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Guaranteed upper bounds for the velocity error of pressure-robust Stokes
discretisations
Philip Lukas Lederer, Christian Merdon

ABSTRACT. This paperimproves guaranteed error control for the Stokes problem with a focus on pressure-robustness,
i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type
result relates the errors of divergence-free primal and H (div)-conforming dual mixed methods (for the velocity gra-
dient) with an equilibration constraint that needs special care when discretised. To relax the constraints on the primal
and dual method, a more general result is derived that enables the use of a recently developed mass conserving
mixed stress discretisation to design equilibrated fluxes that yield pressure-independent guaranteed upper bounds
for any pressure-robust (but not necessarily divergence-free) primal discretisation. Moreover, a provably efficient local
design of the equilibrated fluxes is presented that reduces the numerical costs of the error estimator. All theoretical
findings are verified by numerical examples which also show that the efficiency indices of our novel guaranteed upper
bounds for the velocity error are close to 1.

1. INTRODUCTION

There is a long history of a posteriori error control for the Stokes problem [24, 40, 6, 1, 7, 32, 41] which which
was only recently refined in [24] with a stronger focus on the possibility of pressure-independent error control
for the velocity if the discretisation is pressure-robust. Pressure-robust discretisations were propagated in recent
years and are characterised by a pressure-independent velocity error that avoids the error from the relaxation of
the divergence constraint [18, 23, 25, 28, 21, 15, 42] and include divergence-free schemes like [39, 16, 12]. A
similar decoupling is needed in a posteriori error control if one is interested in efficient bounds and appropriate
mesh refinement for the velocity error for such methods. The residual-based approaches by [24, 19] achieve this
by applying the curl operator to the residual, hence measuring only the error of the underlying vorticity equation.

In this paper we turn our interest now to guaranteed error control for the velocity and thereby refine existing
approaches in [17, 34, 5, 27, 32]. In principle, the unified approach from e.g. [6, 17] rewrites many second order
elliptic problems on some admissible domain €2 into the form

(1.1) —dive=f on{Q
which is also possible, with o := vVu — pl .4, for the Stokes problem

—vAu+Vp=f on{,

div(u) =0 onQ.

Hence, the application of the whole a posteriori error estimators for (vector-valued) Poisson problems, in particular
guaranteed upper bounds like [10, 30, 4, 11, 36, 13], also work for the Stokes problem. However, care has to
be taken for the additional divergence constraint that often leads to pressure-dependent velocity error estimators
or estimators for the combined velocity and pressure error. For problems of the form (1.1), there is the famous

Prager-Synge theorem [35, 2] (originally for linear elasticity) that is nothing else than a Pythagoras theorem in
L?-norms, i.e.

IV(w—v)|* + |[Vu — vl |? = [V - v 1o,

where u can be understood as some approximation to «w and o only has to satisfy some orthogonality or equili-
bration constraint. In our Stokes setting it is required that u, v € V' and

(1.2) J(diva—l—f)-wda::O forallw € V
Q

where V' is the subspace of divergence-free H(l)(Q) test functions. An important observation is that, opposite
to the Poisson problem or linear elasticity where the constraint has to hold for the whole space H(l](Q) equation
(1.2) is not equivalent to

div(e) + f =0.
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Since — {¢I : Vwdz = {Vg-wdz = 0forany ¢ € H(Q) and w € V), the equilibration constraint
and the stress ¢ can be gauged by any gradient force. Many equilibration error estimators, see e.g. [17] where
unfortunately only » = 1 is examined, fix this gauging freedom by approximating the pseudo-stress 6 := Vu —
pl g« q or its discrete counterpart 6, =~ vVuy — ppl x4 with the equilibration constraint

div(6y) + e f =0

where 7, is the piecewise L? bestapproximation into the (vector-valued) polynomials of order k, and uy,, py, are
the discrete velocity and pressure solutions of an inf-sup stable discretisation of the Stokes equations. Their error
estimator (for a divergence-free discretisation) then reads as

h 2

_ 2 -1 T o~ ~ _ _

(13)  [V(u—p)|foqy<v " ) <W|f + div(on)| r2(ry + |6n — Prlaxa — VVUh|L2(T)> :
TeT

The seemingly innocent oscillations in the first term can have a severe effect in pressure-dominant situations,

since

-1 —1y/s .

vVl = meflleo) < v (A — m) Vpl p2(0) + | (id — ) Auf 120y,
As one can see, there is a pressure-dependent term that can be relatively large for small v. Even in a divergence-
free setting uy, € Vo, where we are allowed to measure the oscillations after an application of the curl-operator,
one would still end up with a term v~1||h2. curl(7 Vp)||£2(q) that does not vanish and still produces an error

of the same magnitude. To reduce this effect in classical equilibration procedures one would have to increase k
which results in much more numerical costs and also assumes that the pressure is smooth enough.

To remove this dependency we propose a novel equilibration design that avoids the gauging issue altogether and
ensures the equilibration condition (1.2) as it is for an H (div)-conforming subspace of V. We so ensure that
even after the discretisation of the equilibration constraint, the complete gauging freedom is preserved. This is
done with the help of the recently developed mass conserving mixed stress formulation [15]. The resulting error
estimator for a divergence-free discretisation structurally looks very similar to (1.3), but consists of the terms

2

19— wn) [y < v Y, (kA = o) cunl(F + divion))] zeery + [dev(on = vTun)| p2qr))
TeT

Note, that any gauging is not seen by the norms used on the right-hand side. The unfortunately unknown constant

¢ stems from approximation properties of commuting interpolators and only depends on the shape of the cells in

the triangulation. In the last part of the paper also a localized pressure-robust design for the equilibrated fluxes on

node patches is presented.

The rest of the paper is organised as follows. Section 2 introduces the Stokes model problem and a Prager-Synge-
type theorem. Section 3 recalls pressure-robust discretisations of the Stokes problem in the primal formulation
and a dual mixed stress formulation. After shortly summarising classical equilibration error estimator approaches,
Section 4 proves novel pressure-independent guaranteed upper bounds in the spirit of the Prager-Synge theo-
rem but with relaxed constraints on primal and dual stress. A local design for equilibrated fluxes that fit into this
framework is presented in Section 5. Section 6 is concerned with the efficiency of the new pressure-robust er-
ror estimators. Finally, Section 7 shows in several numerical examples that the novel upper bounds are indeed
pressure-independent and allow very sharp error control and optimal adaptive mesh refinement for the velocity
error of pressure-robust discretisations.

For the rest of this work we use a bold-face notation for vector valued functions and spaces, but stick to a standard
notation for matrix valued functions and spaces to increase readability. We denote by LQ(Q) the space of square
integrable functions and by H*({2) the standard Sobolev space with regularity s. Of special interestet is the H?
space with homogeneous boundary conditions denoted by H& (Q).

Now let w < ) be an arbitrary subset, then we use || - |, for the L?-norm on w. In the case w = ) we omit the

notation for the domain and simply write || - | . In a similar manner we denote by (-, -) the L-inner product on ).
For high order Sobolec spaces we use the standard notation, hence || - | s (,,) denotes the H*-norm on w, and
as before, || - [gs = | - | ()
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Finally, the deviatoric part dev(A) of some matrix A € R%*4 is defined by

dev(A) = A — tr(dA) Lia,

where Iy is the d-dimensional identity matrix, and tr(A) = Zle A;; is the matrix trace.

2. THE STOKES MODEL PROBLEM AND A PRAGER-SYNGE THEOREM

This section collects some preliminaries concerning the continuous Stokes problem and some important decom-
positions that allow to decouple velocity and pressure quantities.

2.1. The Stokes model problem. Given f € L?(Q) on some open, bounded domain < R (d = 2,3)
with polygonal or polyhedral boundary, the Stokes problem with homogeneous boundary data seeks a velocity
ue V := H(Q) and some pressure p € Q := LE(Q) = {g € L*(w) : §, pdz} with

—vAu+Vp=f on{),
div(u) =0 on€Q.
The regularity assumptions of uw and p above allow to expect a weak solution that satisfies

v(Vu,Vv) — (p,div(v)) = (f,v) forallveV,
(g,div(v)) =0 forallq € Q.
Note, that the pressure acts as a Lagrange multiplier for the divergence constraint as the subspace of divergence-
free functions is equal to
V0= {veV :div(v) =0} = {ve V:VYqe Q, (¢ div(v)) = 0}.
A weak solution u or its stress o := v'Vu therefore can also be characterised by requiring w € Vg and

v(Vu,Vv) = (0,Vv) = (f,v) foralve V.

2.2. Characterising pressure-robustness. Any force f € LQ(Q) can be uniquely decomposed into
f=Vq+Pf
with ¢ € H'(£2)/R and the divergence-free Helmholtz—Hodge projector
Pf e {ve L?(Q): (v, Vw) = Oforallw e H*(Q)}.

