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AbstratNew types of stationary solutions of a one-dimensional driven sixth-orderCahn-Hilliard type equation that arises as a model for epitaxially growingnano-strutures suh as quantum dots, are derived by an extension of themethod of mathed asymptoti expansions that retains exponentially smallterms. This method yields analytial expressions for far-�eld behavior as wellas the widths of the humps of these spatially non-monotone solutions in thelimit of small driving fore strength whih is the deposition rate in ase ofepitaxial growth. These solutions extend the family of the monotone kink andantikink solutions. The hump spaing is related to solutions of the Lambert
W funtion.Using phase spae analysis for the orresponding �fth-order dynamial sys-tem, we use a numerial tehnique that enables the e�ient and auratetraking of the solution branhes, where the asymptoti solutions are used asinitial input.Additionally, our approah is �rst demonstrated for the related but sim-pler driven fourth-order Cahn-Hilliard equation, also known as the onvetiveCahn-Hilliard equation.1 IntrodutionA paradigm for phase separating systems suh as binary alloys is the Cahn-Hilliardequation for the phase fration u

ut +
(

Q(u) + ε2uxx

)

xx
= 0 (1.1)where Q(u) is the derivative of the double-well potential F , typially

Q(u) = F ′(u) = u− u3. (1.2)The long-time dynamis are haraterized by the logarithmially slow oarseningproess of phases, orresponding to loal minima of the potential, separated byinterfaes of width ε. This proess is well desribed by the motion of equidistantlyspaed smoothed shok solutions or kinks (�positive kinks�) and antikinks (�negativekinks�) whih onnet the loal minimum of F(u) at u = −1 to that at u = 1 andvie versa.In reent years, an extension of this model has been studied for the ase whenthe phase separating system is driven by an external �eld [16, 27℄. In one spaedimension it an be written as
ut − νuux +

(

Q(u) + ε2uxx

)

xx
= 0, (1.3)1



where ν denotes the strength of the external �eld. This equation, the onvetiveCahn-Hilliard (CCH) equation, also arises as a model for the evolution of the mor-phology of steps on rystal surfaes [21℄, and the growth of thermodynamially un-stable rystal surfaes into a melt with kineti underooling and strongly anisotropisurfae tension [9, 11, 17℄.The dynamis of this model as ν → 0 are haraterized by oarsening, as is typialfor the Cahn-Hilliard equation (ν = 0) [7, 26℄. If ν → ∞ using the transformation
u 7→ u/ν in (1.3) one obtains the Kuramoto-Sivashinski equation, whih is a well-known model for spatio-temporal haoti dynamis (see e.g. [10℄ and referenestherein). Reently, Eden and Kalantarov [6℄ also established the existene of a�nite-dimensional inertial manifold for the CCH equation, viewed as an in�nite-dimensional dynamial system.A related higher-order evolution equation arises in the ontext of epitaxially grow-ing thin �lms (for a review on self-ordered nano-strutures on rystal surfaes seeShhukin and Bimberg [24℄). Here, the formation of quantum dots and their faetinghas been desribed by the sixth-order equation

ut − νuux −
(

Q(u) + ε2uxx

)

xxxx
= 0, (1.4)where u denotes the surfae slope, ν is proportional to deposition rate [22℄ and

Q(u) is given with (1.2), it is assumed to have this form from now on throughoutthe paper. The high order derivatives are a result of the additional regularizationenergy whih is required to form an edge between two plane surfaes with di�erentorientations. This implies that the rystal surfae tension also depends on urvature,whih beomes very high at edges as the parameter ε goes to zero. In analogy tothe Cahn-Hilliard equation, here the phases are the orientations of the faets. Thishigher-order onvetiveCahn-Hilliard (HCCH) equation shares many properties withthe CCH equation. In both ases the dynamis are desribed by onserved orderparameters if ν = 0. They also share harateristi oarsening dynamis as ν → 0and haoti dynamis as ν gets large. To understand the ompliated struture of thesolutions it is instrutive to study �rst the stationary solutions and their stabilityas it has been done for the CCH equation [16, 28℄. For small ν the stationarysolutions for both equations have been haraterized by the monotone kink andantikink solutions [16, 22℄. Reently new spatially non-monotone solutions werefound for the lower order equation [28℄. In this study we establish that the HCCHequation also possesses suh non-monotone solutions. We show this by using phase-spae methods for the orresponding �fth-order boundary value problem. We usethe expression �simple� or �monotone� for a solution that onnets the maximal valueof u(x) to the minimal value without any humps on the way down, although theseextrema exist and lead to non-monotoniity even for simple (anti-)kink solutions ofthe HCCH equation.Sine the treatment of this high-order problem is not straightforward, one partof this study is onerned with the development of an approah that auratelyloates the heterolini onnetions in the �ve-dimensional phase spae. We �nd that2



these stationary solutions develop osillations whose width and amplitude inreaseas ν → 0.In the seond part of this study we derive an analyti expression for the width andamplitude within the asymptoti regime of small external �eld strength. For theCCH equation we �nd that the width has a logarithmi dependeny on the strengthof the external �eld, while for the HCCH equation our analysis yields a dependenyin terms of the LambertW funtion. In order to arrive at these expressions we solvethe �fth-order equation by a ombination of the method of mathed asymptotiexpansions and exponential asymptotis. We �rst demonstrate our approah for thethird-order boundary value problem arising from the CCH equation. Our approahgeneralizes the work by Lange [15℄ to higher-order singularly perturbed nonlinearboundary-value problems, where standard appliation of mathed asymptotis isnot able to loate the position of interior layers that delimit the osillations of thenon-monotone solutions.Reyna and Ward [19℄ previously developed an approah to resolve the internal layerstruture of the solutions to the boundary-value problem for the related Cahn-Hilliard and visous Cahn-Hilliard equations. The approah is based on a methoddue to Ward [25℄ who uses a �near� solvability ondition for the orresponding lin-earized problem in his asymptoti analysis, and who was inspired by an earlier vari-ational method [13℄ and work by O'Malley [18℄ and Rosenblat et al.[20℄, who investi-gated the problem of spurious solutions to singular perturbation problems of seond-order nonlinear boundary-value problems [3℄. Moreover, for the related Kuramoto-Sivashinsky equation, a multiple-sales analysis of the orresponding third-ordernonlinear boundary-value problem by Adams et al. [1℄ shows that the derivation ofmonotone and osillating traveling-wave solutions involve exponentially small terms;their method is based on an analysis of the Stokes phenomenon of the orrespondingproblem in the omplex plane (see Howls et al. [12℄ for an introdution).In what follows we begin with the phase spae analysis for the CCH equation insetion 2, followed by the asymptoti treatment for ν ≪ 1. The asymptoti ideasused for the CCH equation are then applied to the HCCH equation in setion 3.The solutions obtained there are useful to serve as initial input for the numerialinvestigations of the branhes of non-monotone solutions in setion 4. In this part wedevelop our numerial approah and then use it to identify new stationary solutionsof the HCCH equation, these agree with the asymptoti theory. Finally we shortlysum the results up together with onluding remarks in the last setion 5.2 Stationary solutions of the onvetive Cahn-HilliardequationThe high-order term in the CCH equation represents the regularization of the inter-nal layers of the solutions. For most of our investigations we onsider the problem inthe saling of the internal layers, or inner saling, where the x-oordinate is strethed3



about the loation x = x̄ of a layer aording to
x∗ =

x− x̄

ε
. (2.1)In this saling the CCH equation beomes (after dropping the �∗�)

