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Abstra
tNew types of stationary solutions of a one-dimensional driven sixth-orderCahn-Hilliard type equation that arises as a model for epitaxially growingnano-stru
tures su
h as quantum dots, are derived by an extension of themethod of mat
hed asymptoti
 expansions that retains exponentially smallterms. This method yields analyti
al expressions for far-�eld behavior as wellas the widths of the humps of these spatially non-monotone solutions in thelimit of small driving for
e strength whi
h is the deposition rate in 
ase ofepitaxial growth. These solutions extend the family of the monotone kink andantikink solutions. The hump spa
ing is related to solutions of the Lambert
W fun
tion.Using phase spa
e analysis for the 
orresponding �fth-order dynami
al sys-tem, we use a numeri
al te
hnique that enables the e�
ient and a

uratetra
king of the solution bran
hes, where the asymptoti
 solutions are used asinitial input.Additionally, our approa
h is �rst demonstrated for the related but sim-pler driven fourth-order Cahn-Hilliard equation, also known as the 
onve
tiveCahn-Hilliard equation.1 Introdu
tionA paradigm for phase separating systems su
h as binary alloys is the Cahn-Hilliardequation for the phase fra
tion u

ut +
(

Q(u) + ε2uxx

)

xx
= 0 (1.1)where Q(u) is the derivative of the double-well potential F , typi
ally

Q(u) = F ′(u) = u− u3. (1.2)The long-time dynami
s are 
hara
terized by the logarithmi
ally slow 
oarseningpro
ess of phases, 
orresponding to lo
al minima of the potential, separated byinterfa
es of width ε. This pro
ess is well des
ribed by the motion of equidistantlyspa
ed smoothed sho
k solutions or kinks (�positive kinks�) and antikinks (�negativekinks�) whi
h 
onne
t the lo
al minimum of F(u) at u = −1 to that at u = 1 andvi
e versa.In re
ent years, an extension of this model has been studied for the 
ase whenthe phase separating system is driven by an external �eld [16, 27℄. In one spa
edimension it 
an be written as
ut − νuux +

(

Q(u) + ε2uxx

)

xx
= 0, (1.3)1



where ν denotes the strength of the external �eld. This equation, the 
onve
tiveCahn-Hilliard (CCH) equation, also arises as a model for the evolution of the mor-phology of steps on 
rystal surfa
es [21℄, and the growth of thermodynami
ally un-stable 
rystal surfa
es into a melt with kineti
 under
ooling and strongly anisotropi
surfa
e tension [9, 11, 17℄.The dynami
s of this model as ν → 0 are 
hara
terized by 
oarsening, as is typi
alfor the Cahn-Hilliard equation (ν = 0) [7, 26℄. If ν → ∞ using the transformation
u 7→ u/ν in (1.3) one obtains the Kuramoto-Sivashinski equation, whi
h is a well-known model for spatio-temporal 
haoti
 dynami
s (see e.g. [10℄ and referen
estherein). Re
ently, Eden and Kalantarov [6℄ also established the existen
e of a�nite-dimensional inertial manifold for the CCH equation, viewed as an in�nite-dimensional dynami
al system.A related higher-order evolution equation arises in the 
ontext of epitaxially grow-ing thin �lms (for a review on self-ordered nano-stru
tures on 
rystal surfa
es seeSh
hukin and Bimberg [24℄). Here, the formation of quantum dots and their fa
etinghas been des
ribed by the sixth-order equation

ut − νuux −
(

Q(u) + ε2uxx

)

xxxx
= 0, (1.4)where u denotes the surfa
e slope, ν is proportional to deposition rate [22℄ and

Q(u) is given with (1.2), it is assumed to have this form from now on throughoutthe paper. The high order derivatives are a result of the additional regularizationenergy whi
h is required to form an edge between two plane surfa
es with di�erentorientations. This implies that the 
rystal surfa
e tension also depends on 
urvature,whi
h be
omes very high at edges as the parameter ε goes to zero. In analogy tothe Cahn-Hilliard equation, here the phases are the orientations of the fa
ets. Thishigher-order 
onve
tiveCahn-Hilliard (HCCH) equation shares many properties withthe CCH equation. In both 
ases the dynami
s are des
ribed by 
onserved orderparameters if ν = 0. They also share 
hara
teristi
 
oarsening dynami
s as ν → 0and 
haoti
 dynami
s as ν gets large. To understand the 
ompli
ated stru
ture of thesolutions it is instru
tive to study �rst the stationary solutions and their stabilityas it has been done for the CCH equation [16, 28℄. For small ν the stationarysolutions for both equations have been 
hara
terized by the monotone kink andantikink solutions [16, 22℄. Re
ently new spatially non-monotone solutions werefound for the lower order equation [28℄. In this study we establish that the HCCHequation also possesses su
h non-monotone solutions. We show this by using phase-spa
e methods for the 
orresponding �fth-order boundary value problem. We usethe expression �simple� or �monotone� for a solution that 
onne
ts the maximal valueof u(x) to the minimal value without any humps on the way down, although theseextrema exist and lead to non-monotoni
ity even for simple (anti-)kink solutions ofthe HCCH equation.Sin
e the treatment of this high-order problem is not straightforward, one partof this study is 
on
erned with the development of an approa
h that a

uratelylo
ates the hetero
lini
 
onne
tions in the �ve-dimensional phase spa
e. We �nd that2



these stationary solutions develop os
illations whose width and amplitude in
reaseas ν → 0.In the se
ond part of this study we derive an analyti
 expression for the width andamplitude within the asymptoti
 regime of small external �eld strength. For theCCH equation we �nd that the width has a logarithmi
 dependen
y on the strengthof the external �eld, while for the HCCH equation our analysis yields a dependen
yin terms of the LambertW fun
tion. In order to arrive at these expressions we solvethe �fth-order equation by a 
ombination of the method of mat
hed asymptoti
expansions and exponential asymptoti
s. We �rst demonstrate our approa
h for thethird-order boundary value problem arising from the CCH equation. Our approa
hgeneralizes the work by Lange [15℄ to higher-order singularly perturbed nonlinearboundary-value problems, where standard appli
ation of mat
hed asymptoti
s isnot able to lo
ate the position of interior layers that delimit the os
illations of thenon-monotone solutions.Reyna and Ward [19℄ previously developed an approa
h to resolve the internal layerstru
ture of the solutions to the boundary-value problem for the related Cahn-Hilliard and vis
ous Cahn-Hilliard equations. The approa
h is based on a methoddue to Ward [25℄ who uses a �near� solvability 
ondition for the 
orresponding lin-earized problem in his asymptoti
 analysis, and who was inspired by an earlier vari-ational method [13℄ and work by O'Malley [18℄ and Rosenblat et al.[20℄, who investi-gated the problem of spurious solutions to singular perturbation problems of se
ond-order nonlinear boundary-value problems [3℄. Moreover, for the related Kuramoto-Sivashinsky equation, a multiple-s
ales analysis of the 
orresponding third-ordernonlinear boundary-value problem by Adams et al. [1℄ shows that the derivation ofmonotone and os
illating traveling-wave solutions involve exponentially small terms;their method is based on an analysis of the Stokes phenomenon of the 
orrespondingproblem in the 
omplex plane (see Howls et al. [12℄ for an introdu
tion).In what follows we begin with the phase spa
e analysis for the CCH equation inse
tion 2, followed by the asymptoti
 treatment for ν ≪ 1. The asymptoti
 ideasused for the CCH equation are then applied to the HCCH equation in se
tion 3.The solutions obtained there are useful to serve as initial input for the numeri
alinvestigations of the bran
hes of non-monotone solutions in se
tion 4. In this part wedevelop our numeri
al approa
h and then use it to identify new stationary solutionsof the HCCH equation, these agree with the asymptoti
 theory. Finally we shortlysum the results up together with 
on
luding remarks in the last se
tion 5.2 Stationary solutions of the 
onve
tive Cahn-HilliardequationThe high-order term in the CCH equation represents the regularization of the inter-nal layers of the solutions. For most of our investigations we 
onsider the problem inthe s
aling of the internal layers, or inner s
aling, where the x-
oordinate is stret
hed3



about the lo
ation x = x̄ of a layer a

ording to
x∗ =

x− x̄

ε
. (2.1)In this s
aling the CCH equation be
omes (after dropping the �∗�)

