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Abstract

The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This
experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using
cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 mm) were exposed to
human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal
laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven
pulsed plasma source working at temperatures from 39 to 43uC. Following plasma treatment, one group was air/water spray
treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by
contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy.
Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein
amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold
plasma treatment of native biofilms with a mean thickness of 19 mm (24 h) to 91 mm (72 h) covering the microstructure of
the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of
biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly,
the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and
non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for
dental implants and may enable new routes for the therapy of periimplant disease.
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Introduction

Plasma jets are ionized local gas flows containing a mixture of

charged particles, chemically reactive species and UV radiation

which are able to react with biological material or tissues [1–5]. They

can be generated under normal pressure by means of microwaves,

radio frequency (RF) or pulsed direct current (DC) high voltage in so-

called plasma jet sources. In medicine, plasma treatment is currently

used for blood coagulation, to sterilize surgical instruments and

consumables, or to implement hydrophilic properties to surfaces [6–

9]. Recently, cold atmospheric argon plasma has been used to

decrease bacterial accumulation of biofilms, in animal models of

wound infection [10] and in chronic wounds of patients in a clinical

study [11]. Furthermore, cold atmospheric plasma has been shown

to effectively inactivate bacterial biofilms [12].

Biofilms are generated by microbial communities developing on

interfaces between solid surfaces and biological fluids. Besides

microorganisms they consist of a matrix of exopolysaccharides,

proteins and nucleic acids. The development and maturation of oral

biofilms are characterized by several stages [13,14]. Adsorption of

salivary proteins, glycoproteins and mucins forms a so called pellicle

layer within minutes. Then, planktonic bacteria adhere to the

pellicle surface, divide, and recruit additional planktonic cells within

minutes to a few hours. A multi-layer biofilm is formed by bacterial

growth and co-adherence of further bacteria. The extracellular

matrix of the plaque matures as a network of water-soluble and

-insoluble glucans that are synthesized by bacterial glycosyltrans-

ferases. The established and matured oral biofilm is a three-

dimensionally structured community of many microbial species [14]

and is relevant for the development of caries and periodontal

diseases [13]. Furthermore, biofilms are present on artificial surfaces

in the oral cavity such as dentures or implants [15].

The excellent biocompatibility of titanium as an implant

material promotes the adsorption of osteoblasts and fibroblasts

but also of biomolecular pellicles, and subsequent accumulation of

microorganisms on these surfaces [16,17].
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Microbial biofilms may stimulate the induction of inflammatory

processes resulting in gingival and surrounding bone inflammation

with implant loss [18]. Therefore, methods for the decontamination

of titanium surfaces are of great technical and therapeutical interest.

Traditional techniques to decontaminate implant surfaces are

mechanical scaling, planing and polishing using plastic, Teflon or

metal hand curettes as well as ultrasonic systems, commonly in

combination with antimicrobial agents [19–22]. Furthermore, air

abrasion and laser treatment are frequently used for decontamina-

tion of implant surfaces [23,24]. However, due to the micro-

structured surface of implants the removal of biofilms still poses a

special challenge [21,25]. Mechanical treatment unfortunately

causes alterations of the implant surface resulting in a loss of

surface micro-texture. Since the surface microstructure of implants

is an important parameter for their osseointegration [26], structure-

preserving methods are of particular interest. For this purpose, laser

decontamination might be a suitable method [23,24]. A new

approach for inactivation of biofilm while preserving the titanium

microstructure could be the treatment with cold atmospheric

plasma jets, as their antibacterial effect on adherent bacteria and

biofilms has been shown in several studies [12,27–31]. The

generation of local plasma treatment under atmospheric pressure

with low temperatures of around 40uC and the development of

small plasma sources make them an attractive candidate for the

development of a clinical method for the decontamination of

microstructured titanium surfaces [30,32]. Therefore, the aim of

this experimental study was to test the removal of early biofilms

formed in situ for 24 h and for 72 h by cold atmospheric plasma

from the microstructure of sandblasted/etched titanium surfaces

commonly used for dental intraosseous implants.

Results

Temperature monitoring
During treatment of the microstructured titanium discs, the

surface temperature increased instantaneously and reached its

maximum in the plasma jet’s centre within 5 s. A mean

temperature of 43.2uC+/24.9uC was measured on the titanium

surface using a plasma jet power of 5 W. The temperature

decreased to values of lower than 40uC in a distance of 2 mm

around the centre of the jet. A decrease of the mean surface

temperature to 39.1uC+/23.1uC in the centre of the plasma jet

was observed at a plasma jet power of 3 W.

