WeierstraB-Institut
fir Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.
Preprint ISSN 2198-5855

Chaotic orbits for systems of nonlocal equations

Serena Dipierro’, Stefania Patrizi®, Enrico Valdinoci®

submitted: November 24, 2015

' Otto-von-Guericke-Universitat Magdeburg 2 The University of Texas at Austin

Fakultat fir Mathematik Department of Mathematics
Institut fir Analysis und Numerik 2515 Speedway

Universitatsplatz 2 Austin, TX 78751

39106 Magdeburg USA

Germany E-Mail: spatrizi@math.utexas.edu

E-Mail: serena.dipierro@ed.ac.uk

3 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: Enrico.Valdinoci@wias-berlin.de

No. 2182
Berlin 2015

I\
NSl

2010 Mathematics Subject Classification. 35R11, 34C28.

Key words and phrases. homoclinic and heteroclinic connections, chaotic orbits,symbolic dynamics, fractional op-
erators.

It is a pleasure to thank Matteo Cozzi for very useful conversations and the University of Texas at Austin for
the warm hospitality. This work has been supported by Alexander von Humboldt Foundation, NSF grant DMS-
1262411 “Regularity and stability results in variational problems” and ERC grant 277749 “EPSILON Elliptic PDE’s
and Symmetry of Interfaces and Layers for Odd Nonlinearities".



Edited by

WeierstraB3-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.

MohrenstraBe 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias—-berlin.de

World Wide Web: http://www.wias-berlin.de/



ABSTRACT

We consider a system of nonlocal equations driven by a perturbed periodic poten-
tial. We construct multibump solutions that connect one integer point to another
one in a prescribed way. In particular, heteroclinc, homoclinic and chaotic trajec-
tories are constructed.

This is the first attempt to consider a nonlocal version of this type of dynamical
systems in a variational setting and the first result regarding symbolic dynamics in
a fractional framework.

1. INTRODUCTION

Goal of this paper is to construct heteroclinic and multibumps orbits for a class of systems of
integrodifferential equations. The forcing term of the equation comes from a multiwell potential
(for simplicity, say periodic and centered at integer points, though more general potential with a
discrete set of minima may be similarly taken into account).

The solutions constructed connect the equilibria of the potential in a rather arbitrary way and
thus reveal a chaotic behavior of the problem into consideration.

More precisely, the mathematical framework that we consider is the following. Given s € (%, 1),

we consider an interaction kernel K : R — [0, +00], satisfying the structural assumptions K (—x)
K(x),

(1.1) % (1= 9) Xipol(®) ey 0 (1= 5)

|IE’1+25 |fL"1+25

for some pg € (0, 1] and ©¢ > 6y > 0, and
O

|$|2+25

(1.2) VK ()| <

for some ©; > 0.
We consider! the energy associated to such interaction kernel: namely, for any measurable
function @) : R — R", with n € N, n > 1, we define

(1.3) B(Q) = / [ K-y - Q) drdy

Our goal is to take into account the (possibly nonlinear) integrodifferential equation satisfied by
the critical points of F.

For this, given an interval J C R, a measurable function @) : R — R", with F(Q) < +oo,
and f € L'(J,R") we say that Q is a solution of

(1.4) L(Q)(x) + f(z) =0
if

15 2 / [ K1) (@) = Q) - (vle) = () dody + / F() - la) de =0,

LOf course, for a fixed s € (%, 1), the quantity (1 —s) in (1.1) does not play any role, since it can be reabsorbed
into 6y and ©y. The advantage of extrapolating this quantity explicitly is that, in this way, all the quantities
involved in this paper will be bounded uniformly as s — 1, i.e., fixed sg € (%, 1) and given any s € [so, 1), the
constants will depend only on sg, and not explicitly on s. This technical improvement plays often an important
role in the study of nonlocal equations, see e.g. [CS11], and allows us to comprise the classical case of the second
derivative as a limit case of our results.
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for any ¢ € Cg°(J,R™). We remark that (1.4) provides a single equation for n = 1 and a system?
of equations for n > 2.

In the strong version, the operator £(()) may be interpreted as the integrodifferential operator

4 / K(z - ) (Q) - Qy)) dy.

with the singular integral taken in its principal value sense.

The prototype of the interaction kernel that we have in mind is K (x) := ml‘l% In this case, the

operator £(Q) in (1.4) is (up to multiplicative constants) the fractional Laplacian (—A)*Q.
The setting considered in (1.1) is very general, since it comprises possibly nonlinear operators,
which are not necessarily homogeneous or isotropic.

The particular equation that we consider in this paper is
(1.6) L(Q)(x) + a(z) VIW(Q(z)) =0 for any x € R.

We suppose that W € C(R™) and that it is periodic of period 1, that is W(r + ¢) = W(r) for
any 7 € R" and ¢ € Z".
We also assume that the minima of W are attained at the integers: namely we suppose that

(1.7) W(¢) =0 for any ¢ € Z™ and that W(7) > 0 for any 7 € R" \ Z".

Also, we suppose that the minima of W are “nondegenerate”. More precisely, we assume that
there exist r € (0, 1/4], ¢o € (0,1) and Cy € (1, +00) such that

(1.8) col|m]P < W(r) < Col|? for any 7 € B,.

These assumptions on W are indeed rather general and fit into the well-established theory of
multiwell potentials.

The function a can be considered as a perturbation of the potential, and many structural results
hold under the basic conditions that a € C*(R) with o’ € L>(R), and that there exist a € (0, 1)
and @ € (1,4o00) such that

(1.9) a<a(r)<a for any = € R.

On the other hand, to construct unstable orbits, one also assumes that a satisfies a “nondegeneracy
condition”. Several general hypotheses on a could be assumed for this scope (see e.g. page 227
in [RCZ00]), but, to make a simple and concrete example, we stick to the case in which

(1.10) a(z) == a1 + a cos(ex),

with € > 0 to be taken suitably small and a; > as (to be consistent with (1.9) one can take a; :=
(@+a)/2 and ay := (@ —a)/2).

Notice that when € = 0, the perturbation function a reduces to a constant and thus it has no
effect on the structure of the solutions of (1.6). On the other hand, we will show that for small &
the perturbation a produces a variety of geometrically very different solutions. Namely, under the
conditions above, we construct solutions of (1.6) which connect chains of integers, thus proving a
sort of “chaotic” behavior for this type of solutions (roughly speaking, the sequences of integers can
be arbitrarily prescribed in a given class, thus providing a “symbolic dynamics”). The behavior of
this chaotic trajectories is depicted in Figure 1.

More precisely, the main result that we prove in this paper is the following:

2As a matter of fact, we observe that, with minor modifications of our methods, one can also consider the case
in which each equation of the system is driven by an integrodifferential operator of different order.



FI1GURE 1. A chaotic trajectory.

Theorem 1.1. Let (; € Z" and N € N. There exist (5,...,(y € Z" and by,...,bay_o € R,
with bjy1 = b; +3 foralli=1,...,2N — 3, and a solution Q. of (1.6) such that

lim Q*(ﬂf) = <17

1
swp[Q.2) ~ Gl < 1
€ (—00,b1]
1
sup  |Q«(2) — G| < = foralli=1,...,N —2,
€ [b2;,b2i41] 4
1
o 10.0) ol <

z€[ban—2,+00)
and lim Q.(x) = (n.

T——+00

More quantitative versions of Theorem 1.1 will be given in the forthcoming Theorems 8.4 and 9.3.

The result contained in Theorem 1.1 may be seen as the first attempt in the literature to deal with
heteroclinic, homoclinic and chaotic orbits for systems of equations driven by fractional operators
(as a matter of fact, to the best of our knowledge, Theorem 1.1 is new even in the case of a single
equation with the fractional Laplacian).

For local equations, the study of these types of orbits has a long and celebrated tradition and
the nonlocal counterpart of Theorem 1.1 is a celebrated result in [Rab89] (see also [CZRI1, Sér92,
Rab94, Rab94, Bes95, Max97, Rab97, BM97, BB98, ABM99, RCZ00, Rab00] and the references
therein for important related results).

We point out that the nonlocal character of the equation generates several difficulties in the
construction of the connecting orbits, since all the variational methods available in the literature
are deeply based on the possibility of “glueing” trajectories to provide admissible competitors. Of
course, in the nonlocal case this glueing procedure is more problematic, since the energy is affected
by the nonlocal interactions.

In the nonlocal case, as far as we know, multibump solutions have not been studied in the existing
literature. In the homogeneous case, heteroclinic solutions have been constructed in [PSV13, CS14,
CP15], but the methods used there do not easily extend to inhomogeneous cases (since sliding
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methods and extension techniques are taken into account) and cannot lead to the construction of
chaotic trajectories.

Also, in the framework of the existing literature, this paper is the first attempt to combine the
very prolific variational techniques used in dynamical systems to construct special types of orbits
with the abundant new tools arising in the study of nonlocal integrodifferential equations.

In this sense, we are also confident that the results of this paper can be stimulating for both
the scientific communities in dynamical systems and in partial differential equations and they can
trigger new research in this field in the near future.

From the point of view of the applications, for us, one of the main motivations for studying
nonlocal variational problems as in (1.6) came from similar equations arising in the study of atom
dislocations in crystals and in nonlocal phase transition models, see e.g. [GM06, MP12, GM12,
DFV14, DPV15, PV1ba, PV15b] and [SV12, PSV13, CS14, CP15].

Important connections between nonlocal diffusion and dynamical systems occur also in several
other areas of contemporary research, such as in plasma physics, see e.g. [ACNO06].

The rest of the paper is organized as follows. In Section 2 we collect some simple technical
lemmata and in Section 3 we introduce the basic regularity estimates needed for our purposes.
Then, in Section 4, we develop the theory of the nonlocal glueing arguments. In a sense, this
part contains the many novelties with respect to the classical case, since the classical variational
methods fully exploit several glueing arguments that are very sensitive to the local behavior of the
energy functional.