ε2ut −
δ

2
(u2)x + (Q(u) + uxx)xx = 0, (2.2)where δ = εν. The stationary problem obtained by setting ut to zero an be inte-grated one, requiring that the solutions approah the onstants ±√

A as x→ ∓∞,where A is a onstant of integration. That is, we onsider the boundary valueproblem
δ

2

(

u2 −A
)

= (Q(u) + uxx)x (2.3)together with the far-�eld onditions
lim

x→±∞
u = ∓

√
A (2.4)and vanishing derivatives in the same spatial limit. We refer to solutions of thissystem as antikinks. Monotone antikinks are known analytially [16℄, while reently,non-monotone onnetions were omputed numerially by Zaks et al. [28℄. We nowbrie�y disuss the numerial approah to obtain these solutions. Here we onentrateon the regime where 0 < δ ≪ 1 in order to ompare with the asymptoti solutionsderived later on. For a bifuration analysis for larger δ we refer to [28℄.2.1 Numerial solutionsFor the numerial solutions we will work with a resaled version, where we set

u =
√
Ac so that the equilibrium points do not depend on A, and for Q(u) given by(1.2), (2.3) and (2.4) beome

(1 − c2) = − 2

δ
√
A

(cxx + c−Ac3)x , lim
x→±∞

c = ∓1. (2.5)For this problem we �nd it most onvenient to present a shooting method whihenables us to trak solution branhes in the (A, δ) parameter plane. We transform(2.5) to a �rst order system U ′ = F (U), where F : R3 → R
3 is the funtion

F1(U) = U2, F2(U) = U3, F3(U) = (3A(U1)
2 − 1)U2 +

δ
√
A

2
((U1)

2 − 1) . (2.6)We work in a three dimensional phase spae and denote either vetors or wholetrajetories therein with apital U 's. We use the same notation for two di�erentobjets, beause it will be lear from the ontext what is meant. Subsripts indiatethe omponents. 4



The harateristi polynomials at the equilibrium points U± = (±1, 0, 0)T are
P±(λ) =

∣

∣

∣

∣

dF

dU
(U±) − λI

∣

∣

∣

∣

= λ3 + λ(1 − 3A) ∓ δ
√
A . (2.7)The signs of the real parts of the roots determine the dimension of the stable andunstable manifolds W u(U+), W s(U−), W s(U+), W u(U−) of the equilibrium points.The latter two are two-dimensional and so the existene of a kink is generi, while thisis not the ase for the antikinks. The dimensions ofW u(U+) andW s(U−) are one, sothat the heterolini onnetions from the positive to the negative equilibrium arisefrom a odimension two intersetion. This means that with the two parameters Aand δ we an expet only separated solutions when the manifolds interset, but dueto the reversibility properties whih are disussed below the odimension reduesto one and we an expet separated solutions for the free parameter A and a �xed

δ, hene one or several whole branhes in the (A, δ) parameter-plane. An exampleof a non-monotone onnetion is skethed in �gure 1, where the trajetories windthemselves in the phase spae with a solution that exhibits 15 humps.
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Figure 1: CCH: Antikink solutions onneting the hyperboli equilibrium points U+and U− are sought in a 3-D phase spae. The unstable manifold emerging from U+,
W u(U+) is one-dimensional, as is the stable manifold W s(U−). The approximatinglinearized spaes Eu(U+) and Es(U−) are drawn as dash-dotted lines and are usedin the omputations.Reversibility and omputations It is instrutive to note that the solution of(2.5) is translation invariant, c(x) → c(x + L), and that (2.6) forms a reversibledynamial system, hene it is invariant with respet to the transformation x →
−x, U → −U , as has also been noted by Zaks et al. [28℄.Let us onsider generally a k-dimensional phase spae, sine the following disussionwill be also useful in setion 4 where we analyze the HCCH equation with its higherorder system. The linear transformation

R : Rk → R
k, R(Uj) = (−1)jUj , j = 1, . . . , k (2.8)5



ful�lls R2 = Id and RF (U) = −F (RU) for k = 3 and (2.6) and represents thereversibility in the phase spae. It is an involution (or a re�etion) and its set of �xedpoints is the symmetri setion of the reversibility, these are zero at odd omponents,
Ui = 0 for odd i. A solution that rosses suh a point neessarily symmetri under
R, and for eah point U on the onnetion there exists a orresponding transformedpoint RU somewhere on the branh. In fat there is an equivalene here sine oddsolutions neessarily ross a point in the symmetri setion. It holds that c and itseven derivatives have to vanish in the point of symmetry L beause of the ful�lledequations d2m

dx2m c(x + L) = − d2m

dx2m c(−x + L), m = 0, 1, . . . , ⌊k/2⌋, and ontinuity ofthe solution and its derivatives.From the above we onlude that with a shooting method we an stop integratingwhen we �nd a point with zero odd omponents, sine the seond half of the solutionis then given by the set of transformed points under R. Hene we de�ne the followingdistane funtion for a trajetory U over the interval of integration whih helps to�nd these points
dA(U) = min

x

√

∑

i oddUi(x)2 . (2.9)
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AFigure 2: Distane funtion dA de�ned by (2.9) depending on A with �xed δ = 0.05,showing the �rst 14 zeros orresponding to het0 to het13.The minimization of dA(U) over the free parameter, min
A
dA(U), must result in thevalue zero for an anti-symmetri heterolini solution. We an use this ondition forshooting and BVP formulations, for both the CCH and later the HCCH equationin setion 4.For a �xed value of δ and a range of di�erent A we follow the relevant branh of

W u(U+) by shooting from an initial point U+ ± ǫv near U+, where v is a uniteigenvetor orresponding to the positive eigenvalue of dF/dU|U=U+ and ǫ≪ 1. Westop the integration if a ertain threshold value for |U1| is rossed. Figure 2 shows
dA(U) as a funtion of A for δ = 0.05.At this point we have heterolini onnetions for one �xed value of δ whih wedenote by hetk, k = 0, 1, . . . (using the notation in Zaks et al. [28℄). het0 is theanalytial, monotone tanh solution while hetk has k humps on the way down from√
A to −

