap-
plied in a much simpler way if one knows that f is L -smooth with
some unknown Lipschitz constant or to achieve acceleration in prac-
tice caused by a pessimistic estimate for L, (Dvinskikh et al., 2020;
Dvurechensky et al., 2016; 2018b; Malitsky and Pock, 2018; Nesterov,
2013; Tran-Dinh et al., 2018). The idea is to use the standard exact ”de-
scent Lemma” inequality in each step of the accelerated method.

The idea of universal methods turned out to be very productive and
several extensions have been proposed in the literature, including uni-
versal primal-dual methods (Baimurzina et al., 2019), universal method
for convex and non-convex optimization (Ghadimi et al., 2019), and a
universal primal-dual hybrid of accelerated gradient method with con-
jugate gradient method using additional one-dimensional minimization
(Nesterov et al., 2020). The above-described method is not the only way
to obtain adaptive and universal methods for smooth and non-smooth
optimization problems. An alternative way which uses the norm of the
current (sub)gradient to define the step-size was initiated probably by
Polyak (1987) and became very popular in stochastic optimization for
machine learning after the paper Duchi et al.,, 2011. On this avenue
it was possible to obtain for v € {0, 1} universal accelerated optimiza-
tion method (Levy et al., 2018) and universal methods for variational
inequalities and saddle-point problems (Bach and Levy, 2019).
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6.5. Connection between Accelerated method and Conditional Gradient

In this subsection we describe how a variant of conditional gradient
method can be obtained as a particular case of A-BPGM with inexact
Bregman Proximal step. We assume that f is L,-smooth and for sim-
plicity choose & to be the squared Euclidean norm h(x) = %||x||2. Since
we consider a conditional gradient method, it is2 natural to assume that
= %Qi 0 We fol-
low the idea of Ben-Tal and Nemirovski, 2020, where the main obser-
vation of is that the Prox-Mapping in A-BPGM can be calculated inex-
actly by applying the generalized linear oracle given in Definition 5.2.
The idea is very similar to the conditional gradient sliding described in
Section 5.3.4 with the difference that here we implement an approx-
imate Bregman Proximal step using only one step of the generalized
conditional gradient method. The resulting algorithm is listed below
with the only difference with A-BPGM being the change of the Breg-
man Proximal step u**! =P, .5, a VSOFH) to the step uft! =
Ly @1 VS (y**1)) given by generalized linear oracle.

the set X is bounded with max, ,cx Dj(x,u) <

Conditional Gradient Method by A-BPGM with Approximate
Bregman Proximal Step
Input: pick x° = u® = »° € dom(r) N X°, set A4, =0
General step: For k =0, 1, ... do:

Find a;, from quadratic equation A, + @, = L f"’lz 41 et
Apyl = A + @y

Set yk+1 = Zktl k4 Ak,

Agsl A1

Set (Approximate Bregman proximal step by generalized
linear oracle)
Wk = argming ey { @y (FOF) + (VAR x =y +1(0) ) =
Ly oy r(@pp VM),

A
Set xk+1 = Skl e+l 4 Ak ok,
Ager1 Ap1

Since the difference between such conditional gradient method and
A-BPGM is in one simple change of the step for u**!, to obtain the con-
vergence rate of the former, it is sufficient to track, what changes such
approximate Bregman Proximal step entails in the convergence rate
proof for A-BPGM. In other words, we need to understand what hap-
pens with the proof for A-BPGM if the Bregman Proximal step is made
inexactly by applying the generalized linear oracle. The first important
difference is that we need an inexact version of inequality (3.12), which
was used in the convergence proof of A-BPGM and which the result of
the exact Bregman Proximal step. To obtain its inexact version, let us
denote

() = apyy (SR + (VG x = Y1) 4+ 1),

Then generalized linear oracle actually minimizes this function on the
set X to obtain u**!. Thus, by the optimality condition, we have that
there exists & € dpu**!) such that (£,u**! — x) <0 for all x € X. Now
we remind that the Bregman Proximal step in A-BPGM minimizes
@(x) + Dj(x,u*). These observations allow to estimate the inexactness
of the Bregman Proximal step implemented via generalized linear ora-
cle. Indeed, for u**! = Ly, (. VLK)

(& + VR@FY) = VWX, ik ! — x) < (VR@FY) = VR@E), u* ! = x)
= =Dy (%, uF) + Dpy(x, ") + D, W) < @2, (6.23)

where we used three-point identity in Lemma 3.3 and that
max, ,ex Dy (x,u) < %2 This inequality provides inexact version of the
optimality condition (3.10) in the problem min, oy { @(x) + Dj,(x,u%)}, i.e.
(3.13) with A = Q2. This in order leads to (3.14) with A = Q2, which is
the desired inexact version of (3.12).