The use of the glueing results is effectively implemented in Section 5, which contains the new
notion of clean intervals and clean points in this framework. Roughly speaking, in the classical
case, having two trajectories that meet allows simple glueing methods to work in order to construct
competitors. In our case, to perform the glueing methods, we need to attach the trajectories in an
“almost tangent” way, and keeping the trajectories close in Lipschitz norm for a sufficiently large
interval. This phenomenon clearly reflects the nonlocal character of the problem and requires the
definitions and methods introduced in this section.

In Section 6 we develop the minimization theory for the nonlocal energy under consideration.
Differently from the classical case, this part has to join a suitable regularity theory, in order to
obtain uniform estimates on the nonlocal terms of the energy.

The stickiness properties of the energy minimizers (i.e., the fact that minimizing orbits stay close
to the integer points once they get sufficiently close to them) is then discussed in Section 7. This
property is based on the comparison of the energy with suitable competitors and thus it requires
the nonlocal glueing arguments introduced in Section 4 and the notion of clean intervals given in
Section 5.

Section 8 deals with the construction of heteroclinic orbits: namely, for any integer point, we
define the set of admissible integers that can be connected with the first one by a heteroclinic orbit
(indeed, we will show that this admissible family contains at least two elements).

In Section 9, we complete the proof of Theorem 1.1 by constructing the desired chaotic orbits.

2. ToOoLBOX

This section collects some auxiliary lemmata needed for the proofs of the main theorem. An
ancillary tool for these results is the basic theory of the fractional Sobolev spaces. In our setting,
given an interval J C R, we will consider the so-called Gagliardo seminorm of a measurable



function @) : R — R™, given by

o= (01 [ 5EE )

and the complete fractional norm, given by

QI sy = (@l + QI L2y

We also denote by |J| the length of the interval J. It is useful to observe that F(Q) controls the
Gagliardo seminorm, namely, by (1.1),

it <pthen EQ > [ [ K@ -)|e@ - Qu)l drdy

2.1 0o (1-5) |Q(z) — Qy)|’ )
=y g //JXJ 0 \x{—y|1+2s | da dy = 0o Q)
and so 1Qll =y < (65'E(Q))2 + Q-

In this framework, we recall a Holder embedding result that is uniform as s — 1:

Lemma 2.1. Let 5o € (%, 1) and s € [sg,1). Let J C R be an interval of length 1. Then, there
exists Sy > 0, possibly depending on n and sg, such that for any Q : J — R™ we have that

(2.2) (@l o.-3 5y < S0 [@lus)-

The proof of Lemma 2.1 follows the classical ideas of [Cam63] and can be found essentially
in many textbooks. In any case, since we need here to check that the constants are uniform
in s € [sg,1) (recall the footnote on page 1) and this detail is often omitted in the existing
literature, for completeness we give a selfcontained proof of Lemma 2.1 in Appendix A.

Now we define the energy functional

2.3) 1Q) = F(Q) + [ al) Q) do.

where E(Q) is the “free energy” introduced in (1.3).
In the next result we compute how much the energy charges “long” trajectories:

Lemma 2.2. Let ( = ((1,...,(n) € 2", 29 € R and Q = (Q1,...,Qy,) : R — R"™ be a measurable
function such that Q(z) € B.(C) for any x < x9. Assume that 1(Q)) < +o00 and

(2.4) Sup Qi(z) — G| > v,

for somev eN, v>1andie€{l,...,n}. Then
1(Q) 2 B(Q) +2lgav inf  W(7),

dist (7, Z")>1/4
where r and a are as in (1.8) and (1.9), and

_2
2s—1

Po 1
20 \48, (6, E(Q))

(2.5) (g := min

[N

Proof. Up to reordering the components of (), we may suppose that i = 1. Also, by a translation,
we may assume that ¢ = 0.



By (2.1), we find that [Q]gs(s) < (Ho_lE(Q))%, for any interval J with |J| < po. Consequently,
is bounded by S, (6;'E(Q))

=

by scaling Lemma 2.1, we obtain that [Q]

In particular, |@;| is a continuous curve, which, by (2.4), connects 0 with v and so it passes
through all the points of the form % 4+ m, for any m € {0,...,v — 1}. More explicitly, we can say
that there exists X, such that [Q1(X,,)| = 5 +m, for all m € {0,...,v — 1}. This says that

o=} () for any interval J

(2.6) Q1(X,) € % +Z.

Let now (¢ be as in (2.5). Then, for any z € [X,, — g, X + Lo,

Qi) — Qu(X,n)| < So (07" B(Q))? 65 * < i
and so, by (2.6),

dist (Q1(z), % +7) < i,
which gives that

dist (Ql(w), Z) >
for any x € [X,, — lg, Xy + lg]. Thus, writing 7 = (71,...,7,) and recalling (1.7),

W(Q(x)) =  inf  W(7),

dist (11, Z)>1/4

=T,

e

for any = € [X,, — lg, Xm + Lg]. As a consequence,

1@z + Y. [ W)

> F

Xm—Lo
> EQ)+2gav inf
>E

m=0

dist (1, Z)>1/4

20 inf W
(@) +2lgav St (1),

as desired. 0

3. A BIT OF REGULARITY THEORY

Goal of this section is to establish the following regularity result for solutions of (1.6) that are
close to an integer in large intervals, with uniform estimates as s — 1:

Lemma 3.1. Let so € (3,1) and s € [so, 1).
LetT >32,p>0, M, >0, €Z" Let Q € L*(R,R") be a solution of

L(Q)(z) + a(x)VIW(Q(z)) = 0

m [—2T, 2T], thh E(Q) + HQHL"O(R,R") g Mo'
Suppose that

(3.1) Q(x) € B,(C) for any x € [—2T,2T.
Then

CM,(1—s
IQllcos -rysoray < el = 1 ¢y,

with C' > 0 depending on n, so and on the structural constants of the kernel and the potential.



Proof. Up to a translation, we assume that ¢ = 0, hence (3.1) becomes
(3.2) |Q(z)| < p for any = € [—2T, 27.

We let 7, € C5°([—1,1],[0,1]) be such that 7,(z) = 1 for any z € [-1,3]. We define 7(z) =
7,(x/T) and u(x) := 7(x) Q(z). Notice that, by (3.2),

(3.3) |u(z)| < p for any x € R.

By Lemma 2.1, we already know that @) is continuous and so it is also a viscosity solution. Therefore
(see e.g. formula (2.11) in [BPSV14]), we have that, in the viscosity sense,

L(u) =7L(Q)+QL(T) - B(Q,7)

(3.4) = —7aVW(Q)+ QL(T) — B(Q,T)

n [T, T], where
= [ Ko=) Q@) - Q) (o) = 7(w))
We use (1.1) and we notice that, for any = € [— }

BQ.7)(x)| = / Kz — ) (Q) — Q) (r(x) — 7(y)) dy
R\[-T/2,T/2]
<2M, 0, (1 — s) / @)~ W) dy

R\[-T/2,T/2] |z — y[t12s

r
4

N’ﬂ

(3.5)
2M,0,(1—s) / |7(T ') — 7o(y)]
T2 B\1/21/2) |17 e — oyl
< CMO @0 (1 - S)
~ T2s )
for some C > 0.
Furthermore
Itz ) rte ) =2t
ly |12
B |To(T '+ y) + 7o(T e — y) — 27,(T 2| < C
= ﬁ |2 YS 72
hence
CMO @0 (1 — S)
(3. Qe(r) < o=,

up to renaming C' > 0.

Also, we observe that VIV vanishes in Z", thanks to (1.7). Thus, if we use (1.8), (1.9) and (3.2),
we see that if = € [—2T, 2T
(37) (@) alz) VIV(Q(2))| < a@|VIW(Q(x)) — VIV (0)| < @ [[Wl|crien) [Q(x)] < Chp,

up to renaming C'.
So we define

fi=—1aVW(Q)+QL(1) - B(Q,7)
and we deduce from (3.5), (3.6) and (3.7) that
CMO @0 (1 — S)
T?2s

(3.8) | fll oo ((=1/a,7/4) 7)) < + Cp,
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up to renaming C'. In addition, by (3.4), we know that
(3.9) Llu)=f
T T

in the sense of viscosity. So, we consider any interval J of length 1 contained in [—g, g}, and we
denote by J' the dilation of J by a factor 1/2 with respect to the center of the interval. Thanks
to (1.1) and (1.2), we can use Theorem 61 of [CS11] for the equation in (3.9) and obtain that
[ullcoairy < C (lullw@mny + [1fll o rrry).-
From this, (3.3) and (3.8), we obtain
CMC, @0 (1 — S)
T2s

up to renaming constants, which gives the desired result. 0

|w|lcor sy < + Cp,

4. NONLOCAL GLUEING ARGUMENTS

In the classical case, it is rather standard to glue Sobolev functions that meet at a point. In the
fractional setting this operation is more complicated, since the nonlocal interactions may increase
the energy of the resulting functions. We will provide in the forthcoming Proposition 4.3 a suitable
result which will allow us to use glueing methods.

As a technical point, we remark that we will obtain in these computations very explicit constants
(in particular, we check the independence of the constants from s as s is close to 1).

We first recall a detailed integrability result of classical flavor (with technical and conceptual
differences in our cases; similar results in a more classical framework can be found, for instance, in
Chapter 3 of [McL00]):

Lemma 4.1. Let § € (0,+00). Let Q : [0,400) — R"™ be a measurable function such that
(Qlus(j0,1)) < +00 and Q(0) = 0.

Then
+o0o
JREC O
4 0 QW) — Q)P 20/Qll o105
< G {/0 [/0 oz — y[iFes dy] dr + (23—1)’523*’1 ;
where
4

For the facility of the reader, we give the proof of Lemma 4.1 in Appendix B.
Remark 4.2. If one formally takes § = +oc in Lemma 4.1, then (4.1) reads simply

=9 [ Q) de < Qi
Following is the nonlocal glueing result which fits for our purposes:
Proposition 4.3. Let T € RU {—o0} and Ty € (11, +<]. Let xg € (T1,T3) and
b e (O, min{7y — xg, xg — Tl}}.