Plasma treatment of biofilms on titanium discs
No microbial growth was detected on Rodac plates on any of

the 24-h biofilm specimens on titanium discs treated by cold

atmospheric plasma (treatment subgroups I–III, Fig. 1A-f, -i, 2A-f,

-i, 3A-c, -f, Table 1). In case of the 72-h biofilm samples, on two

out of five Rodac culture plates bacterial colonies were detected

after the first round of cold plasma at 3 W and subsequent air/

water spray treatment (treatment subgroup II-b, Fig. 2B-f). All

other Rodac plates displayed no bacterial growth (Table 1, 2).

Fluorescence microscopy (FM) and scanning electron micros-

copy (SEM) analyses revealed distinct micro-morphological

alterations of the adherent microorganisms and the biofilm matrix

on the biofilm-covered titanium discs after plasma treatment. A

strong decrease of biofilm viability (green fluorescence) and

significant reductions in biofilm protein amounts were recorded

for both 24- and 72-h biofilms (p = 0.04; treatment subgroups I,

Fig. 1, Table 1). Higher mean plasma power (5 W) resulted in

extended thinning of the biofilms. However, complete removal of

biofilms from the titanium surfaces after the first cycle of plasma

treatment could not be observed (Fig. 1, Table 1).

The additional application of air/water spray resulted in further

reduction of the biofilm remnants (treatment subgroups II, Fig. 2,

Table 1). Strongly reduced red (dead bacterial cells) and green

fluorescence (vital bacterial cells) was detected by fluorescence

microscopy on titanium discs irradiated with mean plasma powers

of 5 W and subsequently air/water sprayed. In addition, the

protein amounts were further reduced in comparison to solely

plasma treated specimens (p = 0.02). Biofilm covered titanium

discs which were plasma irradiated by 3 W and air/water sprayed

showed slightly more biofilm remnants in FM and SEM images as

compared to samples with 5 W plasma irradiation and subsequent

air/water sprayed treatment (Table 1).

A complete removal of biofilm without biofilm remnants were

detected after a second cycle of plasma treatment in SEM images

in either group of 24- or 72-h biofilm samples treated with a mean

plasma power of 3 W and 5 W, respectively, (treatment subgroups

III, Fig. 3, Table 1). The microstructured surface of the treated

samples was not altered compared to untreated controls (Fig. 4).

Residual biofilm bacteria (fluorescence microscopy) and proteins

(protein amounts) were completely eradicated (p = 0.02) compa-

rable to the control specimens without biofilms (treatment

subgroups IV, Table 2), and no microbial growth was detected

by contact cultures on Rodac plates.

Control biofilm specimens and plasma treatment of
titanium discs without biofilms

The biofilm thickness on specimens exposed to the oral cavity

for 24 h was 18.8+/25.7 mm in mean as determined by CLSM.

Biofilms exposed for 72 h reached a mean thickness of 91.2+/

218.8 mm. All untreated biofilms presented microbial growth on

Rodac plates and showed high viability, represented by green

fluorescence, in the fluorescence microscopy images. FM and

SEM images indicated complete coverage of titanium discs by

biofilms as well as growing of microbes within the microstructured

titanium surface. Areas without fluorescence were still present after

24 h of biofilm formation in a range of 0.4 to 8.1% (median:

2.5%). After 72-h biofilm formation the areas without fluorescence

ranged from 0 to 15.1% (median: 1.7%). Thorough rinsing of the

biofilm covered titanium slices by air/water spray resulted in

alterations of the biofilms (SEM), and slightly reduced fluores-

cence. However, all air/water sprayed biofilms displayed micro-

bial growth on Rodac plates (Fig. 1, 2, Table 1).

Plasma treatment of titanium specimens without biofilms

induced no structural alterations of the surface micromorphology

(treatment subgroups IV, Table 2, Fig. 4) when using mean plasma

powers of 3 W or of 5 W.