ε2ut −
δ

2
(u2)x + (Q(u) + uxx)xx = 0, (2.2)where δ = εν. The stationary problem obtained by setting ut to zero 
an be inte-grated on
e, requiring that the solutions approa
h the 
onstants ±√

A as x→ ∓∞,where A is a 
onstant of integration. That is, we 
onsider the boundary valueproblem
δ

2

(

u2 −A
)

= (Q(u) + uxx)x (2.3)together with the far-�eld 
onditions
lim

x→±∞
u = ∓

√
A (2.4)and vanishing derivatives in the same spatial limit. We refer to solutions of thissystem as antikinks. Monotone antikinks are known analyti
ally [16℄, while re
ently,non-monotone 
onne
tions were 
omputed numeri
ally by Zaks et al. [28℄. We nowbrie�y dis
uss the numeri
al approa
h to obtain these solutions. Here we 
on
entrateon the regime where 0 < δ ≪ 1 in order to 
ompare with the asymptoti
 solutionsderived later on. For a bifur
ation analysis for larger δ we refer to [28℄.2.1 Numeri
al solutionsFor the numeri
al solutions we will work with a res
aled version, where we set

u =
√
Ac so that the equilibrium points do not depend on A, and for Q(u) given by(1.2), (2.3) and (2.4) be
ome

(1 − c2) = − 2

δ
√
A

(cxx + c−Ac3)x , lim
x→±∞

c = ∓1. (2.5)For this problem we �nd it most 
onvenient to present a shooting method whi
henables us to tra
k solution bran
hes in the (A, δ) parameter plane. We transform(2.5) to a �rst order system U ′ = F (U), where F : R3 → R
3 is the fun
tion

F1(U) = U2, F2(U) = U3, F3(U) = (3A(U1)
2 − 1)U2 +

δ
√
A

2
((U1)

2 − 1) . (2.6)We work in a three dimensional phase spa
e and denote either ve
tors or wholetraje
tories therein with 
apital U 's. We use the same notation for two di�erentobje
ts, be
ause it will be 
lear from the 
ontext what is meant. Subs
ripts indi
atethe 
omponents. 4



The 
hara
teristi
 polynomials at the equilibrium points U± = (±1, 0, 0)T are
P±(λ) =

∣

∣

∣

∣

dF

dU
(U±) − λI

∣

∣

∣

∣

= λ3 + λ(1 − 3A) ∓ δ
√
A . (2.7)The signs of the real parts of the roots determine the dimension of the stable andunstable manifolds W u(U+), W s(U−), W s(U+), W u(U−) of the equilibrium points.The latter two are two-dimensional and so the existen
e of a kink is generi
, while thisis not the 
ase for the antikinks. The dimensions ofW u(U+) andW s(U−) are one, sothat the hetero
lini
 
onne
tions from the positive to the negative equilibrium arisefrom a 
odimension two interse
tion. This means that with the two parameters Aand δ we 
an expe
t only separated solutions when the manifolds interse
t, but dueto the reversibility properties whi
h are dis
ussed below the 
odimension redu
esto one and we 
an expe
t separated solutions for the free parameter A and a �xed

δ, hen
e one or several whole bran
hes in the (A, δ) parameter-plane. An exampleof a non-monotone 
onne
tion is sket
hed in �gure 1, where the traje
tories windthemselves in the phase spa
e with a solution that exhibits 15 humps.
Eu(U+)

Es(U−)

U−

U+

u

u’

u’’

Figure 1: CCH: Antikink solutions 
onne
ting the hyperboli
 equilibrium points U+and U− are sought in a 3-D phase spa
e. The unstable manifold emerging from U+,
W u(U+) is one-dimensional, as is the stable manifold W s(U−). The approximatinglinearized spa
es Eu(U+) and Es(U−) are drawn as dash-dotted lines and are usedin the 
omputations.Reversibility and 
omputations It is instru
tive to note that the solution of(2.5) is translation invariant, c(x) → c(x + L), and that (2.6) forms a reversibledynami
al system, hen
e it is invariant with respe
t to the transformation x →
−x, U → −U , as has also been noted by Zaks et al. [28℄.Let us 
onsider generally a k-dimensional phase spa
e, sin
e the following dis
ussionwill be also useful in se
tion 4 where we analyze the HCCH equation with its higherorder system. The linear transformation

R : Rk → R
k, R(Uj) = (−1)jUj , j = 1, . . . , k (2.8)5



ful�lls R2 = Id and RF (U) = −F (RU) for k = 3 and (2.6) and represents thereversibility in the phase spa
e. It is an involution (or a re�e
tion) and its set of �xedpoints is the symmetri
 se
tion of the reversibility, these are zero at odd 
omponents,
Ui = 0 for odd i. A solution that 
rosses su
h a point ne
essarily symmetri
 under
R, and for ea
h point U on the 
onne
tion there exists a 
orresponding transformedpoint RU somewhere on the bran
h. In fa
t there is an equivalen
e here sin
e oddsolutions ne
essarily 
ross a point in the symmetri
 se
tion. It holds that c and itseven derivatives have to vanish in the point of symmetry L be
ause of the ful�lledequations d2m

dx2m c(x + L) = − d2m

dx2m c(−x + L), m = 0, 1, . . . , ⌊k/2⌋, and 
ontinuity ofthe solution and its derivatives.From the above we 
on
lude that with a shooting method we 
an stop integratingwhen we �nd a point with zero odd 
omponents, sin
e the se
ond half of the solutionis then given by the set of transformed points under R. Hen
e we de�ne the followingdistan
e fun
tion for a traje
tory U over the interval of integration whi
h helps to�nd these points
dA(U) = min

x

√

∑

i oddUi(x)2 . (2.9)
0.4 0.6 0.8 1

0

0.02

di
st

(A
) 

≡ 
d A

(U
) het1 het0

AFigure 2: Distan
e fun
tion dA de�ned by (2.9) depending on A with �xed δ = 0.05,showing the �rst 14 zeros 
orresponding to het0 to het13.The minimization of dA(U) over the free parameter, min
A
dA(U), must result in thevalue zero for an anti-symmetri
 hetero
lini
 solution. We 
an use this 
ondition forshooting and BVP formulations, for both the CCH and later the HCCH equationin se
tion 4.For a �xed value of δ and a range of di�erent A we follow the relevant bran
h of

W u(U+) by shooting from an initial point U+ ± ǫv near U+, where v is a uniteigenve
tor 
orresponding to the positive eigenvalue of dF/dU|U=U+ and ǫ≪ 1. Westop the integration if a 
ertain threshold value for |U1| is 
rossed. Figure 2 shows
dA(U) as a fun
tion of A for δ = 0.05.At this point we have hetero
lini
 
onne
tions for one �xed value of δ whi
h wedenote by hetk, k = 0, 1, . . . (using the notation in Zaks et al. [28℄). het0 is theanalyti
al, monotone tanh solution while hetk has k humps on the way down from√
A to −

√
A. We will use the same terminology for the solution stru
ture of thestationary HCCH problem in se
tion 4. Here, a hetk solution 
orresponds to the kthzero from the right in �gure 2. We then follow the roots of the distan
e fun
tion6
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(δ)Figure 3: Parameter plane, log(δ) for the x- and log(1 − A) for the y-axis, for theCCH equation for the �rst 9 antikink solutions hetk, k = 0, 1 . . . , 8. The graphs onthe right show the shapes of representative het4 solutions, hen
e those on the �fthline from below, for the approximate (A, δ) tuples (0.8259, 0.0289), (0.9893, 0.0017)and (0.9998, 2.6457 · 10−5).by linearly extrapolating to a new guess for A and use a bise
tion algorithm to
onverge fast to the next root. Figure 3 shows a portion of the (A, δ) parameter-plane, where we 
on
entrate on very small values of δ, or di�erently interpreted, onthe bifur
ation of the various spiraling CCH orbits from the hetero
lini
 
onne
tionsof the CH equation in its one dimension smaller phase spa
e.2.2 Asymptoti
 internal layer analysisFor the asymptoti
 analysis we use a slightly di�erent s
aling than for the numeri
altreatment. Here, we let
x∗ =

x− x̄√
2 ε

(2.10)denote the inner variable about a layer lo
ated at x = x̄. For the stationary problemwe then obtain
(u′′ + 2Q(u))