Due to (V¢,v) = (¢q,divv) = 0 for all v € V, u does not see the gradient force from this decomposition and
it holds

v(Vu,Vv) = (Pf,v) forall V.

A discretisation that preserves this property, i.e. its discrete velocity solution is independent of any gradient force
V¢ that is added to the right-hand side, is called pressure-robust, see [18, 28] for details.

2.3. A Prager-Synge-type result for the Stokes system. This section states a Pythagoras theorem for the
Stokes system similar to that of Prager and Synge for the Poisson model problem and the linear elasticity problem
[35, 2]. The Prager-Synge theorem relates the error of primal and equilibrated mixed approximations of the flux
Vu (or €(u) in elasticity) and gives rise to guaranteed error control by the design of equilibrated fluxes for these
problems. The analogon in the context of the Stokes model problem for the flux of the velocity o := vV reads
as follows.
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Theorem 2.1. Consider any v € Vo(€2) and any o € H(div, ) and the equilibration constraint
(2.1) f(f%—diva)-'vdmzo forallv e V.
Q

Then, it holds the Pythagoras theorem
[V(u=)|* + |[Vu—vlo|* = [Vo —v a2

Proof. This follows directly from integration by parts and

IV(u—v)|? + |[Vu — v lo|> — |[Vv — vl o|? =2 JQ(Vu —v7 o) V(u—v)dx

= 21/1J (f+dive) - (u—v)dz = 0.
Q
O

Remark 2.2. Note, that the equilibration constraint (2.1) is pressure-independent, since SQ Vq-vdz = 0forall
v € Vgandqe H'(Q). Stronger constraints like f —Vq-+div(c) = 0 for some known pressure-approximation
q are possible, but potentially lead to an dependency of p — g somewhere, see Section 4.1.

Remark 2.3. In practise, both constraints on the function v and on the flux o in Theorem 2.1 are hard to re-
alise. Therefore, Section 4 derives guaranteed upper bounds for v that do not necessarily have to stem from a
divergence-free (but pressure-robust) discretisation based on equilibrated fluxes o that satisfy a discrete version
of the equilibration property. Before that we recall previous results on how to obtain guaranteed upper bounds by
equilibrated fluxes.

3. PRESSURE-ROBUST FINITE ELEMENT DISCRETISATIONS

This section recalls pressure-robust discretisations for the primal problem in velocity-pressure formulation and a
pressure-robust discretisation of the dual mixed formulation. Note, that all discrete quantities related to the primal
problem are marked with a bar on top.

3.1. Notation. Consider some regular triangulation 7~ of the domain €2 into regular simplices with vertices } and
faces F. The subset of interior faces is denoted by F(£2). The diameter of a simplex 1" € T is given by hp. We
extend this notation in a similar manner onto faces and simply write h for the diameter of a face F' € F. Further,
if the triangulation is quasi uniform, we abbreviate the notation and simply write A for the maximum diameter of all
simplices.

Let F' € F(2) be some arbitrary face of an arbitrary element 7' € 7. For the ease, we again denote by n the
normal vector on F'. Then,

a,:=a-n,
a;:=a— (a-n)n,

denotes the scalar valued normal and the vector valued tangential part of some vector a € R?. Further, the
brackets [[b]] = denote the jump across the face of some (scalar or vector-valued) quantity b.

The space of piecewise (with respect to 7') polynomials of order k is denoted by P (7") and the space of piecewise
vector-valued polynomials of order k by P (7). The L?-best approximation into P;,(7) or Py (T ) these spaces
read m or 7y, respectively. We use the notation Pk7c(7') to denote piecewise polynomials of order k that are
continuous across element interfaces and extend the same notation to vector-valued polynomials. Next, the spaces

RTk(T) = {’Uh € H(div, Q) VT € T3ar e Pk(T),bT € Pk(T), ’Uh|T(m) =ar + bTm},
BDMy(T) := {vp € H(div,Q) : VT € T vy|r € Pi(T)},
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denote the space of Raviart-Thomas and Brezzi-Douglas-Marini functions of order k > 0, respectively. Further,
let

Nk(T) = {’Uh € H(Curl, Q) VT € T3ar e Pk(T),bT € Pk(T), ’Uh|T($) =ar + bTCL'L}

denote the space of Nédélec functions of order k£ > 0.

3.2. Velocity-pressure formulation. Consider an inf-sup stable pair of finite element spaces V;, < V and
Qh c (@, and let R be some reconstruction operator that maps discretely divergence-free functions to exactly
divergence-free ones, see equation (3.4) below. Note, that for simplicity, we only consider a discontinuous pres-
sure approximation in this work, since this allows an element wise reconstruction operator. However we want to
emphasize, that reconstruction operators for continuous pressure approximations are also possible but demand a
more complicated construction, see [21].

The discrete solution (@, pr) € Vi, x Qh of the weak formulation of the Stokes problem is given by
(3.1) Vf Vuy, : Vv, dz — f diV(Vh)ﬁh dz = f I R(Vh) dx for all vy, € Vy,
Q Q Q

(3.2) —f div(up)gpdz =0 for all @, € Q.
Q

Examples for suitable finite element spaces and corresponding reconstruction operators, i.e. standard H (div)-
conforming interpolation operators, can be found in [18, 25, 26, 28]. For any divergence-free choice, like the
Scott—Vogelius finite element, no reconstruction operator is needed and one can set R = id. See also Table 7.1
below in Section 7 for a list of elements that is used for our numerical experiments.

Some properties of the reconstruction operator are needed. Given the expected optimal convergence rate r of the
Stokes solution, the reconstruction operator has to satisfy the properties

(3.3) (fsvh —R(Vp)) = (f — mr—2f, Vi — R(V)) forallvy € Vp,
that
(3.4) div(R(vp)) € Qh and that (div(vp), qn) = (div(R(vp)),qn) forallv, € Vi, q € Qh.

Furthermore, we assume that the space of continuous affine vector fields is included in the velocity ansatz space,
i.e P1. C Vpand that

(3.5) R(\_Ih) =v, forallvy € P17C.

The following pressure robust a priori error estimate for the velocity can be expected, see [29] for quasi-optimal a
priori error estimates under weaker regularity assumptions.

Theorem 3.1 (Pressure-robust a priori error estimates). Given given u € H™(Q2) n 'V with m > 2, it holds

[V —Gp)| < inf [V(w—vp)| +2|(Gd = m2)Auf < 27u]pen
VREVR
where s := min{m — 1,7}.

3.3. Mass conserving mixed stress formulation. This section presents the recently developed mass conserv-
ing mixed stress (MCS) method from [15, 14, 22] that fits well into the Prager-Synge calculus as it satisfies a
discrete version of the pressure-independent equilibration constraint (2.1). The MCS method was originally moti-
vated by reformulating the continuous Stokes equations such that the exact solution w is an element of H (div, 2).
Compared to the standard weak formulation this reads as a reduced regularity of the velocity. For the derivation
of the mixed system, a new auxilliary variable o is defined that should equal the gradient of the velocity. However,
due to the reduced regularity of u, this can only be incorporated in a weak sense. To this end one introduces a
new function space

H(curldiv, Q) := {o € L2(Q)%*¢ : div(o) € (Ho(div, Q2))*, tr(c) = 0},

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020
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where (Ho(div,2))* is the dual space of H(div,€2)) functions with vanishing normal trace. The condition
tr(o) = 0 is related to the incompressibility constraint tr(Vu) = div(u) = 0. Using this space the equation
‘o =vVu foru € Hy(div, 2)) is then given by

1
J —o:7dr = —{div(7), W) gy (aiv,0) forall 7 € H(curldiv, ),
Q

1%

where (-, '>H0(diV,Q) is the standard duality pairing. For further details on the function spaces and the resulting
mixed formulation in the continuous setting, we refer to [22]. The discrete counterpart is presented in the following.

For some given k > 0, the stress o € H (curl div, §2) is approximated in the space
Si(T) = {m € Po(T)™ % tr(ry) = 0, [(7h)ne] r = O forall F e F()}.