Discussion

The present experimental investigation could clearly show that

cold atmospheric plasma is suitable to inactivate and to eliminate

early and mature oral biofilms from the microstructure of

sandblasted/etched titanium surfaces at acceptable temperatures

(,45uC) and without affecting the microstructure of the titanium

surfaces. This is in contrast to all other procedures including

mechanical cleaning and laser treatment. The microstructure of

the titanium specimens used in the present study had a mean

roughness of 2 mm with a maximum measured distance between

the highest and the lowest level of 30 mm. In the present in situ

biofilm model the titanium microstructure was almost entirely

filled up with biofilm of a mean thickness of 19 mm (24 h) to

91 mm (72 h) which is in accordance with previous observations

[22]. Previous data also suggest that 24-h oral biofilms on titanium

surfaces are composed by bacteria of distinct diversity which
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implicates physiological multi-species biofilm characteristics for

our model [15]. The 72-h biofilms were even visually detectable

after air drying of the surface without optical enlargement and can

be assumed as already mature biofilms with strong connectivity. It

should also be kept in mind that biofilms on the buccal site of the

intraoral appliance were formed against shear-forces of the cheeks,

salivary flux from the parotid glands as well as cellular and

humoral immune response in the oral cavity. Hence, the biofilms

obtained can be regarded stable. As demonstrated by the

untreated controls using SEM, FM and CLSM, the biofilms were

present within and above the microstructure of the titanium

surface and at least the 72-h biofilms completely covered the

microstructured surface. As demonstrated by the air/water spray

control samples, the biofilms within the titanium microstructure

were stable against this high pressure removal approach. The in

situ biofilm producing volunteers adapted their oral hygiene and

Figure 1. SEM micrographs, fluorescence microscopy images and photographs of contact areas on Rodac plates of untreated (a–c)
and plasma treated (d–i) 24-h biofilms (Figure 1A) and 72-h biofilms (Figure 1B) formed in situ on microstructured titanium surfaces
(experimental treatment sequence I). Plasma treatment of the biofilms was performed using either a mean plasma jet power of 3 W (d–f) or 5 W
(g–i). The untreated titanium surfaces are covered by a dense bacterial biofilm. After plasma treatment biofilm residues are visible in SEM images on
the microstructured titanium surfaces (arrow). Higher red fluorescence of biofilms appeared under FM (Magnification: SEM a, d, g:610,000; FM b, e, h:
6100). No microbial growth is detectable on Rodac plates after plasma treatment (c, f, i).
doi:10.1371/journal.pone.0025893.g001
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nutritional behaviors to create reproducible amounts of biofilms.

Oral hygiene measures were carried out without using tooth paste

and without brushing of the titanium surfaces. The splints were

removed from the oral cavity during drinking. In addition, biofilm

inhibiting drinks such as wine or tea were avoided. Since

subgingival and anaerobic oral in situ biofilms are difficult to

reproduce, especially in healthy volunteers, the used oral

supragingival biofilm model represents an appropriate approach

for testing the potential of cold atmospheric plasma to remove oral

biofilms from the microstructure of the titanium surface without

destroying the surface morphology.

The very selective destructive power of the plasma jet against

these biofilms without morphological destruction of the titanium

surface was visualized impressively by the SEM micrographs, and

quantified by fluorescence microscopy and colorimetric determi-

nation of total protein. Overall, bacterial contact cultures by the

Figure 2. SEM micrographs, fluorescence microscopy images and photographs of contact areas on Rodac plates of 24-h (Figure 2A)
and 72-h (Figure 2B) in situ biofilms treated with air/water spray (a–c) or treated with plasma and subsequent air/water spraying (d–
i̧ 2 bar, 5 s, 10 mm distance; treatment subgroups II). Plasma treatment of the biofilms was performed using either a mean plasma jet power
of 3 W (d–f) or 5 W (g–i). Air/water spraying does not cause biofilm removal (a–c), however air/water spraying after plasma pre-treatment resulted in
nearly biofilm free titanium surfaces (d–i). Only sparse biofilm remnants are visible on the microstructured titanium surfaces (arrows). (Magnification:
SEM a, d, g: 610,000; FM b, e, h: 65). Microbial growth is detectable on Rodac plates after the first cycle of plasma treatment at 3 W (2B-f).
doi:10.1371/journal.pone.0025893.g002
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Rodac technique underlined the disinfective capacity of the used

plasma treatment. Our results confirm previously published data

on the efficacy of cold plasma jets for killing of adherent

microorganisms or biofilms [27–29]. However, a treatment of

the biofilm with the plasma jet alone was not sufficient under the

chosen conditions to achieve a complete removal of the biofilms.

