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Analysis of a hybrid model for the electrothermal behavior of semiconductor
heterostructures

Annegret Glitzky, Matthias Liero, Grigor Nika

Abstract

We prove existence of a weak solution for a hybrid model for the electro-thermal behavior of semiconduc-
tor heterostructures. This hybrid model combines an electro-thermal model based on drift-diffusion with
thermistor type models in different subregions of the semiconductor heterostructure. The proof uses a reg-
ularization method and Schauder’s fixed point theorem. For boundary data compatible with thermodynamic
equilibrium we verify, additionally, uniqueness. Moreover, we derive bounds and higher integrability proper-
ties for the electrostatic potential and the quasi Fermi potentials as well as the temperature.

1 Introduction

One of the most substantial challenges in todays semiconductor devices is the modeling and simulation of
electro-thermal effects as they can crucially limit the performance of devices. There exist many technical ex-
amples where self-heating effects have a potent impact. For instance, thermal lensing can affect the output
power and beam quality in lasers [2] and in power electronic devices safe-operating area limits have to be iden-
tified [14]. In large-area organic light emitting diodes (OLEDs), where the conductivity additionally increases with
temperature, selfheating can lead to catastrophic snapback effects in luminance [5, 6].

Most interesting semiconductor devices are usually composed from two or more different kinds of semiconductor
material with different types of doping. The numerical simulation for the electro-thermal behavior in semicon-
ductor devices plays a crucial role in the development of new, reliable, and efficient devices in order to reduce
development time and production costs. A widely used modelling approach is to consider a drift-diffusion based
electro-thermal model on the entire domain of the semiconductor heterostructure. Another possible approach
would be to decompose the device structure into different subregions. Then, on subregions of the device where
simplifications can be justified, reduced models are applied and only on the remaining subregion the full drift-
diffusion and electro-thermal description is used. Any numerical simulation, therefore, must not only be compu-
tationally efficient but it must also reflect models that accurately mirror relevant physical properties. It is, thus,
of great interest to provide a sound analytical treatment of hybrid models for the electro-thermal behavior of
semiconductor heterostructures.

Starting from a drift-diffusion based electro-thermal model we construct a hybrid model that retains the strong
coupling of the electro-thermal effects but uses different depths in the description of the current flow. Combining
models for device substructures that are limiting cases of electron or hole densities resulting in thermistor-like
models for highly n-doped or highly p-doped regions and the full drift-diffusion type model on the electronic
relevant subregions, leads to hybrid models with different complexity and coupling interface conditions among
these different subregions. We first consider a drift-diffusion type model for the interplay of electronic and heat
transport in semiconductor devices, where we take into account the thermoelectric effects of Joule heating
resulting from both electron and hole current, and reaction heat as source terms in the heat flow equation.
Moreover, we confine our analytical investigations to the case of Boltzmann statistics.
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A. Glitzky, M. Liero, G. Nika 2

In the device domain Ω we study the following coupled system,

−∇ · (ε∇ψ) = C − n+ p,

−∇ · jn = −R, jn = −nµn∇ϕn,
∇ · jp = −R, jp = −pµp∇ϕp,
−∇ · (λ∇T ) = nµn|∇ϕn|2 + pµp|∇ϕp|2 +R(ϕp − ϕn),

(1.1)

where ψ is the electrostatic potential, ϕn, ϕp are the electrochemical potentials, T is the temperature, ε is the
dielectric permittivity, and C(T ) := N+

D (T ) −N−A (T ) represents the charged donor and acceptor densities,
respectively. The mobilities of electrons µn = µn(T, n) and holes µp = µp(T, p) are considered to be both
temperature and density dependent functions, and λ represents the thermal conductivity. Moreover, with the
chemical potentials defined by vn := ψ − ϕn and vp := −(ψ − ϕp), the generation/recombination term R
and the charge carrier densities n and p are given by,

R = r0(·, n, p, T )n p
(

1− exp
ϕn − ϕp

T

)
,

n = Nn0(T ) exp
(ψ − ϕn − EC(T )

T

)
=: en(vn;T ),

p = Np0(T ) exp
(EV (T )− (ψ − ϕp)

T

)
=: ep(vp;T ),

(1.2)

with EC , EV denoting the band edges and Np0, Nn0 the densities of state. In particular, they are assumed to
be temperature dependent.

System (1.1) is closed by mixed boundary conditions on Γ := ∂Ω for the stationary drift-diffusion system
combined with Robin boundary conditions for the heat flow equation,

ψ = ψD, ϕn = ϕDn , ϕp = ϕDp on ΓD,

ε∇ψ · ν = jn · ν = jp · ν = 0 on ΓN ,

λ∇T · ν + κ(T − Ta) = 0 on ∂Ω,

(1.3)

where ΓD and ΓN denote the Dirichlet and Neumann boundary parts, respectively and ν is the outer unit
normal. Equations (1.1), (1.2), and (1.3) are already written in scaled form. A similar scaled model frame was
used in [12]. For a discussion on the scaling of equations (1.1), (1.2), and (1.3) we refer the interested reader to
[11, Section 3].

We remark that in our model, as well as in [12], the thermoelectric powers are neglected such that additional
thermoelectric effects (Peltier, Thomson, and Seebeck) are not included in model (1.1). For fully thermodynam-
ically designed energy models including all these effects we refer e.g. to [1, 2, 14, 16, 8, 9, 10], where the first
four references concentrate on thermodynamically consistent modeling, [2, 14] discuss also numerical aspects.
The last three references supply a local unique solution for boundary data nearly compatible with the thermo-
dynamic equilibrium by an application of the implicit function theorem in a W 1,p, p > 2, setting in two spatial
dimensions. In [12] the existence and uniqueness of Hölder continuous weak solutions near thermodynamic
equilibria is proved by using the implicit function theorem. To ensure the continuous differentiability of the cor-
responding maps, regularity results from the theory of nonsmooth linear elliptic boundary value problems in
Sobolev-Campanato spaces were applied.

The aims of the paper are twofold. First, to construct a hybrid model for the electro-thermal behavior of semi-
conductor heterostructures by applying coarser models in subregions which reduce the number of coupled
equations in (1.1) from four to two equations in the corresponding subregions. In particular, the coarser model
features an equation for the net current flow coupled to the heat equation, namely

−∇ · (σ(T )∇ϕ) = 0,

−∇ · (λ∇T ) = σ(T )|∇ϕ|2,
(1.4)
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Analysis of a hybrid model of semiconductor heterostructures 3

with an effective electrical conductivity σ depending on temperature.

The coarsening has the added benefit of producing computationally efficient models for the numerical simulation
of semiconductor devices while maintaining a degree of physical accuracy. Second, to study the analytical prop-
erties of the hybrid model. The key idea is to use for device regions with high doping of one charge carrier type
(e.g. near to contacts) a coarser description by a thermistor model combining heat flow and a simpler model for
the current flow. The more detailed electro-thermal drift-diffusion modelling should be restricted to electronically
relevant substructures where one balances electron and hole currents and generation/recombination processes.
Furthermore, the decomposition of the semiconductor device into different subregions where different models
are applied, requires a formulation of transfer conditions at the interfaces among these different subregions to
ensure that the total current in the normal direction to the interface is continuous. Moreover, we have to guar-
antee that at the interface between the highly n-doped (p-doped) subregions and the subregions where a full
drift-diffusion type model is applied, the electrochemical potentials of electrons (holes) as well as the normal
component of the electron (hole) current density is continuous. In conclusion, we remark that model (1.1) allows
for an existence result for a large class of boundary data. Additionally, it has the property that the heat source
terms in the heat flow equation in (1.1) are always nonnegative. This in connection with the Robin boundary
conditions ensures that the temperature for solutions to the model equations (1.1), (1.3) has to fulfill T ≥ Ta.

The paper is organized as follows: In Section 2 we derive the hybrid model, the associated assumptions, and
the functional setting for the model, Section 3 deals with the a priori estimates regarding the hybrid model, in
Section 4 we state the main theorem of the paper concerning the solvability of the hybrid problem and give a
guideline of the corresponding proof, in Section 5 we introduce a regularized problem and related a priori esti-
mates, and in Section 6 we prove the existence of a weak solution to the regularized problem using Schauder’s
fixed point theorem. Lastly, Section 7 contains conclusions.

2 Hybrid modeling of the electro-thermal behavior of semiconductor devices

2.1 Reduced model for strongly n- or p-doped regions

For the derivation of the coarser model, we suppose that the band edges EC , EV , the densities of state
Nn0, Np0 in (1.2) as well as the doping densities ND, NA are spatially constant and only depending on
temperature.

We discuss the case of a strongly n-doped region, where the hole density is negligible. The opposite case
runs analogously. We consider for the model equations (1.1), (1.3) the limit p → 0 whereas the quantities
∇ϕp, ∇ϕn, ψ, ∇ψ, vn, n, T and ∇T remain bounded. Having in mind that T ≥ Ta, because of p =
Np0 exp((vp + EV )/T ) we find vp

T → −∞. Moreover, as a consequence

vp → −∞, pµp∇ϕp → 0, pµp|∇ϕp|2 → 0,

R = npr0(1− e
vn+vp

T )→ 0, R(vn + vp) = npr0(1− e
vn+vp

T )(vn + vp)→ 0.
(2.1)

For the last convergence one has additionally to verify the convergence pvp = Np0 exp((vp+EV )/T )vp → 0.
However, this is evident from properties of the exponential funtion limx→−∞ xex = 0.

Motivated by the strong n-doping and the negligible p-density (ND >> NA ≈ 0) we assume local charge
neutrality. This means that the right-hand side of the Poisson equation fulfilsC−n+p = N+

D (T )−N−A (T )−
n+ p = 0 and that in the limit n = N+

D (T ). In addition, physical reasons require that the density of positively
charged donors N+

D = N+
D (T ) depends on temperature, is increasing, and approaches the total density of

donors ND for high temperatures. A similar behavior holds true for the density of negatively charged acceptors
N−A = N−A (T ) (see [18]). Hence, we arrive at characterizing the interaction between the electrochemical
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potential of the electrons ϕn and the temperature T by the following reduced coupled system,

−∇ ·
(
N+
D (T )µn(T,N+

D (T ))∇ϕn
)

= 0 in Ω,

−∇ · (λ∇T ) = N+
D (T )µn(T,N+

D (T ))|∇ϕn|2 in Ω,

(N+
D (T )µn(T,N+

D (T ))∇ϕn) · ν = 0 on ΓN , ϕn = Vappl on ΓD,

λ∇T · ν + κ(T − Ta) = 0 on ∂Ω.

(2.2)

In a completely analogous manner, for a strongly p-doped semiconductor region Ω with NA >> ND ≈ 0 we
obtain, under the assumption n → 0 whereas the quantities ∇ϕn, ∇ϕp, ψ, ∇ψ, vp, p, T and ∇T remain
bounded, the following reduced coupled system for the interaction of the electrochemical potential of the holes
ϕp and the temperature T ,

−∇ ·
(
N−A (T )µp(T,N

−
A (T ))∇ϕp

)
= 0 in Ω,

−∇ · (λ∇T ) = N−A (T )µp(T,N
−
A (T ))|∇ϕp|2 in Ω,

(N−A (T )µp(T,N
−
A (T ))∇ϕp) · ν = 0 on ΓN , ϕp = Vappl on ΓD,

λ∇T · ν + κ(T − Ta) = 0 on ∂Ω.