√
A. We will use the same terminology for the solution struture of thestationary HCCH problem in setion 4. Here, a hetk solution orresponds to the kthzero from the right in �gure 2. We then follow the roots of the distane funtion6
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(δ)Figure 3: Parameter plane, log(δ) for the x- and log(1 − A) for the y-axis, for theCCH equation for the �rst 9 antikink solutions hetk, k = 0, 1 . . . , 8. The graphs onthe right show the shapes of representative het4 solutions, hene those on the �fthline from below, for the approximate (A, δ) tuples (0.8259, 0.0289), (0.9893, 0.0017)and (0.9998, 2.6457 · 10−5).by linearly extrapolating to a new guess for A and use a bisetion algorithm toonverge fast to the next root. Figure 3 shows a portion of the (A, δ) parameter-plane, where we onentrate on very small values of δ, or di�erently interpreted, onthe bifuration of the various spiraling CCH orbits from the heterolini onnetionsof the CH equation in its one dimension smaller phase spae.2.2 Asymptoti internal layer analysisFor the asymptoti analysis we use a slightly di�erent saling than for the numerialtreatment. Here, we let
x∗ =

x− x̄√
2 ε

(2.10)denote the inner variable about a layer loated at x = x̄. For the stationary problemwe then obtain
(u′′ + 2Q(u))

′
= δ

√
2
(

u2 − A
) (2.11)instead of (2.3), where ′ = d/dx∗. For later omparisons of the numerial andasymptoti results we have to keep in mind that the spatial sales di�er by a fatorof √2.We point out that the problem onsidered here shares the internal layer struture ofthe singular perturbation problems disussed by Lange [15℄, and we will make use7



and extend this ansatz for our situation. This will also prove useful to understandthe approah taken for the HCCH problem in setion 3.1, sine there we have toarefully ombine the exponential mathing with the onventional mathing proe-dure when mathing the two regions. For both problems the asymptoti analysisan be onveniently arried out in terms of the small parameter δ.In the following analysis we onsider the simplest ase of a non-monotone solutionwith only one hump, as illustrated in �gure 4; we note that non-monotone solutionswith more osillations an be treated similarly.2.2.1 The 1-hump solution
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0
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outer region

outer region

A1/2

−A1/2

κ
m

κ
p0

Figure 4: Sketh of a 1-hump, or het1 solution showing the general setup for themathing proedure for the CCH and HCCH equations.We observe that the 1-hump solution has three internal layers, one at κm < 0, one at
κp and one at the symmetry point in between. Sine the solution is point symmetriwe an hoose this point to be x = 0 and it will be enough to only disuss the twolayers at κm and zero and then math them to the outer solution.Internal layer near κm For the �rst internal layer at κm we let

xm =
x√
2 ε

− κ̄m√
2

, (2.12)where κ̄m < 0 and set
κm = κ̄m +

√
2

∞
∑

k=1

δkκmk, (2.13)so that to leading order the loation where the solution rosses zero is κ̄m and theadditional terms aount for the orretions due to the higher order problems.With um(xm) = u(ε(κ̄m +
√

2xm)) the governing equation beomes
u′′′m + 2Q′(um) = δ

√
2 (u2

m − A) , where ′ =
d

dxm

. (2.14)For the boundary ondition where um rosses zero we have
um

(

κm − κ̄m√
2

)

= 0 (2.15)8



and the ondition towards −∞ is
lim

xm→−∞
um(xm) =

√
A. (2.16)We now assume um(xm) an be written as the following asymptoti expansion, validnear κm

uα(xα) = uα0(xα) +
∞
∑

k=1

δk uαk(xα) , (2.17)with α = m here. Additionally, we assume A has the asymptoti expansion
A = 1 + δA1 +O(δ2). (2.18)Observe that from (2.16) and (2.18)

lim
xm→−∞

um(xm) = lim
xm→−∞

um0(xm) +

∞
∑

k=1

δk umk(xm) = 1 +
1

2

∞
∑

k=1

δkAk . (2.19)To leading order in δ we get the problem for the Cahn-Hilliard equation
u′′′m0 + 2Q′(um0) = 0 (2.20a)
um0(0) = 0 and lim

xm→−∞
um0(xm) = 1 (2.20b)with the unique solution um0(xm) = − tanh(xm). Next, the problem of order δ is

(

L (um1, xm)
)′

=
√

2
(

tanh2(xm) − 1
) (2.21a)

um1(0) = κm1 and lim
xm→−∞

um1(xm) =
A1

2
, (2.21b)where κm1 and A1 are onstants to be exponentially mathed and the operator L isde�ned by

L(v, z) = v′′ + 2
(

1 − 3 tanh2(z)
)

v , (2.22)and z = xm, v = um1 and ′ = d/dxm. Note that the �rst boundary ondition isobtained by expanding (2.15)
um

( ∞
∑

k=1

δkκmk

)

= um

(

δκm1 + δ2κm2 +O(δ3)
) (2.23)

= um0(0) + δ
(

κm1u
′
m0(0) + um1(0)

)

+O(δ2)so that olleting the terms of order δ gives
um1(0) = −κm1 u

′
m0(0) = κm1 .Next, we integrate (2.21) one to obtain

L (um1, xm) = fm(xm) , (2.24)9



where fm(xm) = −
√

2 tanh(xm)+cm. Taking the limit of this equation to −∞ yields
cm = −

√
2 − 2A1 so that

fm(xm) = −
√

2 (tanh(xm) + 1) − 2A1 . (2.25)The homogeneous solutions of (2.24) are
φm(xm) = −u′m0(xm) = 1 − tanh2(xm) , (2.26)
ψm(xm) =

(
∫ xm

0

dz

φ2
m(z)

)

φm(xm) . (2.27)Also note that limxm→−∞ φm(xm) = 0 and ψm(0) = 0. At this stage it is onvenientto hoose the inhomogeneous solution that remains bounded as xm → −∞ andvanishes at xm = 0 whih is satis�ed by
ϕα(xα) = ψα(xα)

∫ xα

−∞
φα fα dz − φα(xα)

∫ xα

0

ψα fα dz (2.28)with α = m. Hene, the unique solution for (2.21) is the linear ombination
um1(xm) = −κm1φm(xm) + ϕm(xm) . (2.29)Internal layer near x = 0 For the internal layer near the origin we proeed asabove. Here, we streth the independent variable as

x0 =
x√
2ε

(2.30)and onstrut an asymptoti expansion (2.17) near x = 0 with α = 0 for the solutionof the problem
u′′′0 + 2Q′(u0) = δ

√
2 (u2

0 − A) , where ′ =
d

dx0

. (2.31)We note that the point x = 0 is assumed to be the symmetry point of the ompletesolution, hene here we require
u0(0) = 0 and u′′0(0) = 0 . (2.32)In antiipation of the exponential mathing we also require that limx0→−∞ u00(x0) =

−1, so that the solution to the leading order problem is u00(x0) = tanh(x0) For thesolution to O(δ) we �nd
u01(x0) = b0 ψ0(x0) + ϕ0(x0) (2.33)where b0 is a further onstant to be exponentially mathed. Here, the homogeneoussolutions are

φ0(x0) = −u′00(x0) and ψ0(x0) =

(
∫ x0

0

dz

φ2
0(z)

)