The plaque biofilm was disinfected, was reduced in thickness with

disintegration or remnant biofilm structure, and superficial

bacteria as well as most bacteria of the deeper biofilm layers were

destroyed after plasma treatment alone. The additional applica-

tion of mechanical cleaning by the air/water spray, however,

resulted in an almost complete reduction of the biofilm remnants.

The following second plasma treatment cycle performed in our

study ensured the complete removal of microorganisms and

biofilm remnants even in the microcavities of the microstructured

titanium surfaces. To our knowledge, this is the first report of

complete inactivation of biofilm bacteria and of complete removal

of mature biofilm including extracellular matrix from microstruc-

tured surfaces. This was achieved by a sequential approach with

cold atmospheric plasma and mechanical cleaning with air/water

spray. Undoubtedly, disinfecting and biofilm removing effects of

atmospheric plasma powers used in this study might be limited to

slim plaque layers. Though, it was possible, to clean surfaces

layered with a macroscopically visible thin plaque layer. A

complete sterilization and removing of millimeter scaled biofilms

may be achieved by a plasma jet at higher performances

accompanied with higher temperatures and extended treatment

times. However, there are certain limitations concerning the

applicability of these parameters under oral conditions, and

especially when implant surfaces are treated under in situ/in vivo

conditions. Under clinical conditions however, visible biofilms

above the microstructure might also be removed with other

implant surface preserving methods like chlorhexidin disinfection

followed by spraying, wiping off the soft plaque biofilm with foam

rubber pellets or Teflon curettes and softening mineralized plaque

by acidic solutions. In the sequence of clinical procedures the

plasma treatment could serve as the final approach to remove

biofilm remnants from the surface and from the microstructure of

titanium surfaces. For all these reasons, we chose experimental

parameters simulating realistic conditions to prevent heat-induced

damages to the implant surrounding tissues in order to enable a

transfer of this method into clinical practice in the near future. The

plasma jet was applied in meander-like motion to prevent heating

of the titanium discs. The highest temperatures at the titanium

surface decreased instantaneously within seconds after the plasma

was moved across the surface. The lower mean power setting of

the plasma device achieved nearly the same decontamination

success as the higher one, suggesting a wide range to establish

practically applicable shorter treatment times during surgical

open-flap periimplantitis treatment as well as tissue preserving

parameter settings. When compared with the untreated reference

control specimens, SEM analysis failed to reveal any micromor-

phologically detectable changes of the microstructured titanium

surface. This does not exclude, however, chemico-physical

changes of the titanium surfaces due to the formation of the

biofilm, or due to the plasma treatment. The plasma application as

a result of multiple effects including UV radiation, local

temperature increase, jet stream of chemical radicals and electrons

leads to an increased hydrophilicity on titanium surfaces [32] as

well as an improved bioactivity of plasma treated surfaces [33].

Just as well, effects on the titanium surfaces seem conceivable,

which could facilitate the attachment of osteoblasts und thus

improve re-osseointegration [32,34]. Concerning these aspects, the

plasma jet source used in the present study appeared to be

Figure 3. SEM micrographs, fluorescence microscopy images
and photographs of contact areas on Rodac plates of 24-h
(Figure 3A) and 72-h (Figure 3B) in situ biofilms. Biofilms were
pre-treated with plasma ((either 3 W (a–c) or 5 W (d–f)), air/water
sprayed, and treated again with plasma (experimental treatment
sequence III). No biofilm remnants could be detected on the
microstructured titanium surfaces after this sequential treatment.
(Magnification: SEM a, d: 610,000; FM b, e: 65). No microbial growth
is detectable on Rodac plates after plasma treatment (c, f).
doi:10.1371/journal.pone.0025893.g003
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applicable for removal of biofilms and decontamination of

microstructured titanium surfaces. Further investigations are

necessary to evaluate the potential of cold atmospheric plasma

under in vivo conditions and supra- and subgingival biofilms in situ

as well as their possible role in the clinical setting for an

improvement of re-osseointegration of implants. Additionally,

plasma treatment could help to disinfect spaces within the implant

after removing of the implant-abutment during therapy of

periimplant diseases [35]. Although plasma treatment has already

been shown in a clinical trial to improve wound healing of the skin

[11] the influence of cold atmospheric plasma treatment on oral

soft tissues has still to be investigated.