(2.3)

The densities of charged donors and acceptors depend continuously on T and are positively bounded from
below and above for T ≥ Ta. Under the assumption that the mobilities µn, µp also depend continuously on the
temperature and the density, there are solutions (ϕn, T ) to (2.2) and (ϕp, T ) to (2.3) (see [3, Theorem 2.1]).

In case of (2.2) we reconstruct approximated quantities (ψ∗, n∗, v∗n, ϕ
∗
n, T

∗) for the unipolar drift-diffusion
system by,

T ∗ := T, n∗ := N+
D (T ∗), , v∗n := e−1

n (n∗, T ∗), ψ∗ := ϕn + v∗n.

For the case (2.3) we reconstruct the quantities (ψ∗, p∗, v∗p, ϕ
∗
p, T

∗) as follows

T ∗ := T, p∗ := N−A (T ∗), , v∗p := e−1
p (p∗, T ∗), ψ∗ := ϕp − v∗p.

2.2 Notation and assumptions

In two spatial dimensions, we consider geometric situations as indicated schematically in Fig. 1 and use the
following notation: ΩD is the subregion of the device where we consider the full electro-thermal drift-diffusion
model, Ωn is the highly n-doped subregion of the device, and Ωp is the highly p-doped subregion of the device.
The device region is defined as Ω = int(Ωn ∪ ΩD ∪ Ωp), ΩDj = int(ΩD ∪ Ωj), ΓDj := ΓD ∩ Ωj, Ij =
int(ΩD ∩ Ωj) for j = n,p, and I := In ∪ Ip. By ν and νD we denote the outer unit normals at ∂Ω and ∂ΩD,
respectively.

We work with the Lebesgue spaces Lp(Ω) and the Sobolev spaces W 1,q(Ω). Moreover, we make use the
following closed subspaces of H1 functions: H1

Di(ΩDi) indicates the closure of C∞ functions with compact
support in ΩDi ∪ (∂ΩDi \ ΓDi) with respect to the H1(ΩDi) norm, H1

I (ΩD) is the closure of C∞ functions
with compact support in ΩD∪(∂ΩD\I) with respect to theH1(ΩD) norm. In our estimates, positive constants,
which may depend at most on the data of our problem, are denoted by c. In particular, we allow them to change
from line to line.

We discuss the stationary hybrid electro-thermal model which we will introduce in Section 2.3 under the following
general Assumptions (A). In what follows j = n, p,

� Ω,ΩD,ΩDj ∈ R2 are bounded Lipschitz domains with Ωn ∩ Ωp = ∅, mes(Ij) > 0, mes(ΓDj) > 0

with dist(x,ΩDj) ≥ const. > 0 for all x ∈ ΓDi, i 6= j, and Γ̃Nj := ∂ΩDj \ΓDj, ΩDj∪ Γ̃Nj are regular
in the sense of Gröger [13].
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� ϕDj ∈ W 1,∞(ΩDj),
∥∥∥ϕDj ∥∥∥

L∞(ΩDj)
≤ K , λ ∈ L∞(Ω), 0 < λ0 ≤ λ a.e. in Ω, λ = const in ΩD,

κ ∈ L∞+ (Γ), ‖κ‖L1(Γ) > 0, Ta = const > 0, ε = const > 0.

� The temperature dependent quantities for Ωn and Ωp fulfil: N̂n0, N̂p0, N+
D , N−A ∈ C1

+(0,∞), ÊC ,

ÊV ∈ C1(0,∞) and for all ξ > 0 there exist N ξ , N ξ , Eξ such that |ÊC(T )|, |ÊV (T )| ≤ Eξ ,

0 < N ξ ≤ N̂n0(T ), N̂p0(T ), N+
D (T ), N−A (T ) ≤ N ξ for all T ∈ [ξ,∞).

� C , Nn0, Np0 : ΩD × (0,∞) → R+, EC , EV : ΩD × (0,∞) 7→ R are Caratheodory functions
which are Lipschitz continuous in the second argument such that for all ξ > 0 we have, 0 < N ξ ≤
Nj0(·, T ) ≤ N ξ , |EC(·, T )|, |EV (·, T )| ≤ Eξ , |C(·, T )| ≤ C a.e. in ΩD for all T ∈ [ξ,∞).

� r(·, n, p, T ) = r0(·, n, p, T )n p, where r0(·, n, p, T ) : ΩD × (0,∞)3 7→ R+ is a Caratheodory
function with r0(·, n, p, T ) ≤ r(1 + n+ p) a.e. in ΩD for all (n, p, T ) ∈ (0,∞)3. Moreover,
|r0(·, n1, p1, T1) − r0(·, n, p, T )| ≤ c(|n1 − n| + |p1 − p| + |T1 − T |) a.e. in ΩD and for all
(n, p, T ), (n1, p1, T1) ∈ (0,∞)2 × [Ta,∞).

� µj : ΩDj × (0,∞)2 7→ R+ are Caratheodory functions such that for all ξ > 0 there exists µ
ξ
, µξ

with 0 < µ
ξ
≤ µj(·, T, y) ≤ µξ for all (T, n, p) ∈ [ξ,∞) × (0,∞)2 a.e. in ΩDj. |µj(·, T1, y1) −

µj(·, T, y)| ≤ c(|T1 − T |+ |y1 − y|) a.e. in ΩDj, and for all T, T1 ≥ Ta, for all y, y1 ∈ (0,∞).

Henceforth, we set E := ETa , µ := µ
Ta

, µ := µTa , N := NTa , and N := NTa . We remark that the
assumption on r0 allows for radiative, Shockley-Read-Hall as well as Auger recombination.

2.3 Hybrid model in case of Ω = Ωn ∪ ΩD ∪ Ωp

ΓDp

ΓDn

ΩD

Ωn

Ωp

Ip

In

ΓN

ΓN

ν

νD

Figure 1: Schematic geometry of the semiconductor device partitioned into the different subregions.

In ΩD we use the quantities R,n, p as they were defined in (1.2). The electro-thermal behavior of the device
occupying Ω is now described by the following system of partial differential equations and transfer conditions:

Heat flow equation for T in Ω

−∇ · (λ∇T ) =


N+
D (T )µn(T,N+

D (T ))|∇ϕn|2 in Ωn,

nµn(T, n)|∇ϕn|2 + pµp(T, p)|∇ϕp|2 +R(ϕp − ϕn) in ΩD,

N−A (T )µp(T,N
−
A (T ))|∇ϕp|2 in Ωp,

λ∇T · ν + κ(T − Ta) = 0 on Γ.

(2.4)
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Continuity equation for electrons for ϕn in ΩDn := ΩD ∪ Ωn

∇ · (N+
D (T )µn(T,N+

D (T ))∇ϕn) = 0 in Ωn,

∇ · (nµn(T, n)∇ϕn) = −R in ΩD,

JϕnK = 0, νD · (N+
D (T )µn(T,N+

D )∇ϕn) + νD · (nµn(T, n)∇ϕn) = 0 on In,

ϕn = Vappl =: ϕDn on ΓDn, ∇ϕn · ν = 0 otherwise.

(2.5)

Continuity equation for holes for ϕp in ΩDp := ΩD ∪ Ωp

−∇ · (pµp(T, p)∇ϕp) = −R in ΩD,

−∇ · (N−A (T )µp(T,N
−
A (T ))∇ϕp) = 0 in Ωp,

JϕpK = 0, νD · (N−A (T )µp(T,N
−
A (T ))∇ϕp) + νD · (pµp(T, p)∇ϕp) = 0 on Ip,

ϕp = Vappl =: ϕDp on ΓDp, ∇ϕp · ν = 0 otherwise.

(2.6)

Poisson equation for electrostatic potential ψ in ΩD

−∇ · (ε∇ψ) = C(T )− n+ p in ΩD. (2.7)

If n in Ωn is assumed to be equal to N+
D (T ) then the chemical potential vn = T ln

N+
D(T )

N̂n0(T )
+ ÊC(T ) =:

e−1
n (N+

D (T );T ) in Ωn is not necessarily constant, since the temperature may vary. Here ÊC(T ), N̂n0(T ) de-
note the temperature-dependent conduction band-edge and the effective density of states in Ωn and e−1

n (· ;T )
means the inverse of en with respect to the first argument for a fixed temperature T . Because of ϕn = ψ− vn,
we obtain as boundary condition for ψ on In,

ψ|In = ϕn|In + e−1
n (N+

D (T );T ).

In a completely analogous manner, with ϕp = ψ+vp and vp = e−1
p (N−A (T );T ) in Ωp the boundary condition

for ψ on Ip is,
ψ|Ip = ϕp|Ip − e−1

p (N−A (T );T ).

Let τ : ΩD → [0, 1] be an arbitrarily fixed C1(ΩD) function such that

τ |In = 0, τ |Ip = 1, |∇τ | ≤ ĉ. (2.8)

We are looking for ψ fulfilling at the union of interfaces I := In ∪ Ip the discussed boundary conditions and
express this in the form,

ψ ∈ τ(ϕp − e−1
p (N−A (T );T )) + (1− τ)(ϕn + e−1

n (N+
D (T );T )) +H1

I (ΩD).

On the remaining part of the boundary ∂ΩD \ I , homogeneous Neumann boundary conditions are formulated,

ε∇ψ · ν = 0 on ∂ΩD \ I.

To simplify the above governing equations we introduce the following notation in the entire domain Ω,

χ1(x) =

{
1 if x ∈ ΩDn

0 otherwise ,
χ2(x) =

{
1 if x ∈ ΩDp

0 otherwise ,

dn(n, T ) = χ1(1− χ2)N+
D (T )µn(T,N+

D (T )) + χ1χ2nµn(T, n), (2.9)
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dp(p, T ) = χ2(1− χ1)N−A (T )µp(T,N
−
A (T )) + χ1χ2pµp(T, p), (2.10)

RΩ(n, p, T, ϕn, ϕp) = χ1χ2R(n, p, T, ϕn, ϕp), (2.11)

hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) = dn(n, T )|∇ϕn|2 + dp(p, T )|∇ϕp|2

+RΩ(n, p, T, ϕn, ϕp)(ϕp − ϕn).
(2.12)

Using the above notation equations (2.4), (2.5), (2.6), (2.7) and their respective interface and boundary condi-
tions take the following form:

Heat flow equation for T in Ω

−∇ · (λ∇T ) = hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) in Ω,

λ∇T · ν + κ(T − Ta) = 0 on Γ.
(2.13)

Continuity equation for electrons in ΩDn

∇ · (dn(n, T )∇ϕn) = −RΩ(n, p, T, ϕn, ϕp) in ΩDn,

JϕnK = 0, Jdn(n, T )∇ϕn · νDK = 0 on In,

ϕn = ϕD
n on ΓDn, ∇ϕn · ν = 0 on ∂ΩDn\ΓDn.