φ0(x0) (2.34)and the inhomogeneous solution is de�ned by (2.28), where α = 0 and f0(x0) =
−
√

2 tanh(x0). They are hosen suh that ϕ0(0) = 0 and ϕ′′
0(0) = 0, in fat we have

limx0→±∞ ϕ0(x0) = ±
√

2/4. 10



2.2.2 Exponential mathingExponential mathing requires that all exponentially small and exponentially grow-ing terms have to be aounted for and mathed. This means �rst that we have toexpress the variable x0 in terms of xm (or vie versa). From the de�nitions of thesevariables it follows that
x0 = xm +

κ̄m√
2
. (2.35)In partiular, exponential terms in the solution u0(x0) transform as e2x0 = e

√
2κ̄m e2xmand so forth for higher order exponential terms e2nx0 or terms with di�erent signsin the exponent.Now note that as x0 → −∞ the leading and O(δ) solutions an be written as

u00(x0) = −1 + 2e2x0 −O(e4x0) (2.36)and with µ̄ =
(

3
2
b0 +

√
2
)

u01(x0) = −1

4
µ̄− b0

16
e−2x0 +

(

13

16
b0 +

1√
2

+ µ̄x0

)

e2x0 +O(e4x0) . (2.37)Written in xm variables the solution
u0( xm) = −1 + 2e2xme

√
2κ̄m +O(e2

√
2κ̄m) (2.38)

+δ

(

−1

4
µ̄− b0

16
e−2xme−

√
2κ̄m + (

13

16
b0 +

1√
2

+ µ̄(xm +
κ̄m√
2ε

))e2xme
√

2κ̄m

+O(e2
√

2κ̄m)

)

+O(δ2)has to be exponentially mathed to
um( xm) = −1 + 2e−2xm +O(e−4xm) (2.39)

+δ

(

−(A1 +

√
2

4
) − 1

4
(A1 +

1√
2
)e2xm + (

7

2
A1 +

5

4

√
2 + 4κm1)e

−2xm

−(3A1 +
1√
2
) xme

−2xm +O
(

e−4xm
)

)

+O(δ2)as xm → ∞. While we have already antiipated mathing of the onstants during thederivation of the leading order solutions, the onstant terms of the O(δ) solutionsare �rst to be mathed. Mathing to the exponential terms in (2.39) entails arearranging of terms of di�erent orders of magnitude in the expansion (2.38). Inpartiular, the �rst exponential term to leading order in (2.39) mathes the seondterm of O(δ) in (2.38), the seond and largest exponential term of O(δ) in (2.39)mathes the seond term of the leading order in (2.38), and so forth. Summarizing,we obtain
1

4
(
3

2
b0 +

√
2) = A1 +

√
2

4
, −ρ b0

16
= 2, −ρ

4
(A1 +

1√
2
) = 2 , (2.40)11



where we denote ρ = δ e−
√

2κ̄m . Solving yields
ρ = 4

√
2, A1 = − 3√

2
and b0 = − 8√

2
. (2.41)We observe that we have determined the O(δ) orretion A1. Additionally, we nowknow that δ e−√

2κ̄m = 4
√

2, hene
κ̄m =

ln (δ)√
2

− ln
(

4
√

2
)

√
2

(2.42)and if we reall (2.13) and κm < 0 then the width of the hump is −κm, where
κm =

ln (δ)√
2

− ln
(

4
√

2
)

√
2

+O (δ) . (2.43)Further onstants, suh as κm1 are found by inluding higher exponential terms andexpansions of the higher order problems. Finally we note that making use of thesymmetry of the solution about the point x = 0, the exponential mathing of thesolution near zero to the one near κp proeeds analogously.2.2.3 Comparison of numerial and asymptoti solutionFor the omparison with the asymptoti solution we are interested mainly in the het1solution whih we derived in setion 2.2.1. By numerial ontinuation of the shootingmethod, one obtains N tuples (A(j), δ(j)), j = 1, . . . , N in the parameter plane thatgive a het1-branh when being onneted. We use two vetors of parameters whihwe abbreviate A = (A(j))j=1,...,N and δ = (δ(j))j=1,...,N to on�rm the formulaswe obtained in the previous setion. Further we make use of a distane vetor
K = (K(j))j=1,...,N . K ontains the distanes between the zero rossings of thesolutions, or in ontext of the asymptotis setion (see �gure 4) K(j) ≈ |κm(δ(j))|.To obtain the relation between A and δ and the evolution of the distanes we solvethe least squares problems

min
µ1

‖(1 − µ1δ) −A‖2
2 and min

η1,η2

‖η1 log(δη2) −K‖2
2 ,hene we assume a linear law for the A-values in δ and a general logarithmi law forthe distanes. We obtain

A ≈ 1 − 2.12δ ≈ 1 − 3√
2
δ and K ≈ −0.71 log(0.18δ) (2.44)whih on�rms the results from the analysis (2.41) and (2.43). We see the goodmath in the distane plot in �gure 5.These results motivated us to obtain a general rule for the relation between the twoparameters of the CCH equation for di�erent stationary solutions. The numerially12
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(δ)Figure 5: Distanes between the �rst two roots of the het1 solutions versus log(δ)together with the width predited by the asymptoti formula (2.43).omputed branhes in �gure 3 show that the slopes of the hetk branhes are one whenplotting log(δ) against log(1 − A), so that the relation log(δ) + const = log(1 − A)shows the linear dependene A(k) = 1 + A1(k)δ, where A(k) is the A value forthe hetk solution and A1(k) its linear oe�ient. We see that the magnitude of A1inreases linearly with the order k of the heterolini onnetion, and we obtain ageneral expression for the squared far �eld value for non-monotone hetk solutions,namely
A1(k) = −2k + 1√

2
. (2.45)3 Mathed and exponential asymptotis for the sta-tionary HCCH equationAs for the CCH equation we will perform our analysis of the internal layers in theinner saling (2.10). From the stationary form of (1.4) we obtain the equation

(u′′ + 2Q(u))
′′′

= −δ 23/2
(

u2 − A
)

, (3.1)after integrating one and requiring that for an antikink limx→±∞ u = ∓
√
A andsetting δ = ǫ3ν here. We onsider the het1 (one hump) solution, and again make useof the point symmetry of the problem. Now however, unlike for the CCH equation,the solutions in the outer region are not just onstants. Here, we have to introduean outer layer to the left of the inner layer about κm, see also �gure 4 for the ase ofa 1-hump solution. In the following subsetions we �rst brie�y derive the solution tothis outer problem and math it to the solution to the inner problem near κm. Theremaining degrees of freedom are then used to exponentially math it to a seondinner layer near x = 0.It has been demonstrated in [22℄ for monotone antikink solutions of the HCCHequation, that it is neessary to math terms up to order δ in order to obtain theorretion A1, given the asymptoti expansion of A