′
= δ

√
2
(

u2 − A
) (2.11)instead of (2.3), where ′ = d/dx∗. For later 
omparisons of the numeri
al andasymptoti
 results we have to keep in mind that the spatial s
ales di�er by a fa
torof √2.We point out that the problem 
onsidered here shares the internal layer stru
ture ofthe singular perturbation problems dis
ussed by Lange [15℄, and we will make use7



and extend this ansatz for our situation. This will also prove useful to understandthe approa
h taken for the HCCH problem in se
tion 3.1, sin
e there we have to
arefully 
ombine the exponential mat
hing with the 
onventional mat
hing pro
e-dure when mat
hing the two regions. For both problems the asymptoti
 analysis
an be 
onveniently 
arried out in terms of the small parameter δ.In the following analysis we 
onsider the simplest 
ase of a non-monotone solutionwith only one hump, as illustrated in �gure 4; we note that non-monotone solutionswith more os
illations 
an be treated similarly.2.2.1 The 1-hump solution
−1

0

1
outer region

outer region

A1/2

−A1/2

κ
m

κ
p0

Figure 4: Sket
h of a 1-hump, or het1 solution showing the general setup for themat
hing pro
edure for the CCH and HCCH equations.We observe that the 1-hump solution has three internal layers, one at κm < 0, one at
κp and one at the symmetry point in between. Sin
e the solution is point symmetri
we 
an 
hoose this point to be x = 0 and it will be enough to only dis
uss the twolayers at κm and zero and then mat
h them to the outer solution.Internal layer near κm For the �rst internal layer at κm we let

xm =
x√
2 ε

− κ̄m√
2

, (2.12)where κ̄m < 0 and set
κm = κ̄m +

√
2

∞
∑

k=1

δkκmk, (2.13)so that to leading order the lo
ation where the solution 
rosses zero is κ̄m and theadditional terms a

ount for the 
orre
tions due to the higher order problems.With um(xm) = u(ε(κ̄m +
√

2xm)) the governing equation be
omes
u′′′m + 2Q′(um) = δ

√
2 (u2

m − A) , where ′ =
d

dxm

. (2.14)For the boundary 
ondition where um 
rosses zero we have
um

(

κm − κ̄m√
2

)

= 0 (2.15)8



and the 
ondition towards −∞ is
lim

xm→−∞
um(xm) =

√
A. (2.16)We now assume um(xm) 
an be written as the following asymptoti
 expansion, validnear κm

uα(xα) = uα0(xα) +
∞
∑

k=1

δk uαk(xα) , (2.17)with α = m here. Additionally, we assume A has the asymptoti
 expansion
A = 1 + δA1 +O(δ2). (2.18)Observe that from (2.16) and (2.18)

lim
xm→−∞

um(xm) = lim
xm→−∞

um0(xm) +

∞
∑

k=1

δk umk(xm) = 1 +
1

2

∞
∑

k=1

δkAk . (2.19)To leading order in δ we get the problem for the Cahn-Hilliard equation
u′′′m0 + 2Q′(um0) = 0 (2.20a)
um0(0) = 0 and lim

xm→−∞
um0(xm) = 1 (2.20b)with the unique solution um0(xm) = − tanh(xm). Next, the problem of order δ is

(

L (um1, xm)
)′

=
√

2
(

tanh2(xm) − 1
) (2.21a)

um1(0) = κm1 and lim
xm→−∞

um1(xm) =
A1

2
, (2.21b)where κm1 and A1 are 
onstants to be exponentially mat
hed and the operator L isde�ned by

L(v, z) = v′′ + 2
(

1 − 3 tanh2(z)
)

v , (2.22)and z = xm, v = um1 and ′ = d/dxm. Note that the �rst boundary 
ondition isobtained by expanding (2.15)
um

( ∞
∑

k=1

δkκmk

)

= um

(

δκm1 + δ2κm2 +O(δ3)
) (2.23)

= um0(0) + δ
(

κm1u
′
m0(0) + um1(0)

)

+O(δ2)so that 
olle
ting the terms of order δ gives
um1(0) = −κm1 u

′
m0(0) = κm1 .Next, we integrate (2.21) on
e to obtain

L (um1, xm) = fm(xm) , (2.24)9



where fm(xm) = −
√

2 tanh(xm)+cm. Taking the limit of this equation to −∞ yields
cm = −

√
2 − 2A1 so that

fm(xm) = −
√

2 (tanh(xm) + 1) − 2A1 . (2.25)The homogeneous solutions of (2.24) are
φm(xm) = −u′m0(xm) = 1 − tanh2(xm) , (2.26)
ψm(xm) =

(
∫ xm

0

dz

φ2
m(z)

)

φm(xm) . (2.27)Also note that limxm→−∞ φm(xm) = 0 and ψm(0) = 0. At this stage it is 
onvenientto 
hoose the inhomogeneous solution that remains bounded as xm → −∞ andvanishes at xm = 0 whi
h is satis�ed by
ϕα(xα) = ψα(xα)

∫ xα

−∞
φα fα dz − φα(xα)

∫ xα

0

ψα fα dz (2.28)with α = m. Hen
e, the unique solution for (2.21) is the linear 
ombination
um1(xm) = −κm1φm(xm) + ϕm(xm) . (2.29)Internal layer near x = 0 For the internal layer near the origin we pro
eed asabove. Here, we stret
h the independent variable as

x0 =
x√
2ε

(2.30)and 
onstru
t an asymptoti
 expansion (2.17) near x = 0 with α = 0 for the solutionof the problem
u′′′0 + 2Q′(u0) = δ

√
2 (u2

0 − A) , where ′ =
d

dx0

. (2.31)We note that the point x = 0 is assumed to be the symmetry point of the 
ompletesolution, hen
e here we require
u0(0) = 0 and u′′0(0) = 0 . (2.32)In anti
ipation of the exponential mat
hing we also require that limx0→−∞ u00(x0) =

−1, so that the solution to the leading order problem is u00(x0) = tanh(x0) For thesolution to O(δ) we �nd
u01(x0) = b0 ψ0(x0) + ϕ0(x0) (2.33)where b0 is a further 
onstant to be exponentially mat
hed. Here, the homogeneoussolutions are

φ0(x0) = −u′00(x0) and ψ0(x0) =

(
∫ x0

0

dz

φ2
0(z)

)

φ0(x0) (2.34)and the inhomogeneous solution is de�ned by (2.28), where α = 0 and f0(x0) =
−
√

2 tanh(x0). They are 
hosen su
h that ϕ0(0) = 0 and ϕ′′
0(0) = 0, in fa
t we have

limx0→±∞ ϕ0(x0) = ±
√

2/4. 10



2.2.2 Exponential mat
hingExponential mat
hing requires that all exponentially small and exponentially grow-ing terms have to be a

ounted for and mat
hed. This means �rst that we have toexpress the variable x0 in terms of xm (or vi
e versa). From the de�nitions of thesevariables it follows that
x0 = xm +

κ̄m√
2
. (2.35)In parti
ular, exponential terms in the solution u0(x0) transform as e2x0 = e

√
2κ̄m e2xmand so forth for higher order exponential terms e2nx0 or terms with di�erent signsin the exponent.Now note that as x0 → −∞ the leading and O(δ) solutions 
an be written as

u00(x0) = −1 + 2e2x0 −O(e4x0) (2.36)and with µ̄ =
(

3
2
b0 +

√
2
)

u01(x0) = −1

4
µ̄− b0

16
e−2x0 +

(

13

16
b0 +

1√
2

+ µ̄x0

)

e2x0 +O(e4x0) . (2.37)Written in xm variables the solution
u0( xm) = −1 + 2e2xme

√
2κ̄m +O(e2

√
2κ̄m) (2.38)

+δ

(

−1

4
µ̄− b0

16
e−2xme−

√
2κ̄m + (

13

16
b0 +

1√
2

+ µ̄(xm +
κ̄m√
2ε

))e2xme
√

2κ̄m

+O(e2
√

2κ̄m)

)

+O(δ2)has to be exponentially mat
hed to
um( xm) = −1 + 2e−2xm +O(e−4xm) (2.39)

+δ

(

−(A1 +

√
2

4
) − 1

4
(A1 +

1√
2
)e2xm + (

7

2
A1 +

5

4

√
2 + 4κm1)e

−2xm

−(3A1 +
1√
2
) xme

−2xm +O
(

e−4xm
)

)