(2.14)

Continuity equation for holes in ΩDp

−∇ · (dp(p, T )∇ϕp) = −RΩ(n, p, T, ϕn, ϕp) in ΩDp,

JϕpK = 0, Jdp(p, T )∇ϕp · νDK = 0 on Ip,

ϕp = ϕD
p on ΓDp, ∇ϕp · ν = 0 on ∂ΩDp\ΓDp.

(2.15)

Poisson equation for electrostatic potential ψ in ΩD

−∇ · (ε∇ψ) = C(T )− n+ p in ΩD,

ψ = τ(ϕp − e−1
p (N−A ;T )) + (1− τ)(ϕn + e−1

n (N+
D ;T )) on I,

∇ψ · ν = 0 on ∂ΩD \ I.
(2.16)

2.4 Concept of solution

With τ as in (2.8), we use the abbreviation,

ψD(x) := (1− τ(x))
(
ϕn + T ln

N+
D (T )

N̂n0(T )
+ ÊC(T )

)
+ τ(x)

(
ϕp − T ln

N−A (T )

N̂p0(T )
+ ÊV (T )

)
.

Let s > 2 denote an exponent which will finally be fixed in Theorem 3.1. A weak formulation of our hybrid model
is as follows. Find (ψ,ϕn, ϕp, T ) ∈

[
(ψD+H1

I (ΩD))∩L∞(ΩD)
]
×
[
(ϕDn +H1

Dn(ΩDn))∩W 1,s(ΩDn)
]
×
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[
(ϕDp +H1

Dp(ΩDp) ∩W 1,s(ΩDp)
]
× {T ∈ H1(Ω) : lnT ∈ L∞(Ω)}, such that∫

ΩD

ε∇ψ · ∇ψ dx =

∫
ΩD

(C(T )− n+ p)ψ dx ∀ψ ∈ H1
I (ΩD),∫

ΩDn

dn(n, T )∇ϕn · ∇ϕn dx+

∫
ΩDp

dp(p, T )∇ϕp · ∇ϕp dx

=

∫
ΩD

r(n, p, T )
(

1− exp
ϕn − ϕp

T

)
(ϕn − ϕp) dx ∀ϕi ∈ H1

Di(ΩDi), i = n, p,∫
Ω
λ∇T · ∇T dx+

∫
Γ
κ(T − Ta)T dΓ

=

∫
Ω
hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp)T dx ∀T ∈ H1(Ω),

(P)

where dn(n, T ), dp(p, T ), and hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) are defined in (2.9), (2.10), and (2.12) re-
spectively. We remark that the choice of the definition sets for (ψ,ϕn, ϕp, T ) and Assumptions (A) ensure,
n, p ∈ L∞(ΩD), µn(T, n), µp(T, p), r(n, p, T ) ∈ L∞(ΩD), N+

D (T ), µn(T,N+
D (T )) ∈ L∞(Ωn),

N−A (T ), µp(T,N
−
A (T )) ∈ L∞(Ωp), dn(n, T ) ∈ L∞(ΩDn), dp(p, T ) ∈ L∞(ΩDp),

hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) ∈ Ls/2(Ω), and ψD ∈ H1(Ω) ∩ L∞(Ω).

3 A priori estimates for the hybrid model

If there is no confusion of misunderstanding we leave out the arguments in the functions µn, µp, r0. Moreover,

we do not explicitly write the temperature dependencies of Ni0, N
+
D , N−A , EC , EV , N̂i0, ÊC , and ÊV .

Lemma 3.1 We suppose Assumption (A). Then T ≥ Ta a.e. in Ω for any solution (ψ,ϕn, ϕp, T ) to (P).

Proof. By Assumption (A) the right hand side of the heat flow equation (2.13) is nonnegative. Thus, the test of
the heat flow equation in (P) by −(T − Ta)− gives∫

Ω
λ|∇(T − Ta)−|2 dx+

∫
Γ
κ((T − Ta)−)2 dΓ ≤ 0

which proves the lemma. �

Lemma 3.2 We suppose Assumptions (A). Then there exists a constant ch > 0, depending only on the data,
such that

‖hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp)‖L1(Ω) ≤ ch, ‖ϕn‖L∞(ΩDn) , ‖ϕp‖L∞(ΩDp) ≤ K,

where K is defined in Assumptions (A), for any solution (ψ,ϕn, ϕp, T ) to (P).

Proof. 1. Using the test function ((ϕn−K)+, (ϕp−K)+) ∈ H1
Dn(ΩDn)×H1

Dp(ΩDp) withK from assump-
tion (A) for the equations for ϕn and ϕp we obtain

0 =

∫
ΩDn

dn(n, T )|∇(ϕn −K)+|2 dx+

∫
ΩDp

dp(p, T )|∇(ϕp −K)+|2 dx

+

∫
ΩD

r(n, p, T )
(

exp
ϕn − ϕp

T
− 1
)(

(ϕn −K)+ − (ϕp −K)+
)

dx.

Discussing the four different cases ϕn (ϕp) > K (≤ K) we find that also the integrand in the second line
is always non-negative (note that r0 is also non-negative). Thus the integrands in all occurring integrals are
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nonnegative. (If the integral of a nonnegative function is zero then the function itself is zero.) The positivity of
n, p, µn, µp in ΩD, of dn(n, T ) in ΩDn and of dp(p, T ) in ΩDp guarantee that ∇(ϕi − K)+ = 0 a.e. in
ΩDi due to (ϕi − K)+ ∈ H1

Di(ΩDi). This leads to ϕi ≤ K a.e. in ΩDi for i = n,p. On the other hand,
testing by (−(ϕn + K)−,−(ϕp + K)−) gives the estimates ϕi ≥ −K a.e. in ΩDi, which together ensure
‖ϕi‖L∞(ΩDi)

≤ K for i = n, p.

2. We use functions τi ∈ C1(ΩDi) with τi(x) ∈ [0, 1], |∇τi(x)| ≤ ĉ in ΩDi, τi(x) = 1 for x ∈ ΓDi,
τi(x) = 0 for x ∈ ΩD, i = n,p. Note that ĉ > 0 depends on the geometry of the problem. We test the
continuity equations by (ϕn − τnϕ

D
n , ϕp − τpϕ

D
p ) ∈ H1

Dn(ΩDn)×H1
Dp(ΩDp) and obtain,

∫
Ω
hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) dx

=

∫
Ωn

N+
Dµn∇ϕn · (τn∇ϕDn + ϕn∇τn) dx+

∫
Ωp

N−Aµp∇ϕp · (τp∇ϕDp + ϕp∇τp) dx

≤
∫

Ωn

N+
Dµn(

|∇ϕn|2

2
+ 2|∇ϕDn |2 + 2K2ĉ2) dx+

∫
Ωp

N−Aµp(
|∇ϕp|2

2
+ 2|∇ϕDp |2 + 2K2ĉ2) dx.

Due to the definition of hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) in (2.12) and the fact that N+
D , N−A and µn, µp are

bounded from above we have

‖hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp)‖L1(Ω) ≤4Nµ
{∫

Ωn

(|∇ϕDn |2 +K2ĉ2) dx

+

∫
Ωp

(|∇ϕDp |2 +K2ĉ2) dx
}

=: ch.
(3.1)

Since ϕDi ∈ H1(ΩDi), i = n, p, are given functions, the last assertion follows. �

Lemma 3.3 We suppose Assumptions (A) then for q ∈ [1, 2), there exist constants cq > 0, and cT > 0,
depending only on the data, such that

‖T‖W 1,q(Ω) ≤ cq, ‖T‖L2(Γ) ≤ cT

for any solution (ψ,ϕn, ϕp, T ) to (P).

Proof. According to Lemma 3.2 the right hand side of the heat flow equation belongs to L1(Ω) and has a L1

norm bounded by ch. Using the theory of entropy solutions for elliptic problems with Robin boundary conditions
(see e.g. [4, Theorem 3.3]) gives the desired W 1,q(Ω) estimates. The trace inequality in 2D then ensures the
L2(Γ) estimate. �

Lemma 3.4 We suppose Assumptions (A) then there exists a constant cψ/T > 0, depending only on the data,
such that,

‖ψ/T‖L∞(ΩD) ≤ cψ/T

for any solution (ψ,ϕn, ϕp, T ) to (P).

Proof. 1. We introduce the constant K1 := max
{

maxT {ln
N+

D(T )

N̂n0(T )
},maxT {ln

N−A (T )

N̂p0(T )
}
}

, and use K from

Assumptions (A). We note that (ψ −K − E −K1T )+ ∈ H1
I (ΩD) and that for L > 0,

zm−1
L ∈ H1

I (ΩD) where zL := min(L, (ψ −K − E −K1T )+), m = 2k, k ∈ N,
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and that these functions extended by zero belong to H1(Ω) and can be used as test functions for the heat
equation on whole Ω:∫

Ω
λ∇T · ∇zm−1

L dx =

∫
ΩD

λ∇T · ∇zm−1
L dx

=

∫
ΩD

(
nµn|∇ϕn|2 + pµp|∇ϕp|2 +R(n, p, T, ϕn, ϕp)(ϕp − ϕn)

)
zm−1
L dx

+

∫
Γ∩ΩD

κ(Ta − T )zm−1
L dΓ

≥ −c ‖T‖L2(Γ)

∥∥zm−1
L

∥∥
L2(Γ∩ΩD)

since the Joule heat and reaction heat in ΩD are nonnegative. Using this and the fact that ε, λ = const on ΩD,

a test of the Poisson equation by mzm−1
L yields with wL := z

m
2
L∫

ΩD

m(C(T )− n+ p)zm−1
L dx

=

∫
ΩD

mε∇ψ · ∇zm−1
L dx

=

∫
ΩD

mε∇(ψ −K − E −K1T +K + E +K1T ) · ∇zm−1
L dx

=

∫
ΩD

4(m− 1)

m
ε|∇wL|2 +mεK1∇T · ∇zm−1

L dx

≥ 2ε

∫
ΩD

|∇wL|2 dx− cm ‖T‖L2(Γ)

∥∥zm−1
L

∥∥
L2(Γ∩ΩD)

.

(3.2)

Note that zL > 0 leads to ψ > 0, and thus using the lower bound Ta for T from Lemma 3.1 and the L∞

estimate for ϕp from Lemma 3.2 we derive

(C − n+ p)zm−1
L ≤

(
C +Np0 exp

EV − ψ + ϕp
T

)
zm−1
L

≤
(
C +Np0 exp

EV + ϕp
T

)
zm−1
L ≤ czm−1

L .