Here (77,)nt denotes the normal-tangential component of 73, i.e. (T )nt := (7,1):. Note, that (73, )ne| 7 lies in
the tangent plane parallel to the face F'. The other variables u € V and p € Q) are discretised within the spaces

Vh = RTk(T) and Qh = Pk(T)

Then we seek a triplet (oS, wp, py) € Ep, x Vi, x Q) such that

(3.6) a(o}°S 1) + (div(mh), up)v, = (Vay, ) for all 7, € Xy,
(3.7) (div(a)®®), vpdv, + b1(vh,pr) = (—F,vn) for all vy, € Vi,
(3.8) bi(un, qn) = —b1(@n, qn) for all g, € Qp,

with the bilinearforms given by (note, that tr(oy,) = 0)

1 1
alop, ) = J —dev(oy) : dev(m,) de = J —op, T de,
Qv Qv

b1(Vh, qn) = L div(v)qn du,

(div(mh), VRV, = f div(rp,) - vpdx — Z f [(mh)nn]lvn - nds
TeT FeFr

JTh V’vhdx—i-ZJ Th ’Uh)]]ds
TeT FeF

Note, that {(div(-), -)v, reads as a discrete version of the duality pair (div(:), -) 7o (aiv,q) for functions 75, € 3,
and v, € V. This modification is essential since the discrete stress space is slightly non conforming, i.e.
Y, & H(curldiv). Now let Iy, denote the standard interpolation operator into V', and define for all v, € V',
the discrete H!-like DG norm

lonli;, = ZvahHT + 2 *H[[vh]] |-

Fe}'

Theorem 3.2 (Pressure-robustness/Discrete equilibration constraint). The discrete stress a}"{'CS satisfies a discrete

form of the equilibration constraint of Theorem 2.1 in the sense that
div(op), Iv,Voyv, = (=F,Iv, Vo) = (=Pf,Iv, Vo).
Moreover, given u € H™(Q)? and o € H™1(Q)?*¢ ~ H'(2)?*4 for some m > 1, it holds
lo = o'l < hv]u] o
where s := min{m — 1,k + 1}.

Proof. The equilibration constraint follows from the second equation of the discrete system (3.6), since given any
v € V), testing with the divergence-free function vj, := Iy, v leads to

(div(o}®), vy, = (—Pf,vp)
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which is the claimed identity. We continue with the error estimate by showing that the solution of the best ap-
proximation problem (3.6) is related to solving a MCS-Stokes problem with a zero right-hand in the first and third
equation. To this end let %, = wy, + Iy, wy. Since div(ry,) € P*~1(T)2 forall T € T and [(1)nn]] € P*(F)
for all F' € F, the properties of the Raviart-Thomas interpolator, integration by parts and the Hl-continuity of uyp,
give

<diV(Th),IVh’l_1,h>Vh = f div(y) Iy, up dx — Z J [(mn nn]]Ithh nds
TeT FeF

f div(ry,) - up dz — Z f [(mh)nn]lun - nds

TeT FeF
= f T, Vup dr + Z J Th uh) ]]dS = (V’I_Lh,Th).
TeT FeF
Further we have by (Iv, @p,qn) = bi(@n,qn) for all g, € Qp. This shows that the triplet (o}'°S, @y, py) €

Y x Vi, x @Qp, solves the problem

a(o)®®, m) + {div(7), Un)v, = 0 for all 7, € oy,
(div(o MCS) 'Uh>Vh + b1(vp,pn) = (—f,vp) forall vy, € Vy,
b1(Wn, qn) = 0 for all g, € Qp.

Since uy, is exactly divergence free, the pressure robust error estimates of the standard Stokes problem from
[22, 14] give

vlTv,w —nlv, + o — oy € hvjuf g,

what concludes the proof. U

4. RELAXED PRESSURE-ROBUST GUARANTEED ERROR CONTROL

In practise, both constraints on the function v and on the flux o in Theorem 2.1 are hard to realise. Therefore
we turn our interest to some relaxed version of this theorem that allows to estimate the error of any primal H -
conforming discretisation (that is not necessarily divergence-free) by pressure-robust mixed methods like the MCS
formulation from Section 3.3. In the first subsection a classical non-pressure-robust approach is revisited, while
the second subsection presents novel guaranteed upper bounds that are pressure-independent (as long as the
primal method is pressure-robust).

4.1. Revisiting classical non-pressure-robust equilibration. In this section we shortly recall state-of-the-art
equilibration error estimators for the Stokes problem from [17]. To compute a guaranteed error estimator in the spirit
of Theorem 2.1, one is interested in a (discrete) stress o that satisfies the equilibration constraint (approximately).
A naive strategy to compute such an equilibrated flux is based on the mixed formulation of the Poisson model
problem

6 =vVu—pl and f +div(d)=0.

In other words, the flux o := & + pI is equilibrated in the sense of (2.1), because div(pl) = Vp has no influence
n (2.1). In fact one could replace p by any other ¢ € L?(2) or, if p € H'(Q) can shift it into the equilibration
constraint. In practise, see e.g. [17], one resorts to the choice ¢ = pp, since p is unknown. Here, py, is the discrete
pressure solution of an inf-sup stable discretisation. This approach leads to the following guaranteed upper bound
for the velocity error which is e.g. similar to [17, Theorem 4.1] for ¢; = 0 and g2 = Py, or to [17, Corollary 5.1] for
@1 = pp € H'(Q)and g2 = 0.

Theorem 4.1. For a discrete Stokes solution (U, pp) € H{() x L2(Q) of an inf-sup stable discretisation
on some triangulation 7~ with inf-sup constant ¢y > 0 and its discrete stress 75, := vV, and for any o), €
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P.L. Lederer, Ch. Merdon 8

H(div, Q) with §. f — Vg1 +divo,dz = 0forany T € T and forany ¢; € H'(2) and g2 € L*(12), it holds

_ _ h . _ S
Hu—uhHQ <v 2 Z (ﬂ_|f_VQ1 +d1V(0h)HT+ |0h+QQId><d—0'h|T> +602H leUhHQ.
TeT

Proof. The point of departure is the well-known error split [1, 17, 7]
lu =G < w7273, + | div

with the dual norm |7 |ys := sup,ey o\ (03 7(v)/| V| of the residual
r(v) :f f-vdx—i—f ap : Vodr
Q Q

= f (f +div(op)) -vdm—i—J (o, — ap) : Vodz.
Q Q

Since ST Vg - vdx = 0, we can subtract the piecewise constant best-approximation 7rgv of v in the first term
and employ piecewise Poincaré inequalities to obtain

J (f —Vaq +div(op)) -vde = J (f — Va1 +div(op)) - (v —mov) dx
) Q

< D f = Vau + div(on)|rlv — movr
TeT

h )
< Y “LIf - Var + div(on) |7 Vo7
e
TeT

Since § g214xq : Vv dz = 0, the second term is estimated by

J (O'h — 5’h) :Vode = f (Uh + qolgxqd — 5’h) : Vode
Q Q

< Y. o + @2Iixa — ol Vol
TeT

A Cauchy inequality concludes the proof. O

Remark 4.2 (Realisations). A possible design of o, involves the Raviart-Thomas or Brezzi-Douglas-Marini finite
element spaces of order k which is denoted by V'}, and its divergence space denoted by (J},. Then, one computes
ol e (V)% and uy, € (Q)? such that

(on' s 7h) + (wn, div(m)) = (6n — g2laxd, Th) for all 7, € (V,)*
(vp, vdiv(od)) = —(f — Va1, vp) for all vy, € (Qp,)?

In practise, since the optimal g1, g2 are unknown, one usually takes the discrete pressure g1 = pp, Or g2 = pp,
depending on its regularity, which also enables local designs of equilibrated fluxes as detailed in e.g. [17] or using
component-wise designs known for elliptic problems, see e.g. [10, 30, 4, 11, 36, 32, 13].

Remark 4.3 (Efficiency). Efficiency is shown via equivalence to the classical explicit standard-residual error esti-
mator, see [24] for a discussion when and why this is not efficient for pressure-robust discretisations in pressure-
dominant situations. In the numerical examples below, we show that even the bestapproximation (which gives a
lower bound for any local equilibration in the same space) strategy with g; = 0 and g2 = py, is not efficient for
the velocity error alone in a pressure-dominant situation. The only way to improve efficiency in these pressure-
dependent designs is the pre-computation of a better pressure approximation as it has been suggested e.g. in [27].
However, in situations were the pressure is complicated or non-smooth this comes at highly increased numerical
costs. Our novel pressure-robust local design of Section 5 has the advantage to be totally pressure-independent.
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Pressure-robust guaranteed error control for Stokes 9

4.2. Novel pressure-robust guaranteed upper bounds. For the proof of the novel bounds we employ commut-
ing interpolators whose properties are collected in the following theorem. Note, that the operator curl is different
in two and three dimension and depends on the dimension of the quantity it is applied to. If applied to some
scalar-valued quantity 1» € H' () it is defined by curl ¢ := (0,,%, —d, %) . If applied to some vector-valued
quantity @b = (11,12) € H'(Q) in d = 2 dimensions it reads curl+ := 0,,¢2 — d,,%1, and if applied to
some vector-valued quantity ¢ € H (curl, ) in d = 3 dimensions it reads curly := V x 1.

Theorem 4.4 (Commuting interpolations). Let V';, = RT}, and Iy, be its standard interpolation operator. Further
we define

P.p.1 ford=2
Wi .= {7 o8
h {Nk ford = 3.