Let L : (Ty,x0] = R" and R : [z, T2) — R"™ be measurable functions with

// K (e —y)|L(x) — L(y)P dedy < +oc

(43) (T17$0)2

and K(x —y)|R(z) — R(y)|*dz d 0.
//(‘z07T2)2 ( y> | ( ) (y)| Yy <+

Assume that L(zo) = R(zo), and let

 JL(x) ifxe (Th, ),
Viz) = {R(:c) if x € (x9,T3).

Then
//(TI,TQ)2 K(z=y)[V(e) = V(y)l® dzdy

< // K(:c—y)\L(x)—L(y)deder// K(z —y) |R(x) — R(y)[* d dy
(4.4) ’ (T1,20)? - 0 |L(z) — L(y)|? (z0,T2)? vo+8 * |R(z) — R(y)|?

oo [ ([ B a) e [ ([ R )

+ % [||L||L°°((T1,m0),Rn) + ||R|\Lm((x07T2)an)}7
where . .

C, = Z * and C, = S<T0_51)’

and Cs 1is given in (4.2).

Remark 4.4. In the spirit of Remark 4.2, we observe that if one takes K (z) := @%, then one

can formally take 6y = ©y = 1 and § = 400, and also 7} = —oo and T = +00, hence (4.4) reduces
to

(45) VB < (1 + C) (L re(comason + Rl (octoon )

with
~ 4 4
= — 1 ] .
“ S<+<23_1>2)

We stress that formula (4.4) is more complicated, but more precise, than (4.5): for instance, if one
sends s — 1 in (4.4) for a fixed § > 0 and then sends  — 0, one recovers the classical Sobolev
case of functions in H'((Ty,T3)), namely that

(4.6) VI sy < Ll mo)) + Bl (@0

On the other hand, formula (4.5) in itself cannot recover (4.6), since it looses a constant.
In our framework, the possibility of having good control on the constants plays an important
role, for example, in the proof of the forthcoming Proposition 7.1.

Proof of Proposition 4.3. Up to a translation, we assume that zo = 0 and L(xy) = R(x¢) = 0. We
also denote D := (0,7y) and D~ := (T1,0). If T} # —oo, we notice that L(7;) may be defined
by uniform continuity, thanks to (4.3) and Lemma 2.1. Thus, we can extend L(x) := L(1}) for
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any r < 1. Similarly, if Ty # +o00, we extend R(x) := R(T5) for any = > T,. In this way, by
Lemma 4.1,

R CIE

L( 2 21| Ll 100 n
<[] EELSH g Al
,0)x (x,0) |1’—y| (2 _1)5

and / 2|72 |R(z)|* dw
D+

|R(x) — R(y)|? 2HRHLMXD+RHS
< OS // d'z‘ dy _|_ 5 ,
|: (0,8)x(0,x) |1‘ - y|1+25 (23 — 1) ﬂQs—l

where Cj is given in (4.2). Therefore, decomposing (77, Ts) into the two intervals D~ and DT, and
recalling (1.1),

‘//;ZQQKK y) V(@) = V(y)l* dedy
//D . K(x—y) |L(x) - (y>|2d$dy_//(p+)z K(x —y)|R(x) — R(y)|” dz dy
=2 [ KL - R dy

S 4// K(x—y) (!L(a:)\2+|3(y>\2) dx dy
D—xD+
z)]* + [R(y)”
< 400(1-— ded
0 S //; D+ |.’I;_y|1+2$ xray
40, (1 — o N
s #[/ o 2|L<w>\2dw+/ 1l 2\R<y>\2dy]
2 1— L 2
< O ( s) {// |L(z) — 152)| Lo dy
(BOx(@o) |z =yl
R(y)I 2 || Lf| o= (p- ) 2||R||LOO(D+Rn)]
+// dx dy + + ;
(0,8)x(0,2) ‘.’L‘—y’1+2s (25 — 1) 21 25 — 1) &1
as desired. -

5. A NOTION OF CLEAN INTERVALS AND CLEAN POINTS

In the classical case, a standard tool consists in glueing together orbits or linear functions. Due
to the analysis performed in Section 4, we see that the situation in the nonlocal case is rather
different, since the terms “coming from infinity” can produce (and do produce, in general) a
nontrivial contribution to the energy.

To overcome this difficulty, we will need to modify the classical variational tools concerning the
glueing of different orbits and of orbits and linear functions. Namely, in our case, we will always
perform this glueing at some “clean points” that not only produces values of the functions involved
close to the integers, but also that maintains the function close to the integer value in a suitably
large interval. This will allow us to use the regularity theory in Section 3 to see that the glueing
occurs with “almost horizontal” tangent in a large interval and, consequently, to bound uniformly
the nonlocal contributions arising from the nonlocal glueing procedure discussed in Section 4.
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Of course, this part is structurally very different from the classical case and, to this end, we
introduce some new terminology.

Definition 5.1. Given p > 0 and Q) : R — R", we say that an interval J C R is a “clean interval”
for (p,Q) if |J| = |logp| and there exists ( € Z" such that

sup |Q(z) — ¢| < p.
zeJ

Of course, the choice of scaling logarithmically the horizontal length of the interval with respect
to the vertical oscillations in Definition 5.1 is for further computational convenience, and other
choices are also possible (the convenience of this logarithmic choice will be explained in details in
the forthcoming Remark 6.4).

Definition 5.2. If J is a bounded clean interval for (p, Q), the center of J is called a “clean point”
for (p, Q).

Any sufficiently long interval contains a clean interval, and thus a clean point, according to the
following result:

Lemma 5.3. Let ¢o and r be as in (1.8). Let a be as in (1.9) and let J C R be an interval.
Let Q : R — R™, with I(Q) € (0,+00). Let p € (0,r] with

p 2s—1
5.1 < |logpl.
> (250 901E(Q)> los/
Suppose that

(5.2) g LH8 (250) 7 (1(@)*"] [log p|

coa 0y prT

Then there exists a clean interval for (p, Q) that is contained in J.
Proof. Assume, by contradiction, that
(5.3) J does not contain any clean subinterval.

By (5.2), the interval J contains N disjoint subintervals, say Ji, ..., Jy, each of length |log p|, with

(5.4) N3 (250)2311([(@))2351'

Coa 03 p7

By (5.3), none of the subintervals J; is clean. Hence, for any i € {1,..., N}, there exists p; € J;
such that Q(p;) stays at distance larger than p from the integer points. Now, letting

l, = P o
"\ 25 V0, TEQ)

and recalling Lemma 2.1, we have that, for any = € J! == [p; — {,, p; +{,),

s—% -1 87% _ B
Q) — Q)| < Qs e~ 21 < S0 o3 BQ G =2

Acc(ordi)ngly, Q(z) stays at distance larger than £ from the integer points, for any = € Jj, and so,
by (1.8),

W(Q(z)) =

4
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Also, by (5.1), at least half of the interval J! lies in .J;, hence

2y
W(Q(z))dz > 2L "
JmJi’ 4
Summing up over ¢ = 1,..., N, and using that the intervals J; are disjoint, we find that
2
1(Q) > 22 L
This is a contradiction with (5.4) and so it proves the desired result. O

Remark 5.4. In our applications, we will make use of Lemma 5.3 to orbits whose energy is
bounded uniformly. In this way, condition (5.1) simply requires p to be small enough and (5.2)
reads
C; |log p|
=z ==
p2s—l

for some C, > 0.

6. MINIMIZATION ARGUMENTS

In this section, we introduce the variational problem that we use in the proof of the main results
and we discuss the basic properties of the minimizers.

For this, we fix N € N, N > 2, and we fix (1,...,(y € Z" and by,...,bay_2 € R. We assume
that b1 > b; + 3 for any i € {1,...,2N — 3}.

We will use the short notation ¢ := (Ciy---,C¢Nn) € Z™ and b= (by, ..., bany_2) € RN=2 Givenr
as in (1.8), we also set

-

I‘(Q?, b) = {Q :R — R" s.t. () is measurable,

€ B,(¢) for a.e. x € (—o0,by],
Q(I) € BT<CZ) for a.e. z € [bzi_g,bgi_ﬂ and 7 € {2, . ,N — 1},
€ B,(Cy) for a.e. x € [ban_a, +oo)}.

(6.1)

Roughly speaking, the set F(f , E) contains all the admissible trajectories that link any integer

point in the array 5 to the subsequent one, up to an error smaller than r, and using the array b to
construct appropriate constrain windows, see Figure 2.
We also define

N-1
M = |CJ+1 - Cj
7j=1
In this framework, we can consider the minimization problem of the energy functional introduced
n (2.3), according to the following result:

=,

Lemma 6.1. Let sy € (3,1) and s € [so,1). There ezists Q. € I(C,b) such that

(6.2) sup Q. (7) — G < €,
HAS
(6.3) 1(Q.) < C,
(6.4) Q) sy < C, for any interval J with |J| < po,
(6'5> HQ* - Cluco,s—g(R) X Cv



FIGURE 2. The sets of admissible competitors in I'(¢, ).
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for some C' > 0 possibly depending on n, so, M and the structural constants of the kernel and the

potential, and

(6.6) [(Q.) < I(Q) for any Q € I((.b).
In addition,
(67> xEIEloo Q*(‘T) =G and mEIJ{loo Q*<$) = (n-

Proof. Let u € C*(R, [0,1/2]) be such that u(0) = 1/2 and pu(z) = 0 if |z| > 1. Notice that

[1 — /,L]HS(R) = [H]HS(R) < +o0.

Let (@)
o w(x if x <0,
n(w) = {1 —u(x) ifx>0.
Notice that n(z) = 0if 2 < —1 and n(z) = 1 if z > 1. Also, by (4.5),

sy < (14 C5) <[M]%IS(R) +[1 - M]%rs(R)) = 2(1 + C) [ulfrem) = (CL)*.