(3.3)

Because of Gagliardo-Nirenberg’s and trace inequality in 2D we estimate∥∥zm−1
L

∥∥
L1(ΩD)

≤ ‖wL‖2L2(ΩD) + c ≤ c ‖wL‖L1(ΩD) ‖wL‖H1(ΩD) + c,∥∥zm−1
L

∥∥
L2(Γ∩ΩD)

≤ ‖wL‖2L4(Γ∩ΩD) + c,

‖wL‖2L4(Γ∩ΩD) ≤ c ‖wL‖
3/2
L6(ΩD)

‖wL‖1/2H1(ΩD)
≤ c(‖wL‖1/6L1(ΩD)

‖wL‖5/6H1(ΩD)
)3/2 ‖wL‖1/2H1(ΩD)

≤ c ‖wL‖1/4L1(ΩD)
‖wL‖7/4H1(ΩD)

,

apply Young’s inequality, use that mes ΓI > 0 and continue the estimate (3.2) by

‖wL‖2H1(ΩD) ≤ cm ‖T‖L2(Γ) +
1

4
‖wL‖2H1(ΩD) + cm8(‖T‖8L2(Γ) + 1) ‖wL‖2L1(ΩD) + c.

From Lemma 3.3 we find

‖wL‖2L2(ΩD) ≤ cm
8(c8

T + 1)(‖wL‖2L1(ΩD) + cT )

≤ m8 max{c(c8
T + 1), cT }(‖wL‖2L1(ΩD) + 1) =:

c̃

2
m8(‖wL‖2L1(ΩD) + 1).
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Defining ak := 1 + ‖zL‖2
k

L2k , k ∈ N, the previous estimate guarantees the recursion

ak ≤ c̃(28)ka2
k−1 ≤ c̃1+2(28)k+2(k−1)a4

k−2

≤ c̃1+2+···+2k−2
(28)k+2(k−1)+···+2k−2·2a2k−1

1 ≤ c̃2k(28)2k+1
a2k

1 .
(3.4)

Here we used that
∑k−2

i=0 2i ≤ 2k and
∑k−2

i=0 2i(k − i) ≤ 2k+1 for k ≥ 2. To derive the starting estimate for
a1 we set m = 2 (k = 1) in (3.2) to obtain

‖zL‖2H1(ΩD) ≤ c1 ‖zL‖L1(ΩD) + c2 ‖zL‖L2(Γ∩ΩD) .

Because of embedding, trace and Young’s inequality we find

c1 ‖zL‖L1(ΩD) ≤ ĉ1 ‖zL‖H1(ΩD) ≤
1

4
‖zL‖2H1(ΩD) + 4ĉ2

1,

c2 ‖zL‖L2(Γ∩ΩD) ≤ ĉ2 ‖zL‖H1(ΩD) ≤
1

4
‖zL‖2H1(ΩD) + 4ĉ2

2.

This leads to a1 = 1+‖zL‖2L2(ΩD) ≤ 1+‖zL‖2H1(ΩD) ≤ c which induces together with the recursion formula

(3.4) the L∞ bound for zL = min(L, (ψ − K − E − K1T )+). Since the estimates do not depend on the
value of L, we can pass to the limit L→∞ and find an upper bound c > 0 for ψ−K−E−K1T . Therefore,
by Lemma 3.1,

ψ

T
≤ c+K + E

T
+K1 ≤

c+K + E

Ta
+K1.

2. Similarly we obtain a lower bound for ψ/T by using test functions of the form

−mzm−1
L ∈ H1

I (ΩD) with zL := min(L, (ψ +K + E +K1T )−), m = 2k, k ∈ N,

where y− := max(0,−y). Note that then the second line in (3.2) is rewritten as

−
∫

ΩD

mε∇(ψ +K + E +K1T −K − E −K1T ) · ∇zm−1
L dx

=

∫
ΩD

4(m−1)
m ε|∇z

m
2
L |

2 +mεK1∇T · ∇zm−1
L dx,

where the second expression again can be substituted by the weak formulation of the heat flow equation, tested
by mzm−1

L continued by zero to a function in H1(Ω). Moreover, zL > 0 leads to ψ < 0 such that

−(C − n+ p)zm−1
L ≤

(
C +Nn0 exp

ψ − ϕn − EC
T

)
zm−1
L

≤
(
C +Nn0 exp

−ϕn − EC
T

)
zm−1
L ≤ czm−1

L .

Finally we end up with a lower bound c < 0 for ψ +K + E +K1T . Therefore, by Lemma 3.3,

ψ

T
≥ c−K − E

T
−K1 ≥

c−K − E
Ta

−K1. �

Theorem 3.1 Under Assumption (A), there are exponents s, t > 2 and constants cT,t, cϕ,s, cT,∞, cψ,∞ > 0
depending only on the data and the underlying geometry such that

‖ϕi‖W 1,s(ΩDi)
≤ cϕ,s, i = n, p, ‖T‖W 1,t(Ω) ≤ cT,t, ‖T‖L∞(Ω) ≤ cT,∞, ‖ψ‖L∞(ΩD) ≤ cψ,∞,

for any solution (ψ,ϕn, ϕp, T ) to (P).
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Proof. 1. The estimates from Lemma 3.2, Lemma 3.3 and Lemma 3.4 and the bounds for EC and EV ensure
constants cd, cd > 0 only depending on the data and the underlying geometry such that

cd ≤ n = Nn0 exp
ψ−ϕn−EC

T
, p = Np0 exp

EV−ψ+ϕp
T

≤ cd a.e. in ΩD,

where cd := N exp
{
− K+E

Ta
− cψ/T

}
, cd := N exp

{K+E

Ta
+ cψ/T

}
.

(3.5)

Using additionally the upper and lower bounds of the mobilities µn, µp and N+
D and N−A , the estimates (3.5),

and the resulting upper bound for r0 and Lemma 3.2 we find that the L∞ norm of the right hand sides of the
continuity equations is bounded by a constant cR > 0. The supposed regularity of ϕDn , ϕ

D
p and the regularity

result of Gröger [13, Thm. 1] for elliptic problems guarantees an exponent s > 2 and an cϕ,s > 0 depending
only on the data and the underlying geometry such that ϕn ∈W 1,s(ΩDn), ϕp ∈W 1,s(ΩDp) and

‖ϕn‖W 1,s(ΩDn) , ‖ϕp‖W 1,s(ΩDp) ≤ cϕ,s.

2. Consequentely, the right-hand side of the heat flow equation (2.13) belongs to Ls/2(Ω) and the Ls/2(Ω)
norm is bounded by some constant c > 0. Here we used for the reaction heat that ‖ϕi‖L∞(ΩDi)

≤ K ,
i = n, p. We apply regularity results for second order elliptic equations with non-smooth data in the 2D case.
According to [13, Thm. 1] there is a t∗ > 2 such that the strongly monotone Lipschitz continuous operator
Λ : H1(Ω) 7→ H1(Ω)∗,

〈ΛT,w〉 :=

∫
Ω

(λ∇T · ∇w + Tw) dx, w ∈ H1(Ω),

mapsW 1,t̃(Ω) into and ontoW−1,t̃(Ω) for all t̃ ∈ [2, t∗]. Here,W−1,t̃(Ω) meansW 1,t̃′(Ω)∗ with 1
t̃
+ 1
t̃′

= 1.
Next we define t ∈ (2, t∗] by

t :=


t∗ if

s

s− 2
∈
[
1,

2t∗

t∗ − 2

]
2s

4− s
if

s

s− 2
>

2t∗

t∗ − 2

,
1

t
+

1

t′
= 1.

This definition guarantees that Ls/2(Ω) ↪→ W−1,t(Ω) = W 1,t′(Ω)∗. Remark 13 in [13] then ensures W 1,t-
estimates for solutions to problems of the form ΛT = F(T ), where F is any mapping from W 1,2(Ω) into
W−1,t(Ω). For our problem under consideration we use

〈F(T ), w〉 :=

∫
Ω

(
hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) + T

)
w dx+

∫
Γ
κ(Ta − T )w dΓ,

for all w ∈ W 1,t′(Ω). Thus, we find a cT,t > 0 such that the weak solution T to the heat flow equation
belongs to W 1,t(Ω) and ‖T‖W 1,t(Ω) ≤ cT,t. The continuous embedding of W 1,t(Ω) in L∞(Ω) ensures
‖T‖L∞(Ω) ≤ cT,∞. Moreover, together with Lemma 3.4 we therefore obtain ‖ψ‖L∞(ΩD) ≤ cψ,∞, which
finishes the proof. �

4 Statement of the existence result for the hybrid model

Theorem 4.1 Under Assumptions (A) there exists a weak solution (ψ,ϕn, ϕp, T ) to (P).

The proof is done in several steps. First, we regularize the hybrid problem (P) by introducing a regularized
problem (PM ) with regularization parameter M . Second, for solutions to (PM ) we derive a priori estimates
and higher integrability properties for the electrostatic potential, quasi Fermi potentials, and the temperature
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that are independent of M . Lastly, we verify the solvability of the regularized problem using Schauder’s fixed
point theorem (see Section 5 and 6). We remark that the regularization of the hybrid problem (P) consists of a
manipulation of the statistical relation leading to regularized densities which occur in the Poisson equation, the
flux terms, reaction coefficient, and the source term of the heat equation. Hence, if one chooses M > cψ/T ,
with ψ/T from Lemma 3.4 then the manipulation of the statistical relation, of the solutions to the regularized
problem, does not become active. Hence, if we verify the solvability of the regularized hybrid problem, the proof
of Theorem 4.1 is completed. We further note that the regularization argument is necessary since we are not
able to use the Moser iteration scheme directly for the hybrid problem (P) to obtain a priori estimates, computed
in Lemma 3.4, also for the expression ψ/T̃ with T̃ being the frozen argument, as T̃ does not satisfy the heat
flow equation.

An immediate consequence of Theorem 4.1 is the following corollary.

Corollary 4.1 We suppose in addition to Assumptions (A) that

ϕDi = const in ΩDi, i = n, p, and ϕDn = ϕDp in ΩD, (4.1)

then there exists a unique solution to problem (P). Moreover, this solution is the thermodynamic equilibrium
and has the form (ψ∗, ϕ∗n, ϕ

∗
p, T

∗) = (ψ∗, ϕDn , ϕ
D
p , Ta), where ψ∗ ∈ H1(ΩD) is the unique solution to the

nonlinear Poisson equation in ΩD,

−∇·(ε∇ψ∗) = C(Ta)−Nn0(Ta) exp
(ψ∗ − ϕDn − EC(Ta)

Ta

)
+Np0(Ta) exp

(EV (Ta)− (ψ∗−ϕDp )

Ta

)
,

with the boundary conditions ψ∗ = ψD∗ on I , ε∇ψ∗ · ν = 0 on ∂ΩD \ I where

ψD∗ := (1− τ)

(
ϕDn + Ta ln

N+
D (Ta)

N̂n0(Ta)
+ ÊC(Ta)

)
+ τ

(
ϕDp − Ta ln

N−A (Ta)

N̂p0(Ta)
+ ÊV (Ta)

)
.

Proof. Assume that the Dirichlet functions ϕDi in ΩDi, i = n, p, satisfy (4.1) and let (ψ,ϕn, ϕp, T ) be an
arbitrary solution to (P) as in Theorem 4.1. Using the test function (ϕn − ϕDn , ϕp − ϕDp ) ∈ H1

Dn(ΩDn) ×
H1

Dp(ΩDp) for the equations for ϕn and ϕp we obtain

0 =

∫
ΩDn

dn(n, T )|∇ϕn|2 dx+

∫
ΩDp

dp(p, T )|∇ϕp|2 dx

+

∫
ΩD

r(n, p, T )

(
exp

ϕn − ϕp
T

− 1

)
(ϕn − ϕp) dx.