Table 1. Effects of cold atmospheric plasma treatment on 24-h and on 72-h in situ biofilms formed on 288 microstructured
titanium slices.

Fluorescence microscopy (n = 5/subgroup)

Treatment subgroups

Positive bacterial
cultures
(n = 5/subgroup)

total
fluorescence
median
(quartiles)

area without
fluorescence, %
median (range)

ratio red/
green
fluorescence
median

Scanning
electron
microscopy
(n = 3/
subgroup)

Protein/
sample mg
(n = 5/
subgroup)

24-h biofilms (mean thickness 18.8+/25.7 mm) on microstructured titanium

I-a: no treatment 5/5 (100%) 38.7 (20.8/46.1) 2.5 (0.4–8.1) 33.1/84.9 dense biofilm (3/3) 30.0616.9

I-b: cold plasma 3 W 0/5 (0%) 42.9 (35.9/50.5) 12.6 (4.5–22.5) 110.1/15.6 remnants (3/3) 8.565.2*

I-c: cold plasma 5 W 0/5 (0%) 7.8 (2.9/16.3) 26.2 (11.8–62.8) 14.7/0.7 remnants (3/3) 8.264.4*

II-a: air/water spray 5/5 (100%) 20.4 (9.9/27.7) 15.3 (4.7–40.9) 29.2/29.3 biofilm (3/3) 17.7616.3

II-b: cold plasma 3 W+air/water spray 0/5 (0%) 4.7 (1.4/11.3) 88.6 (79.6–97.2) 10.2/0.4 remnants (3/3) 2.962.0*

II-c: cold plasma 5 W+air/water spray 0/5 (0%) 1.9 (1.0/5.2) 98.7 (97.0–99.8) 1.7/0.0 remnants (3/3) 2.960.7*

III-b: cold plasma 3 W+air/water
spray+cold plasma 3 W

0/5 (0%) 1.0 (0.6/1.2) 99.3 (98.7–99.7) 0.2/0.0 no biofilm (2/3)
remnants (1/3)

1.360.8*

III-c: cold plasma 5 W+air/water
spray+cold plasma 5 W

0/5 (0%) 1.0 (0.9/1.2) 99.1 (97.2–99.8) 0.1/0.0 no biofilm (3/3) 1.360.9*

72-h biofilms (mean thickness 91.2+/218.8 mm) on microstructured titanium

I-a: no treatment 5/5 (100%) 57.2 (40.8/67.1) 1.7 (0.0–15.1) 39.9/61.8 dense biofilm (3/3) 60.7611.6

I-b: cold plasma 3 W 0/5 (0%) 40.8 (31.1/51.0) 14.1 (1.0–24.0) 78.5/26.8 remnants (3/3) 23.765.7*

I-c: cold plasma 5 W 0/5 (0%) 37.1 (24.2/40.8) 29.0 (0.5–99.9) 81.0/21.2 remnants (3/3) 17.568.8*

II-a: air/water spray 5/5 (100%) 27.5 (18.3/46.0) 19.5 (3.8–67.9) 32.5/35.4 biofilm (3/3) 15.663.5

II-b: cold plasma 3 W+air/water spray 2/5 (40%) 6.4 (3.3/10.4) 90.6 (69.4–99.5) 11.2/4.4 remnants (3/3) 3.262.4*

II-c: cold plasma 5 W+air/water spray 0/5 (0%) 2.6 (1.5/4.6) 96.7 (80.2–99.5) 4.2/1.9 remnants (3/3) 2.062.8*

III-b: cold plasma 3 W+air/water
spray+cold plasma 3 W

0/5 (0%) 0.6 (0.1/1.4) 99.8 (95.5/100.0) 0.2/0.1 no biofilm (3/3) 1.561.8*

III-c: cold plasma 5 W+air/water
spray+cold plasma 5 W

0/5 (0%) 0.0 (0.0/1.1) 99.9 (99.6/100.0) 0.1/0.0 no biofilm (3/3) 1.561.4*

In each treatment subgroup 18 independent biofilm covered slices were analyzed by four different investigation methods (144 slices for 24 hours biofilms and 144 slices
for 72 hours biofilms). Experimental treatment sequences I–III (no air/water spray, air/water spray, air/water spray plus additional irradiation), subgroups a–c with
different intensities of plasma irradiation (no plasma, 3 W, 5 W). Bacterial biofilms were analyzed by contact culture (Rodac), fluorescence microscopy (live/dead
staining), scanning electron microscopy (SEM) and analysis of the total protein amounts (bicinchoninic acid protein assay). Fluorescence microscopy was evaluated for
three different parameters (total fuorescence intensity, area without fluorescence and ratio of red (dead) versus green (vital) fluorescence.
*statistically significant differences of total protein amounts in comparison to no treatment biofilm control (U-test: p,0.05).
doi:10.1371/journal.pone.0025893.t001