Now let I;;,a be a mapping into W¢2. For d = 3, the operator Iy« is the standard Nédélec interpolation operator
Wy h w

as in [3], and for d = 2 we use the (corresponding commuting) Hl-interpolation operator as given in [33]. Let T’
be an arbitrary simplex and let F' be an arbitrary face. The operators IW;‘f and Iy, enjoy the properties:

1 For d = 2 we have the commuting property

(4.1) Iy, curly = curl(Iwﬁxb) forall 1) € H?(Q),
and the approximation properties
(4.2) JF(id — Iwi)w gnds =0 forall g, € Py_1(F),
(4.3) JT(id — IW’%)dJ qgnds =0 forall gy, € P,_o(T),
(4.4) |9 = Iyl < cohr|Ver forall v € H*(T).
2 For d = 3 we have the commuting property
(4.5) Iy, curly = curl(lysep) forallyp H(curl, Q),
where H'(curl, Q) = {4 € H'(Q) : curl(yp) € H'(Q)}, and the approximation properties
(4.6) JF(id — IW}?)w (g, xn)ds =0 forall g, € Pr_1(F),
(4.7) JT(id - IW}?)'(p -qpds =0 forallq;, € Pr_o(T),
(4.8) 1% — Lys|r < cxhr| V|7 forall ¢ € H*(curl, T).
3 Ford =2 and d = 3 we have
(4.9) JT(I —Iy,)v-q,dx =0 forallve Vy, g, € Ny_o(T)
(4.10) lv — Iv,v|r < cihp|Vo|r forally € HY(T),

with constants c1, co independent of hp.

Proof. The properties of IW,gl in two and three dimensions follows with the results in [33] and standard Bramble-
Hilber arguments. Note, that in two dimensions, the results in [33] are only given for the rotated commuting diagram,
i.e. VIquﬁ = In, (V)), wherely;, is the standard Nédélec interpolator . However, the claimed results in this
work follow immediately since in two dimensions, the Raviat-Thomas space is simply a rotated Nédélec space
and the curl is the rotated gradient, thus we have (I, (V1))* = Iy, (curl)). Similar results can be found in
[9, 31, 3].
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We continue with the proof of (4.9) but only present the case d = 3 since the two dimensional results follows with
similar arguments. First observe that any divergence-free function v € V' has a potential v = curl v for some
v € H'(curl,T). Then, for any q;, € Nj_2(T), (4.5) and integration by parts shows

J (1—-1Iy,)v-q,dz = J (1—1Iyv,)curly - g, dx
T T

= [ curl((1 = 1)) - gy ds
T

= J (1— IW;?)Q/J - curl q;, dx —J (1-— IW}:I;)’I,[) -(q;, x n)ds.
T oT '

Since q;, € N 2(T) < Pr_1(T) and hence curl q;, € P, o(T) and q;, - np|r € Pi_1(F), the right-hand
side vanishes due to (4.7) and (4.6). This concludes the proof. Il

We are now in the position to derive pressure-robust guaranteed upper bounds via equilibrated fluxes with a proper
discrete analogon of the equilibration constraint (2.1).

Theorem 4.5. Assume the regularity f € H(curl, ). For the discrete stress 7, := vVuy of the velocity-
pressure formulation and any discrete stress oy, € Xy, that is equilibrated in the sense

<diV(O’h), IVhV0>Vh = (_fa IVhVO)
it holds

2
IV (=) | < n(00)? == v72 Y (creah|(id = mpa) cwrl(f + div(on)) |z + |devion — o))
TeT

+ ¢y % divag|?.
Proof. As in Theorem 4.1 the point of departure is the error split
[V (u—ap)[* < v |rl3; + | diva|
where it remains to bound the residual functional
v) = J f-'vdx—uf Vi, : Vvodz forallve Vy
in its dual norm ’ ’

< r(v)
up .
vevofoy VY

I7llvy =

Consider an arbitrary test function v € V3 and some equilibrated flux o, with the properties stated above. Then,
the insertion of Iy, v by the equilibration condition and an integration by parts show

r(v) = {f +div(op),v = Iv,v)v, + L(Uh — &) : Vodr

J f+divion) - (v - Iy, v)de+ > J[[ah ]l (v = Iy, v) - nds

TeT FeF(Q)
+ f (op, — o) : Voda.
Q

Since [[(o})nn]] € Px(F'), the second integral vanishes due to orthogonality properties of the normal flux of
(v — Iy, v). The last integral on the right-hand side can be estimated by

(4.11) f (oh— 53) : Vodz = J dev(on —51) : Vodz < Y [dev(on — o) [r|Volr-
Q Q TeT

Here, dev(A) denotes the deviatoric part of a A and it was used that A — dev(A) = tr(A)I2x2/2 is orthogonal
on gradients of divergence-free functions.
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Pressure-robust guaranteed error control for Stokes 11

The first integral can be estimated as follows in d = 3 dimensions (for d = 2 the arguments are very similar).
Since v — Iy, v is divergence-free, it exists some ¥ € H'(Q) with | V|1 < |v — Iy,
in [8], such that v — Iy, v = curl+ and by the interpolation properties we have

(4.12) IVYlr < [ewldplr = v = Iv,v|r < cihr|Volr onevery T e T.

By the interpolation properties of Iy, , it holds Iy, curly) = 0 and hence, by the commuting property (4.5) in
Theorem 4.4, we also have that curl IW}s,z/) = (0 where IW;, is the matching commuting interpolation operator.
Note, that the application of the operator IW;:, to 1) is well defined, since locally on each element T' € T we

have that v — Iy, v € H*(T) and thus we can bound |V curl|r < |V(v — Iy, v)|r which gives ¥ €
H'(curl, T).

Next, if k > 2, consider some Nedelec function 8}, € Nj_o(T) chosen such that curl @, = my_o curl(f +
div(oy,)) for which we can apply (4.9).

This, and the other properties of o}, yield

Z J (f +div(on)) - (v — Iy, v)dx = Z J (f + div(op) — ) - curl(zp — Iwgz,b)

TeT TeT
ZJ (id — mp2) curl(F + div(oy)) - (4 — Lystp) da
TeT
+ Z J If +div(on)] x 7 - (¢p — stzp)

FeF(Q)

Since f € H(curl,Q) and div(oy) € Py_1(T), the second integral vanishes due to properties (4.6) of Ty
from Theorem 4.4. For the remaining terms, the interpolation properties of IW,S’ (see again Theorem 4.4) and
(4.12) yield

J (id — mwg_o) curl(f + div(op)) - (v — stw)

TeT

< ), 1Gd = m—z) cwl(f + div(on)) || — Lyl

TeT

< Y. eahr|(id = w_s) curl(f + div(on)) 7| V| r
TeT

< 2 c1eoh| (id — 7p_) curl(f + div(op)) || Vo 7.
TeT

The combination of the last estimate and (4.11) together with a Cauchy inequality yields

r@) < 3 (creahdld - my ) curd(f + divion)r + [dev(on — on)lr) [Volr

TeT
and hence
2 211 /s . _ 2
Iy < > (ercahdl(id = e ) curl(f + div(n)) 7 + |devion — an)l7)
TeT
what concludes the proof. O

Remark 4.6. Theorem 4.5 also holds true in the case when we only have the local regularity assumption f €
H(curl, T) for all T' € T. Note however, that this introduces another term on the boundary of the elements given
by

Y, hpld = me)[f x n]

FeF(Q)
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P.L. Lederer, Ch. Merdon 12

added to the estimator n(ah)2 given in Theorem 4.5. Here, c3 is an additional constant that only depends on the

shape of the simplicies T € 7.
Remark 4.7 (Global MCS estimator). One possible choice is o, = a;‘l"cs, where UPL"CS is the solution of the global
mass conserving mixed stress formulation (3.6) of order k. Another choice can be achieved by a local strategy

that is detailed in the next section.

Remark 4.8 (Divergence quantity). In the numerical examples below, it becomes apparent that the efficiency of
the error estimator is mostly limited by the divergence-term cal | div uy, | for non-divergence-free discretisations.
To avoid this term and possibly further increase the efficiency, one may consider a divergence-free postprocessing
Sy € HI(Q) of uy, and perform the error estimation for sy, or G5, := Vsy. Effectively this would replace the
term ¢ !| divup|| by |V(sy — s)| without the possibly small constant co. Candidates for such a postpro-
cessing maybe a locally computed approximation into a divergence-free Scott-Vogelius finite element space (on a
barycentrically refined subgrid) similar to [20].

5. LOCAL EQUILIBRATION

This section suggests some design of an admissible pressure-robust equilibrated flux o, based on local problems
on vertex patches.

5.1. Setup of the local problems. Let V be the set of vertices for V' € V let wy be the corresponding vertex
patch, i.e. the union of all adjacent cells in 7y, := {T' € T : V € T}. Furthermore, Fy/ denotes the set of
facets within the vertex patch including the facets on the boundary dwy . For a fixed interior vertex V' we define
the following spaces with k£ = r (recall that r is the optimal convergence rate of the primal method)

Sh = {mn € (V)™ :VT € Ty, 7ulr € Pu(T)™ with tr(7,) = 0},
V) = RT(TV),

V) = {on € L2(Fv) : VF € Fy, op)r € Pr(F)and 9y, -0 = 0},

Q1 = {qn € L*(wv) : VT € Ty, qulr € Po(T)}.