Let also
_ boiq + by

Bi : 5 for any i € {1,...,N — 1}

and Vot
Qo(r) =G+ > (G — G)nlz — 5y).
j=1

Notice that (; is an increasing sequence. We also claim that

(6.8) Qo € T((, D).
To prove this we note that:
o if © < by then

bz—bl< 3
2 2

r— 0 <bh—pi=—

forall j € {1,...,N—1}, thusn(x—p;) =0forall j € {1,..., N—1}, and then Qo(z) = (1;
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eifie{2,....N—1} and x € [by;_2,be;_1], then, for all j € {1,...,i — 1} we have that

boi—2 —ba—3 _ 3
=B Zbyo—fi1=—7F"" 23,
T ﬁg 2i—2 — [Bi—1 5 5

and thus n(x — §;) = 1 for all j € {1,...,i — 1}, while for all j € {i,..., N — 1} we have
that ; ) 5
B by = T O S
x — B 21— [3 9 5%

and thus n(z — §;) =0 for all j € {i,..., N — 1}, therefore a telescopic sum gives that
i—1
Qo(x) = G + Z(Cjﬂ —G) =G+ (G—C) =G
j=1
o if T = ng 2 then
ban—2 — ban—3
2 =
forall j € {1,...,N—1}, thusn(z—p3;) = 1forall j € {1,..., N—1}, and then a telescopic
sum gives that

x_ﬁ] bon—2 — Bn—1 =

N o

N-1
Qo(x) = C1 + Z(Cj+1 —G) =G+ (v —G) =
j=1
These considerations prove (6.8).
Moreover,

N-1
[Qolre@ < Y 1G+1 — Gl Mm@ < CL Z |Gir1 — G-
7=1

This and (1.1) give that
N-1

E(Q) < 60 [Qo]s ) < Ci60 Z |Cir1 — G-
=1

Also, we have that n(x — ;) takes integer values outside [3; — 1, 5; + 1] and therefore

Bji+1
/a(a:) W(Qo Z W(Qo(x))dr < 2Na sup W.
R j=1 Y Bi—1 R
Accordingly, we find
N-1
(6.9) 1(Q) < C7@0§:|@+y—@]+2NdsupW/ . ().
j=1

Now we take a minimizing sequence (), € F(E 1;) that is

(6.10) lim I(Qk) = mf I <0y,
k—+o00 IR

where we also used (6.8) and (6.9). Then, we write R as the disjoint union of intervals of length py,

say
R=]J7

with |Jy| = po and it follows from (2.1) and (6.10) that, for any ¢ € N,
(6.11) (Qk]r=(s,) 1s bounded independently on k.
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Also, by (6.10) and Lemma 2.2, we find that

(6.12) sup Q) — G| < O,
e

for some Cy > 0.

By (6.11), (6.12) and compact embeddings (see e.g. Theorem 7.1 in [DNPV12]), and using a
diagonal argument, we obtain that (), converges a.e. in R to some (),. By construction, ), €
['(¢,b) and, by Fatou Lemma,

limint 1(Qe) > 1(Q.).
—+00

Hence, recalling (6.10), we find that Q). is the desired minimizer in (6.6) and that (6.3) holds true.
Then, (6.4) follows from (2.1) and (6.3). Moreover, we see that (6.2) is a consequence of (6.12),
while (6.5) follows from (6.2), (6.4) and Lemma 2.1.

Now we prove (6.7). We deal with the case of © — 400, the other case being similar. We
argue by contradiction and assume that there exist Qo > 0 and a sequence zj, such that zp — +00

as k — +oo and |Q.(zx) — (| = ap. Let £:= ( 71 , where C' > 0 is as in (6.5). Then, by (6.5),
we find that, for any = € [z}, — E, :L'k; + /],

)™

Qu(2) - Que)| < Ol —miH < O < T

and 50 |Q.(7) — (| = G for any x € [z — £, 25 + ).

Notice also that Q.(z) € B,(Cy) for any z € [z, — £,z + ], since Q. € I'((,b), which says
that |Q.(z)—(n| € [22, r]. Therefore, for any x € [z,—¢, z+{], we have that dist(Q.(z), Z") > o,
for some «ay > 0, and thus

W(Qu(x)) = inf — W(r).

dist(7,Z") >
As a consequence
00 x4 00

[(Q)>a) W(Qu()dz>a  inf  W(r) Y (20) =

1 zp—0 dist(7,Z™) > 1
This is in contradiction with (6.3) and thus we have established (6.7). O

Now we observe that trajectories with long excursions have large energy, in a uniform way, as
stated in the following result:

Lemma 6.2. Let Q € T'(C,b). Assume that
sup |Qi(%) — Ci4l = v,

z€R

for someveN, v>1andi e {l,...,n} (where {; = (C11,...,Cn). Then

2s—1
(6.13) H@>mm&mu(“@)s-fﬁ}

2s — 1

where

ci=a inf W(r) and cy =2 ( b ) .

~ dist (1, Z™)>1/4

Proof. We distinguish two cases. First, if

1 Po
450 (0, E(Q))

SIS
N}
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then, recalling (2.5), we see that g = po/2 and so, by Lemma 2.2,

S )
HQ) = poav dist (T,Hzlg)>1/4 wi(r),

which implies the desired result in (6.13) in this case.
Conversely, if

we get from (2.5) that

2

o - 1 :(6);
¢ 18, (67" E(Q))? 450 (B(Q))7=

Hence, in this case, an application of Lemma 2.2 gives that

9% o 1
I(Q) > E(Q)+2av inf W(r 0 R
@rsasae 0 (4) g

(6.14) dist (, Zn)>1/4 450 Q)1
=E(Q)+ Lﬂ
(B(Q)=
A simple calculus also shows that the function
[0,400) 3t — ¢4+ 2
131

25—1 s— . .
takes its minimum at ¢, = (M) 2= I/%, where it attains a value larger than ¢,. Accordingly,

2s—1
from (6.14),

2s5—1

C1 Co 2s 251
P> . s
Q> (52)
which implies (6.13) in this case. O
Now we define
N-1
Jio = U (bai—1, ba;)
i=1
and
L, = {x € (—o0,b] s.t. |Q(x) — (| < r},
L, = {fL‘ S [bgi,%bgifl] s.t. |Q(.CL’) — CZ| < 7"}, with 7 € {2, .., N — 1},
Ly = {[I} S (bQN_Q,OO) s.t. |Q(.’I}) — CN’ < 7’}.
Let also
L= |J L& and F:=JUL

As usual, by taking inner variations, one sees that in the set F' the minimization problem is “free”
and so it satisfies an Euler-Lagrange equation, as stated explicitly in the next result:

Lemma 6.3. Let Q). be as in Lemma 6.1. For any x € F, we have that
(6.15) L(Q)(x) + a(x) VIW(Q.(x)) = 0,
as defined in (1.5).
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Remark 6.4. Given an interval J C R, it is convenient to introduce the notation
2
(6.16) EA@= [[ K-9|Q@ - Q) drdy
JxJ

For instance, comparing with (1.3), we have that Fg = E. Also, if J is the disjoint union of J;
and J,, then

E;(Q) =2 En(Q) + Ep(Q).
With this notation, we are able to glue two functions L and R at a point zy under the additional
assumption that

[Lleoa(wo-—paoh <1 and  [Rloo(wo-—p o)) < 7,
for some 1 > 0. Indeed, in this case,

zo+L0 x _ 2 zo+0 x
/ (/ |R(z) ]i(g)’ dy) dz < ?72/ (/ |$—y]12sdy> de
o o |$ - y| s xo )

772 63—25
T23-25)(1—9)

([ L) = L) U
/m_g (/ gt dy) M B

Therefore, Proposition 4.3 gives that
(6.17)

E(TLTQ)(V) - E(T1,xo)<L> - E(mo,Tg)(R> < C (772 B3_2S +

and, similarly,

| Ll oo (71 o) Ry + | B| oo ((20,70) R
ﬁQs—l ’
for some C > 0.

In particular, one can consider a clean point zy (according to Definitions 5.1 and 5.2) and glue an
optimal trajectory Q. to a linear interpolation with the integer ¢, close to @Q.(xo), namely consider

C 1fa;<m0—1,
V(z):=< C(xg— )+ Qulxg) (x —xo+ 1) ifz € (xg—1,20),
Q.(z) if x > x.

In this way, and taking p > 0 suitably small, by Definitions 5.1 and 5.2, we know that @, is p-close
to an integer in [zo — 3203, zo + 32/], with

_ _|logp|
(6.18) B=08(p) = 37

In particular, by Lemma 6.3, we have that @, is solution of (1.6) in [xg — 320,z + 320]. Also, due

to (6.2) and (6.3), both ||Q||ze(rrn) and I(Q,) are bounded uniformly. Consequently, we can use
Lemma 3.1 with 7" := 165 and find that

1
(6.19) [Q*]Co’l([wofﬁ,onrﬁ]) <C <ﬂ2s T p) ’

up to renaming C' > 0.
This says that in this case we can take n := C' (# + p) and bound the right hand side of (6.17)
by

1 1
(6.20) C <p2ﬂ328 + 33(2s5-1) + 525—1> =9,

thanks to (6.18), where we use the notation “{” to denote quantities that are as small as we wish
when p is sufficiently small.
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In this way, Proposition 4.3 can be used repeatedly to glue m functions, say @Q1,...,Q,, that
are alternatively minimal orbits and linear interpolations at clean points x1,...,x,,_1 where they
attach the one to the other. In this case, if () is the function produced by this glueing procedure,
we have that
(6.21)

E(Q) E(—oo,m)(@l) + E(117+OO) (Q) + <>
E(—Ooaxl)<Q1) + E(m,xz)(Q?) + E(x2,+00)(Q> + <
E(—oo,azl)(Ql) + E(z1,w2)(Q2) + E(wg,mg)(QS) + E(a:3,+oo) (Q) + <>

o< E(foo,ml)(Ql) + E(:tl,azg)(QQ) + -+ E(mm_z,xm_1)(Qm—1) + E(xm_1,+oo) (Qm) + <>

where Proposition 4.3 and (6.20) were used repeatedly.