Hence, the integrands in all occurring integrals are nonnegative. The positivity of di in ΩDi for i = n, p guaran-
tees that ∇ϕi = 0 a.e. in ΩDi. Together with the prescribed boundary values, we obtain ϕn = ϕDn = ϕDp =
ϕp. Therefore, all source terms in the heat flow equation (2.13) vanish. This ensures together with the Robin
boundary condition that T ≡ Ta. Thus it remains to solve the Poisson equation where n and p on the right
hand side are substituted by the statistical relation

n = Nn0(Ta) exp
(ψ∗ − ϕDn − EC(Ta)

Ta

)
, p = Np0(Ta) exp

(EV (Ta)− (ψ∗−ϕDp )

Ta

)
,

and as Dirichlet function the function ψD∗ defined in Corollary 4.1 has to be used. �

5 The regularized problem (PM)

Let M > 0 and kM (y) := min{max{y,−M},M}. Our problem reads as follows: Find (ψ,ϕn, ϕp, T ) ∈[
(ψD+H1

I (ΩD))∩L∞(ΩD)
]
×
[
(ϕDn +H1

Dn(ΩDn))∩W 1,s(ΩDn)
]
×
[
(ϕDp +H1

Dp(ΩDp))∩W 1,s(ΩDp)
]
×
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{T ∈ H1(Ω) : lnT ∈ L∞(Ω)} with∫
ΩD

ε∇ψ · ∇ψ dx =

∫
ΩD

(C(T )− nM + pM )ψ dx ∀ψ ∈ H1
I (ΩD),∫

ΩDn

dn(nM , T )∇ϕn · ∇ϕn dx+

∫
ΩDp

dp(pM , T )∇ϕp · ∇ϕp dx

=

∫
ΩD

r(nM , pM , T )
(

1− exp
ϕn − ϕp

T

)
(ϕn − ϕp) dx ∀ϕi ∈ H1

Di(ΩDi), i = n, p,∫
Ω
λ∇T · ∇T dx+

∫
Γ
κ (T − Ta)T dΓ

=

∫
Ω
hΩ(nM , pM , T,∇ϕn,∇ϕp, ϕn, ϕp)T dx ∀T ∈ H1(Ω),

(PM )

where the regularized densities nM and pM have to be determined pointwise by

nM = Nn0 exp

(
kM

(
ψ

T

)
− ϕn + EC

T

)
, pM = Np0 exp

(
EV + ϕp

T
− kM

(
ψ

T

))
. (5.1)

5.1 A priori estimates for the regularized problem (PM)

Theorem 5.1 We suppose Assumption (A). Then each weak solution (ψ,ϕn, ϕp, T ) to the regularized problem
(PM ) fulfills with the exponents s, t > 2 from Theorem 3.1 and the constants Ta,K , cT , cψ/T , cϕ,s, cT,t, cT,∞,
and cψ,∞ from Assumption (A), Lemma 3.2, Lemma 3.3, Lemma 3.4, and Theorem 3.1 the estimates T ≥ Ta
a.e. in Ω,

‖ϕi‖L∞(ΩDi)
≤ K, ‖ϕi‖W 1,s(ΩDi)

≤ cϕ,s, i = n, p, ‖ψ/T‖L∞(ΩD) ≤ cψ/T ,

‖T‖L2(Γ) ≤ cT , ‖T‖W 1,t(Ω) ≤ cT,t, ‖T‖L∞(Ω) ≤ cT,∞, ‖ψ‖L∞(ΩD) ≤ cψ,∞.

Proof. We apply the techniques used in Section 3.

1. The estimates of Lemma 3.1 and Lemma 3.2 remain valid with the same constants for solutions to the regular-
ized problem (PM ) if one substitutes hΩ(n, p, T,∇ϕn,∇ϕp, ϕn, ϕp) by hΩ(nM , pM , T,∇ϕn,∇ϕp, ϕn, ϕp),
see especially (3.1). As a consequence, the estimates of Lemma 3.3 remain also valid with the same constants,
especially ‖T‖L2(Γ) ≤ cT .

2. Next we follow the proof of Lemma 3.4, use that the (regularized) right hand side of the heat equation is
nonnegative and apply the estimate for ‖T‖L2(Γ). Note that instead of (3.3) we argue now with

(C − nM + pM )zm−1
L ≤

(
C +Np0 exp

EV + ϕp
T

− kM (
ψ

T
)
)
zm−1
L

≤
(
C +Np0 exp

EV + ϕp
T

)
zm−1
L ≤ czm−1

L .

Then exactly the same arguments as in the proof of Lemma 3.4 ensure that ‖ψ/T‖L∞(ΩD) ≤ cψ/T with cψ/T
from Lemma 3.4.

3. Step 2, T ≥ Ta, ‖ϕi‖L∞(ΩDi)
≤ K guarantee the estimates for the regularized densities

cd ≤ nM = Nn0 exp

{
kM

(
ψ

T

)
−ϕn+EC

T

}
, pM = Np0 exp

{
EV +ϕp
T

− kM
(
ψ

T

)}
≤ cd

a.e. in ΩD (with cd, cd defined in (3.5)) not depending on the regularization level M , which enable us to repeat
all steps of the proof of Theorem 3.1 with exactly the same constants now for solutions to the regularized
problem. �
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6 Existence proof for the regularized problem

Theorem 6.1 Under Assumption (A) there exists a weak solution (ψ,ϕn, ϕp, T ) to the regularized problem
(PM ).

Note that the constants in this section on the solvability of the regularized problem (PM ) are allowed to depend
on the regularization level M .

The proof of Theorem 6.1 is based on Schauder’s fixed point theorem. First, we shortly introduce the iteration
scheme, then we consider relevant subproblems with frozen arguments, and finally we show the continuity of
the fixed point map.

6.1 Iteration scheme

We define the non-empty, convex, bounded, closed set

N :=
{

(ϕn, ϕp, T ) ∈ H1(ΩDn)×H1(ΩDp)×W 1,tM (Ω) :

‖ϕn‖H1(ΩDn) , ‖ϕp‖H1(ΩDp) ≤ cM,H1 , ‖T‖W 1,tM (Ω) ≤ cT,tM ,

−K ≤ ϕn, ϕp ≤ K, T ≥ Ta a.e. in Ω
}
,

(6.1)

where cM,H1 > 0 will be defined in (6.8) and Lemma 6.2, tM > 2 and cT,tM > 0 will be introduced in (6.10)

and Lemma 6.3. We construct a fixed point map Q : N → N , (ϕn, ϕp, T ) = Q(ϕ̃n, ϕ̃p, T̃ ) by the following
three steps:

1. For given (ϕ̃n, ϕ̃p, T̃ ) ∈ N and τ from Subsection 2.3 we define the H1(ΩD) function

ψ̃D := (1− τ)
(
ϕ̃n + T̃ ln

N+
D (T̃ )

N̂n0(T̃ )
+ ÊC(T̃ )

)
+ τ
(
ϕ̃p − T̃ ln

N−A (T̃ )

N̂p0(T̃ )
+ ÊV (T̃ )

)
(6.2)

and obtain by Lemma 6.1 a unique weak solution ψ ∈ ψ̃D +H1
I (ΩD) to the nonlinear Poisson equation

−∇ · (ε∇ψ) = C(T̃ )−Nn0(T̃ ) exp
(
kM
(ψ
T̃

)
− ϕ̃n+EC(T̃ )

T̃

)
+Np0(T̃ ) exp

(EV (T̃ )+ϕ̃p

T̃
−kM

(ψ
T̃

))
in ΩD,

ψ = ψ̃D on I, ε∇ψ · ν = 0 on ∂ΩD\I.

(6.3)

2. We set now

ñM := Nn0(T̃ ) exp
(
kM
(ψ
T̃

)
− ϕ̃n + EC(T̃ )

T̃

)
,

p̃M := Np0(T̃ ) exp
(EV (T̃ ) + ϕ̃p

T̃
− kM

(ψ
T̃

))
.

(6.4)

Our regularization ensures the uniform estimates

cM ≤ ñM , p̃M ≤ cM , (6.5)

0 < cMu ≤ dn(ñM , T̃ ), dp(p̃M , T̃ ) ≤ cMo. (6.6)
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Next, we solve the continuity equations for electrons and holes with frozen (regularized) coefficients dn(ñM , T̃ ),
dp(p̃M , T̃ ) and reaction rate coefficient r̃ := r(ñM , p̃M , T̃ ) for a weak solution (ϕn, ϕp) to

−∇ · (dn(ñM , T̃ )∇ϕn) = RΩ(ñM , p̃M , T̃ , ϕn, ϕp) in ΩDn,

JϕnK = 0 on In,
r
dn(ñM , T̃ )∇ϕn · νD

z
= 0 on In,

ϕn = ϕDn on ΓDn, ∇ϕn · ν = 0 elsewhere,

−∇ · (dp(p̃M , T̃ )∇ϕp) = −RΩ(ñM , p̃M , T̃ , ϕn, ϕp) in ΩDp,

JϕpK = 0 on Ip,
r
dp(p̃M , T̃ )∇ϕp · νD

z
= 0 on Ip,

ϕp = ϕDp on ΓDp, ∇ϕp · ν = 0 elsewhere.

(6.7)

By Lemma 6.2 there exists a unique weak solution (ϕn, ϕp) ∈ (ϕDn +H1
Dn(ΩDn))× (ϕDp +H1

Dp(ΩDp)) to
(6.7) that satisfies the following estimates,

‖ϕi‖L∞(ΩDi)
≤ K, ‖ϕi‖H1(ΩDi)

≤ cM,H1 , ‖ϕi‖W 1,sM (ΩDi)
≤ cMs, for i = n, p, (6.8)

for some exponent sM > 2. These estimates are uniform with respect to (ϕ̃n, ϕ̃p, T̃ ) ∈ N .

3. The above estimates combined with (6.5) and (6.6) ensure that the right hand side of the heat flow equation,

−∇ · (λ∇T ) = hΩ(ñM , p̃M , T̃ ,∇ϕn,∇ϕp, ϕn, ϕp) in Ω

λ∇T · ν + κ(T − Ta) = 0 on Γ
(6.9)

with hΩ(ñM , p̃M , T̃ ,∇ϕn,∇ϕp, ϕn, ϕp) belongs to LsM/2(Ω) and has a uniform LsM/2 bound for all pos-

sible (ϕ̃n, ϕ̃p, T̃ ) ∈ N . According to Lemma 6.3 there exists a unique weak solution T ∈ H1(Ω) to (6.9). For
some tM > 2 it fulfils

‖T‖W 1,tM (Ω) ≤ cT,tM and T ≥ Ta. (6.10)

Therefore, in summary (ϕn, ϕp, T ) = Q(ϕ̃n, ϕ̃p, T̃ ) ∈ N .