Note, that in contrast to the global stress space Xj,, the local stress space E}‘f does not include the continuity
constraint [ (75, )ne]] = 0. Similarly to other local equilibration setups, see for example [4], the trace space th is
chosen such that the normal-tangential trace of functions in ZZ lie in th. For the local problems we then further
define the product space

(5.1) VX = (VZ x VZ)/{((Cl,CQ), (c1,02)t) : (c1,¢0) € Rz},

where (c1, c2) denotes a vector valued constant, and ((c1, c2), (¢1,c2)¢) reads as (a constant) element of the
-~V AV
product space V', x V', . Hence, the space VX does not contain vector-valued constant functions on the patch.

The projection onto constants 7y, : L%(Ty)? x [L?(Fy)?]s — (R, R) is given by

1
Vi~ = A ~ ’*
TR (’Uh,’Uh) = m Z J Up dx + 2 JF Up ds

TGTV T FeFy

Here, |7y | and | Fy/| denote the area of the element patch and the skeleton of the patch respectively. Note, that
we then have the equality

- . ~V AV, - .
(5-2) Vi = {(@n,®n) € Vi, x V) = (id — 7R ) (8, D) # (0,0)}.
For each element 1" and every vertex V' € T we define the scalar linear operator

By : Pea(T) = Posr(T), = By (q) := I} (dvq),
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Pressure-robust guaranteed error control for Stokes 13

where IK/H is the nodal interpolation operator on Py, 1(T") and ¢y is the hat function of the vertex V. By that

we then define on wy  the scalar bubble projector (see also [21])
BY : Pi1(Tv) = Pea(Tv), g BV Z BT
TeTy

and the vector valued bubble projector
BY : Py 1(Tv) = Pryai(Tv), @ = (a1, ¢2) = BY(q) := (B" (¢1), BY (2))-
Lemma 5.1. The vector valued bubble projector BY iulfills the following properties:

i. BY(q)|ow, —Oforallquk(Tv)

%4
i Bv(vh) eV, forall ¥} € Vh Further, if div(9) ) = 0, then BY (¥} ) € BDM(Ty).
. For all elements T" € T we have the partition of unity property

Z BV(Uh|T) = 'Uh|T for all vy, € Vh.
VeT
iv. Fora constant ¢ = (c1, ¢2) € Po(wy) there holds BY (¢) = ¢y (c1, c2).

Proof. ltems i. and iii. follow by the definition and the linearity of the bubble projection. For the proof of ii. choose

an arbitrary edge F' € Fy with the corresponding normal vector n.. Since f;X is normal continuous we have by

the properties of the nodal interpolation operator

[BY (&) (x;) - ]l = ¢v(z)[®) (x;) -n]] =0 forallz; € F.

~ ~V L -~
The second statment immediately follows since if v}l/ eV, = RTk(Tv) is divergence-free, then 'v}f €
BDMPF(Ty). For iv. note that for j = 1,2 there holds on each element 7' € Ty that Ikﬂ(cjgﬁv) = ¢jdy
hence we conclude the proof. O

For each vertex V' we solve the local problem: Find (O‘,‘{, (ﬁ}f, ’fl,;‘l/),p}‘;) € ZZ X VX X Q,‘Z/ such that

(5.3a) (o), Y+ b (7Y, (@) ,a))) =0 forall 7 € ©Y,
(5.3b) by (o, (B, 0))) + ba (B . py ) = GY (£, pp)((B) , By ) forall (B}, 8y ) € V),
(5.3c) by (@) ,q)) =0 forallg) € q) ,
with the bilinearforms
af (o, 7)) = f o -7y du,
TeTy
k@ el = 3 | vl alde— 3 | @+ Erd - a)) s
TeTy FeFy F
by (@), f div(a) )q),
TeTy

and the linear form (for a given f, @y, pp)

GY (f, @n, p) (D), , ) = 2 J f-BY (&) dx + 2 J (vAwy, — Vi) - BY () da

TeTy TeTy

—j n — pnD)anBY (B )uds — [ dv(on)e(8))e ds.
oT oT

Note, that b} (-, -) reads as the restriction of the discrete duality pair (div(-), -y, onto wy, but further includes
the normal-tangential jumps since functions in EX are not (normal-tangential) continuous. Using integration by
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parts, the right hand side can also be written as

5.5)  GY(d),d)) = J f- BV('vh)dx—JTah VBV(vh)dx—l—j prdiv(BY(8))) dz

TeTy
+ J (6h)nt(BV(’EX) - qbvﬁ,‘{)t ds.
oT

Remark 5.2. For simplicity we used a muliplication with the hat function ¢y, instead of the bubble projection in the
last integral of G} . Note however, that since (o7, )t € P*(F) for all F € FV, this is identical, i.e.

ov(on)nt(®})eds = | BY|r((0n)n) (8} )e ds,
orT oT

where BY | r((04)n¢) reads as the nodal interpolation into the vector valued polynomial space of order & + 1 on
F of the quantity (o, )nt-

Remark 5.3. As usual for equilibrated error estimators, we slightly modify the definition of the local problems when

~V
the vertex V' lies on the Dirichlet boundary. In this case, we remove the degrees of freedoms of V', lying on the
domain boundary. Hence, we now replace Fy by Fi/\{F € Fy : F' < 0§2}. Further, we remove the mean value

~V AV
constraint of the product space, thus we simply set V') := (V) x V).

5.2. Analysis of the local problem. For the analysis we choose the norms

HaXHéhv = Nlow |7 + bl (o} Yt 2rs
) T

1
~V A ~ ~V
H(vhav va : Z IVoy HT + H( Uy — ”h) HaTa

2 HQX = th I-

Note, that the the norm || - thv reads as an HDG-version of the H!-like DG norm | - ||y, defined in Section 3.3.
Further we define the kernel

KV = {(oh o) (@] 8y e VI, oY (o, (8, 01)) + 08 @, p}) = 0}

Lemma 5.4. The bilinear forms aV, b}/, b;/ are continuous. Further there holds the kernel ellipticity

a (o m) 2 (o, sy I + ok I5y) forall (o3 py) € Ky

and the inf-sup conditions
1 Forall (3}, ) ) € V) there exists a constant 3; > 0 such that

bV 14 bV
sup (Uh’(vhavh)) + (’Uhvph)

oV abremrxay oy syl + 15 gy

> Bil(®) .8y

2 Forall (9] ,9) ) € V} with div(®)]) = 0 there exists a constant 32 > 0 such that

bV ~V AV
sup (Uh , (O, , D)

oVesy lo, sy

> Bal(®) 8,y

Proof. The continuity of the bilinear forms follows immediately with the Cauchy-Schwarz inequality and using
integration by parts for the volume integrals of bY. The proofs of the kernel ellipticity and the inf-sup conditions
follow with exactly the same steps as in the stability proofs of the original MCS-method in [15, 14, 22], since the
bilinear forms and spaces of the local problems in this work simply read as a hybridized version of the original MCS-
method. In this work the normal-tangential continuity of the stress space is incorporated by the additional Lagrange
multiplier i;, and we switched from the H'-like DG norm used in the original works to the corresponding H *-like
HDG norm given by || - thv in this work. Note however, that we do not have zero Dirichlet boundary conditions of
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Pressure-robust guaranteed error control for Stokes 15

the velocity variable, but since we excluded the kernel of | - thv (constant functions) in the definition of the space

VY, the results simply follow by norm equivalence. [l

Theorem 5.5. There exists an unique solution (0,‘1/, (ﬁx, '&,‘{),pX) € ZZ X VZ X Q,‘l/ of (5.3) with the stability
estimate

1% =V AV %4 Vv _
low sy + (@, ap)lvy + lpn oy S 1GT (F, @n, pr)l v vy
Proof. Follows with the standard theory of saddle point problems, see for example in [3] and Lemma 5.4. [

N , ~V
Now let V', be the global version of the local space V', , thus
V== {b,e L*(F):YF e F, op|r € Py(F) and ¥}, - n = 0}.

Theorem 5.6 (Properties of the local solution). Let UX € ZZ be the local solution of problem (5.3). There holds
the following properties:

1 Forany vy, € Vi, withdivwy, = 0, and 0y, € Vh, there holds the local equilibrium condition

deah vy, — Z f[[ah Jnnll(Vn)n ZJ [(o} )nell - (B)¢

TeTy FeFy FeFy

J f- Bv(vh)d:r—f ap : VBY (vy) dx—i—f by pn div(BY (vy)) dz
TeTv T

+ J (6h)m . (BV('vh) — gf)v’ﬁh)t ds.
T
2 The solution o}, has a zero normal-tangential trace at the boundary

(0] )t =0 on dwy.