Table 2. Effects of plasma treatment on control specimens without biofilms (n = 36, treatment subgroups IV a–c, in triplicates).

Fluorescence microscopy (n = 3/subgroup)

Treatment subgroups

Positive bacterial
cultures
(n = 3/subgroup)

total
fluorescence
(median)

area without
fluorescence (%)

ratio red/green
fluorescence
(median)

Scanning electron
microscopy
(n = 3/subgroup)

Protein/sample
(mg)
(n = 3/subgroup)

microstructured titanium surfaces without biofilm (Ra: 1.96 mm, Rt: 21,35 mm)

IV-a: no treatment 0/3 (0%) 0.1 (0.0/0.7) 99.4 (98.3/99.9) 0.1/0.0 no biofilm (3/3) ,1

IV-b: cold plasma 3 W 0/3 (0%) 0.0(0.0/0.1) 99.8(99.6/99.9) 0.0/0.0 no biofilm (3/3) ,1

IV-c: cold plasma 5 W 0/3 (0%) 0.0 (0.0/0.9) 99.8 (99.7/100.0) 0.0/0.0 no biofilm (3/3) ,1

doi:10.1371/journal.pone.0025893.t002
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The results of our investigation emphasize the potential of cold

plasma jets for antimicrobial applications in dentistry. In

particular, the disinfection of biofilm- contaminated microstruc-

tured titanium surfaces might be a promising option. In this

context, plasma jets could provide a novel approach used in

combination with surgical treatment concepts of periimplantitis.

Materials and Methods

In situ biofilm formation
Overall, 298 titanium discs with biofilms and 36 titanium discs

without biofilms were used. The study protocol was approved by

the ethical committee of the Saarland Medical Association (vote

No. 39/09) and written informed consent was obtained from all

participants. Plaque biofilms were formed in situ over periods of

24 h and 72 h on 149 microstructured titanium slices each (sand

blasted and acid etched, titanium grade 2, Friadent, Mannheim,

Germany, 5 mm in diameter, 1 mm in thickness, mean roughness

(Ra): 1.96 mm, mean of maximum height of the profile (peak to

valley: Rt): 21.35 mm (range: 15.5–31.1 mm), Vickers hardness:

150, tension resistance: 470 N/mm2, e-module: 110 GPa). Up to

8 titanium specimens were fixed with silicon impression material

(President light body, Coltene, Switzerland) at the buccal sites of

the molar and premolar teeth on custom made maxillary splints

which were worn by two male volunteers (age: 31 and 43 years).

During intraoral exposure, splints were only removed during

meals or drinking and meanwhile stored in phosphate buffered

saline. Volunteers maintained their normal eating and brushing

habits, avoiding biofilm-formation inhibiting drinks such as tea or

wine. Neither special cleaning procedures nor agents for chemical

plaque control or tooth paste were applied. After exposure in the

oral cavity, specimens were rinsed for 10 s with sterile saline

solution (0.9%) and the biofilm coverage of the titanium surfaces

was checked by stereo light microscopy before further processing

of samples.

Plasma jet treatment
The custom-built (Leibniz Institute of Surface Modification,

Leipzig, Germany) non-thermal microwave driven (2.45 GHz)

plasma source allowed the adjustment of pulse energy, pulse width

and mean power. The plasma source was mounted on a CNC 3-

axes linear stage motion system (Steinmeyer MC-G047, Feinmess

Dresden GmbH, Germany) to ensure reproducible time, distance

and scanning parameters. Treatment was carried out at ambient

pressure at a distance of 2 mm between plasma jet nozzle and

sample surface. Process gas flow was adjusted at 2.0 l/min helium

by mass flow controllers (Bronkhorst, Ruurlo, The Netherlands).