+O(δ2)as xm → ∞. While we have already anti
ipated mat
hing of the 
onstants during thederivation of the leading order solutions, the 
onstant terms of the O(δ) solutionsare �rst to be mat
hed. Mat
hing to the exponential terms in (2.39) entails arearranging of terms of di�erent orders of magnitude in the expansion (2.38). Inparti
ular, the �rst exponential term to leading order in (2.39) mat
hes the se
ondterm of O(δ) in (2.38), the se
ond and largest exponential term of O(δ) in (2.39)mat
hes the se
ond term of the leading order in (2.38), and so forth. Summarizing,we obtain
1

4
(
3

2
b0 +

√
2) = A1 +

√
2

4
, −ρ b0

16
= 2, −ρ

4
(A1 +

1√
2
) = 2 , (2.40)11



where we denote ρ = δ e−
√

2κ̄m . Solving yields
ρ = 4

√
2, A1 = − 3√

2
and b0 = − 8√

2
. (2.41)We observe that we have determined the O(δ) 
orre
tion A1. Additionally, we nowknow that δ e−√

2κ̄m = 4
√

2, hen
e
κ̄m =

ln (δ)√
2

− ln
(

4
√

2
)

√
2

(2.42)and if we re
all (2.13) and κm < 0 then the width of the hump is −κm, where
κm =

ln (δ)√
2

− ln
(

4
√

2
)

√
2

+O (δ) . (2.43)Further 
onstants, su
h as κm1 are found by in
luding higher exponential terms andexpansions of the higher order problems. Finally we note that making use of thesymmetry of the solution about the point x = 0, the exponential mat
hing of thesolution near zero to the one near κp pro
eeds analogously.2.2.3 Comparison of numeri
al and asymptoti
 solutionFor the 
omparison with the asymptoti
 solution we are interested mainly in the het1solution whi
h we derived in se
tion 2.2.1. By numeri
al 
ontinuation of the shootingmethod, one obtains N tuples (A(j), δ(j)), j = 1, . . . , N in the parameter plane thatgive a het1-bran
h when being 
onne
ted. We use two ve
tors of parameters whi
hwe abbreviate A = (A(j))j=1,...,N and δ = (δ(j))j=1,...,N to 
on�rm the formulaswe obtained in the previous se
tion. Further we make use of a distan
e ve
tor
K = (K(j))j=1,...,N . K 
ontains the distan
es between the zero 
rossings of thesolutions, or in 
ontext of the asymptoti
s se
tion (see �gure 4) K(j) ≈ |κm(δ(j))|.To obtain the relation between A and δ and the evolution of the distan
es we solvethe least squares problems

min
µ1

‖(1 − µ1δ) −A‖2
2 and min

η1,η2

‖η1 log(δη2) −K‖2
2 ,hen
e we assume a linear law for the A-values in δ and a general logarithmi
 law forthe distan
es. We obtain

A ≈ 1 − 2.12δ ≈ 1 − 3√
2
δ and K ≈ −0.71 log(0.18δ) (2.44)whi
h 
on�rms the results from the analysis (2.41) and (2.43). We see the goodmat
h in the distan
e plot in �gure 5.These results motivated us to obtain a general rule for the relation between the twoparameters of the CCH equation for di�erent stationary solutions. The numeri
ally12
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es between the �rst two roots of the het1 solutions versus log(δ)together with the width predi
ted by the asymptoti
 formula (2.43).
omputed bran
hes in �gure 3 show that the slopes of the hetk bran
hes are one whenplotting log(δ) against log(1 − A), so that the relation log(δ) + const = log(1 − A)shows the linear dependen
e A(k) = 1 + A1(k)δ, where A(k) is the A value forthe hetk solution and A1(k) its linear 
oe�
ient. We see that the magnitude of A1in
reases linearly with the order k of the hetero
lini
 
onne
tion, and we obtain ageneral expression for the squared far �eld value for non-monotone hetk solutions,namely
A1(k) = −2k + 1√

2
. (2.45)3 Mat
hed and exponential asymptoti
s for the sta-tionary HCCH equationAs for the CCH equation we will perform our analysis of the internal layers in theinner s
aling (2.10). From the stationary form of (1.4) we obtain the equation

(u′′ + 2Q(u))
′′′

= −δ 23/2
(

u2 − A
)

, (3.1)after integrating on
e and requiring that for an antikink limx→±∞ u = ∓
√
A andsetting δ = ǫ3ν here. We 
onsider the het1 (one hump) solution, and again make useof the point symmetry of the problem. Now however, unlike for the CCH equation,the solutions in the outer region are not just 
onstants. Here, we have to introdu
ean outer layer to the left of the inner layer about κm, see also �gure 4 for the 
ase ofa 1-hump solution. In the following subse
tions we �rst brie�y derive the solution tothis outer problem and mat
h it to the solution to the inner problem near κm. Theremaining degrees of freedom are then used to exponentially mat
h it to a se
ondinner layer near x = 0.It has been demonstrated in [22℄ for monotone antikink solutions of the HCCHequation, that it is ne
essary to mat
h terms up to order δ in order to obtain the
orre
tion A1, given the asymptoti
 expansion of A

A = 1 +

∞
∑

k=1

δk/3Ak . (3.2)13



Here, for the non-monotone antikinks we have to mat
h inner and outer solutionsand then also exponentially mat
h the inner layers. This has to be 
arried throughiteratively up to three orders of magnitude in order to obtain not only the 
orre
tion
A1 but also the expression for the width of the humps.3.1 The 1-hump solution for the HCCH equationWe start by shifting to the inner 
oordinates that des
ribe the region near κm, whi
his to be mat
hed to the outer region. Again de�ning xm by (2.12), the governingequation in this inner region is

(

u′′m + 2Q(um)
)′′′

= − 23/2 δ (u2
m −A) where ′ =

d

dxm

. (3.3)For the boundary 
onditions we again pla
e κm near the point where um 
rosseszero, i.e.
um

(

κm − κ̄m√
2

)

= 0 . (3.4)The 
ondition towards −∞ is not as trivial as for the CCH equation but needs tobe mat
hed to the outer solution in the region to the left of κm (or to the right of
κp, taking a

ount of symmetry).For the outer region (see �gure 4), where xm be
omes very large, we use the ansatz

ξ = δ1/3 xm and Y (ξ; δ) = um(xm; δ) (3.5)and obtain the outer problem
(

δ2/3 Yξξ + 2Q (Y )
)

ξξξ
= − 23/2

(

Y 2 − A
) (3.6)with the far �eld 
ondition

lim
ξ→−∞

Y (ξ) =
√
A . (3.7)The region near x = 0, for whi
h we use the variable x0 from (2.30), is des
ribed bythe problem

(

u′′0 + 2Q(u0)
)′′′

= − 23/2 δ (u2
0 − A) where ′ =

d

dx0

(3.8)The point x = 0 is the point of symmetry of the solution. Here we require
u0(0) = 0, u′′0(0) = 0 and u′′′′0 (0) = 0 , (3.9)plus additional 
onditions from the exponential mat
hing to the internal layer near

κm as x0 → −∞, as we have shown for the CCH equation.14



Here we assume the solutions to these three problems for Y , um and u0 
an berepresented by asymptoti
 expansions
uα(xα; ε) = uα0(xα) +

∞
∑

k=1

δk/3 uαk(xα), where α = 0, m (3.10)valid near κm and x = 0, respe
tively, and
Y (ξ; δ) = Y0(ξ) +

∞
∑

k=1

δk/3 Yk(ξ) , (3.11)valid in the outer region, where we let
κm = κ̄m +

√
2

∞
∑

k=1

δk/3κmk . (3.12)To obtain solutions to the outer problem is straightforward [22℄, but in order to bemore 
omprehensible we in
lude the results in appendix A. The solutions to theother regions are dis
ussed now.3.1.1 Leading orderTo leading order in δ we get the problem
(u′′m0 + 2Q(um0))

′′′
= 0 (3.13a)

um0(0) = 0 (3.13b)Mat
hing to the leading order outer solution (A.2) Y0 = 1 we �nd
um0(xm) = − tanh(xm) . (3.14)Its representation towards the internal layer about x = 0 is given by

um0 = −1 + 2e−2xm − 2e−4xm +O(e−6xm) (3.15)as xm → ∞. The leading order problem for this region is
(u′′00 + 2Q(u00))