Proof. Let V € V be fixed and let &) = vp|w, and ) = ¥p|7,. In a first step we will proof that equation
(5.3b) also hold for constant functions. To this end let ¢ = (c1,c2) = 74 (3}, , 9y, ). Using div(c) = 0 and
integration by parts we have for the left side of (5.3b)

by (o, (e ce)) + ba(e, py)

:ZT: fT div(a)) - (c1, c2) da — ; L([[(a,‘{)m]](cl,@)n + [ )ne] - (c1,¢2)) ds
- ZT:JT o), : Vet c2) +ZF:JF[[(O-}‘L/)nt]] < ((e1,¢2) — (c1,¢2))¢ = 0.

We continue with the right-hand side. Using representation (5.5) we get for the constant ¢ and using property iv.
of Lemma 5.1 that

GY ((c1, ¢2), (c1, c2)y)
> | 5B (e |

TO'h VB ((01762 dl‘-i—f ¢Vphd1V(B ((01,02)))d:11

TeTyv

+ J (Gh)nt - (B ((c1,c2))¢ — pv(c1, c2)¢) ds
or

_  (V(aoy) L
oy J [ (c1ov,cody)de — JT op (v(cém‘j)) dz + Lph div(coy) dx
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Now, since (cov, coy ) is an element of the velocity Stokes discretization space Vh (see assumption above
equation (3.5)), and &}, = Vi, we also get

GY((Cl,CQ),(Cl,CQ)t) Jf (id — R)(cov, cov) =
TeTy

where the last equality follows since (coy,coy) € Pi. and (3.5). In total, this shows that we also have

GY ((c1,¢2)) = 0, thus using (B}, , 9}, ) = (7 + (id — wY))(®),, D}, ) and the equivalence (5.2) we get

(5.6) Y (o), (D), 9))) + ba(®) .y ) = GY (£, @n, Bu)((B),,B))) forall (B}, 0} ) € Vh X Vh

Since div(vy,) = 0 and thus ba(@), , p}) = 0, this proofs the first statement.

For the proof of the second statement consider the testfunction vh € Vh such that vh = (a}f)m on every facet
F < dwy, and zero on the internal facets. Equation (5.6) then gives

V ~V ~V
- th 2 ds=— Y j W5 ds == 3 | ovinu-o} ds =0,
Fedwy F Fedwy TeTy

where we used that ¢y, vanishes on the boundary dwy and @}‘L/ on internal facets. U

5.3. Admissibility of the global flux. After solving the local problems we define the equilibrated flux

(5.7) ',‘lEO —ah—af with ah = Zah

This section shows that o= satisfies the global equilibration property of Theorem 4.5.
Theorem 5.7. Let vj, € RT (7 ), with div(vy) = 0. There holds

de LEQ) vhdx—ZJ[[ (0Bl (v ds —Jﬂf-vhdzz—JQ]P’(f)-vhdx.

TeT FeF

Proof. In afirst step we show that o-EQ € 33, (7). For this let @, € V}, be arbitrary, then there holds

3 [ 1l @ueas = 33 [ 1ol (6vods
FeF Fe]—'VeaF
= > J[[ h el - (Gv D) d

VeV FeFy
2 2 J[[ intll - (Gvon): dS—J L(oR)nell - (Svor)e d
VeV FeFy

where we used a partition of unity on each F' € F in the first step. Applying the second and then the first statement
of Theorem 5.6 (with v, = 0), the sum over the last integral can be written as

IR N C M ROEATIEED YD Y N oM NEE A

VeV FeFy VeV FeFy
. f[[ Wt - (Gv 1)1 d
VeV FeFy
and thus
(5.8) D f [(XE0),.] - (84): ds = 0.

FeF

With the choice 9, = [(035%) ]|, we conclude that [(015%) ] = 0 point wise, and so o359 € 5 (T).
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Now let v, € V}, with div(vy,) = 0, and ¥, € V', be arbitrary. Using equation (5.8), the definition of o-E2 and
integration by parts give

J div(otF?) - vy, dz — Z J [(oENY ]l (vp)n ds

TeT FeF

J div(o9) - vpdz — ) f (G (GRS J (o5 ne]l - (94)¢ ds
TeT FeF FeF

J —op, : Vo, do +J (Gh)nt - (Vp — Op)eds + Z J O'h Vo, dx
TeT or TeT

_ f (02 - (v — )1 ds.
oT

Since ah =D ah , a partition of unity and the local contributions ah let us rewrite the last sums as

fah Vvhda:—f (08t - (v, — Bp): dS—Z Z Jah Vo, dx
TeT or

VeV TeTy
_ f (0¥ Yot - (wh — )1 ds.
oT

Applying Theorem 5.6 then shows that the right sum can further be written as

> Jah vuhdx—LT(g,Y) - (vp, — Bp); ds

Vey \TeTy

Z Z J f-BY(v) =y : VBY (vp,) + pp div(BY (vy)) d

Vey TeTy

+ L (@)t (BY (vy,) — ¢Vf;h)tds)

J _f vy dr + f oy, : Vo dor — f (5h)nt . (’Uh — 'i}h)t ds
TeT TeT oT
where we used item jii. of Lemma 5.1 and div(wvy,) = 0 in the last step. All together, this shows that

fdw LEQY . ), dx — ZJ[[ Q) (Wn)n ds Jf vy, dz,

TeT FeF TeT

and we conclude the proof. O

6. EFFICIENCY

This section proves efficiency of the proposed global and local equilibrated fluxes in the sense that the error
estimator is a lower bound for the velocity error plus norms that only depend on the velocity and have the right
order and data oscillations. In particular also the efficiency bound is pressure-independent.

Theorem 6.1 (Global efficiency of the global design). The error estimator for o, := o}'°S from (3.6), is efficient
in the sense that

n(0h°%) < |V —p)| + v~ o — o] + v~ hrosc(curl(f + vAzun), T).

The second term on the right-hand side can be estimated by Theorem 3.2 and may be of higher-order if the order
of V', is large enough and wu is smooth enough. The third term on the right-hand side are oscillations as defined
in [24] which may be of higher-order if w is smooth enough.
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Proof. The proof employs the efficiency of the pressure-robust standard-residual based error estimator from [24].
Indeed, triangle inequalities to insert Vuy, yield

non) = 3 (dhdlewl(f + divion)lr + [dev(on —an)lr )
TeT

1 2
Sﬁ 2 (C%C%h |curl(f + div(ay))|r + c2cah|| curl(div(ey, — a4))|r + |dev(ey, — O'h)HT) :
TeT

The efficiency of the first term follows from the efficiency proof for the pressure-robust residual estimator in [24],
ie.

v A curlr (f + vA7u)|r S IV (w — by |7 + v hroseg (curl(f + vA7uay), T).

Moreover, an inverse inequality shows
déhz| carl(div(on — on))lr < bl divion — o)z < llon = nllr < v[V(uw =)z + o = onlr.
By another triangle inequality we have

Idev(on —an)lr < [on —onlr < VIV(u =)z + o — onfr.

The collection of all terms concludes the proof. O

Unfortunately local efficiency cannot be proven for the global design a}\L"CS. However, the next theorem establishes
also local efficiency bounds for the local design.

Theorem 6.2 (Local efficiency of the local design). Let vy, € V', with divwvy, = 0, and ¥y, € Vh and assume
that for each element 7' € 7 we have Au € L2(T). The local solution (o), (@}, , @y ), p)) € ) x V) x QY
of (5.3) fulfills the (pressure-robust) estimate

1/2 1/2

lok sy < | 25 lo=onld +hel @V —vVa)wldr |+ | X h7l(d - m2)vAulf
TeTy TeTy

If the operator R of the primal method (3.1) is the identity, the last sum of the right hand side vanishes.

Proof. By Lemma 5.4, the inf-sup property of the bilinear form B on the subspace {v,‘l/ = (fz,‘f, ﬁX) € VX :

div(®}/) = 0} gives for the solution (o), @), , @} ) the estimate

vV =V V =V AV
lol lgv + @), @) )|lyv < sup B((o) @y, , @y, ,0), (), By, 9},,0))
’ ~ A~
' "@y, X)EVV e sy + (o 50 ) vy

div(%})=0

< sup GY(fa @y, pn)(0), , D))

wpabevy @8Iy

div(d))=0

Next with f = —Aw + Vp and applying integration by parts (similar to (5.5)), the enumerator simplifies to

(6.1) GY (f,@n, pn) (D), 9} ) = f (0 —on) : VBY (%)) da
TeTy

(6.2) - Z J (0 = Gn)nt(BY (0}) — dpvdy )i ds
TeTy or

63) f p— pn) div(BY (8))) dz,
TeTy
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where we used that BV 'vh -n = 0 on Jwy (see item i. in Lemma 5.1) and that

Teva Py (@) (B])eds = ), f[[ﬁbv Jut]l - (8] ) ds = 0.