NN NN

7. STICKINESS PROPERTIES OF ENERGY MINIMIZERS

Now we show that the minimizers have the tendency to stick at the integers once they arrive
sufficiently close to them. For this, we recall the notation in (6.16) and we have:

Proposition 7.1. Let p > 0, sg € (%, 1) and s € [so,1). Let Q. be as in Lemma 6.1.
Let x1, x5 € R be clean points for (p, Q.), according to Definition 5.2, with xs > x1 + 2, and

(7.1) max |Qu () — ¢ < p,
for some ¢ € 7.
Then
(7.2) Bav + [ ala) W(Qu(o)) o <0,

with & as small as we wish if p is suitably small (the smallness of p depends on n, so, M and the
structural constants of the kernel and the potential).

Moreover,
(7.3) |Q.(z) — ¢| < r/2 for every x € [x1, 3.
Proof. We define
Q.(x) if x € (—o0,11),
Qs(x1)(r1 +1—2) + {(x — x1) if v € [z, 21 + 1],
P(z) = ¢ ifrer+1,z0—1),
Qu(x2)(x — 22 + 1) + (22 — 7) if ¥ € [xg — 1, 29],
Q. () if x € (z9, +00).
We observe that, if x € (21, x2), then
(7.4)
|P(z) — ¢
< suwp Q)@ +1-y)+Cy—z1) = ¢+ sup [Q(z2)(y — 22— 1) + ((z2 —y) — (]
y€(x1,x1+1) yE(xza—1,22)

< Q1) — ¢+ 1Q(22) — (] < 2p.
We use (6.21) and we obtain that

(7~5) E(P) < E(foo,m)(Q*) + E(w2,+0<>)(Q*) +<¢ < E(Q*) - E(m,xz)(Q*) + <.
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In addition, by (1.8) and (7.4), if z € (x1,75) then W(P(x)) < 4Cyp?. Using this and the fact
that W(P(x)) =W(¢) =0if z € (1 + 1,22 — 1), we conclude that

/ WP de= [ W(P)) dr+ / Y W(P()) dr < SCy

x1

Thus, by the minimality of @, and (7.5),
0 < I(P)—1(Q.)
< (@)~ [ a0 W(@.() do + 0,

z1

which proves (7.2).
Now we prove (7.3). For this, we assume by contradiction that there exists & € [z, x2] such

that |Q.(Z) — (| > r/2.
Since @, is continuous, due to (6.4) and Lemma 2.1, and |Q,(x1) — (| < p < r/2, we obtain that
there exists & € [x1, 22 such that

. r
(7.6) Q@) =~
More precisely, by (6.5), we know that ||Q. _Clnc‘“*l ® is bounded by a constant C; > 1, possibly

depending on n, M and the structural constants of the kernel and the potential. In particular, if

we define ,
1 o\ %!
C1 ;= min
1 401 )

we conclude that, for any = € [ — ¢;,Z + cﬂ,

Q. (2) — Qu(@)| < Cy o — &% <

'-lklﬁ

This and (7.6) imply that

Q«(x) € Bsrya(C) \ Brya(C)
and thus
dist (Qu(z),Z") >
for all z € [& — ¢1,Z + ¢1]. This, (1.7) and (1.9) give that

'-lkl‘i

/w : a(x)W(Q«(x))dz > a o W(Q.(x))dz > 2c1a inf W(r) =: cs.

t—cy 2—cy dist (7, Z") >r/4
Hence, noticing that (Z — ¢y, 2 + ¢1) C (21, 22), we obtain that
2
[ a@w@ue)dr > e
1

and this is in contradiction with (7.2) for small p. Then, the proof of (7.3) is now complete. [

8. HETEROCLINIC ORBITS

Goal of this section is to construct solutions that emanate from a fixed (; € Z™ as x — —oo and
approach a suitable (, € Z" \ {(1} as © — 4o00. Roughly speaking, this (5 is chosen to minimize
all the possible energies of the trajectories connecting two integer points, under the pointwise
constraints considered in Section 6.

More precisely, fixed ¢; # ¢, € Z™ we consider the minimizer @, = Q%% as given by Lemma 6.1.
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Let

(8.1) I inf  1(QS%).

1 *

 Gern\{a)
By Lemma 6.2 we know that if |(; — (3| is very large, the energy also gets large, therefore only a
finite number of integer points (, take part to the minimization procedure in (8.1). Accordingly
we can write

8.2 I, = min I(Q%*<
(8.2) G = o Q%)

and define A((;) the family of all {; € Z™ attaining such minimum.

By construction, A(¢;) # @ and contains at most a finite number of elements. It is interesting
to notice that in the case of even potentials A((;) contains at least two elements:

Lemma 8.1. Assume that W(—1) = W(7) for any 7 € R". Then, if (s € A((1), also 2¢; — (3 €
A(G)-
Proof. We observe that

W (26 — Q(t)) = W(=Q(1)) = W(Q(t))

in this case, and so the desired claim follows. Il

Our goal is now to show that when connecting ¢; to (> € A((1), the optimal trajectory does not
get close to other integer points. This will be accomplished in the forthcoming Corollary 8.3. To
this end, we give the following result:

Lemma 8.2. Let sg € (%, 1) and s € [so,1). There exists p, > 0, possibly depending on n, sg
and the structural constants of the kernel and the potential, such that if p € (0, p.| the following
statement holds. R 3

Let ¢ € Z™ and Q € T((1,(,b1,b2). Assume that there exist ( € Z™ \ {(1,(} and a clean
point x, € (by,by — 1) for Q such that Q(z.) € B,(().

Assume also that Q € C*“(R), for some a € (0,1), and that

1
. 1 ogp o8 o < log p|2s
(8.3) (@lgo.s fo, - ogel 4,y t10get)y < C (\ log p|2* i p>

for some C' > 0. Then there exists ¢ > 0, depending on C, a, n and the structural constants of the
kernel and the potential, such that

1(Q) > I(Q) +c.
Proof. We define

Q() if x < xy,
P(z) =< Qz )z, +1—2)+((z —x,) ifze(z,z.+1),

¢ ifex>ux,+1.
By construction P € T'(¢y, ¢, by, bo) and ¢ # (;, therefore, using the minimality of Q52
(8.4) [(Q) < I(P).
On the other hand, using (6.21), we see that

+o00

(8.5) IP) - 1@< [ ala) [W(P@) - W(Qw)] de+ 0.

Now we use that ¢ # ¢ and that Q(by) € B,(C) to find y, € [z, by] such that Q(y.) stays at
distance 1/4 from Z". Then, by the continuity assumption on ), we find an interval of the
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form [y., y. + ¢'] such that Q(x) stays at distance at least 1/8 from Z™ for all z € [y.,y. + ¢].
Accordingly

/ @) W(Q(m))dx}g/y* W(Q@)de >al  inf  W(r) =&

dist (7,Z2")>1/8
Plugging this into (8.5) and using the definition of P, we obtain
I(P)-1(Q) <O ¢

Thus, we choose p small enough (which gives ¢ small enough) and we find

N o0

I(P) = 1(Q) < -
This and (8.4) imply the desired result. O

As a consequence of Lemma 8.2 we obtain:

Corollary 8.3. Let sq € (%,1) and s € [sg,1). There exists p, > 0, possibly depending on n
and the structural constants of the kernel and the potential, such that if p € (0, p.| the following
statement holds.

Let ¢, € Z" and (5 € A(C1). Assume that there exist ¢ € Z™ and a clean point x, € (by,by — 1)
such that Q52 (z.) € B,(().

Then ¢ € {C1, G}

Proof. Suppose by contradiction that ¢ & {(;,(s}. Then Q%% satisfies the assumptions of
Lemma 8.2 with ¢ := ¢, (recall (6.5) in order to fulfill the continuity condition in Lemma 8.2, and
also (6.18) and (6.19) in order to fulfill the Lipschitz condition in (8.3)). Hence, using Lemma 8.2
with Q = Q%+, we obtain that [(Q$%) > I(Q%?) + ¢, with ¢ > 0, which is an obvious
contradiction. O

Now we are in the position of establishing the existence of heteroclinic orbits connecting ¢; € Z"

and CQ S A(Cl)

Theorem 8.4. Let sy € (3,1) and s € [so, 1). Assume that (1.10) holds.

There ezist €, > 0 and by > by € R, possibly depending on n, sy and the structural constants of
the kernel and the potential, such that if € € (0,¢,], the following statement holds.

Let Cl € Z"™ and CQ € A(Cl)

Then QS is a solution of (1.6).

Proof. By (6.3) and Lemma 6.2, we know that 7(Q$?) is bounded by some quantity (independently
on the choice of b; and by).
We fix p € (0,r), to be taken sufficiently small and we define

7
12
We suppose that ¢ is so small that
C, |1
(8.6) s Celloerl
p2571

for a suitably large constant C, > 0 (of course, condition (8.6) is just a smallness condition on &
and C, > 0 is chosen so that (5.2) is satisfied).
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Let also by := L and by := 23L. By (1.10) we have, for any x € [by — L,b; + 2L] (that
isex € [0, ﬂ),

a(x) —alx + L) = ay [COS(*W) — 08 (Ew + 1%)}

(1 ot ] 0 1~ )
= a — COS — ] COS(EX Sl — SIN(EXT = Q — COS — COS—::,
2 12 12 2 12 17

(8.7)

with v > 0.
Also, for any x € [by — 2L, by + L] (i.e. # € [21L,24L]) we define & := 2* —z € [0,3L] =
[b1 — L, by + 2L], and we use the 2X-periodicity of a, the fact that a is even and (8.7) to obtain

(8.8) alx—L)—a(z)=a(—T— L) —a(—-%) =a(T+ L) — a(Z) < —7.

Now, to prove Theorem 8.4, we want to show that Q2 does not touch the constraints of I'(¢y, (2, by, bs),
as given in (6.1) (then the result would follow from Lemma 6.3).

That is, our objective is to show that Q$2(x) does not touch dB,(¢;) when z < b; and does
not touch 0B, ((z) when x > bs.

We assume, by contradiction, that

(8.9) there exists z; < by such that Q2(x1) € 9B,((1),

the other case being similar (just using (8.8) in the place of (8.7)).
By (6.7), there exist sequences xy < by, with x; — —00 as k — 400 and y = by, with yp — 400
as k — +o00, and such that

(8.10) Q¢ (zx) € B,(G1) and Q5 (yx) € By(G2).
We observe that
by — by = 3L.