′′′
= 0 (3.16a)

u00(0) = 0, u′′00(0) = 0 and u′′′′00(0) = 0 (3.16b)and its solution is
u00(x0) = tanh(x0) . (3.17)As x0 → −∞ its behavior is given by

u00 = −1 + 2e2x0 − 2e4x0 +O(e6x0) . (3.18)15



3.1.2 O(δ1/3)Internal layer near x = κ
m

The expansion of (3.3) and (3.4) to order δ1/3 yields
L(um1, xm) = fm1(xm) (3.19a)
um1(0) = −u′m0(0) κm1 = κm1 (3.19b)where L is de�ned by (2.22) as for the CCH equation and

fm1(xm) := c1mx
2
m + c2mxm + c3m . (3.20)The homogenous solutions are therefore (2.26) and (2.27). The 
onstants c1m, c2m, c3mare obtained by three su

essive integrations of the ODE for um1 obtained at thisorder. We 
hoose the inhomogeneous solution so that it grows only algebrai
ally as

xm → −∞ and vanishes at xm = 0. Parti
ular solutions to (3.19b) are of the form
ϕαj(xα) = ψα(xα)

∫ xα

0

φα fαj dz − φα(xα)

∫ xα

0

ψα fαj dz + γαjψα(xα) , (3.21)so that now we obtain ϕm1 for α = m, j = 1 in (3.21) and
γm1 = −π

2

12
c1m + ln(2)c2m − c3m . (3.22)Hen
e the solution is

um1(xm) = −κm1φm(xm) + ϕm1(xm) . (3.23)We evaluate ψα, φα et
. and subsequent fun
tions with the assistan
e of Maple. As
xm → −∞ the limiting behavior of um1 is
um1(xm) = −1

8
(c1m + 2c3m) − 1

4
c2mxm − 1

4
c1mx

2
m (3.24)

+

(

1

64
(−7c1m − 8c3m + 256κm1 + 30c2m + 4c2mπ

2 − 72c1mζ(3))

+
1

16
(−6c2m + 15c1m + 24c3m)xm +

1

8
(6c2m − 3c1m)x2

m +
1

2
c1mx

3
m

)

e2xm

+O( e4xm)where ζ is the Riemann Zeta fun
tion, and um1 must mat
h the outer solution whi
his given in the appendix by (A.10) and has only 
onstant terms to this order. Hen
ewe require c2m = 0 and c1m = 0. The mat
hed solution is now
u

(m)
m1 (xm) = (1 − tanh2(xm)) κm1 (3.25)

−c3m

16

(

− 2e6xm + 4 + 10e2xm − 12e4xm − 24xme
2xm

) e−2xm

(e2xm + 1)2 ,16



where we denote by u
(m)
m1 the solution that is obtained by mat
hing to the outersolution Y . As we will see later, exponential mat
hing to the inner solution u0, i.e.as xm → ∞, where we �nd

u
(m)
m1 (xm) =

1

8
c3me

2xm +
1

2
c3m +

(

−7

4
c3m + 4κm1 +

3

2
c3mxm

)

e−2xm

+

(

11

4
c3m − 8κm1 − 3c3mxm

)

e−4xm +O(e−6xm) ,requires also c3m = 0. Hen
e, denoting by u(e)
m1 the solution that has been exponen-tially mat
hed to the inner solution u0 near x = 0, we obtain

u
(e)
m1(xm) =

(

1 − tanh2(xm)
)

κm1 . (3.26)Internal layer near x = 0 The O(δ1/3) problem is
L(u01, x0) = f01(x0) , (3.27a)
u01(0) = 0, u′′01(0) = 0 and u′′′′01(0) = 0 , (3.27b)with

f01(x0) := c10x
2
0 + c20x0 + c30 . (3.28)Its general solution reads

u01(x0) = ϕ01(x0) + g1 ψ0(x0) , (3.29)where the homogeneous solutions are as before and the inhomogeneous solution isgiven by equation (3.21) with α = 0, j = 1 and
γ0 = −π

2

12
c10 + ln(2) c20 − c30 , (3.30)so that ϕ01(0) = 0 and ϕ01 grows algebrai
ally as x0 → −∞. Furthermore, symmetryrequires ϕ′′

01(0) = 0 and ϕ′′′′
01(0) = 0, whi
h implies c10 = 0 and c30 = 0 leading to

ϕ01( x0) =
c20

16(1 + e−2x0)2

(

1 − 4x0 + 12 dilog(e2x0 + 1)e−2x0 − e−4x0 + 12x2
0e

−2x0

+ π2e−2x0 + 12x0e
−4x0 − 14x0e

−2x0 − ln(1 + e−2x0)e2x0 + 8e−4x0 ln(1 + e−2x0)

− 8 ln(1 + e−2x0)) + e−6x0 ln(1 + e−2x0) + 2e−6x0x0

)

, (3.31)where dilog denotes the dilogarithm fun
tion. The remaining free parameters of u01to be mat
hed are c20 and g1. As will be demonstrated later, exponential mat
hingto um requires an expression for u01 as x0 → −∞

u01( x0) = − g1

16
e−2x0 − 1

4
c20x0 −

3

8
g1 (3.32)

+
1

32

(

2c20π
2 + 15c20 + 26g1 + (48g1 − 12c20)x0 + 24c20x

2
0

)

e2x0

+
1

48

(

− 36g1 − 89c20 − 6c20π
2 + (84c20 − 144g1)x0 − 72c20x

2
0

)

e4x0 +O(e6x0)17



and then re-expanding u0 in the variable xm. This shows that also c20 = 0, g1 = 0 and
c3m = 0. Any other 
hoi
e leads to a system for the parameters having no solution.Hen
e, only κm remains as a free 
onstant in the two regions. The exponentiallymat
hed solution is therefore simply

u
(e)
01 (x0) = 0 . (3.33)3.1.3 O(δ2/3)Internal layer near κm The problem of order δ2/3 is

L(um2, xm) = fm2(xm) , (3.34a)
um2(0) = −u′m0(0) κm2 −

1

2
u′′m0κ

2
m1 − u′m1(0)κm1 = κm2 − u′m1(0) κm1 , (3.34b)where

fm2(xm) := d1mx
2
m + d2mxm + d3m + 6 um0 (u

(e)
m1)

2 . (3.35)Note that u(m)
m1

′
(0) = 0. Again we 
hoose the inhomogeneous solution so that itgrows only algebrai
ally as xm → −∞ and vanishes at xm = 0 to obtain (3.21) with

α = m, j = 2 and
γm2 = −π

2

12
d1m + ln(2) d2m − d3m − κ2

m1 , (3.36)so that the general solution is represented as
um2(xm) = −κm2φm(xm) + ϕm2(xm) . (3.37)As xm → −∞ we have to 
ompare

um2( xm) = −1

8
(d1m + 2d3m) − 1

4
d2mxm − 1

4
d1mx

2
m

+e2xm

( 1

64
[(−7 − 72ζ(3))d1m − 8d3m + 256(κm2 − κ2

m1) + (30 + 4π2)d2m]

+
3

16
(5d1m − 2d2m + 8d3m)xm +

3

8
(2d2m − d1m)x2

m +
1

2
d1mx

3
m

)

+O(e4xm)with the outer solution. Mat
hing the 
onstant and the linear terms in xm yields
−1

4
d3m =

1

2
A1 −

1

8
A2

1 +
1

3
C1A1 +

23

14
C2

1 +D1 , (3.38)
−1

4
d2m = 21/6C1 . (3.39)There is no quadrati
 term in the outer solution (A.10), hen
e d1m = 0. Thereare further mat
hing 
onditions but they do not simplify the problem stru
turallyat this point and will be enfor
ed later, so that d2m, d3m and κm2 remain to bedetermined via exponential mat
hing. As xm → ∞, the expansion to this order 
anbe written as

u
(m)
m2 =

1

2
d3m − 1

4
d2mxm +

1

8
d3me

2xm +
e−2xm

32

(

− 56d3m − 15d2m (3.40)
− 2d2mπ

2 + 128(κ2
m1 + κm2) + (48d3m − 12d2m)xm − 24d2mx

2
m

)

+O(e−4xm) .18



Internal layer near x = 0 As for the O(δ1/3) problem, at O(δ2/3) we have
L(u02, x0) = f02(x0) , (3.41a)
u02(0) = 0, u′′02(0) = 0 and u′′′′02(0) = 0 , (3.41b)with

f02(x0) := d10x
2
0 + d20x0 + d30 . (3.42)The general solution is

u02(x0) = ϕ02(x0) + g2 ψ0(x0) , (3.43)where the homogeneous 
omponent is as before and the inhomogeneous part isobtained by setting α = 0, j = 2 and γ02 = 0 in (3.21), so that ϕ02(0) = 0 and ϕ02grows algebrai
ally as x0 → −∞. Symmetry requires ϕ′′
02(0) = 0, ϕ′′′′