FeFy

By the continuity of the bubble projector BY (which reads as a weighting with ¢/) and that ¢y = O(1) on wy,
the Cauchy-Schwarz inequality applied to the sums in (6.1) and (6.2) gives

f o—ay): VBY (9))dx — J (0 — p)nt(BY(8)) — dy ) ) ds

TeTy or

_ - _ 1, .
< D) e =anlr|Vay |z + hrl(o - ah)ntl\aTth(v — @) )ilor
TeTy T
1/2

2 o =anlF +hzlo = anuldr | 1@, 81 |y
TeTy

N

We continue with the remaining third sum in (6.3) (which does not vanish, although vh is divergence-free). For

this let pp, = Fth be the L? projection of the exact pressure onto the pressure space Qh and define the mean
value

¢ P — Dn)
re |TV| 17, J

Since BY (%)) € BDMF(Ty/) according to property ii. in Lemma 5.1, we have that div(B" (@} )) € Qp, which
gives

J p —pp) div(BY (8))) dz = 2 J pn — pr) div(BY(8))) dz

TeTy TeTy

f B — n — ¢) div(BY (8))) du
TeTy
< 1 = P — ol 1B, )y v,

where we again used the continuity of BV. By the inf-sup condition of the primal Stokes discretization (py, —pr—cp
has a zero mean value) on the local space V' ,(Ty) := Vi, n H& (wy') we have

§., (Br — Pr — ¢p) div (D) dz

1P — Ph — plloy, S sup —
PV 'l_JhGVh(Tv) vahHWV

Now, using that py, is the discrete pressure solution we get

—J pr div(Ty) dz = [ R(vp)dz — J vV, : Vo, dx
wy wy wy
= f (—vAu + Vp) - R(vy) do — J vV, : Vo de.
wy wy

Since div(R (1)) € Qp, see (3.4), we get using integration by parts

Vp- R(y) de = — f pdiv(R (@) dz = —f i div(R(By)) da = — f By div(®y) da,

wy

and so in total (since Swv ¢p div(?p,) dz = 0 by Gauss'’s theorem)

LV (Pr — Pn — ¢p) div(Dy) dz = J

wy

—vAu - R(Dp) dr — J op : Vo, dx

wy

_ LV —vAw - (R(®By) — Bp) de + J (0 — &3) : Vo, da,

wy
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where we added and subtracting (including integration by parts) Sw o : Vv, dx. By the properties of the recon-
struction operator, the first integral can be bounded by

(6.4) J —vAu - (R(Tp) —Up)dz < |(id — wfj;Q)yAunthHVﬁhwa
wy

where hy denotes the diameter of the vertex patch wy . Thus by the Cauchy Schwarz inequality we get the
estimate

1/2
15n = Br — cploy S P |(d — 7l 2whulw, + | Y] o —an)lF ]
TeTy
and so
1/2
1% — N~V AV _ — ~V AV
GY (f U, pr) (@, 8)) S | D) [0 —=an)lF +h3l(o —an)ular | (B, o) vy
TeTy

+ hy|(id — 7, ) vAulw, (B, 85) vy

This concludes the proof for the general case. Now assume that R = id, then we see that the additional term in
(6.4) vanishes which proves the stated result in the case where no reconstruction operator in the primal method
(3.1) is included. Il

7. NUMERICAL EXAMPLES

This section confirms the theoretical results by some numerical examples. For the ease of representation we
introduce the following notation. We denote by nN the estimator of Theorem 4.1 where o}, = a,]lV is the solution
of the mixed system given in Remark 4.2 with ¢; = 0 and g2 = pj. The pressure-robust estimator of Theorem

4.5 is denoted by 7. Here, the flux o}, either corresponds to the solution U?LACS of the global problem (3.6) or to the
local equilibrated flux o'tF? given by equation (5.7). Further, we define the contributions

ne = V_IHhT(id — Tg—z) curl(f + div(op)|, név = (1/7T)_IHhTf — diV(O’;]LV)H,

Ne = vt dev(on — )|, ny =v oy + prlaxa — onl,

Ndie = ¢ ' [ (div(in)].

Table 7.1 shows the different inf-sup stable velocity pressure pairs that we consider for the primal formulation
(3.1). Further we give the abbreviation that we use, the expected convergence rate of the error r and the used
reconstruction operator in (3.1) that ensures pressure-robustness. The order k£ = r also corresponds to the order
of the reconstruction space V';, = RT;, and the order of the spaces used in the equilibration designs (3.6) and
(5.7). Moreover in two dimensions, P . 1 denotes the space of vector-valued polynomials of order 2 including
the local cubic element bubbles, i.e.

Py (T):={qe P3.(T) : qlr € P2(F)VF € F}.

In three dimension, we similarly denote by P%f‘a+ the space of vector-valued polynomials of order 2 including the
local element bubbles of order 4 and the cubic face bubbles of order 3. A precise definition is given in example
8.7.2iin [3].

The adaptive mesh refinement loop is defined as usual by

SOLVE — ESTIMATE —- MARK — REFINE — SOLVE — ...

and employs the local contributions to the error estimator as element-wise refinement indicators. In the marking
step, an element T € T is marked for refinement if n(T") > % max n(K). The refinement step refines all marked
€

elements plus further elements in a closure step to guarantee a regular triangulation.
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Vi, x Qp abbr. r=%k R
P27C(T) X P()(T) P20 1 IBDMl
P37C(T) x P (T) P31 2 IBDMQ

P2,c,+(T) X Pl(T) P2B 2 IBDMQ
Pg?c7+(7d> x P (T) P2B-3d 2 IspM,
Py (T) x P(T) sV 2 id

TABLE 7.1. Considered inf-sup stable Stokes pairs including the expected order of convergence
and the used reconstruction operator.

In the case of the Scott-Vogelius (SV) finite element approximation, the adaptive algorithm includes two meshes:
the macro element mesh T given by a standard triangulation, and the corresponding barycentric refined triangu-
lation (guaranteeing inf-sup stability of the SV element) denoted by Tpa:(7 ). Again, an element T € T is marked
if (mean value of the elements included in one macro element)

1 1
= ™ > = K).
3,2 M) )
T'€Toar
T "T#Q

The refinement of 7 is done as described before. The final mesh is then obtained by a global barycentric refine-
ment step. Note, that although the macro element meshes are nested, there barycentric refinement are in general
not nested.

The implementation and numerical examples where performed with the finite element library NGSolve/Netgen
[38, 37], see also www .ngsolve.ordg.

ref.level | 0 1 2 3 4

v=1 o,=o0) 2.62 2.43 2.29 2.20 2.15
v=1 o,=00%| 230 1.75 1.29 1.14 1.07
v=1 o,=0;79| 3.08 2.48 2.01 1.81 1.70
v=10"* o5, =0}’ |9.53-10% 1.15-10* 9.66- 10% 9.63-10% 9.75- 10°
v=10"" o, =0} | 230 1.75 1.29 1.14 1.07
v=10"* o5 =0;5% | 3.08 2.48 2.01 1.81 1.70

TABLE 7.2. Efficiency indices in Example 1 on uniformly refined meshes and the SV element.

7.1. Smooth example on unit square. The first example considers the Stokes problem on a unit square domain
Q = (0, 1)? with the smooth prescribed solution

u(x,y) = curl (x2(1 —2)%%(1 - y)2> and p(z,y) =2’ +y° —1/3
with matching right-hand side f := —vAwu + Vp for variable viscosity v.

Figure 7.1 presents the convergence history of the error of the discrete Stokes solution u;, measured in the H'-
semi norm using the SV element with two different viscosities = 1 (top) and ¥ = 10~* (bottom) on uniformly
refined meshes. The first important observation is that the error plot for the pressure-robust error estimator O";LACS
looks exactly the sameforv = landv = 10*4, while the 'naive’ estimator O'}ZLV is nowhere close to the exact error
of the pressure-robust Scott-Vogelius solution for v = 1074 As expected, the error estimator scales with v1
and so does its efficiency index. One can also see, that the volume term nzfv is of higher order, nevertheless even
on the finest mesh it is still larger than the full pressure-robust error estimator. Further, even if this quantity would
be small, also név is inefficient. To sum up, the classical error estimator approach is not very efficient for pressure-
robust or divergence-free discretisations in pressure-dominant situations (meaning Vflp is large compared to
u).
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SVWithl/:l,(fh:(r}[LV SVwithv =1, oy, :O.XICS
107 1107 —
1072 F 41072 ¢ E
1073 ¢ 41073 E
1074 ¢ ER(Uns E
107° 41075 E
10767 \\\\\Ht‘ Ll \\Hr\ 710767 \\\\\Ht‘ Lol L \\\\\Hr‘
103 104 10° 103 104 10°
ndof ndof
SVwith v = 1074, o), = oY SV with v = 1074, o), = o}°S
103 — — 10*15‘””” —
e r
. F
b —2 |
10! |- bt - N 1077 El
el ;
Bl | 1073§, 4
1071 | . F
1071 ¢ E
1073 - . ]
107 E
1075 I Lol L \\\\\Hr‘ 107(}7 \\\\\Ht‘ Lol Hmr\
103 10* 10° 103 104 10°
ndof ndof
O(h?) == |V(u —ap)| - N -a- )l — o ppl ——n —5-70 1

FIGURE 7.1. Example 1: Convergence history of exact error and error estimator quantities on
uniformly refined meshes for SV with v = 1 (top) and 10~* (bottom) and ¢ = U}]LV (left) and
o = o}'°S (right).