6.2 Solvability and properties of solutions to subproblems

Lemma 6.1 (Poisson equation) We assume (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N be arbitrarily given and ψ̃D be con-

structed by (6.2). Then there exists a unique weak solution ψ ∈ ψ̃D + H1
I (ΩD) to the nonlinear Poisson

equation (6.3). There is a constant cψ,H1 > 0 not depending on the choice of (ϕ̃n, ϕ̃p, T̃ ) ∈ N such that

‖ψ‖H1 ≤ cψ,H1 .

Proof. 1. Due to Assumptions (A), the function ψ̃D representing the Dirichlet boundary conditions belongs to

H1(ΩD),
∥∥∥ψ̃D∥∥∥

H1(ΩD)
≤ c for all (ϕ̃n, ϕ̃p, T̃ ) ∈ N . By the properties of the exponential function, for given

(ϕ̃n, ϕ̃p, T̃ ) ∈ N the operator B
(ϕ̃n,ϕ̃p,T̃ )

: ψ̃D +H1
I (ΩD)→ (H1

I (ΩD))∗,

〈B
(ϕ̃n,ϕ̃p,T̃ )

ψ, v〉 :=

∫
ΩD

ε∇ψ · ∇v dx

+

∫
ΩD

(
Nn0(T̃ ) exp

(
kM
(ψ
T̃

)
− ϕ̃n+EC(T̃ )

T̃

)
−Np0(T̃ ) exp

(EV (T̃ )+ϕ̃p

T̃
−kM

(ψ
T̃

))
− C(T̃ )

)
v dx,

v ∈ H1
I (ΩD), is strongly monotone, coercive, and hemi–continuous (note that ‖∇·‖L2 is an equivalent norm

on H1
I (ΩD) since mes(I) > 0). Thus, by the Browder-Minty theorem [7] the problem B

(ϕ̃n,ϕ̃p,T̃ )
ψ = 0 has
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a solution. Since the operator is strongly monotone, the solution ψ ∈ ψ̃D + H1
I (ΩD) to B

(ϕ̃n,ϕ̃p,T̃ )
ψ = 0 is

unique and gives us the unique weak solution to (6.3).

2. With the test function ψ − ψ̃D ∈ H1
I (ΩD) we find∥∥∥ψ − ψ̃D∥∥∥2

H1
I (ΩD)

≤ c
∥∥∥ψ − ψ̃D∥∥∥

H1
I (ΩD)

∥∥∥ψ̃D∥∥∥
H1(ΩD)

+ c(M)
∥∥∥ψ − ψ̃D∥∥∥

L1(ΩD)
.

Here we used the bounds for ϕ̃i, Ni0, EV and EC , and T̃ ≥ Ta. Applying Young’s inequality and the fact that∥∥∥ψ̃D∥∥∥
H1(ΩD)

≤ c we verify that ‖ψ‖H1 ≤ cψ,H1 independent of the choice of (ϕ̃n, ϕ̃p, T̃ ) ∈ N . �

Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N and let ψ be the weak solution to (6.3) and ñM and p̃M be defined by (6.4). Since EC ,

EV , ϕ̃n, and ϕ̃p have upper and lower bounds and T̃ is bounded from below by Ta we obtain the estimates

−M − K + E

Ta
≤ kM

(
ψ

T̃

)
− ϕ̃n + EC(T̃ )

T̃
≤M +

K + E

Ta
,

−M − K + E

Ta
≤ EV (T̃ ) + ϕ̃p

T̃
− kM

(
ψ

T̃

)
≤M +

K + E

Ta
.

(6.11)

Since the exponential function is monotonously increasing, this estimate carries over to the corresponding ex-
ponentials which leads to the estimates for the regularized densities ñM and p̃M . Exploiting additionally the
boundedness of the mobility functions, upper and lower bounds for the ionized dopant densities N+

D in Ωn and
N−A in Ωp we obtain positive constants cMu, cMo such that

cM ≤ ñM , p̃M ≤ cM in ΩD,

0 < cMu ≤ d̃nM := dn(ñM , T̃ ) ≤ cMo a.e. in ΩDn,

0 < cMu ≤ d̃pM := dp(p̃M , T̃ ) ≤ cMo a.e. in ΩDp

(6.12)

uniformly for all (ϕ̃n, ϕ̃p, T̃ ) ∈ N .

Lemma 6.2 (Continuity equations) We assume (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N and let ψ be the weak solution
to (6.3) and ñM and p̃M be given by (6.4). Then there exists a unique weak solution (ϕn, ϕp) ∈ (ϕDn +
H1

Dn(ΩDn))× (ϕDp +H1
Dp(ΩDp)) to (6.7). It fulfils

‖ϕi‖L∞(ΩDi)
≤ K, ‖ϕi‖H1(ΩDi)

≤ cM,H1 , ‖ϕi‖W 1,sM (ΩDi)
≤ cMs, i = n, p,

for some exponent sM > 2. The estimates and sM are uniform with respect to (ϕ̃n, ϕ̃p, T̃ ) ∈ N .

Proof. 1. We define ρS : R2 → [0, 1] to be a fixed Lipschitz continuous function with

ρS(y, z) :=

{
0 if max{|y|, |z|} ≥ S,
1 if max{|y|, |z|} ≤ S

2 .

and use the notation d̃nM and d̃pM from (6.12), and r̃. Because of (6.12) the operator AS
(ϕ̃n,ϕ̃p,T̃ )

: (ϕDn +

H1
Dn(ΩDn))× (ϕDDp +H1

D(ΩDp))→ H1
Dn(ΩDn)∗ ×H1

Dp(ΩDp)∗,

AS
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = ÂS
(ϕ̃n,ϕ̃p,T̃ )

(
(ϕn, ϕp), (ϕn, ϕp)

)
with the argument splitting

〈ÂS
(ϕ̃n,ϕ̃p,T̃ )

(
(ϕn, ϕp), (ϕ̂n, ϕ̂p)

)
, (ϕn, ϕp)〉 :=∑

i=n,p

∫
ΩDi

d̃iM∇ϕ̂i · ∇ϕi dx+

∫
ΩD

ρS(ϕn, ϕp) r̃
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp) dx,
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ϕi ∈ H1
Di(ΩDi), is an operator of variational type (see [15, p. 182]). Have in mind that the main part (in

the arguments ϕ̂n, ϕ̂p) is monotone, continuous and bounded and the regularized reaction term is bounded
and the mapping (ϕn, ϕp) 7→ ρS(ϕn, ϕp)(exp{ϕn−ϕp

T̃
} − 1

)
is Lipschitz continuous. Since the operator

AS
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) additionally is coercive, the equation AS
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = 0 has at least one solution

(ϕSn , ϕ
S
p ) ∈ (ϕDn +H1

Dn(ΩDn))× (ϕDp +H1
Dp(ΩDp)).

2. Using the test function ((ϕSn −K)+, (ϕSp −K)+) ∈ H1
Dn(ΩDn)×H1

Dp(ΩDp) for the equation

AS
(ϕ̃n,ϕ̃p,T̃ )

(ϕSn , ϕ
S
p ) = 0 with K from Assumption (A) we obtain

0 =
∑
i=n,p

∫
ΩDi

d̃iM |∇(ϕSi −K)+|2 dx

+

∫
ΩD

ρS(ϕSn, ϕ
S
p )r̃
(

exp
ϕSn − ϕSp

T̃
− 1
)(

(ϕSn −K)+ − (ϕSp −K)+
)

dx.

Discussing the four different cases ϕSn (ϕSp ) > K (≤ K) we find that the integrand in the last line is always

non-negative (note that ρS and r̃ are also non-negative). Thus, (6.12) ensures that ϕSi ≤ K a.e. in ΩDi,
i = n, p. On the other hand, testing by (−(ϕSn +K)−,−(ϕSp +K)−) gives ϕSi ≥ −K a.e. in ΩDi, i = n, p.

Therefore, if we choose S ≥ 2K , each solution to AS
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = 0 is a weak solution to (6.7), too.

The estimates of Step 2 can be done in exactly the same way but leaving out the factor ρS to obtain the upper
and lower bounds for all weak solutions (ϕn, ϕp) to (6.7), such that ‖ϕi‖L∞(ΩDi)

≤ K , i = n, p.

3. Next, we show that there is at most one weak solution to (6.7). If there would be two different solutions
(ϕn, ϕp) and (ϕ̂n, ϕ̂p), the test function (ϕn − ϕ̂n, ϕp − ϕ̂p) ∈ H1

Dn(ΩDn)×H1
Dp(ΩDp) for (6.7) yields

0 =
∑
i=n,p

∫
ΩDi

d̃iM |∇(ϕi − ϕ̂i)|2 dx

+

∫
ΩD

r̃
(

exp
ϕn − ϕp

T̃
− exp

ϕ̂n − ϕ̂p
T̃

)(
ϕn − ϕp − (ϕ̂n − ϕ̂p)

)
dx.

Because of mes ΓDi > 0, (6.12), the monotonicity of the exponential function, and r̃ ≥ 0 we obtain (ϕn, ϕp) =
(ϕ̂n, ϕ̂p).

4. Now we verify the uniformH1 estimate for the weak solution to (6.7) by testing with (ϕn−ϕDn , ϕp−ϕDp ) ∈
H1

Dn(ΩDn)×H1
Dp(ΩDp), using Hölder’s inequality and the fact that T̃ ≥ Ta and ϕi ∈ [−K,K] a.e. in ΩDi

from Step 2:∑
i=n,p

∫
ΩDi

d̃iM |∇(ϕi − ϕDi )|2 dx+

∫
ΩD

r̃
(

exp
ϕn − ϕp

T̃
− 1
)(
ϕn − ϕp

)
dx

≤
∑
i=n,p

∫
ΩDi

d̃iM
2

(
|∇(ϕi − ϕDi )|2 + |∇ϕDi |2

)
dx+ 2Kr(1 + 2cM )cM

2 exp

{
2K

Ta

}
mes(ΩD).

Exploiting again (6.12), the non-negativity of r̃, the monotonicity of the exponential function, and that ϕDi ∈
H1(ΩDi) are given functions, and using the constants cM from (6.12), r, and K from Assumption (A), we end
up with the bounds ‖ϕi‖H1(ΩDi)

≤ cM,H1 , i = n, p, where the constant cM,H1 does not depend on the

special choice of (ϕ̃n, ϕ̃p, T̃ ) ∈ N .

5. W 1,sM regularity: Note that we supposed that ΩDi together with the Neumann boundary Γ̃Ni are regular
in the sense of Gröger. Because of (6.12) and uniform estimates for right hand sides resulting from the gen-
eration/recombination reaction in ΩD for all (ϕ̃n, ϕ̃p, T̃ ) ∈ N the regularity result of Gröger [13] ensures an
exponent sM > 2 such that ‖ϕi‖W 1,sM (ΩDi)

≤ cMs, i = n, p. These estimates are again uniform with

respect to (ϕ̃n, ϕ̃p, T̃ ) ∈ N . �
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Lemma 6.3 (Solution to the heat flow equation) We assume Assumption (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N and let
ψ be the weak solution to (6.3) and (ϕn, ϕp) be the weak solution to (6.7). Then there exists a unique weak
solution T ∈ H1(Ω) to (6.9). It fulfils T ≥ Ta a.e. in Ω. Moreover there is an exponent tM > 2 and a constant
cT,tM > 0 such that

‖T‖W 1,tM (Ω) ≤ cT,tM

with cT,tM > 0 independent of the special choice of (ϕ̃n, ϕ̃p, T̃ ) ∈ N .