02(0) = 0, whi
himplies d10 = 0 and d30 = 0. The remaining free parameters to be mat
hed are d20and g2. In order to exponentially mat
h to um to O(δ2/3) and obtain u(e)
m2, we againhave to expand u02(x0) as x0 → −∞, giving

u02( x0) = − µ̂

16
e−2x0 − 1

4
d20x0 −

3

8
µ̂ (3.44)

+
1

32

(

(15 + 2π2 + 2 ln(2))d20 + 26g2 + (48µ̂− 12d20)x0 + 24d20x
2
0

)

e2x0

+
1

48

(

− (89 + 6π2)d20 − 36µ̂+ (84d20 − 144µ̂)x0 − 72d20x
2
0

)

e4x0 +O(e6x0) ,and re-express in terms of xm, where we have used the abbreviation µ̂ = d20 ln(2)+g2.3.1.4 O(δ)Internal layer near κm The problem to be solved at order O(δ) is
L(um3, xm) = fm3(xm) , (3.45a)

um3(0) = −u′m2(0)κm1 − u′′m0(0)κm1κm2 − u′m0(0)κm3

− 1

6
u′′′m0(0)κ3

m1 − u′m1(0)κm2 −
1

2
u′′m1(0)κ2

m2 , (3.45b)with
fm3(xm) := 2

(

(u
(e)
m1)

3 + 6 um0 u
(e)
m1 u

(e)
m2

) (3.46)
−23/2

[

1

2
dilog(e2xm + 1) +

1

2
(1 + k1m)x2

m + (ln(2) + k2m)xm + k3m

]

.Again we 
hoose the inhomogeneous solution so that it grows only algebrai
ally as
xm → −∞ and vanishes at xm = 0 and so that we obtain ϕm3(xm) by using formula(3.21) with α = m, j = 3 and γm3 = 0. The solution is

um3(xm) = −um3(0)φm(xm) + ϕm3(xm) , (3.47)19



where k1m, k2m, k3m and κm3 remain to be determined via mat
hing. In order toex
lude exponential growth as xm → −∞ we obtain the relation
k2m =

√
2

48 ln(2)

(

κm1

(

−(12 + 9π2)d2m + 12d3m − 24κm2

)

+
√

2(24k3m − 12 ln(2)2 + k1mπ
2)
)

, (3.48)so that the expansion obtained as xm → −∞ is
um3(xm) =

1

4
√

2
(1 + k1m + 4k3m) +

1√
2
(ln(2) + k2m)xm (3.49)

+(k1m + 1)

√
2

4
x2

m +O(e2xm) .Comparing this with the outer solution toO(δ), equation (A.10), yields the mat
hing
onditions
1

4
√

2
(1 + k1m + 4k3m) =

(

−1

4
A1 +

1

3
C1

)

A2 +

(

7

12
C2

1 +
1

3
D1

)

A1 (3.50)
+

1

2
A3 −

59

216
C1A

2
1 −

1

12
21/3C1 +K1 −

23

7
C1D1 +

1

16
A3

1 +
127

28
C3

1for the 
onstant terms,
1√
2
(ln(2) + k2m) = (D1 −

23

7
C2

1)2
1/6 and (k1m + 1)

√
2

4
= 2−2/3C1 (3.51)for the linear and the quadrati
 terms, respe
tively.Expanding the solution as xm → ∞ we �nd

um3( xm) =
1

192

(

κm1d2m(9π2 + 24) − 48κm1d3m + 2
√

2π2(1 − k1m) − 48
√

2k3m

)

e2xm

+
1

96

(

κm1d2m(27π2 + 72) +
√

2(k1m(12 − 6π2) − 96k3m − 12 + 2π2)
)

+
1√
2
(ln(2) + k2m)xm + (k1m + 1)

√
2

4
x2

m +O(e−2xm) , (3.52)and we will exponentially mat
h it to the solution near x = 0, whi
h we 
onstru
tnext.Internal layer near x = 0 The general solution to the O(δ) problem
L(u03, x0) = f03(x0) , (3.53a)
u03(0) = 0, u′′03(0) = 0 and u′′′′03(0) = 0 , (3.53b)with

f03(x0) := −21/2
[

dilog(e2x0 + 1) − dilog(2) + 2µ2x0 + (1 + k10)x
2
0

] (3.54)20



and the abbreviation µ2 = ln(2) + k20 reads
u03(x0) = ϕ03(x0) + g3 ψ0(x0) , (3.55)where we have required that u03(0) = 0 and u′′03(0) = 0. If we also enfor
e u′′′′03(0) = 0then k10 = 0. Again we take an inhomogeneous solution ϕ03(x0) whi
h satis�es theabove 
onditions, so that the general solution is obtained with

µ1 =
√

2(ln(2)2+2k20 ln(2))−g3 and ω =

∫ 1

0

1

z
ln

(

z2 + 1

2z

)2

− ln(2z)2

z
dz ≈ 0.3094 ,

u03 =
12µ1 − π2

√
2

192
e−2x0 +

1

96
(36µ1 +

√
2(12 − π2)) +

µ2√
2
x0 +

√
2

4
x2

0 (3.56)
+

[

1

192

(

156µ1 +
√

2[(19 − 24k20)π
2 − 15 − 288ω − 180µ2]

)

+
1

16

(

−24µ1 +
√

2(12µ2 − 11)
)

x0 +

√
2

8
(3 − 12µ2)x

2
0 −

1√
2
x3

0

]

e2x0 +O(e4x0) .For exponentially mat
hing to um this again has to be re-expressed in xm and 
om-bined with the 
orresponding expressions for u00, u01 and u02 . This will be done inthe next se
tion.3.2 Exponential mat
hingNow we have to mat
h the rest of the solution um(xm) to the rest of the solution
u0(x0). This requires mat
hing the exponential terms in addition to the algebrai
terms, similarly to the pro
edure for the CCH equation, i.e. mat
hing of the solutiondes
ribing the internal layer near x = κm to the solution near x = 0 requiresexpressing the variable x0 in terms of xm (or vi
e versa). Re
all again that x0 =
xm + κ̄m/

√
2 and that κ̄m < 0; the e2x0 terms in the u0 expansion will produ
e

e2xm terms with a fa
tor e√2κ̄m (and analogously for e−2x0 terms) and so we will �ndtheir 
orresponding mat
hing partner at a di�erent order in δ in the um expansion,as we have shown for the CCH equation. The somewhat subtle di�eren
e here isthat additionally we need to determine the relationship between e√2κ̄m and δ and wehave in prin
iple several 
hoi
es, only one of whi
h allows a 
onsistent mat
hing ofboth expansions. One 
an observe that the 
hoi
e e√2κ̄m = ρ δ1/3 , where ρ is some
onstant qui
kly leads to a 
ontradi
tion. However, setting
e
√

2κ̄m = ρ δ2/3 (3.57)will lead to a O(δ2/3) shift of terms, so that e.g.
e2x0 will shift to a term δ2/3 e2xm , (3.58)

e−2x0 will end up as a term δ−2/3 e−2xm (3.59)21



and so forth, so that e.g. a term e2x0 in the leading order part of the u0 expansionwill have to mat
h a e2xm term in the O(δ2/3) part of the um expansion, or a e−2x0term in the O(δ) part of the u0 expansion will have to mat
h a e−2xm term in the
O(δ1/3) part of the um expansion. This will also produ
e terms that will have nopartner term in the transformed expansion. Their 
oe�
ients must then be set tozero. If we now sum the expansions for u01(x0), u02(x0) and u03(x0) and re-expandusing (3.57), we obtain
u0(xm) = −1 − 1

16

(

d20 ln(2) + g2

)

e−2xmρ+
1

192

(

12µ1 −
√

2π2

)

e−2xm ρ δ1/3

+
1

24

(

d20(3 ln(ρ) − 9 ln(2) − 2 ln(δ)) − 9g2 − 6d20xm + 48e2xm/ρ

)

δ2/3

+

[

1

96

(

36µ1 +
√

2[12 + (16 ln(δ) − 24 ln(ρ))µ2 + 6(ln(ρ) − 2

3
ln(δ))2 − π2]

)

+

√
2

12
(2 ln(δ) + 6µ2 − 3 ln(ρ))xm +

√
2

4
x2

m

]

δ , (3.60)whi
h has to mat
h um1(xm), um2(xm) and um3(xm) to ea
h order, respe
tively. Fromthis we obtain further 
onditions for the parameters in addition to those we havealready found. Solving the 
omplete system of equations then yields the solutionsfor the width of the hump
∆ =

√
2

6
ln

(

β

W (β1/3)3

)

, (3.61)with β = 211/(27δ2), where W is the Lambert W fun
tion (so W (x) is the solutionof x = W exp(W )). The expressions for the remaining mat
hing 
onstants C1, D1,et
. are omitted. The �rst 
orre
tion in (3.2) has the 
oe�
ient
A1 = −3 21/6 . (3.62)Note that in the transformed expansions as well as in the expressions for the pa-rameters also 
ontain so-
alled logarithmi
 swit
h-ba
k terms.4 Numeri
al method for the �fth-order phase spa
eFor the numeri
al stationary solutions of the HCCH equation (3.1) we apply thesame s
aling for u that we used for the CCH equation to obtain equilibrium pointsat ±1.