The monitored pulse width of the microwave was 5 ms at 250 W

(Tektronix TPS2024 oscilloscope, Beaverton, OR, U.S.A.) The

mean power of the plasma jet was adjusted by setting of pulse

frequency at 3 or 5 W, respectively. The dimensions of the

resulting plasma jets were a full width at half maximum (FWHM,

near Gaussian profile) of ,0.5 mm and a jet length of 5 mm.

Plasma treatment was carried out in a meander-like scanning

mode line by line with a line speed of 1 mm/s and a distance

between lines of 0.1 mm. Temperature of the plasma jet was

measured dynamically by means of infrared-camera thermogra-

phy (Optris PI, Optris GmbH, Berlin, Germany) on the surface of

titanium discs. Temperature measurements were performed at

room temperature with a thermal resolution of 60.1uC at an

optical frame of 1606120 pixels with a frame rate of 100 Hz.

Treatment sequences and controls
Titanium discs with (24-h and 72-h biofilms, n = 149 specimens

each) and without (n = 36) in situ biofilms were treated ex vivo with

cold atmospheric plasma or used as controls. Biofilm thickness was

determined using confocal laser scanning microscopy (CLSM,

n = 5 for 24-h and 72-h biofilms each). In subgroups of 18 biofilm

covered specimens each, 24-h and 72-h biofilm samples were left

without any further treatment, irradiated with a mean plasma

power of 3 W or with a mean power of 5 W (Table 1, treatment

subgroups I), additionally thoroughly rinsed with air/water spray

(Table 1, treatment subgroups II, 2 bar, 5 s, 10 mm distance), or

rinsed and subjected to a second plasma treatment (Table 1,

treatment subgroups III). For the purpose of testing the

morphological influence of cold plasma on the etched titanium,

samples without biofilms were subjected to plasma treatment at

mean microwave powers of 3 W or 5 W, or were kept without any

treatment in triplicates (Table 2, treatment subgroups IV).

Microbiology
Vitality of the microorganisms in the biofilms on eighty titanium

discs (n = 40 for 24-h and 72-h biofilms each) was analyzed by

Figure 4. SEM micrographs and photographs of contact areas on Rodac plates (24-h incubation) of untreated (a, b) and plasma
treated (c–f) microstructured titanium surfaces without biofilm (experimental treatment sequence IV). Plasma treatment of the
titanium surfaces was performed using either a mean plasma jet power of 3 W (c, d) or 5 W (e, f). No surface alterations were detected after plasma
treatment of microstructured titanium surfaces. (Magnification: SEM a, c, e:610,000). No microbial growth is detectable on Rodac plates after plasma
treatment (b, d, f).
doi:10.1371/journal.pone.0025893.g004
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contact inoculation of treated and untreated titanium plates with

universal brain heart infusion (BHI, Sigma-Aldrich, Taufkirchen,

Germany) blood agar using Rodac plates and also by liquid

cultures using BHI broth. Nine titanium discs without biofilms

served as controls. Following duplicated standardized contact

inoculation steps (5 s) of each titanium specimen the biofilm

organisms were cultured on Rodac plates (d: 50 mm, Merck,

Darmstadt, Germany, Rodac: replicate organism detection and

counting imprint technique) at 37uC (5% CO2). After contact

sampling the titanium surfaces were additionally scraped with a

sterile blade and the scraped material was directly transferred into

5 ml liquid medium (LB medium without antibiotics, Sigma-

Aldrich, Taufkirchen, Germany) to detect remaining microorgan-

isms. Both, Rodac plates and also liquid cultures were examined at

24 and 48 h. Plates and liquid cultures without microbial growth

after 48 h of incubation were assessed to be sterile.