A = 1 +

∞
∑

k=1

δk/3Ak . (3.2)13



Here, for the non-monotone antikinks we have to math inner and outer solutionsand then also exponentially math the inner layers. This has to be arried throughiteratively up to three orders of magnitude in order to obtain not only the orretion
A1 but also the expression for the width of the humps.3.1 The 1-hump solution for the HCCH equationWe start by shifting to the inner oordinates that desribe the region near κm, whihis to be mathed to the outer region. Again de�ning xm by (2.12), the governingequation in this inner region is

(

u′′m + 2Q(um)
)′′′

= − 23/2 δ (u2
m −A) where ′ =

d

dxm

. (3.3)For the boundary onditions we again plae κm near the point where um rosseszero, i.e.
um

(

κm − κ̄m√
2

)

= 0 . (3.4)The ondition towards −∞ is not as trivial as for the CCH equation but needs tobe mathed to the outer solution in the region to the left of κm (or to the right of
κp, taking aount of symmetry).For the outer region (see �gure 4), where xm beomes very large, we use the ansatz

ξ = δ1/3 xm and Y (ξ; δ) = um(xm; δ) (3.5)and obtain the outer problem
(

δ2/3 Yξξ + 2Q (Y )
)

ξξξ
= − 23/2

(

Y 2 − A
) (3.6)with the far �eld ondition

lim
ξ→−∞

Y (ξ) =
√
A . (3.7)The region near x = 0, for whih we use the variable x0 from (2.30), is desribed bythe problem

(

u′′0 + 2Q(u0)
)′′′

= − 23/2 δ (u2
0 − A) where ′ =

d

dx0

(3.8)The point x = 0 is the point of symmetry of the solution. Here we require
u0(0) = 0, u′′0(0) = 0 and u′′′′0 (0) = 0 , (3.9)plus additional onditions from the exponential mathing to the internal layer near

κm as x0 → −∞, as we have shown for the CCH equation.14



Here we assume the solutions to these three problems for Y , um and u0 an berepresented by asymptoti expansions
uα(xα; ε) = uα0(xα) +

∞
∑

k=1

δk/3 uαk(xα), where α = 0, m (3.10)valid near κm and x = 0, respetively, and
Y (ξ; δ) = Y0(ξ) +

∞
∑

k=1

δk/3 Yk(ξ) , (3.11)valid in the outer region, where we let
κm = κ̄m +

√
2

∞
∑

k=1

δk/3κmk . (3.12)To obtain solutions to the outer problem is straightforward [22℄, but in order to bemore omprehensible we inlude the results in appendix A. The solutions to theother regions are disussed now.3.1.1 Leading orderTo leading order in δ we get the problem
(u′′m0 + 2Q(um0))

′′′
= 0 (3.13a)

um0(0) = 0 (3.13b)Mathing to the leading order outer solution (A.2) Y0 = 1 we �nd
um0(xm) = − tanh(xm) . (3.14)Its representation towards the internal layer about x = 0 is given by

um0 = −1 + 2e−2xm − 2e−4xm +O(e−6xm) (3.15)as xm → ∞. The leading order problem for this region is
(u′′00 + 2Q(u00))

′′′
= 0 (3.16a)

u00(0) = 0, u′′00(0) = 0 and u′′′′00(0) = 0 (3.16b)and its solution is
u00(x0) = tanh(x0) . (3.17)As x0 → −∞ its behavior is given by

u00 = −1 + 2e2x0 − 2e4x0 +O(e6x0) . (3.18)15



3.1.2 O(δ1/3)Internal layer near x = κ
m

The expansion of (3.3) and (3.4) to order δ1/3 yields
L(um1, xm) = fm1(xm) (3.19a)
um1(0) = −u′m0(0) κm1 = κm1 (3.19b)where L is de�ned by (2.22) as for the CCH equation and

fm1(xm) := c1mx
2
m + c2mxm + c3m . (3.20)The homogenous solutions are therefore (2.26) and (2.27). The onstants c1m, c2m, c3mare obtained by three suessive integrations of the ODE for um1 obtained at thisorder. We hoose the inhomogeneous solution so that it grows only algebraially as

xm → −∞ and vanishes at xm = 0. Partiular solutions to (3.19b) are of the form
ϕαj(xα) = ψα(xα)

∫ xα

0

φα fαj dz − φα(xα)

∫ xα

0

ψα fαj dz + γαjψα(xα) , (3.21)so that now we obtain ϕm1 for α = m, j = 1 in (3.21) and
γm1 = −π

2

12
c1m + ln(2)c2m − c3m . (3.22)Hene the solution is

um1(xm) = −κm1φm(xm) + ϕm1(xm) . (3.23)We evaluate ψα, φα et. and subsequent funtions with the assistane of Maple. As
xm → −∞ the limiting behavior of um1 is
um1(xm) = −1

8
(c1m + 2c3m) − 1

4
c2mxm − 1

4
c1mx

2
m (3.24)

+

(

1

64
(−7c1m − 8c3m + 256κm1 + 30c2m + 4c2mπ

2 − 72c1mζ(3))

+
1

16
(−6c2m + 15c1m + 24c3m)xm +

1

8
(6c2m − 3c1m)x2

m +
1

2
c1mx

3
m

)

e2xm

+O( e4xm)where ζ is the Riemann Zeta funtion, and um1 must math the outer solution whihis given in the appendix by (A.10) and has only onstant terms to this order. Henewe require c2m = 0 and c1m = 0. The mathed solution is now
u

(m)
m1 (xm) = (1 − tanh2(xm)) κm1 (3.25)

−c3m

16

(

− 2e6xm + 4 + 10e2xm − 12e4xm − 24xme
2xm

) e−2xm

(e2xm + 1)2 ,16



where we denote by u
(m)
m1 the solution that is obtained by mathing to the outersolution Y . As we will see later, exponential mathing to the inner solution u0, i.e.as xm → ∞, where we �nd

u
(m)
m1 (xm) =

1

8
c3me

2xm +
1

2
c3m +

(

−7

4
c3m + 4κm1 +

3

2
c3mxm

)

e−2xm

+

(

11

4
c3m − 8κm1 − 3c3mxm

)

e−4xm +O(e−6xm) ,requires also c3m = 0. Hene, denoting by u(e)
m1 the solution that has been exponen-tially mathed to the inner solution u0 near x = 0, we obtain

u
(e)
m1(xm) =

(

1 − tanh2(xm)
)

κm1 . (3.26)Internal layer near x = 0 The O(δ1/3) problem is
L(u01, x0) = f01(x0) , (3.27a)
u01(0) = 0, u′′01(0) = 0 and u′′′′01(0) = 0 , (3.27b)with

f01(x0) := c10x
2
0 + c20x0 + c30 . (3.28)Its general solution reads

u01(x0) = ϕ01(x0) + g1 ψ0(x0) , (3.29)where the homogeneous solutions are as before and the inhomogeneous solution isgiven by equation (3.21) with α = 0, j = 1 and
γ0 = −π

2

12
c10 + ln(2) c20 − c30 , (3.30)so that ϕ01(0) = 0 and ϕ01 grows algebraially as x0 → −∞. Furthermore, symmetryrequires ϕ′′