(1 − c2) =
2

δ
√
A

(cxx + c− Ac3)xxx , lim
x→±∞

c = ∓1 , (4.1)again assuming that derivatives vanish in the far �eld. Redu
tion to a �rst ordersystem U ′ = F (U), with F : R5 → R
5, gives a �ve-dimensional phase spa
e, where22



the �rst four 
omponents of Fi(U) are equal to Ui+1 and the �fth is
F5(U) = 6A(U2)

3 + 18AU1U2U3 + (3A(U1)
2 − 1)U4 + δ

√
A(1 − (U1)

2)/2 . (4.2)The equilibrium points are U± = ±(1, 0, 0, 0, 0)T and at these points the 
hara
ter-isti
 polynomials are
P±(λ) = λ5 + λ3(1 − 3A) ± δ

√
A . (4.3)For small δ the manifoldsW u(U+) andW s(U−) are both two-dimensional, resultingin a 
odimension two event when sear
hing for hetero
lini
 solutions 
onne
tingthe two hyperboli
 �xed points U+ and U−. The HCCH equation exhibits thesame reversibility properties as its lower order version. This reversibility is againgiven by the transformation (2.8) from the CCH se
tion, whi
h also here ful�lls

RF (U) = −F (RU). The 
odimension redu
es by one and again we deal witha 
odimension one problem and two parameters, hen
e we may expe
t solutionbran
hes in the (A, δ) parameter plane. Se
tion 2.1 showed that a 
ondition for theexisten
e of hetero
lini
 orbits is a value where the distan
e fun
tion (2.9) rea
heszero and the same 
ondition holds for the HCCH equation. The phase spa
e issket
hed in �gure 6, indi
ating the linearizations of the interse
ting manifolds inthe equilibrium points. For this problem a shooting method will be very slow and

Figure 6: HCCH: Hetero
lini
 orbits between the equilibrium points are sought in a5-D phase spa
e that is indi
ated here in 3D. The manifolds W u(U+) and W s(U−)are two-dimensional whi
h is suggested by the two planes in the pi
ture.may lead to bad a

ura
y sin
e the additional parameter, say ϕ ∈ [0, 2π), an anglede�ning points on a 
ir
le 
lose to the equilibrium point on the linearization ofthe two-dimensional manifold, requires a very �ne resolution to obtain hetero
lini
solutions.4.1 Boundary value problem formulationThere exist several possibilities to set up equations for �nding hetero
lini
 
onne
-tions in a boundary value problem framework. Generally one 
ru
ial stumbling blo
k23



is the 
hoi
e of a suitable phase 
ondition that pi
ks a 
ertain solution out of thein�nitely many available ones due to phase shifts [2, 8℄. We 
hoose to in
orporateone phase 
ondition proposed by Beyn [2℄, for whi
h we use an approximation of thesolution, V , typi
ally given by a previous solution for slightly di�erent parametervalues. Equation (4.1) 
ontains two parameters, A, δ, and in addition the trun
ateddomain length L. As dis
ussed by Doedel et al. [5℄ one of the free parameters 
an berepla
ed by L to �nd a 
onne
tion. We repla
e δ, solve and 
ontinue after extrapo-lating to an approximate value of A for a nearby 
hosen and �xed δ. Res
aling thedomain to [0, 1] yields, with the phase 
ondition variable Uph introdu
ed by Beyn[2℄ the �rst order system
U ′

i = LUi+1, i = 1, 2, 3, 4 (4.4a)
U ′

5 = L

(

6A(U2)
3 + 18AU1U2U3 + (3A(U1)

2 − 1)U4 + δ
√
A

(1 − (U1)
2)

2

) (4.4b)
U ′

ph = L(V ′)TU (4.4
)
L′ = 0, A′ = 0 . (4.4d)Hen
e, we obtain one equation for the phase 
ondition and two for the parametersin addition to the �ve given by the original ODE, i.e., we have an overall system ofeight equations whi
h have to be supplemented by the same number of boundary
onditions. At the edges of the domain we utilize proje
ted boundary 
onditions [2, 4℄,whi
h make use of eigenve
tors in the equilibrium points and 
an be in
orporated by
omputing V0, the matrix whose 
olumns are 
omposed by the eigenve
tors whi
h
orrespond to the eigenvalues at the upper equilibrium point U+ with negative realpart, and by forming the 
ounterpart V1 
ontaining those eigenve
tors given by theunstable dire
tions at the lower stationary point U−. Hen
e, we 
onsider the eightboundary 
onditions
Uph(0) = 0, Uph(1) = 0, V T

0 (U(0) − U+) = 0, V T
1 (U(1) − U−) = 0 . (4.5)For initial estimates we 
an use solutions obtained from the asymptoti
 analysis ofse
tion 3.1, i.e. the leading order solution tanh pro�les

V (x) = − tanh(x−K) + tanh(x) − tanh(x+K) ,for the het1 solution with guessed root-distan
e K.The boundary value solvers we use are based on mono-impli
it Runge-Kutta for-mulae [14, 23℄. As for the CCH problem e�
ien
y 
an be improved by making useof the theory from se
tion 2.1 whi
h holds analogously for the HCCH equation toobtain a boundary 
ondition at the �xed point of a point-symmetri
 solution. We
an use half of the previous domain length and phase 
onditions be
ome redundant,be
ause the phase is already �xed. We repla
e the proje
ted boundary 
onditionsby
U1(0) = 1, U2(0)2 + U3(0)2 = 0, U4(0)2 + U5(0)2 = 0so that together with the self-reversibility 
ondition on the right interval end U1(1) =

U3(1) = U5(1) = 0 we have six 
onditions whi
h mat
h the �ve equations together24



with the free parameter A. Final solutions are obtained by re�e
ting the solutionand its derivatives around zero and 
hanging the signs of the �rst, third and �fth
omponent. Examples of bran
hes of di�erent solutions are shown in �gure 7.
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Figure 7: (
√
A, δ)−plane with 
urves for the �rst three hetero
lini
 
onne
tionbran
hes for the HCCH equation. The dashed line in the parameter plane indi-
ates the position where the positive roots of the 
hara
teristi
 polynomial in U+have nonzero imaginary parts. Below and to the right we see �ve phase spa
e di-agrams (tuples (U1, U2), (U1, U3), . . .) for sele
ted solutions pointed out with arrowsmarking the 
orresponding parameters. The �rst pair (U1, U2) is plotted as boldsolid 
urve.4.2 Solutions and 
omparison to analyti
al resultsWith the boundary value formulation we are able to 
ompute new HCCH stationarysolutions. In �gure 8 we see a parti
ular het2 solution and the pro�le of the growingstru
ture.
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u
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x

h
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Figure 8: het2 solution for δ = 0.01 and A = 0.443 and the 
orresponding pro�leobtained by integration.Up to 3D one 
an ni
ely visualize hetero
lini
 orbits in the 
orresponding phase25



spa
e, while when the dimension is four or higher and the derivatives vanish in thefar �eld one 
an still plot the 2D phase spa
es (U1, U2), (U1, U3), . . . and demand
onne
tions between the equilibrium tuples (±
√
A, 0) as a ne
essary 
ondition forhetero
lini
 orbits in the higher order spa
e. Several su
h proje
tions onto 2D areshown in �gure 7, where we also see a very rapidly os
illating hetero
lini
 
urve inthe bottom left plot whi
h was found by a shooting approa
h with a minimizationpro
edure that used the two parameters and an angle as free parameters and thedistan
e fun
tion (2.9) as obje
tive fun
tion, depending on those parameters. Itindi
ates that as shown for the CCH equation we 
an in fa
t �nd many more hetkbran
hes than those presented for k = 0, 1, 2, all emerging from (A, δ) = (1, 0),whi
h 
orresponds to the Cahn-Hilliard equation.In �gure 9 we see the 
hange in appearan
e of solutions on the het2 bran
h as