Fluorescence microscopy (live/dead staining) and
confocal laser scanning microscopy (CLSM)

The presence and the viability of biofilms on eighty titanium

discs (n = 40 for 24-h and 72-h biofilms each) were assessed by

fluorescence microscopy. Biofilms on plasma treated and untreat-

ed titanium specimens were stained using a live-dead-staining kit

(BacLight Bacterial Viability Kit L7012, Molecular Probes,

Carlsbad, USA). Nine titanium discs without biofilms served as

controls and were treated accordingly. The live/dead stain was

prepared by diluting 1 ml of SYTO 9 and 1 ml of propidium iodide

in 1 ml of distilled water. Specimens were placed in 48-well plates,

and 100 ml of the reagent mixture were added to each well

followed by incubation at room temperature and in the dark for

15 min. Each specimen was carefully positioned on a glass slide

covered with mounting oil and stored in a dark space at 4uC until

further processing. Samples were evaluated under a reverse light

fluorescence microscope (Leitz DMR, Leica, Wetzlar, Germany)

equipped with a digital camera (AxioCam MRm Rev. 3, Carl

Zeiss Microlmaging, Goettingen, Germany) and according filter

sets using the image processing software AxioVision 4.8. (Carl

Zeiss Microlmaging, Goettingen, Germany). Images of the

titanium surface were captured (5 to 100fold magnification) to

estimate biofilm coverage of the specimens. From ten randomly

selected sites (420 mm6320 mm) red and green color intensities

were separated and medians of red and green fluorescence were

calculated using the 0–255 grey scale. Accordingly, total

fluorescence median and areas without fluorescence in percentage

of surface were calculated using red/green overlays. Continuous

data were summarized with median and interquartile ranges (25–

75th percentile).

To determine the thickness of biofilms after intraoral exposure

of 24 and 72 h, ten titanium specimens with biofilms (n = 5 for 24-

h and 72-h biofilms each) were explored by CLSM (confocal laser

scanning microscopy; Zeiss LSM 710, Carl Zeiss MicroImaging

GmbH, Jena, Germany) after live/dead staining. For this purpose,

the biofilms were analyzed using a 663 oil immersion objective

(Plan Apochromat 636/1.4 Oil; Zeiss). Each biofilm was scanned

at four representative areas (rounding the circumference of the

titanium slice at distance of 1 mm from the center in 90u steps). Z-

series of optical sections were generated by vertical sectioning at 6-

mm distances through the biofilm. Image analysis and biofilm

thickness measurement were performed using the LSM software

ZEN 2008 (Zeiss).

Detection of total protein
Eighty titanium specimens with biofilms (n = 40 for 24-h and

72-h biofilms each) and nine controls without biofilms were

sonicated in 50 ml of RIPA buffer (150 mM NaCl, 1.0%

Octylphenyl-polyethylene glycol, 0.5% sodium deoxycholate,

0.1% SDS, 50 mM Tris, pH 8.0, Sigma-Aldrich, Steinheim,

Germany), for 10 min at 4uC, and 100 ml ddH2O were added.

After adding of 150 ml of Micro BCA working reagent, samples

were incubated at 55uC for 60 min. Absorbance was measured at

562 nm in a multifunctional microplate reader (Tecan Infinite

200, Magellan V6.6, Tecan, Grödig, Austria) by 10fold determi-

nation of each well. Total protein contents of biofilms were

colorimetrically estimated (Micro BCA assay, Pierce Biotechnol-

ogy, Rockford, IL, U.S.A.). Standard protein solutions (albumin)

from 0 to 100 mg/ml were used for calibration. Results from

plasma treated and/or air/water sprayed specimens were

compared with untreated biofilms using the Mann-Whitney-U-

test (significance level: p,0.05).

Scanning electron microscopy (SEM)
Overall 57 titanium discs with (n = 24 for 24-h and 72-h biofilms

each) and without biofilms (n = 9) were fixed in glutaraldehyde

(2.5% in phosphate buffered saline (PBS); PAA Laboratories

GmbH, Pasching, Austria) for 2 h, and rinsed 5 times for 10 min

in PBS. Subsequently, the samples were dehydrated in an

increasing series of ethanol (50–90% 10 min each; 96%

2610 min). Finally, the samples were dried in 1,1,1,3,3,3-

hexamethyl-disilazane (HMDS, Acros Organics, Geel, Belgium).

HMDS was vaporized at room temperature in a clean bench. All

samples were mounted on SEM-sample stubs (Plano, Wetzlar,

Germany) and sputtered with platinum. SEM analysis was carried

out in a FEI XL30 ESEM FEG (FEI Company, Eindhoven, The

Netherlands) at magnifications of 1,000 to 10,000fold. The

titanium surfaces of each treatment subgroup and both 24-h and

72-h biofilms were scanned for biofilm remnants or bacteria and

structural changes caused by plasma treatment in triplicates. If no

biofilm or bacteria were detected, titanium surfaces were assumed

biofilm free.
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