01(0) = 0 and ϕ′′′′
01(0) = 0, whih implies c10 = 0 and c30 = 0 leading to

ϕ01( x0) =
c20

16(1 + e−2x0)2

(

1 − 4x0 + 12 dilog(e2x0 + 1)e−2x0 − e−4x0 + 12x2
0e

−2x0

+ π2e−2x0 + 12x0e
−4x0 − 14x0e

−2x0 − ln(1 + e−2x0)e2x0 + 8e−4x0 ln(1 + e−2x0)

− 8 ln(1 + e−2x0)) + e−6x0 ln(1 + e−2x0) + 2e−6x0x0

)

, (3.31)where dilog denotes the dilogarithm funtion. The remaining free parameters of u01to be mathed are c20 and g1. As will be demonstrated later, exponential mathingto um requires an expression for u01 as x0 → −∞

u01( x0) = − g1

16
e−2x0 − 1

4
c20x0 −

3

8
g1 (3.32)

+
1

32

(

2c20π
2 + 15c20 + 26g1 + (48g1 − 12c20)x0 + 24c20x

2
0

)

e2x0

+
1

48

(

− 36g1 − 89c20 − 6c20π
2 + (84c20 − 144g1)x0 − 72c20x

2
0

)

e4x0 +O(e6x0)17



and then re-expanding u0 in the variable xm. This shows that also c20 = 0, g1 = 0 and
c3m = 0. Any other hoie leads to a system for the parameters having no solution.Hene, only κm remains as a free onstant in the two regions. The exponentiallymathed solution is therefore simply

u
(e)
01 (x0) = 0 . (3.33)3.1.3 O(δ2/3)Internal layer near κm The problem of order δ2/3 is

L(um2, xm) = fm2(xm) , (3.34a)
um2(0) = −u′m0(0) κm2 −

1

2
u′′m0κ

2
m1 − u′m1(0)κm1 = κm2 − u′m1(0) κm1 , (3.34b)where

fm2(xm) := d1mx
2
m + d2mxm + d3m + 6 um0 (u

(e)
m1)

2 . (3.35)Note that u(m)
m1

′
(0) = 0. Again we hoose the inhomogeneous solution so that itgrows only algebraially as xm → −∞ and vanishes at xm = 0 to obtain (3.21) with

α = m, j = 2 and
γm2 = −π

2

12
d1m + ln(2) d2m − d3m − κ2

m1 , (3.36)so that the general solution is represented as
um2(xm) = −κm2φm(xm) + ϕm2(xm) . (3.37)As xm → −∞ we have to ompare

um2( xm) = −1

8
(d1m + 2d3m) − 1

4
d2mxm − 1

4
d1mx

2
m

+e2xm

( 1

64
[(−7 − 72ζ(3))d1m − 8d3m + 256(κm2 − κ2

m1) + (30 + 4π2)d2m]

+
3

16
(5d1m − 2d2m + 8d3m)xm +

3

8
(2d2m − d1m)x2

m +
1

2
d1mx

3
m

)

+O(e4xm)with the outer solution. Mathing the onstant and the linear terms in xm yields
−1

4
d3m =

1

2
A1 −

1

8
A2

1 +
1

3
C1A1 +

23

14
C2

1 +D1 , (3.38)
−1

4
d2m = 21/6C1 . (3.39)There is no quadrati term in the outer solution (A.10), hene d1m = 0. Thereare further mathing onditions but they do not simplify the problem struturallyat this point and will be enfored later, so that d2m, d3m and κm2 remain to bedetermined via exponential mathing. As xm → ∞, the expansion to this order anbe written as

u
(m)
m2 =

1

2
d3m − 1

4
d2mxm +

1

8
d3me

2xm +
e−2xm

32

(

− 56d3m − 15d2m (3.40)
− 2d2mπ

2 + 128(κ2
m1 + κm2) + (48d3m − 12d2m)xm − 24d2mx

2
m

)

+O(e−4xm) .18



Internal layer near x = 0 As for the O(δ1/3) problem, at O(δ2/3) we have
L(u02, x0) = f02(x0) , (3.41a)
u02(0) = 0, u′′02(0) = 0 and u′′′′02(0) = 0 , (3.41b)with

f02(x0) := d10x
2
0 + d20x0 + d30 . (3.42)The general solution is

u02(x0) = ϕ02(x0) + g2 ψ0(x0) , (3.43)where the homogeneous omponent is as before and the inhomogeneous part isobtained by setting α = 0, j = 2 and γ02 = 0 in (3.21), so that ϕ02(0) = 0 and ϕ02grows algebraially as x0 → −∞. Symmetry requires ϕ′′
02(0) = 0, ϕ′′′′

02(0) = 0, whihimplies d10 = 0 and d30 = 0. The remaining free parameters to be mathed are d20and g2. In order to exponentially math to um to O(δ2/3) and obtain u(e)
m2, we againhave to expand u02(x0) as x0 → −∞, giving

u02( x0) = − µ̂

16
e−2x0 − 1

4
d20x0 −

3

8
µ̂ (3.44)

+
1

32

(

(15 + 2π2 + 2 ln(2))d20 + 26g2 + (48µ̂− 12d20)x0 + 24d20x
2
0

)

e2x0

+
1

48

(

− (89 + 6π2)d20 − 36µ̂+ (84d20 − 144µ̂)x0 − 72d20x
2
0

)

e4x0 +O(e6x0) ,and re-express in terms of xm, where we have used the abbreviation µ̂ = d20 ln(2)+g2.3.1.4 O(δ)Internal layer near κm The problem to be solved at order O(δ) is
L(um3, xm) = fm3(xm) , (3.45a)

um3(0) = −u′m2(0)κm1 − u′′m0(0)κm1κm2 − u′m0(0)κm3

− 1

6
u′′′m0(0)κ3

m1 − u′m1(0)κm2 −
1

2
u′′m1(0)κ2

m2 , (3.45b)with
fm3(xm) := 2

(

(u
(e)
m1)

3 + 6 um0 u
(e)
m1 u

(e)
m2

) (3.46)
−23/2

[

1

2
dilog(e2xm + 1) +

1

2
(1 + k1m)x2

m + (ln(2) + k2m)xm + k3m

]

.Again we hoose the inhomogeneous solution so that it grows only algebraially as
xm → −∞ and vanishes at xm = 0 and so that we obtain ϕm3(xm) by using formula(3.21) with α = m, j = 3 and γm3 = 0. The solution is

um3(xm) = −um3(0)φm(xm) + ϕm3(xm) , (3.47)19



where k1m, k2m, k3m and κm3 remain to be determined via mathing. In order toexlude exponential growth as xm → −∞ we obtain the relation
k2m =

√
2

48 ln(2)

(

κm1

(

−(12 + 9π2)d2m + 12d3m − 24κm2

)

+
√

2(24k3m − 12 ln(2)2 + k1mπ
2)
)