Proof. The results of Lemma 6.2, (6.12) and the boundedness of r̃ ensure a cHM > 0 such that∥∥∥d̃iM |∇ϕi|2∥∥∥
LsM/2(ΩDi)

≤ cHM , i = n, p,∥∥∥∥r̃( exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)
∥∥∥∥
LsM/2(ΩD)

≤ cHM .
(6.13)

Therefore the right hand side, hΩ(ñM , p̃M , T̃ ,∇ϕn,∇ϕp, ϕn, ϕp), of equation (6.9) has a uniformly bounded

LsM/2(Ω) norm, sM/2 > 1 for all (ϕ̃n, ϕ̃p, T̃ ) ∈ N . Thus, the linear heat equation (6.9) with Robin boundary
conditions has exactly one solution T ∈ H1(Ω). We define the exponent ŝM which will also be of importance
in the proof of Lemma 6.6, Step 3.

2 < ŝM :=
4sM

2 + sM
< sM (6.14)

and find similar to Step 2 of the proof of Theorem 3.1 by Gröger’s regularity result [13] (with ŝM , t∗M , tM instead
of s, t∗, t) an exponent tM > 2

tM :=


t∗M if

ŝM
ŝM − 2

∈
[
1,

2t∗M
t∗M − 2

]
2ŝM

4− ŝM
if

ŝM
ŝM − 2

>
2t∗M
t∗M − 2

,
1

tM
+

1

t′M
= 1,

(depending only on the geometric setting and the data) and a constant cT,tM > 0 such that ‖T‖W 1,tM (Ω) ≤
cT,tM uniformly for all (ϕ̃n, ϕ̃p, T̃ ) ∈ N . (Here we used (6.13) and that the definition of tM guarantees that
LsM/2(Ω) ↪→ LŝM/2(Ω) ↪→W−1,tM (Ω) = W 1,t′M (Ω)∗.)

Since the right hand side of the heat equation (6.9) is nonnegative, the test of the equation by −(T − Ta)−
yields the desired estimate T ≥ Ta a.e. in Ω. �

6.3 Continuity properties of the fixed point mapQ

We prove that the fixed point map Q : N 7→ N is continuous and completely continuous in two steps. First
we verify continuity properties for the solution to the nonlinear Poisson equation with respect to the arguments
(ϕ̃n, ϕ̃p, T̃ ), see Lemma 6.4, Lemma 6.5. In the second step the continuity properties of Q itself are demon-
strated in Lemma 6.6.

Lemma 6.4 We assume Assumptions (A). Let (ϕ̃ln, ϕ̃
l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈ N with ϕ̃li ⇀ ϕ̃i in H1(ΩDi),

i = n, p, and T̃ l ⇀ T̃ in W 1,tM (Ω). Then the by (6.2) defined boundary value functions ψ̃Dl, ψ̃D fulfil
ψ̃Dl ⇀ ψ̃D in H1(ΩD).

Proof. Note that our assumptions on N+
D , N

−
A , N̂n0, N̂p0, ÊC , ÊV , and on the function τ , defined in (2.8),

are tailored to guarantee this weak convergence. The parts in (6.2) with ϕ̃i follow directly from ϕ̃li ⇀ ϕ̃i in
H1(ΩDi), i = n, p. We demonstrate here exemplarily the weak convergence for the term

τ T̃ l ln
N+
D (T̃ l)

N̂n0(T̃ l)
⇀ τT̃ ln

N+
D (T̃ )

N̂n0(T̃ )
in H1(ΩD).
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The compact Sobolev embedding ofW 1,tM (Ω) intoL∞(Ω) ensures T̃ l → T̃ inL∞(ΩD). Moreover, T̃ l ⇀ T̃
in W 1,tM (Ω) yields that∇T̃ l ⇀ ∇T̃ in L2(ΩD)2. Let v ∈ H1(ΩD) be arbitrarily given. Clearly we have∫

ΩD

τ
(
T̃ l ln

N+
D (T̃ l)

N̂n0(T̃ l)
− T̃ ln

N+
D (T̃ )

N̂n0(T̃ )

)
v dx→ 0.

For the part with the gradients we use the following decomposition∫
ΩD

∇
[
τ
(
T̃ l ln

N+
D (T̃ l)

N̂n0(T̃ l)
− T̃ ln

N+
D (T̃ )

N̂n0(T̃ )

)]
· ∇v dx = I1 + I2 + I3,

where

I1 :=

∫
ΩD

(
T̃ l ln

N+
D (T̃ l)

N̂n0(T̃ l)
− T̃ ln

N+
D (T̃ )

N̂n0(T̃ )

)
∇τ · ∇v dx→ 0

due to T̃ l → T̃ in L∞(ΩD) and τ, v ∈ H1(ΩD).

I2 :=

∫
ΩD

τ
[

ln
N+
D (T̃ l)

Ñn0(T̃ l)
− ln

N+
D (T̃ )

Ñn0(T̃ )
+ T̃ l

(
ln
N+
D (T̃ l)

Ñn0(T̃ l)

)′
− T̃

(
ln
N+
D (T̃ )

Ñn0(T̃ )

)′]
∇T̃ l · ∇v dx→ 0

because of
∥∥∥T̃ l∥∥∥

H1(ΩD)
≤ c, v ∈ H1(ΩD), T̃ l → T̃ in L∞(ΩD), and Lebesgue’s theorem.

I3 :=

∫
ΩD

∇(T̃ l − T̃ ) · ∇v τ
[

ln
N+
D (T̃ )

Ñn0(T̃ )
+ T̃

(
ln
N+
D (T̃ )

Ñn0(T̃ )

)′]
dx→ 0

since ∇v times τ times the term in the brackets can be used as test function for the weak convergence of
∇T̃ l ⇀ ∇T̃ in L2(ΩD)2. �

Lemma 6.5 We assume Assumptions (A). Let (ϕ̃ln, ϕ̃
l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈ N with ϕ̃li ⇀ ϕ̃i in H1(ΩDi),

i = n, p, and T̃ l ⇀ T̃ in W 1,tM (Ω), let ψl and ψ denote the corresponding unique weak solutions to (6.3).
Then ψl → ψ in Lr(ΩD) for all r ∈ [1,∞).

Proof. 1. Let ψ be the solution to (6.3) with the boundary function ψ̃D and let ψ̂l ∈ ψ̃Dl + H1
I (ΩD) be the

unique solution to the linear elliptic problem with mixed boundary conditions

−∇ · (ε∇ψ̂l) = C(T̃ )−Nn0(T̃ ) exp
(
kM
(ψ
T̃

)
− ϕ̃n+EC(T̃ )

T̃

)
+Np0(T̃ ) exp

(EV (T̃ )+ϕ̃p

T̃
−kM

(ψ
T̃

))
in ΩD,

ψ̂l = ψ̃Dl on I, ε∇ψ̂l · ν = 0 on ∂ΩD\I.

(6.15)

Then wl := ψ − ψ̂l solves the linear elliptic problem with zero right hand side and with mixed boundary
conditions with the Dirichlet function wDl = ψ̃D − ψ̃Dl. The mapping which associates to the boundary value
function wDl the solution wl ∈ wDl + H1

I (ΩD) of the linear elliptic problem is bounded and linear, and
therefore continuous. According to [17, Prop. 4.2, p. 159] this operator is also continuous with respect to the
weak topology such that wDl ⇀ 0 in H1(ΩD) implies wl = ψ − ψ̂l ⇀ 0 in H1(ΩD) and ψ̂l → ψ in
L2(ΩD).

2. We test (6.3) for ψl and (6.15) for ψ̂l by ψl − ψ̂l ∈ H1
D(ΩD) and obtain

c
∥∥∥ψl − ψ̂l∥∥∥2

H1(ΩD)
−
∫

ΩD

(C(T̃ l)− C(T̃ ))(ψl − ψ̂l) dx

≤
∫

ΩD

(
U(ψl, ϕ̃ln, ϕ̃

l
p, T̃

l)− U(ψ, ϕ̃n, ϕ̃p, T̃ )
)

(ψl − ψ̂l) dx

=

∫
ΩD

(
U(ψl, ϕ̃ln, ϕ̃

l
p, T̃

l)−U(ψ̂l, ϕ̃ln, ϕ̃
l
p, T̃

l)+U(ψ̂l, ϕ̃ln, ϕ̃
l
p, T̃

l)−U(ψ, ϕ̃n, ϕ̃p, T̃ )
)

(ψl−ψ̂l) dx,
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where

U(ψ,ϕn, ϕp,T ) :=Np0(T ) exp
(EV (T )+ϕp

T
−kM

(ψ
T

))
−Nn0(T ) exp

(
kM
(ψ
T

)
−ϕn+EC(T )

T

)
.

Since the exponential function is monotonous we have

(U(ψl, ϕ̃ln, ϕ̃
l
p, T̃

l)− U(ψ̂l, ϕ̃ln, ϕ̃
l
p, T̃

l))(ψl−ψ̂l) ≤ 0.

Moreover, using the assumptions on EC , EV , Nn0, Np0 and the fact that the triples (ϕ̃ln, ϕ̃
l
p, T̃

l),

(ϕ̃n, ϕ̃p, T̃ ) ∈ N we estimate

|U(ψ̂l, ϕ̃ln, ϕ̃
l
p, T̃

l)− U(ψ, ϕ̃n, ϕ̃p, T̃ )| ≤ cM (|ψ̂l − ψ|+ |ϕ̃ln − ϕ̃n|+ |ϕ̃lp − ϕ̃p|+ |T̃ l − T̃ |).

These arguments ensure the estimate,∥∥∥ψl − ψ̂l∥∥∥2

H1(ΩD)
≤ cM

(∥∥∥ψ̂l−ψ∥∥∥
L2(ΩD)

+
∥∥∥ϕ̃ln−ϕ̃n∥∥∥

L2(ΩD)

+
∥∥∥ϕ̃lp−ϕ̃p∥∥∥

L2(ΩD)
+
∥∥∥T̃ l−T̃∥∥∥

L2(ΩD)

)∥∥∥ψl−ψ̂l∥∥∥
L2(ΩD)

,

which leads because of Step 1 and ϕ̃ln → ϕ̃n, ϕ̃lp → ϕ̃p, T̃ l → T̃ inL2(ΩD) to the convergenceψl−ψ̂l → 0

in H1(ΩD). Therefore, also ψl − ψ̂l ⇀ 0 as l → ∞, which together with ψ̂l ⇀ ψ in H1(ΩD) from Step 1
ensures ψl ⇀ ψ in H1(ΩD) and thus, ψl → ψ in Lr(ΩD) for all r ∈ [1,∞) as l→∞. �

Lemma 6.6 We assume Assumptions (A). Then the mapQ : N → N is completely continuous.