Hence, by (8.6), condition (5.2) is satisfied by the interval (by + L,b; +2L) C (by + L, by — L) (recall
Remark 5.4). Consequently, by Lemma 5.3,
there exist a clean point x, € (by + L, by +2L) and ¢ € Z"

(8.11) such that Q5% (z.) € B,(().

By Corollary 8.3, we obtain that only two cases may occur, namely either { = (; or ( = (5.
Suppose first that ¢ = (3. Then, in virtue of (8.10) and (7.3) in Proposition 7.1, we have
that Q$:2(z) € B,/2((1) for every x € (x4, z.] and so, by sending k — 4o, for every z € (—o0, z..].

In particular, we get that Q$2(z) € B, 2(¢) for every z < by and this is in contradiction with (8.9).
Therefore, it only remains to check what happens if

(8.12) (=6

In this case, we use (8.10) and (7.3) in Proposition 7.1 to see that Q" (z) € B, 2((2) for every z €
[z.,yx] and so, in particular,

(8.13) Q$2(z) € B, j2(¢) for every x > by — L.
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Now we define P(r) := Q$+*?(z— L). Due to (8.13), we have that P € I'((1, (2, by, by) and therefore,
by the minimality of Q%2,

0 < I(P) — 1(Q0) = / o) W(P(x)) dr — / o) W(QS-% () da

R

(8.14) — [ @) W@~ L do~ [ ale) W@ () da

_ /]R [az + L) — a(z)] W(QS%(x)) da.

Now, recalling (8.6), we see that condition (5.2) is satisfied by the interval (by — L, b;) and so, by
Lemma 5.3, we find some ¢; € Z" and a clean point z; € (by — L,by) with Q$2(zy) € B,((y).
Since QS € I'((y, G2, b1, ba), necessarily ¢; = (;.

Accordingly, by (7.2), and recalling (8.11) and (8.12), for large k£ we have that

[Cawmw@eeaa <o md [Tl W@ ) e <0,

Tk

and thus, sending k£ — +o00,
b1—L —+00

W(Q (x)) do + W(Q () do < O

—00 b1+2L
Using this and (8.7) into (8.14), we conclude that

b1+2L
0 <O+ / [a(z +L)— a(x)] W(Q5 (2)) du
(8.15) e
<o—r [ WEEe@)dr

Now we observe that Q$2(b; — L) € B,((;) and Q%?(z,) € B,(¢), due to (8.11) and (8.12).
Therefore, by continuity, there exists y, € (by — L,x,) C (by — L,b; + 2L) such that Q$2(y,)
stays at distance 1/4 from Z". By (6.5), we find an interval J, of uniform length centered at y.
such that Q$2(x) stays at distance greater than 1/8 from Z", for any = € J,.. So we let J; :=
Jo N (by — L, by +2L) and we get that |J;| > |J.|/2 > ¢, for some ¢ > 0, and

b1+2L
/+ W(QS () de > | W(QM%(x))de >¢  inf  W(r)=¢é
b

1—L J dist (7,Z")>1/8
By plugging this into (8.15), we conclude that
0< O —¢e.

The latter quantity is negative for small p and so we have obtained the desired contradiction. [J

9. CHAOTIC ORBITS AND PROOF OF THEOREM 1.1

This section deals with the construction of orbits which shadow a given sequence of integer
points. The integers are chosen in such a way that there is an heteroclinic orbit joining them, as
given by (8.2).

We have seen in Corollary 8.3 that, when joining two integer points in an optimal way, it is
not worth to get close to other integers. Now we want to prove a global version of this fact,
namely, when connecting several integer points, in the excursion between two of them it is not
worth to get close to other integers. Of course, the situation in this case is more complicated
than the one in Corollary 8.3, because a single heteroclinic is not a good competitor for the whole
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FIGURE 3. Glueing Q, with Q¥+%+2,

multibump trajectory (even in the local case, and the nonlocal feature of the energy gives additional
complications when cutting the orbits).
In this context, the result that we have is the following:

Proposition 9.1. Let sq € (%, 1) and s € [so, 1). There exist p, > 0 and C, > 0, possibly depending
on n, so and the structural constants of the kernel and the potential, such that if p € (0, p.] the
following statement holds.

Assume that

(91) €i+1 S A(Cz) fO’I” all i € {1, o, N — 1}
and that
C, |1 .
(9.2) bir > b+ S8 e aN )
stfl

Let Q, € F(f, g) be the minimal trajectory given in Lemma 6.1.
Suppose that there exist ( € Z", j € {0,..., N —2} and a clean point x, € [byji1,baj12 — 1] such
that

(9.3) Q.(z.) € B,(C).
Then ¢ € {Cjy1, Gjra}-
Remark 9.2. When N = 2 and j = 0, the claim in Proposition 9.1 reduces to that in Corollary 8.3.

Proof of Proposition 9.1. The idea is, roughly speaking, that we can diminish the energy by glueing
a heteroclinic in lieu of the wide excursion. The argument is depicted in Figure 3 and the rigorous,
and not trivial, details are the following.

We argue by contradiction and we suppose that

(9.4) C & {Cjt1, Giga}-

Thanks to (9.2), we can exploit Lemma 5.3 and find clean points for Qij“’@“

, namely
__4s
Yu1 € (b2jp1 — Cp 2T [log p|, bajr — 1)
__4s
and w2 € (byjrz + 1, byjia + Cp 2T [log p|)
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such that
Ci+1,G5+2 . <
sup |Qx () = Gl <p
ze[y*,r—l logp‘ , y*,1+7‘ lofpl]
and sup QU2 (1) — ol < p.

xe[y*,zfllzigp‘, y*,2+%]
Similarly, we find clean points for @), say

__4s
Zx,1 € (sz, bgj + Op 21 |10gp|)
__4s
and Zs2 € (b2j+3 - Cﬂ Zs—1 HOg p|7 b2j+3)

with
sup |Q:(x) = Gl < p
me[z*,lf ‘ 102gp| ) Z*,l“F | lo2gp\]
and up Q.() — Gl < .

lo, lo.
1‘6[&,2—%, 2*,2+%]

Then we define

Cj-i—l if z < Zx1 T 1,
Qu(261) (= 2en + 1) + (1 (2en — ) if 2 € (201 — 1, 204),
Q*(x) := Q.(x) if © € (241, 242),
Qu(22) (za2 +1—2) + (o (v — 202) i 2 € [202, 202 + 1],
Cjt2 if x> z.0+ 1.

Thus, recalling the notation in Remark 6.4 and formula (6.21),

(9.5) E(QF) € Bau e )(Q4) + 0.

On the other hand, by construction z, € (2.1, z«2), therefore

(9.6) Q*(z.) = Qu(w.) € B,(Q).

Notice also that QF € I'((j11,j+2, baj+1, ba2j+o). Hence, we use (9.4) and (9.6) in combination with
Lemma 8.2, to find that

@) > 1Q979) +c,
for some ¢ > 0. This and (9.5) give that

(9.7)
¢ <I(Q) - QY

< Blerin) (@) = B(QUTH97) + / " (@) W(Qu(x)) di — / a(z) W(QE 9+ (2)) dx + <

N

Bl o) (@Q0) = Eoy s ) (Q9H9%2) & / T a() [W(Qu(r) = W(QE (2))] do + O
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Now we define

( Q.(x) if v < zi1,
Qu(2e1) (o1 +1—2) + (1 (2 — 241) if © € [zu1, 201 + 1],
Gt if v € (21 +1, o1 —1),
) QU () (r — g + 1) + Gt (n — 7)) if 2 € [yn — 1,9,
Qz) == QIR (1) if £ € (Yur, Yu2),
Qiﬁl’cﬁrz (Ys2) a2 + 1 —2) + Gyo (T — Yu2) if © € [Yu2, Vs + 1],
Gtz if £ € (yuo+1, 2020 — 1),
Qi(22) (. — 22 + 1) + (g2 (242 — @) if # € [ze0— 1, 22),
L Q.(x) if x> z.o.

Accordingly, exploiting (6.21),

E(Q) < Bl )(@Qs) + By y ) Q) 4 Bia o) (@) + €.
Then, since (Yu1,Ye2) C (2a1, 242),

(9-8) E(Q) < E(—OO,Z*,l)(Q*) + E(z*,l,z*,z)(Qgﬂhng) + E(m,m—i—%)(@*) + <>
Also, Q € F(f, q), hence the minimality of @, gives that

(9.9) 1Q.) < 1(Q).

Furthermore

/ " ale) W Q) de = / " @) WQE (@) de + O

Yx,1

< /2 a(z) W(QY 9% (x)) du + .

*,1

This, (9.8) and (9.9) imply that

0 < 1(Q)-I(Q.)
< Bloomn) Q) + By e (Q579%) L B, 10 (Qu) — B(QL)
+ [ ale) [W(QE) - W(Qu@)] do+ 0
< Bl Q) — B (@) + / " (@) [WQE9 () - W(Qu(2))] da + 6.

Comparing this with (9.7), we obtain that ¢ < <, which is a contradiction when we make < as
small as we wish (recall the notation in Remark 6.4). O

Now we can construct the desired multibump trajectories:

Theorem 9.3. Let so € (3,1) and s € [so,1). Assume that (1.10) holds.
There exist €, > 0 and boy_9 > boy_3 > -++ > by > by € R, possibly depending on n and the

structural constants of the kernel and the potential, such that if € € (0,¢.], the following statement
holds.

Let (1 € Z". Let (5 € A(C1), ..., (N E A(CNfl).
Then Q5N is a solution of (1.6).

Remark 9.4. When N = 2, Theorem 9.3 reduces to Theorem 8.4.
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Proof of Theorem 9.3. In view of Lemma 6.3, we need to show that the trajectory does not hit the
constraints. We argue by contradiction. The idea of the proof is that: first, by Lemma 5.3, we find
an integer point close to the trajectory in a clean interval; then, by Proposition 9.1, we localize
the integer with respect to the two integers leading to the excursion of the orbit; this distinguishes
two cases, in one case we use Proposition 7.1 to “clean” the orbit to the left (or to the right),
in the other case we will be able to translate a piece of the orbit and make the energy decrease
using (1.10), thus obtaining a contradiction.