, (3.48)so that the expansion obtained as xm → −∞ is
um3(xm) =

1

4
√

2
(1 + k1m + 4k3m) +

1√
2
(ln(2) + k2m)xm (3.49)

+(k1m + 1)

√
2

4
x2

m +O(e2xm) .Comparing this with the outer solution toO(δ), equation (A.10), yields the mathingonditions
1

4
√

2
(1 + k1m + 4k3m) =

(

−1

4
A1 +

1

3
C1

)

A2 +

(

7

12
C2

1 +
1

3
D1

)

A1 (3.50)
+

1

2
A3 −

59

216
C1A

2
1 −

1

12
21/3C1 +K1 −

23

7
C1D1 +

1

16
A3

1 +
127

28
C3

1for the onstant terms,
1√
2
(ln(2) + k2m) = (D1 −

23

7
C2

1)2
1/6 and (k1m + 1)

√
2

4
= 2−2/3C1 (3.51)for the linear and the quadrati terms, respetively.Expanding the solution as xm → ∞ we �nd

um3( xm) =
1

192

(

κm1d2m(9π2 + 24) − 48κm1d3m + 2
√

2π2(1 − k1m) − 48
√

2k3m

)

e2xm

+
1

96

(

κm1d2m(27π2 + 72) +
√

2(k1m(12 − 6π2) − 96k3m − 12 + 2π2)
)

+
1√
2
(ln(2) + k2m)xm + (k1m + 1)

√
2

4
x2

m +O(e−2xm) , (3.52)and we will exponentially math it to the solution near x = 0, whih we onstrutnext.Internal layer near x = 0 The general solution to the O(δ) problem
L(u03, x0) = f03(x0) , (3.53a)
u03(0) = 0, u′′03(0) = 0 and u′′′′03(0) = 0 , (3.53b)with

f03(x0) := −21/2
[

dilog(e2x0 + 1) − dilog(2) + 2µ2x0 + (1 + k10)x
2
0

] (3.54)20



and the abbreviation µ2 = ln(2) + k20 reads
u03(x0) = ϕ03(x0) + g3 ψ0(x0) , (3.55)where we have required that u03(0) = 0 and u′′03(0) = 0. If we also enfore u′′′′03(0) = 0then k10 = 0. Again we take an inhomogeneous solution ϕ03(x0) whih satis�es theabove onditions, so that the general solution is obtained with

µ1 =
√

2(ln(2)2+2k20 ln(2))−g3 and ω =

∫ 1

0

1

z
ln

(

z2 + 1

2z

)2

− ln(2z)2

z
dz ≈ 0.3094 ,

u03 =
12µ1 − π2

√
2

192
e−2x0 +

1

96
(36µ1 +

√
2(12 − π2)) +

µ2√
2
x0 +

√
2

4
x2

0 (3.56)
+

[

1

192

(

156µ1 +
√

2[(19 − 24k20)π
2 − 15 − 288ω − 180µ2]

)

+
1

16

(

−24µ1 +
√

2(12µ2 − 11)
)

x0 +

√
2

8
(3 − 12µ2)x

2
0 −

1√
2
x3

0

]

e2x0 +O(e4x0) .For exponentially mathing to um this again has to be re-expressed in xm and om-bined with the orresponding expressions for u00, u01 and u02 . This will be done inthe next setion.3.2 Exponential mathingNow we have to math the rest of the solution um(xm) to the rest of the solution
u0(x0). This requires mathing the exponential terms in addition to the algebraiterms, similarly to the proedure for the CCH equation, i.e. mathing of the solutiondesribing the internal layer near x = κm to the solution near x = 0 requiresexpressing the variable x0 in terms of xm (or vie versa). Reall again that x0 =
xm + κ̄m/

√
2 and that κ̄m < 0; the e2x0 terms in the u0 expansion will produe

e2xm terms with a fator e√2κ̄m (and analogously for e−2x0 terms) and so we will �ndtheir orresponding mathing partner at a di�erent order in δ in the um expansion,as we have shown for the CCH equation. The somewhat subtle di�erene here isthat additionally we need to determine the relationship between e√2κ̄m and δ and wehave in priniple several hoies, only one of whih allows a onsistent mathing ofboth expansions. One an observe that the hoie e√2κ̄m = ρ δ1/3 , where ρ is someonstant quikly leads to a ontradition. However, setting
e
√

2κ̄m = ρ δ2/3 (3.57)will lead to a O(δ2/3) shift of terms, so that e.g.
e2x0 will shift to a term δ2/3 e2xm , (3.58)

e−2x0 will end up as a term δ−2/3 e−2xm (3.59)21



and so forth, so that e.g. a term e2x0 in the leading order part of the u0 expansionwill have to math a e2xm term in the O(δ2/3) part of the um expansion, or a e−2x0term in the O(δ) part of the u0 expansion will have to math a e−2xm term in the
O(δ1/3) part of the um expansion. This will also produe terms that will have nopartner term in the transformed expansion. Their oe�ients must then be set tozero. If we now sum the expansions for u01(x0), u02(x0) and u03(x0) and re-expandusing (3.57), we obtain
u0(xm) = −1 − 1
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3
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+

√
2

12
(2 ln(δ) + 6µ2 − 3 ln(ρ))xm +

√
2

4
x2

m

]

δ , (3.60)whih has to math um1(xm), um2(xm) and um3(xm) to eah order, respetively. Fromthis we obtain further onditions for the parameters in addition to those we havealready found. Solving the omplete system of equations then yields the solutionsfor the width of the hump
∆ =

√
2

6
ln

(

β

W (β1/3)3

)

, (3.61)with β = 211/(27δ2), where W is the Lambert W funtion (so W (x) is the solutionof x = W exp(W )). The expressions for the remaining mathing onstants C1, D1,et. are omitted. The �rst orretion in (3.2) has the oe�ient
A1 = −3 21/6 . (3.62)Note that in the transformed expansions as well as in the expressions for the pa-rameters also ontain so-alled logarithmi swith-bak terms.4 Numerial method for the �fth-order phase spaeFor the numerial stationary solutions of the HCCH equation (3.1) we apply thesame saling for u that we used for the CCH equation to obtain equilibrium pointsat ±1.