δ is in
reased. The shape varies from a solution with two pronoun
ed humps toa monotone one, similar to the het0 solution, although asso
iated with di�erent,smaller, values of A. This is 
ru
ial if one wants to 
ompute solutions for bigger δwith a boundary value solver. It easily happens that the solver swit
hes betweensolution bran
hes, however, this 
an be prevented by starting 
ontinuation in aparameter regime where the high-slope parts of the solutions are non-monotone, and
ontinuing with small steps. A 
hara
teristi
 of the HCCH solutions is the overshoot
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Figure 9: Stru
tural 
hange of the s
aled het2 solution as δ is in
reased.from the equilibrium value before the solutions go down. This is not observed forthe CCH equation, where the shape is similar at these regions to hyperboli
 tangentfun
tions.In light of the expansion (3.2) we try to estimate the O(δ1/3) terms A1 for thedi�erent hetero
lini
 
onne
tions in a range of very small δ. As we see in �gure 10on the left, the numeri
ally obtained values for A behave like A = 1−21/6δ1/3 in 
aseof the het0 solutions, so that A1 = −21/6, whi
h is 
onsistent with the result in Savinaet al. [22℄. The numeri
al result for het1 is in line with the analyti
al value (3.62)and sin
e for het2 we see the agreement A1 ≈ −5 21/6, we propose for higher ordertraje
tories that for hetk we have the general approximation A1 ≈ −(2k + 1) 21/6,whi
h is reminis
ent of the CCH expression (2.45). Hen
e this formula is used in�gure 10 to plot the analyti
al values.We measure the distan
e between the �rst and se
ond root for the het1 and the
het2 solutions as seen in �gure 10 on the right. We 
ompare this to the analyti
alexpression (3.61) for the one-hump solutions in the same �gure and see that for26



small δ the agreement is good. For both het1 and het2 solutions the distan
e is seento in
rease logarithmi
ally as δ de
reases.
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Figure 10: Left �gure: Logarithmi
 version of the (
√
A, δ) plot for very small δ.Drawn through 
urves giving the analyti
al values, dash-dotted lines those 
omputedwith the BVP solver. On the right we see the distan
es between the �rst two rootsof the het1, het2 solutions, numeri
ally and for het1 via the analyti
al expression(3.61) (solid line).5 Con
lusionWe have demonstrated that a sixth-order generalization of the 
onve
tive Cahn-Hilliard equation admits multiple stationary solutions 
onne
ting 
onstant values.As for the fourth-order 
onve
tive Cahn-Hilliard solution, these in
lude a simple basesolution, whi
h is monotone for the CCH and �almost� monotone for the HCCHequation. More 
omplex solutions, 
ontaining multiple humps, are also possiblefor ea
h value of the for
ing parameter δ, given parti
ular values of the integration
onstant A(δ). These non-monotone stationary solutions 
onstitute an essential partof the solution stru
ture for this higher-order Cahn-Hilliard type equation. We havedemonstrated this via a numeri
al investigation of the phase spa
e in whi
h we areable to follow solution bran
hes. For the simplest of the multi-humped solutions,the het1 bran
h, 
areful use of mat
hed asymptoti
s that a

ounts for exponentiallysmall terms allows us to �nd a solution whi
h yields both the length s
ale for thesolution (the �hump length�) and the parameter value A(δ) at whi
h it o

urs, in thelimit of small δ. Extension of the analysis to higher bran
hes appears feasible. Ournumeri
al eviden
e suggests that similarly simple asymptoti
 expressions hold forthese bran
hes, for both the CCH and HCCH equations. Physi
ally, these solutionsmay represent situations where the edge energy regularization represented in (1.4)fails to produ
e a smooth transition between fa
ets.Various issues, su
h as the stability of these solutions are presently being 
onsideredin the light of appli
ations of the HCCH equation as a model for the morphology anddynami
s of quantum dots. In parti
ular, how do adja
ent internal layers derivedfrom these solutions intera
t, and what is their e�e
t on the 
oarsening behavior27



in large spatial domains? Savina et al. [22℄ have begun an investigation of thesequestions by numeri
al simulation of (1.4); it is likely that asymptoti
s 
an yieldfurther insights.Physi
ally, further interesting questions relate to the extension of the HCCH modelto ri
her models for the energeti
s of fa
etted surfa
es, and analyzing the three-dimensional extension of the model.A
knowledgmentsThis work was performed as part of Proje
t C-10 of the DFG resear
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knowledges the support from the HeisenbergFellowship of the DFG (grant MU 1626/3).A Outer ProblemFor the solution to the outer problem (3.6), (3.7) it is easy to observe that to leadingorder in δ the solution of
Q (Y0)ξξξ = −

√
2
(

Y 2
0 − 1

) with lim
ξ→−∞

Y0(ξ) = 1 (A.1)is
Y0(ξ) = 1 . (A.2)To O(δ1/3) the general solution to the problem

Y1ξξξ
−
√

2 Y1 = −A1√
2

with lim
ξ→−∞

Y1(ξ) =
A1

2
(A.3)is

Y1(ξ) =
A1

2
+ C1e

21/6ξ + e−ξ/25/6
[

C2 cos
(√

3 ξ/25/6
)

+ C3 sin
(√

3 ξ/25/6
)]

, (A.4)with C1, C2 and C3 being 
onstants of integration. The far �eld 
ondition requiresthat Y1 remains bounded as ξ → −∞. Hen
e, C2 = C3 = 0 and
Y1(ξ) =

A1

2
+ C1e

21/6ξ (A.5)Using this and the far �eld 
onditions, the solution to the O(δ2/3) problem
Y2ξξξ

−
√

2 Y2 = −A2√
2
− 1

2

(

3
(

Y 2
1

)

ξξξ
−

√
2Y 2

1

) with lim
ξ→−∞

Y2(ξ) =
A2

2
− A2

1

8(A.6)28



is
Y2(ξ) =

A2

2
− A2

1

8
+D1e

21/6ξ +
A1C1

3
e2

1/6ξ
(

1 − 21/6ξ
)

− 23

14
C2

1e
27/6ξ (A.7)and to the O(δ) problem

Y3ξξξ
−
√

2Y3 = −A2√
2

+
Y1ξξξξ

4
+
√

2Y1Y2 −
1

2

(

Y 3
1 + 6 Y1Y2

)

ξξξwith lim
ξ→−∞

Y3(ξ) =
A3

2
− A1A2

4
+
A3

1

16
(A.8)it is

Y3(ξ) =
A3

2
− A1A2

4
+
A3

1

16
(A.9)

+

[

K1 −
21/3

12
C1 +

1

3
(A1D1 + A2C1) −

59

216
C1A

2
1

+

(√
2

12
C1 −

21/6

3
(A1D1 + A2C1) +

17

72
21/6A2

1C1

)

ξ +
21/3

18
A2

1C1 ξ
2

]

e2
1/6ξ

+

[

− 23

7
C1D1 +

(

7

12
+

23

21
21/6ξ

)

A1C
2
1

]

e2
7/6ξ +

127

28
C3

1e
21/63ξ ,with another integration 
onstant K1. Finally, we obtain the asymptoti
 represen-tation in terms of xm:

Y (xm) = 1 +

[

C1 +
1

2
A1

]

δ1/3 +

[

C1 21/6 xm − 1

8
A2

1 +
1

3
C1A1 +D1 −

23

14
C2

1 +
1

2
A2

]

δ2/3

+

[

−23

7
C2

1 21/6xm +D1 21/6xm +
1

2
C1 21/3x2

m +

(

−1

4
A1 +

1

3
C1

)

A2

+

(

7

12
C2

1 +
1

3
D1

)

A1 +
1

2
A3 −

59

216
C1A

2
1 −

1

12
21/3C1

+K1 −
23

7
C1D1 +

1

16
A3

1 +
127

28
C3

1

]

δ . (A.10)
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