Table 7.2 lists the efficiency indices on the different refinement levels also for the pressure-robust local variant of
our error estimator. One can see that the error estimator for a%"os even is asymptotically exact, while the local
variant is not, but still attains very good efficiency indices around 2. We want to mention again that our error
bounds, unfortunately, contain unknown constants c¢; and cy which were evaluated by cico = 1. However, they
only appear in front of 77 which is, at least in this example and for uniform mesh refinement, of higher order (see

Figure 7.1 again).

7.2. Smooth example on unit cube. The second example is an extension of the previous example onto the unit
cube Q2 = (0, 1)3. Similarly, the smooth prescribed solution is now given by

u(w,y) = curl (§,€,€) and p(z,y) :=2" +y° +2°—1/2

with the potential ¢ = 22(1 — x)2y?(1 — y)?22(1 — 2)? and with matching right-hand side f := —vAwu + Vp
for variable viscosity v.

Figure 7.2 presents the convergence history of the error of the discrete Stokes solution u; measured in the
H'-semi norm using the P2B-3d element with two different viscosities v = 1 (top) and ¥ = 10~* (bottom) on
uniformly refined meshes. We can make similar observations as for the two dimensions| case which validates our
results also for the case d = 3. Further note, that since the right-hand side f is a polynomial of higher order
compared to the two dimensional example, the oscillation terms 7)¢, 77?7 are much larger and dominating the error
estimator at coarser levels.
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P2B-3d with v = 1, o, = oY

P2B-3d with v = 1, g, = o)'°S

100§ — T ] 100§ — T
107 E Bl ore 2107 E
SERy E| E
[ ~]> ] [
1072} % 11072
10-3 E El 103 E
1074 1074
10757 L \\HH‘\" Lol L \\HH: \HH\. 710 07 L \\HH\" Lol L uu: um\.
102 103 104 10° 108 102 108 104 10° 106
ndof ndof
P2B-3d with v = 1074, o, = oY P2B-3d with v = 1074, 5y, = o}I%°
10° — 100§ — T
107 B--iligol 107
~_ﬁ~_: F
e r
10t e 1072
1071 1073
1073 1074 ¢
10 5 Lol Lol L \\HH: Lol 1075 \\\HH{‘ Lol L Humr\ Lol
102 103 104 10° 108 102 108 104 109 106
ndof ndof
2 -~ o N _o_ N N .
O(h?) == [V(u —@p)|| -~ n™ -3-n; T N &g o

FIGURE 7.2. Example 2: Convergence history of exact error and error estimator quantities on
uniformly refined meshes for P2B-3d with v = 1 (top) and 10~* (bottom) and o = O'}]LV (left) and

o = o}'°S (right).

7.3. L-shaped domain example. We consider the example from [40] given on the L-shaped domain 2 :=

(=1,1)*\ ((0,1) x (—1,0)). The velocity u and pressure py now satisfy —vAu + Vpy = 0, and read as
(given in polar coordinates with radius R and angle )

e (a4 D sin(@)e(e) + cos(@) (9) \
u(f,¢) = R (—(a+1)COS(90) W) + sin(@)y (¢ )) :
po = vROD((1 + a)2' () + " () /(1 — )

with
P(p) :=1/(a+ 1) sin((a + 1)p) cos(aw) — cos((a + 1))
—1/(a—1) sin((a — 1)) cos(aw) + cos((a — 1))
and o = 856399/1572864 ~ 0.54, w = 3m/2. To have a nonzero right-hand side we add the pressure

p4 1= sin(xyn),ie.p := po + py and f := V(p,). Note that, since f is a gradient, it holds 7y = 0 in this
example.

Figure 7.3 shows the convergence history of the exact error and the error estimators based on the naive equili-
brated fluxes O'}]LV and the pressure-robust flxes J,“{'CS on adaptively refined meshes where the refinement indicators
are steered by the local contributions of the estimators. For v = 1 both estimators are efficient, the pressure-robust
one is even asmyptotically exact, and all convergence rates are optimal. For v = 10~ the numbers and meshes
for the pressure-robust estimator are exactly the same (which is fine, since the deiscrete velocity did not change),

but the adaptive meshes for the naive estimator do not refine the corner singularity and therefore fail to reduce
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SVwithv =1, 0 = O'}ILV SVwithv =1, 0y = ox'cs
T T T T T T T
100 4 100 g
1071 F E . ]
L 1101 - g
10721 § [ 1
Il Il Il Il Il Il Il Il

Il Il Il Il
103 1032 1034 1036 1038 10* 10%2 10 1032 1034 1036 1038 10* 10%?

ndof ndof
SV with v = 1074, op = O’{L\( SVwithy = 1074, 0), = O’Z’ICS
T T T T T T T T T
= P <. )
102§ “ﬁ:n:::‘ *E 10 P B
; ey S ]
|- ‘IB i L i
10t F E L 1
L 1101 8 g
100 - o—e—e\ﬁe\ﬂ ) [ ]
Il Il Il Il Il Il Il Il Il Il

| |
0% 1032 1034 106 108 10 10*%  10®° 10%2 1034 1036 1038 10* 1072
ndof ndof

G e N e A A

FIGURE 7.3. Example 3: Convergence history of exact error and error estimator quantities on
adaptively refined meshes for SV with = 1 (top) and 10~ (bottom) and o}, = a,ilv (left) and
op = o'°S (right).

P2B with v = 1074, o), = o=@ P2B with v = 1074, gy, = o8

T T T T
K‘ T T T

100 100

1071

| L L L L L TR | L L L L TR R |
103 10* 103 10*
ndof ndof

O(h?) == | V(u — up)| -~ n(o}F?) —n(o)'°) —e—Ndiv

FIGURE 7.4. Example 3: Convergence history of exact error and error estimator quantities on

adaptively refined meshes for P2B with 10™* and o, = o5 (left) and o), = o}°S (right).
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P31 with v = 1074, 0}, = J,LLEQ P31 withv = 1074, g), = chs

100 F

1071

! ! ! ! ! ! I | ! ! ! ! ! I
103 10* 103 10*
ndof ndof

O(h?) —o= |V (u — wp)| - (o) — n(a}S) —o— v

FIGURE 7.5. Example 3: Convergence history of exact error and error estimator quantities on

adaptively refined meshes for P31 with 10~% and o}, = O']LZEQ (left) and o, = U}'\{'CS (right).

P20 with v = 1074, 0}, = J,LlEQ P20 with v = 1074, g, = O';\;ICS

109 10}

TR L L Lo | | I R R L L TR |
103 10* 103 104
ndof ndof

O(h) o [V {(w —up)| = n(oF) —n(o}®) ——Tdiv

FIGURE 7.6. Example 3: Convergence history of exact error and error estimator quantities on

adaptively refined meshes for P20 with 10~% and o}, = O']LZEQ (left) and o, = a}\L"CS (right).

ref. level ‘ refic —4 refiy — 3 refior —2  refior — 1 refio;
v=1 o,=0) 1.96 1.98 2.04 2.07 1.93
v=1 o,=0M%| 1.05 1.03 1.02 1.01 1.01
v=1 o,=07%| 161 1.63 1.69 1.62 1.60
v=10"* 0, =0, |1.15-10> 9.87-10' 6.05-10" 5.36-10' 5.50-10"
v=10"* 0, =oM% | 1.05 1.03 1.02 1.01 1.01
v=10"* 0, =0 | 161 1.63 1.69 1.62 1.60

TABLE 7.3. Efficiency indices in Example 3 on adaptive refined meshes using the SV element.
Here refy,; denotes the total number of refinement steps of each calculation.

the velocity error. Here, the refinement indicators only see the dominating pressure error and mark accordingly to
reduce the pressure error. Adaptation to the corner singularity only starts when both pressure error times v~ and
velocity error are on par. This behaviour was also observed in [24].
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Figures 7.4-7.6 display results for the three other methods P2B, P31 and P20 for the local and global varaint of
our pressure-robust error estimator. Since, the discrete velocity and the error estimator is independent of v, we
only show the results for v = 10~%. Note, that these methods are not divergence-free but pressure-robust due to
their reconstruction operator in the right-hand side. However, this causes div(uy) # 0 and hence the contribution
Nav appears here. Unfortunately, due to the constant 1/cy in front of this term, it has a significant impact on the
efficiency of the error estimator that is largest for P20 and smallest for P2B leading to still very small efficiency
indices between 1.5 and 3 for both the local and the global equilibration error estimator.
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