(1 − c2) =
2

δ
√
A

(cxx + c− Ac3)xxx , lim
x→±∞

c = ∓1 , (4.1)again assuming that derivatives vanish in the far �eld. Redution to a �rst ordersystem U ′ = F (U), with F : R5 → R
5, gives a �ve-dimensional phase spae, where22



the �rst four omponents of Fi(U) are equal to Ui+1 and the �fth is
F5(U) = 6A(U2)

3 + 18AU1U2U3 + (3A(U1)
2 − 1)U4 + δ

√
A(1 − (U1)

2)/2 . (4.2)The equilibrium points are U± = ±(1, 0, 0, 0, 0)T and at these points the harater-isti polynomials are
P±(λ) = λ5 + λ3(1 − 3A) ± δ

√
A . (4.3)For small δ the manifoldsW u(U+) andW s(U−) are both two-dimensional, resultingin a odimension two event when searhing for heterolini solutions onnetingthe two hyperboli �xed points U+ and U−. The HCCH equation exhibits thesame reversibility properties as its lower order version. This reversibility is againgiven by the transformation (2.8) from the CCH setion, whih also here ful�lls

RF (U) = −F (RU). The odimension redues by one and again we deal witha odimension one problem and two parameters, hene we may expet solutionbranhes in the (A, δ) parameter plane. Setion 2.1 showed that a ondition for theexistene of heterolini orbits is a value where the distane funtion (2.9) reaheszero and the same ondition holds for the HCCH equation. The phase spae isskethed in �gure 6, indiating the linearizations of the interseting manifolds inthe equilibrium points. For this problem a shooting method will be very slow and

Figure 6: HCCH: Heterolini orbits between the equilibrium points are sought in a5-D phase spae that is indiated here in 3D. The manifolds W u(U+) and W s(U−)are two-dimensional whih is suggested by the two planes in the piture.may lead to bad auray sine the additional parameter, say ϕ ∈ [0, 2π), an anglede�ning points on a irle lose to the equilibrium point on the linearization ofthe two-dimensional manifold, requires a very �ne resolution to obtain heterolinisolutions.4.1 Boundary value problem formulationThere exist several possibilities to set up equations for �nding heterolini onne-tions in a boundary value problem framework. Generally one ruial stumbling blok23



is the hoie of a suitable phase ondition that piks a ertain solution out of thein�nitely many available ones due to phase shifts [2, 8℄. We hoose to inorporateone phase ondition proposed by Beyn [2℄, for whih we use an approximation of thesolution, V , typially given by a previous solution for slightly di�erent parametervalues. Equation (4.1) ontains two parameters, A, δ, and in addition the trunateddomain length L. As disussed by Doedel et al. [5℄ one of the free parameters an bereplaed by L to �nd a onnetion. We replae δ, solve and ontinue after extrapo-lating to an approximate value of A for a nearby hosen and �xed δ. Resaling thedomain to [0, 1] yields, with the phase ondition variable Uph introdued by Beyn[2℄ the �rst order system
U ′

i = LUi+1, i = 1, 2, 3, 4 (4.4a)
U ′

5 = L

(

6A(U2)
3 + 18AU1U2U3 + (3A(U1)

2 − 1)U4 + δ
√
A

(1 − (U1)
2)

2

) (4.4b)
U ′

ph = L(V ′)TU (4.4)
L′ = 0, A′ = 0 . (4.4d)Hene, we obtain one equation for the phase ondition and two for the parametersin addition to the �ve given by the original ODE, i.e., we have an overall system ofeight equations whih have to be supplemented by the same number of boundaryonditions. At the edges of the domain we utilize projeted boundary onditions [2, 4℄,whih make use of eigenvetors in the equilibrium points and an be inorporated byomputing V0, the matrix whose olumns are omposed by the eigenvetors whihorrespond to the eigenvalues at the upper equilibrium point U+ with negative realpart, and by forming the ounterpart V1 ontaining those eigenvetors given by theunstable diretions at the lower stationary point U−. Hene, we onsider the eightboundary onditions
Uph(0) = 0, Uph(1) = 0, V T

0 (U(0) − U+) = 0, V T
1 (U(1) − U−) = 0 . (4.5)For initial estimates we an use solutions obtained from the asymptoti analysis ofsetion 3.1, i.e. the leading order solution tanh pro�les

V (x) = − tanh(x−K) + tanh(x) − tanh(x+K) ,for the het1 solution with guessed root-distane K.The boundary value solvers we use are based on mono-impliit Runge-Kutta for-mulae [14, 23℄. As for the CCH problem e�ieny an be improved by making useof the theory from setion 2.1 whih holds analogously for the HCCH equation toobtain a boundary ondition at the �xed point of a point-symmetri solution. Wean use half of the previous domain length and phase onditions beome redundant,beause the phase is already �xed. We replae the projeted boundary onditionsby
U1(0) = 1, U2(0)2 + U3(0)2 = 0, U4(0)2 + U5(0)2 = 0so that together with the self-reversibility ondition on the right interval end U1(1) =

U3(1) = U5(1) = 0 we have six onditions whih math the �ve equations together24



with the free parameter A. Final solutions are obtained by re�eting the solutionand its derivatives around zero and hanging the signs of the �rst, third and �fthomponent. Examples of branhes of di�erent solutions are shown in �gure 7.
0 0.01 0.02 0.03

0

0.2

0.4

0.6

0.8

1

δ

A
1/

2

 

 

 

 

u

dk /d
xk  u

u

dk /d
xk  u

u

dk /d
xk  u

u

dk /d
xk  u

u

dk /d
xk  u

het0

het1

het2

saddles turn to saddle−foci

Figure 7: (
√
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spae, while when the dimension is four or higher and the derivatives vanish in thefar �eld one an still plot the 2D phase spaes (U1, U2), (U1, U3), . . . and demandonnetions between the equilibrium tuples (±
√
A, 0) as a neessary ondition forheterolini orbits in the higher order spae. Several suh projetions onto 2D areshown in �gure 7, where we also see a very rapidly osillating heterolini urve inthe bottom left plot whih was found by a shooting approah with a minimizationproedure that used the two parameters and an angle as free parameters and thedistane funtion (2.9) as objetive funtion, depending on those parameters. Itindiates that as shown for the CCH equation we an in fat �nd many more hetkbranhes than those presented for k = 0, 1, 2, all emerging from (A, δ) = (1, 0),whih orresponds to the Cahn-Hilliard equation.In �gure 9 we see the hange in appearane of solutions on the het2 branh as

δ is inreased. The shape varies from a solution with two pronouned humps toa monotone one, similar to the het0 solution, although assoiated with di�erent,smaller, values of A. This is ruial if one wants to ompute solutions for bigger δwith a boundary value solver. It easily happens that the solver swithes betweensolution branhes, however, this an be prevented by starting ontinuation in aparameter regime where the high-slope parts of the solutions are non-monotone, andontinuing with small steps. A harateristi of the HCCH solutions is the overshoot
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small δ the agreement is good. For both het1 and het2 solutions the distane is seento inrease logarithmially as δ dereases.
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in large spatial domains? Savina et al. [22℄ have begun an investigation of thesequestions by numerial simulation of (1.4); it is likely that asymptotis an yieldfurther insights.Physially, further interesting questions relate to the extension of the HCCH modelto riher models for the energetis of faetted surfaes, and analyzing the three-dimensional extension of the model.AknowledgmentsThis work was performed as part of Projet C-10 of the DFG researh enterMath-eon, Berlin. AM also gratefully aknowledges the support from the HeisenbergFellowship of the DFG (grant MU 1626/3).A Outer ProblemFor the solution to the outer problem (3.6), (3.7) it is easy to observe that to leadingorder in δ the solution of
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