Proof. 1. Let (ϕ̃ln, ϕ̃
l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈ N with ϕ̃li ⇀ ϕ̃i in H1(ΩDi), i = n, p, and T̃ l ⇀ T̃ in

W 1,tM (Ω), let ψl and ψ denote the corresponding unique weak solutions to (6.3), and let ñlM , ñM , p̃lM ,

p̃M be the corresponding quantities in (6.4). We have to show that (ϕln, ϕ
l
p, T

l) := Q(ϕ̃ln, ϕ̃
l
p, T̃

l) →
(ϕn, ϕp, T ) := Q(ϕ̃n, ϕ̃p, T̃ ) in H1(ΩDn)×H1(ΩDp)×W 1,tM (Ω).

The assumed weak convergences guarantee ϕ̃li → ϕ̃i in Lr(ΩDi), i = n, p, and T̃ l → T̃ in Lr(Ω) for all
r ∈ [1,∞). Lemma 6.5 ensures that also ψl → ψ in Lr(ΩD), r ∈ [1,∞). Therefore the Assumptions (A),
(6.11) and the lower bound for the temperatures yield the convergences

ñlM := Nn0(T̃ l) exp
(
kM
(ψl
T̃ l

)
− ϕ̃

l
n+EC(T̃ l)

T̃ l

)
→ ñM ,

p̃lM := Np0(T̃ l) exp
(EV (T̃ l)+ϕ̃lp

T̃ l
−kM

(ψl
T̃ l

))
→ p̃M ,

µn(T̃ l, ñlM )→ µn(T̃ , ñM ), µp(T̃
l, p̃l)→ µp(T̃ , p̃M ) in Lr(ΩD),

N+
D (T̃ l)→ N+

D (T̃ ), µn(T̃ l, N+
D (T̃ l))→ µn(T̃ , N+

D (T̃ )) in Lr(Ωn),

N−A (T̃ l)→ N−A (T̃ ), µp(T̃
l, N−A (T̃ l))→ µp(T̃ , N

−
A (T̃ )) in Lr(Ωp), r ∈ [1,∞).

Moreover, our Assumptions (A) additionally ensure the following convergences,

d̃lnM := dn(ñlM , T̃
l)→ d̃nM in Lr(ΩDn), d̃lpM := dp(p̃

l
M , T̃

l)→ d̃pM in Lr(ΩDp),

r̃l := r(ñlM , p̃
l
M , T̃

l)→ r̃ in Lr(ΩD), r ∈ [1,∞).
(6.16)

2. With the test function (ϕln − ϕn, ϕlp − ϕp) ∈ H1
Dn(ΩDn)×H1

Dp(ΩDp) for (6.7) we obtain∑
i=n,p

∫
ΩDi

{
d̃liM∇ϕli − d̃iM∇ϕi

}
· ∇(ϕli − ϕi) dx

=

∫
ΩD

(
r̃
(

exp
ϕn−ϕp
T̃

− 1
)
− r̃l

(
exp

ϕln−ϕlp
T̃ l

− 1
))(

ϕln−ϕn − ϕlp+ϕp
)

dx.

(6.17)
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We use the decomposition

d̃liM∇ϕli = d̃liM∇(ϕli − ϕi) + d̃liM∇ϕi ,

r̃l exp
ϕln − ϕlp
T̃ l

= (r̃l − r̃) exp
ϕln − ϕlp
T̃ l

+ r̃
[

exp
ϕln − ϕlp
T̃ l

− exp
ϕln − ϕlp

T̃

]
+ r̃ exp

ϕln − ϕlp
T̃

and take into account that T̃ , T̃ l ≥ Ta and ϕli, ϕi ∈ [−K,K] a.e. in ΩDi by Lemma 6.2 such that exp
ϕl
n−ϕl

p

T̃ l

≤ c. Additionally we exploit that the mapping (ϕn, ϕp, T ) 7→ exp
ϕn−ϕp

T is Lipschitz continuous on [−K,K]2

×[Ta,∞). Moreover, by Lemma 6.2 we have ‖ϕi‖W 1,sM (ΩDi)
≤ cMs, i = n, p. We define the exponent

rM := 2sM
sM−2 . In summary, because of (6.12) and mes(ΓDi) > 0 it results from (6.17) by Hölder’s inequality

c
∑
i=n,p

∥∥∥ϕli − ϕi∥∥∥2

H1(ΩDi)
+

∫
ΩD

r̃
(

exp
ϕln − ϕlp

T̃
− exp

ϕn − ϕp
T̃

)(
ϕln − ϕn − ϕlp + ϕp

)
dx

≤ c
∑
i=n,p

∥∥∥∇(ϕli − ϕi)
∥∥∥
L2(ΩDi)

∥∥∥d̃liM − d̃iM∥∥∥
LrM (ΩDi)

‖∇ϕi‖LsM (ΩDi)

+ c
∑
i=n,p

∥∥∥ϕli − ϕi∥∥∥
L2(ΩDi)

(∥∥∥r̃l − r̃∥∥∥
L2(ΩD)

+
∥∥∥T̃ l − T̃∥∥∥

L2(Ω)

)
.

The integral in the first line is nonnegative. Applying Sobolev’s embedding, Young’s inequality, the conver-
gences obtained in (6.16) and T̃ l → T̃ in L2(Ω), as well as the bound for ‖ϕi‖W 1,sM (ΩDi)

, it follows∥∥ϕli − ϕi∥∥H1(ΩDi)
→ 0, i = n, p.

3. It remains to show for the corresponding solutions to (6.9) that T l → T ∈ W 1,tM (Ω). Our construction of
tM > 2 in Lemma 6.3 ensures the embeddingLŝM/2(Ω) ↪→W−1,tM (Ω) = W 1,t′M (Ω)∗, where 1

tM
+ 1
t′M

=

1. The result of Gröger [13] for the linear heat equation guarantees the estimate,∥∥∥T l − T∥∥∥
W 1,tM (Ω)

≤ c
∥∥∥h̃lΩ − h̃Ω

∥∥∥
W 1,tM

′
(Ω)∗

≤ c
∥∥∥h̃lΩ − h̃Ω

∥∥∥
LŝM/2(Ω)

(6.18)

where we defined h̃lΩ := hΩ(ñlM , p̃
l
M , T̃

l,∇ϕln,∇ϕlp, ϕln, ϕlp) and, in a similar fashion, we defined h̃Ω :=

hΩ(ñM , p̃M , T̃ ,∇ϕn,∇ϕp, ϕn, ϕp). According to Assumptions (A), the boundedness of the potentials, the
lower bound for the temperature, and the convergences of Step 1 we find

r̃l
(

exp
ϕln−ϕlp
T̃ l

− 1
)

(ϕln−ϕlp)→ r̃
(

exp
ϕn−ϕp
T̃

− 1
)

(ϕn−ϕp) in Lr(ΩD), r ∈ [1,∞).

Furthermore, we use the decomposition

d̃liM |∇ϕli|2 − d̃iM |∇ϕi|2 = (d̃liM − d̃iM )|∇ϕli|2 + d̃iM
(
∇ϕli · ∇(ϕli−ϕi) +∇ϕi · ∇(ϕli−ϕi)

)
,

i = n, p, to continue estimate (6.18) by using Hölder’s inequality (note that due to the definition of ŝM in (6.14)
we have 2/ŝM = 1/rM + 2/sM for rM = 2sM/(sM − 2) and 2/ŝM = 1/sM + 1/2)∥∥∥T l − T∥∥∥

W 1,tM (Ω)

≤
∑
i=n,p

{
c
∥∥∥d̃liM − d̃iM∥∥∥

LrM (ΩDi)

∥∥∥∇ϕli∥∥∥2

LsM (ΩDi)

+ c
( ∥∥∥∇ϕli∥∥∥

LsM (ΩDi)
+ ‖∇ϕi‖LsM (ΩDi)

) ∥∥∥∇(ϕli − ϕi)
∥∥∥
L2(ΩDi)

}
+ c

∥∥∥∥∥r̃l( exp
ϕln−ϕlp
T̃ l

− 1
)

(ϕln−ϕlp)− r̃
(

exp
ϕn−ϕp
T̃

− 1
)

(ϕn−ϕp)

∥∥∥∥∥
LŝM/2(Ω)

,

which proves the strong convergence of T l → T in W 1,tM (Ω) and finishes the proof. �
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6.4 Proof of Theorem 6.1

The set N is nonempty, convex, and closed in H1(ΩDn) × H1(ΩDp) × W 1,tM (Ω). Thus, because of
Lemma 6.6, Schauder’s fixed point theorem ensures the existence of a fixed point (ϕn, ϕp, T ) ∈ N of Q.
For this fixed point we solve according to Lemma 6.1 the problem B(ϕn,ϕp,T )ψ = 0 and obtain ψ ∈ H1(ΩD).
It remains to show that the quadruple (ψ,ϕn, ϕp, T ) lays in the correct spaces in the sense of (PM ).

By the definition ofN we find that T ∈ {u ∈ H1(Ω) : lnu ∈ L∞(Ω)}. Since (ϕn, ϕp, T ) is a fixed point of
Q, the regularized continuity equations (middle equation in (PM )) hold true and Step 2 of the proof of Lemma 3.2
done for the hybrid model can be applied with the same constants for the regularized situation if one substitutes
hD by hDM, see especially (3.1). Therefore, the estimates of Lemma 2.3, now for the heat equation with the
regularized right hand side remain valid with the same constants, especially ‖T‖L2(Γ) ≤ cT .

Since (ϕn, ϕp, T ) is a fixed point of Q, Lemma 6.2 guarantees ϕi ∈ W 1,sM (ΩDi), i = n, p. Moreover, the
Poisson equation and the heat equation (first and last equation in (PM )) are simultaneously fulfilled. Therefore
we can apply the technique of the proof of Lemma 3.4 (see also Step 2 of the proof of Theorem 5.1) to obtain
an L∞ estimate for ψ/T with exactly the same bound cψ/T . Now we proceed as in Step 3 of the proof of
Theorem 5.1 and repeat all steps of the proof of Theorem 3.1 to ensure that ϕi ∈W 1,s(ΩDi), i = n, p.

Thus, (ψ,ϕn, ϕp, T ) is a solution to problem (PM ) which proves Theorem 6.1. �

7 Conclusions

We proved existence of a solution of a hybrid model for the electro-thermal behavior of semiconductor het-
erostructures. The hybrid model couples a drift-diffusion type electro-thermal model with thermistor type models
in different subregions of the semiconductor device. For the proof we employed a regularization technique and
Schauder’s fixed point theorem. Additionally, for boundary data compatible with thermodynamic equilibrium we
verified uniqueness as well.

The method of the existence proof of the paper allows also to treat structures with more than one, not directly
adjacent, differently strongly n-doped or p-doped regions. Moreover, the technique can also be adapted to the
setting of unipolar devices where no Ωp or no Ωn is present. Additionally, since in the unipolar drift-diffusion set-
ting no generation/recombination of electrons and holes takes place, the governing equations become simpler
to treat.
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