The details of the argument are the following. We use the short notation Q, := Q$*~. By (6.3)
and Lemma 6.2, we know that I(Q.) is bounded by some C, > 0 (independently on the choice
of by,...,bon_2). Thus, we fix p € (0,7), to be taken sufficiently small, and we set

o
Co12e’
We suppose that ¢ is small enough, such that
C,i |1
p2sfl

for a suitably large constant C,, and we set b; := L and then recursively
bgj = bgj_l + 22L
and b2j+1 . sz + 50L.

We suppose, by contradiction, that there exists p, such that one of the following cases holds true:

(9.11)

(9.12) ps € (—00,b1] and Q. (ps) € IB,(¢1),
(9.13) Ds € [baj, boji1] for some j € {1,..., N — 2}, and Q.(p.) € 9B, (¢j41),
(9.14) Ps € [ban_2,+00) and Q. (p.) € IB,.((n).

We deal with the cases in (9.12) and (9.13), since the case in (9.14) is similar to the one in (9.12).
So, let us first suppose that (9.12) holds. In this case, we observe that by — b; = 22L and so

we can use Lemma 5.3 (recall (9.10) and Remark 5.4) to find an integer point ¢ and some clean
point z, € (by + L,by + 2L) for Q.(- — L) such that

(9.15) sup Qu(z — L) = (| < p.

log log
xe[:c*fl Qgp\7x*+\ 2&0\]

By Proposition 9.1, we know that either ¢ = ¢y, or { = (5. But indeed ¢ # (i, otherwise, by (6.7)
and Proposition 7.1, we would have that |Q.(z) — (;| < r/2 for any x < z,, in contradiction with
the assumption taken in (9.12).

Consequently, we have that

(9.16) ¢ =G

We also remark that, by Lemma 5.3, there exists a clean point y,. € [by + 1,by + 1 + L] for Q. such
that

(9.17) sup |Qu(7) — G < p.

me[y*_llogp\7y*+llo2gp\}

Then, we define

Q«(x — L) if v < x,,
) Qu(re — L) (xe + 1 —2) 4+ G (v — x4) if v € (x4, T + 1),
Qz) = (o ifx €z, +1, y. — 1],
Co (s — ) + Qulys) (x —yu + 1) if v € [y. — 1, u.,
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We point out that
(9.18) Q € T(C,b).

Indeed, if v < b; then z < z,, and also x — L < by, hence Q(w) = Q.(x — L) € B,(¢1). In addition,
if > by, we have that z > 23L > z, + 1, and so Q(x) always lies in a p-neighborhood of (s, up
to x = y,, or coincides with Q., thus completing the proof of (9.18).

From (9.18) and the minimality of @, we obtain that

0 <I(Q) - 1(Qx)
< Ecoow) (Qx) + Efy. 00) (@) — E(Qx)
(9.19) + /_ (@) W(Qu(x — L)) do — /_ Ca(2) W(Qu(x)) da + O

< [ oo+ 1) - @] W@ do 1 0,

where we used the notation in Remark 6.4 and (6.21) (we stress that (9.15), (9.16) and (9.17) give
that the contributions coming from the linear interpolations are negligible).
Now we use Lemma 5.3 to find a clean point z, € [by — L, by] for Q. and so, by (6.7) and (7.2),
bi—L

a W(Qu(x)) dx < §-

—0o0

We insert this into (9.19) and we conclude that

0< /:*_ [z + L) — a(2)] W(Q.(z)) dz + .

1—L

Accordingly, recalling (8.7),

rx—L
(9.20) o<y [ W@ ) do+o,
bi—L
for some v > 0. Now, Q.(b; — L) lies close to (i, while Q.(x. — L) lies close to {3 (due to (9.15)):
hence, by continuity and (1.7), we have that W (Q.(x)) picks up a non-negligible contribution in a
subinterval of [by — L, z, — L], namely

Tu—L
/ W(Q.(x))dx > ¢,
bi—L

for some ¢ > 0. This and (9.20) imply that 0 < —cy+<), which is a contradiction when we make
as small as we wish. This completes the proof of Theorem 9.3 in case (9.12).

Now we assume that (9.13) holds true. Then, by Lemma 5.3 (recall (9.10) and Remark 5.4),
we know that there exist clean points y._ € [bgj + %, byj + %] and y, 4 € [bng — %, baji1 — ﬂ
for Q., such that |Q.(y.+) — (j+1| < Cp, with C' > 0.

Hence, by (7.3),

sup  |Qu(z) — G| <

xe[y*177y*)+]

This and (9.13) imply that p, € [baj, Yu—| U [y +, b2jt1].
So, we assume that

(9.21) s € [baj, ys-,

N3
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FIGURE 4. The points z., T, P, Ys— and y, ;.

the other case being similar. We use again Lemma 5.3 to find an integer point ¢ and some clean
point z, € [bgj — %, baj — %] for Q)., such that
(9.22) |Qu(2.) — ¢ < Cp,
with C' > 0. By Proposition 9.1, we know that either ¢ = (;, or ¢ = (j41.
But it cannot be that ¢ = (j41, otherwise, by (7.3), we would have that

Qu(ps) — Gal £ sup [Qu(®) = G| < sup |Qu(z) — (] <

xG[ij,b2j+1—L] me[x*,y*,+]

Y

N 3

in contradiction with (9.13).
Hence, we have that

(9.23) =6

Now we use again Lemma 5.3 to find a clean point z, € [bgj,l — %, boj_1 — ﬂ for Q,, such that

|Q*(Z*) - CJ‘ < va

with C' > 0. We refer to Figure 4 for a sketch of the situation discussed here (of course, the
picture is far from being realistic, since the horizontal scales involved are much larger than the
ones depicted).

In this context, we can define the following two competitors: we let Q1(x) be

( Q.(z) if z < 2,
Qu(ze) (zs +1—2) + (i (z — 2,) if v € (2., 2. + 1),
G ifx €z +1, z,— 1],
Gz —2) + Qu(zy) (x — e + 1) if x € (xe — 1, ),
Q.(x) if 2 € [0, o,]
Qu(Ys-) (Ys— + 1 —2) + G1 (T — 4 ) if ¥ € (Yoo Yoo + 1),
Gt ifz €y +1, yur — 1],
Qu(Yst) (T = Yurp + 1) + Gi1 (Yorr — T) fz€ (Yt — 1, Yurt),
\ Q*(l’) if x > Yt
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and Qo) be

Q1(x) ifr<x,—1-1L,
(e —1—-L)(xs —L—2)+Q(xs) (x —2,+1+L) ifze(x,—1—1L, z.— L),
Qi1(z+ L) if z€fr.,— L, yu],
Qu(Ys—+ L) (Yo + 1= 2) + Quye -+ 1) (7 — ) if 2 € (Y- Yoo +1),
Q1(x) ifz >y, +1

We observe that
(9.24) I(Q1) — 1(Q.) < O,

thanks to (6.21). Also, by inspection, one sees that @1, Q2 € F(f , E) As a consequence, comparing
the energy of the minimizer @), with the one of the competitor Q2 and using (9.24),

0 < I(Q2) — I(Qx)
= 1(Q2) — I(Q1) + 1(Q1) — 1(Qx)
S I(Q2) — I(@Q1) + €
S B cow1-0)(Q1) + B, -1y, )(Q1) + By, 41,400 (Q1) — E(Q1)

(9-25) Yo Yo, +1
+/_La(x)W(Q1(x+L))dm—/_l a(z) W(Q1(x)) dz + &
</ " e — W@ (x)) de / <> W(Qu(x)) dz + .

Now we notice that if x € [y, - + 1, y.— + L] C [ys— + 1, y. 4+ — 1] we have that Q1(z) = (;41 and
so W(Q1(x)) = 0. Using this information into (9.25), we obtain that
Yoo +1

0 < /y*’ a(z — L) W(Qr(x)) dx —/ ) W(Qi@) e +9

(9.26) -
< / [z — L) — a@)] W(Qu(2)) dz + 6.
Now we claim that

2
(9.27) by; + L € 24LN = g N.

To check this, we recall (9.11) and we perform an inductive argument. Indeed, we have that by+L =
23L + L = 24L, which checks (9.27) when j = 1. Suppose now that (9.27) holds for some j and
we prove it for the index j + 1. For this, we use (9.11) to write

b2j+2 + L = b2j+1 + L +220 = (ij + L) +50L + 22L € 24LN,

as desired.

This proves (9.27), from which we deduce that the interval [by; — 2L, by; + L] is a translation
by @ of [21L,24L}, for some k; € N. This, the periodicity of a and (8.8) give that, for any = €
lby; — 2L, by; + L),
(9.28) a(x — L) — a(z) < —,
for some v > 0. Now, since [z,, y._ + 1] C [by; — 2L, by; + L], we have that (9.28) holds for
any x € [z, Yo — + 1].

Consequently, by (9.26),

Yo —+1
(9.29) 0 < —7/ W (Q1(x))dx + .
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Since @Q1(z,) = Q.(x.), which is close to (;, by (9.22) and (9.23), and Q1(y«— + 1) = (41, it
follows that the potential picks up some quantities when going from z, to y. _ + 1, hence (9.29)
gives that 0 < —cy + ¢, for some ¢ > 0.

This is a contradiction when we take {» appropriately small, hence we have completed the proof
of Theorem 9.3. 0

Now, we obtain Theorem 1.1 from Theorem 9.3.