Let us now see, how this affects the convergence rate proof of A-
BPGM. Inequality (3.12) was used in the analysis only in (6.5). This
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means that the change of (3.12) to (3.14) with A = Q? leads to an addi-
tive term 2 in the r.h.s. of (6.5):
Agy

E‘I‘(u) + £ u€e X
Ak+]

(6.24)

A
Wikt < 2k gk 4 Dy, ) = =1 Dy () +
Ak+1 Ak+1

1
Ak+1 k+1
Multiplying both sides of the last inequality by A4, ;, summing these in-
equalities fromk =0tok = N — 1, and using that Ay — A, = Zsz_ol Xpy1s
we obtain

ANPGEN) £ AP0 + (Ay — ADP@) + D, (u, u®) — Djy(u,u™) + NQ2.
(6.25)

Since A, = 0, we can choose u = x* € argmin{D,,(u, u®)|u € X*}, so that,

forall N > 1,

Dh(x*,uo)
Ay

NQ?
AN

NQ? < Q2
Ay ~ 24y

PON) = Win(X) <

min 4

2
which, given the lower bound Ay > % leads to the final result for
/

the convergence rate of this inexact A-BPGM implemented via general-
ized linear oracle:

2L,Q7
(N +1y

2
4L,Q

YxM) - . (X) < .
(x™) =¥ (X)) < + N1

Thus, we obtain a variant of conditional gradient method with the
same convergence rate 1/N as for the standard conditional gradient
method. Using the same approach, but with U-A-BPGM as the basis
method, one can obtain a universal version of conditional gradient
method (Stonyakin et al., 2020) for minimizing objectives with Holder-
continuous gradient. The bounds in this case a similar to the ones ob-
tained in a more direct universal method in Nesterov (2018a). Similar
bounds were also recently obtained in Zhao and Freund (2020).

7. Conclusion

We close this survey, with a very important fact which Nesterov
writes in the introduction of his important textbook (Nesterov, 2018b):
in general, optimization problems are unsolvable. Convex programming
stands out from this general fact, since it describes a significantly
large class of model problems, with important practical applications,
for which general solution techniques have been developed within the
mathematical framework of interior-point techniques. However, mod-
ern optimization problems are large-scale in nature, which renders these
polynomial time methods impractical. First-order methods have become
the gold standard in balancing cheap iterations with low solution accu-
racy, and many theoretical and practical advances having been made in
the last 20 years.

Despite the fact that convex optimization is approaching the state
of being a primitive similar to linear algebra techniques, we foresee
that the development of first-order methods has not come to a halt
yet. In connection with stochastic inputs, the combination of acceler-
ation techniques with other performance boosting tricks, like variance
reduction, incremental techniques, as well as distributed optimization,
still promises to produce some new innovations. On the other hand,
there is also still much room for improvement of algorithms for opti-
mization problems which do not admit a prox-friendly geometry. Dis-
tributed optimization, in particular in the context of federated learning
is now a very active area of research, see Kairouz et al. (2021) for a
recent review of federated learning and (Gorbunov et al., d) for a re-
cent review of distributed optimization. Another important focus in the
research in optimization methods is now on numerical methods for non-
convex optimization motivated by training of deep neural networks, see
Danilova et al. (2020); Sun (2019) for a recent review. A number of open
questions remain in the theory of first-order methods for variational in-
equalities and saddle-point problems, mainly in the case of variational
inequalities with non-monotone operators. In particular, recently the
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authors of (Cohen et al., 2021) observed a connection between extra-
gradient methods for monotone variational inequalities and accelerated
first-order methods. Thus, as we emphasize in this survey, new con-
nections, that are still continuously being discovered between different
methods and different formulations, can lead to new understanding and
developments in this lively field of first-order methods.
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