APPENDIX A. PROOF OF LEMMA 2.1

We follow the proof given in Section 8 of [DNPV12], by keeping explicit track of the constants
involved.
Given zy € J and p > 0, we define J,, , := (2o — p, 20 + p) N J,

1
Qaro,p = Q(y) dy
|J$07P| Jzo,p
and
(A1) @ei= s> [ 106 - Qo
zp€ Jz
550 0:P

First of all, for any £ € R™ and any p > 0,

2
1 1
(A.2) 1€ = Quo,l® = . / [€-QW)]dy| < € - QW[ dy.
‘Jro,p‘ Jzg,p |on,p| Jzg.0
Also, we observe that, for any p € (0, 1],
(A.3) | Jz0.0l € lp; 20].
Now, we claim that for any R € (0,1] and R € (0, R),
2 1

(A.4) Quot = Quotl < | —5—7—5 + V2| QLR .

log2 - (s — 5)

For this, we fix po > py > 0, with py < 1, we use (A.2) with £ := Qy,, and p := p;, then we
recall (A.3), and so we obtain that

1
‘Qmoypz - Qroyp1|2 <

|

07,01| Jzg,01

‘on,pg - Q(y) ’2 dy

(A5) 2s
<2 [ Qum— Q)| dy < 21Qz

N P Jzg.p0
Now we fix k € N, k > 1, such that

1 —1 1

<R ' R<

(A.6) oF S Ls 57

and we define R; := R/2¢, for any i € {0,...,k}. Notice that

R < R < 2Ry,
due to (A.6). Then, we can use (A.5) with ps :== R and p; := R}, and find that

S

(A7) Quot — Qo] < 2 [Q) < V2R Q)

2
k
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Now we use (A.5) with ps := R; and p; := R;;1 and we add up. In this way, we conclude that

—_
>
|
—

“+oo
S
- 1

Quo,r; — Quo iy | < [Qs Z R < \/5}_25—% Qs Z m

|on7R0 - Q107Rk| <
=0 i—0 R? i=0

(A.8) ‘ 1
= \/EES_% [Q}s 281 -

Hence (A.7) and (A.8) give that

2R [Q),

Noticing now that Ry = R, we obtain (A.4), as desired.
Now we use (A.2) with § := Q(x) and we integrate over « € J,, ,, to find that
(A.9)

J

z(,p

‘Qmo,Ro - onﬂ‘ <

[\»}
|
=
S
E

;

log2 - (s— %)

9 1 2 1 2
Q) ~ Qe < [ o - QU asav< ] ff - fot) - @l dra

z(,p

where the last inequality comes from (A.3). Notice now that if z, y € Jy,, € (0 — p, 20 + p),
then |z — y| < 2p. Hence, by (A.9),

wo )

x(,p

2
2 1425 25 ‘Q(m) - Q(y)|
Q) ~ Qo P dx <277 //J e ddy
< 8% [QlF ()
By comparing (A.1) with (A.10) we deduce that

(A.11) [@Qls < VB[Ql+()-
From (A.4) and (A.11), we obtain that

N

(A.12) Qoo 7 — Quorl < V8 (W

Now we claim that

(A.13) ( is continuous in J.

For this, we use (A.12) and the assumption that s > %, to find that the sequence of func-

tions G,(x) 1= Qs is Cauchy in L*>°(J) and so there exists a subsequence p; — 0 such that
(A.14) G, converges to some G uniformly in J, as j — +o0.

Now we observe that

(A.15) G, is continuous in J,

for any fixed p € (0,1]. Indeed, we know that @ € L'(.J) (see e.g. formula (6.21) in [DNPV12]).
Therefore, if x;, € J and zp — z, as k — +oo, we deduce from the Dominated Convergence

Theorem that
1

|

ooyp‘ Ja:oo,p

lim Qy) dy = Q(y) dy.

k—-o00 |Jxoo7p’ Jayp
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Accordingly
lim |G,(x) — Gplzoo)|

k——+oc0

lim
k—-+o0

Qy) dy —

[ Lol Jzkp RN

[ aw)
and this gives (A.15).
By (A.14) and (A.15), we obtain that

(A.16) G is continuous.

Q(y) dy| +

N

Qy) dy — Qy) dy

Jap,p Jeoo,p

|J$ooyp|

N

lim
kHJFOO‘ka p| xoopl

Now, for any x in the interior of the segment .J, we have that J,, = (v — pj,x + p;) if j is large
enough and so, if x is also a Lebesgue point for @),

. 1
G(z) = lim Gy, (x) = lim Qup, = lim —— Tl ), Qy) dy
1 z+p;
= lim — = Q(x).
), Qy) dy = Q()

Accordingly, () and G coincide in all the Lebesgue points of the interior of J and thus almost
everywhere in J. Hence, from (A.16) (and possibly redefining @) in a negligible set), we conclude
that (A.13) holds true.

Thanks to (A.13), we can now send R — 0 in (A.12) and obtain that

(A.17) Q.7 — @x0)| < VB < + \/5) [Qlusn B

log2 - (s— %)

for any R € (0,1] and xq € J. B
Now we fix X, Y € J and we take R := 2|X — Y|. Then, we obtain from (A.17) (applied
with zg := X and with zo :=Y) that

(A18)  Q(X) — Qyal - 1@y — QO <8 [ —2 4 V2| [Qlaey X — V]
log2 - (8— —)

Now we take P := 24X and we notice that (P — R, P+ R) contains the segment joining X and Y,
which lies in J and has length R/2, therefore

v

(A.19) |prl =

Now we fix z € Jpz. By (A.2), used here with zy := X and p := R and € := Q(z), we see that

Q) - Qxal < 7 | le) - an

’JX,§|

Now we observe that R < 2 and so, by (A.3),

N | =

\Jxzml 2 | Jx R/l >
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and therefore

2 2
1Q(2) — Qxrl* < - /]X,R 1Q(2) - Q(y)lzdy <= /p,m 1Q(2) — Q(y)}zdy.
Similarly
2

Q) -l < [ 10) - Q" dy

Therefore
Qxr—Qual® < 20Qxﬁ— <aF+w@u»—@xaﬂ
2 / ) - Q)" dy.

Thus, by integrating over z € J(P, R) and recalhng (A.19),

|QXR QYR|2 X 5 // Q(y)|2dzdy.
As a consequence

Qun=Qual < = [[ | 106 - aw) azay

P2R

s Q Q(y) s 52s—1 o
//Jz (4R) 1+2| \z—y|1+25‘ dzdy <47 R [Q]Hs(J) AIX -YFQ ]HS(J)

P,2R

Using this and (A.18), we obtain that
QIX) = Q)| < 1Q(X) = Qxrl+[Qxr — Qval +|Qvz — QYY)

2 1
8| —+14 sn | X =Y 2
(logZ . (S N %) ) [Q]H (J)’ ’

This proves (2.2).

APPENDIX B. PROOF OF LEMMA 4.1

We notice that Q € €% 2([0,1)), thanks to Lemma 2.1, hence the condition Q(0) = 0 is
attained continuously and, more precisely, for any y € [0, 1],

Q)| < So [Qlar=(o,n)) [y° 2
Accordingly, if we define

Vi = [ (@@ - Qw)dy =)~ [ e

we have that, for any = € [0, 1],

T Y o1
(B.1) V(@) < Sol@lagoy (olF + 5 [l dy) =€ Slal
0

for some C' > 0. Moreover, by Holder inequality,

2<§Aﬂmw—Q@f@.
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We also notice that if y € [0,z] then x > x — y = |z — y|. As a consequence,

[ verars [ [Mew - qwla) a
/ [l low - il ] o

oo V|| oo (0. 400) R7
/ ZL’_2S|V(1’)|2 dx < || ||L (((),-|-2),_]R1 )
8 (25 — 1) 32

Hence, noticing that ||V'|| Ls((0,400),rn) < 2||Q|| L0 ((0,400),rn), We find that

oo 2[| Q|| oo ((0,-+00) R"
—2s 2 ((0,4-00),R™)
T Viz)|“dx < .
/3 V()] (2s — 1) g2t

Furthermore,

From this and (B.2), we obtain that

+oo Q@) - Q)| 2/| Q| oo (0,4 50).m)
B.3 / 2|V (z 2dx<// dx dy + ookt )
(B.3) i [V (z)] 0pe0m 1T — g (25 —1) 321

Now we recall a classical inequality due to Hardy, namely that for any o > 0 and any measurable
function f, we have that

2

+o0 x —+00
B.4 —1—2« -1 d d < —2 —1—2« 2d )
(B.4) [ | [t ae<an [T

To prove it, we make the substitution y = tx twice and we apply the Minkowski integral inequality
to the function g(x, t) := 272t |f(tz)|. In this way, we obtain that

{ ]dy] i — /0 i { /O =y f(t:r)\dtrdx
_ +°°{ ] dx<[/01 Uomyg(x,t)mmrdtr
_ /0 [/0 gl |f(t:c)|2da:];dtr

[ 1 +00 3 2
= / { / y~ T f(y))? dy] dt]
0 0

71 2«

= /Olt"‘l [/;OO y~ If(y)IQdyr dtr

1 [t
= — y 2 f ()P dy.

a? J,

This proves (B.4).
Now we use (B.4) with f :=V and o := s — 1 and we obtain that

(B.5) / e [ | vtve dyr <ot | )Ry
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Now we define

and we deduce from (B.5) that

(B.6)

+o00 ) ) 4 +o00 ) )
| ezara < gt [ vera

Also, recalling (B.1), we have that, for any z € [0,1], | Z(z)| is controlled by |z|*~2, which gives
that Z(0) = 0. Hence, if we define

F(l’) =V(r) + Z(z) = Q(x),

recalling again (B.1) we find that F(0) = 0. Moreover,

X

F(x) = +—/Q Q<) M—Q’(m)zo.

As a consequence, F' is constantly equal to zero in [0, +oo), which says that

for any = >

Q(z) =V(z) + Z(x),
0. This implies that

Q@) < V(@) +12()])* <2(|V (@) + Z(2)?).

Therefore, by (B.6),

This and

[ABMY9)]

[BBYS]

[Bes95]

[BM97]

[BPSV14]

[Cam63]
[CP15)

[CS11]

+00 +o00 “+oo
/ 7 #|Q(z)Pdx < 2 </ 2|V (z)]* dx + / x| Z(x)]? dx)
0 0 0
< 21+ 2 /+OO |V (y)Pd

(B.3) imply the thesis of Lemma 4.1.
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