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Experimental and numerical model study of the limiting current in a channel
flow cell with a circular electrode

J. Fuhrmann1, H. Zhao1, E. Holzbecher1, H. Langmach1, M. Chojak2, R. Halseid2,3, Z. Jusys2,
and R. J. Behm2

Abstract. We describe first measurement in a novel thin-layer channel flow cell designed for the investi-

gation of heterogeneous electrocatalysis on porous catalysts. For the interpretation of the measurements,

a macroscopic model for coupled species transport and reaction, which can be solved numerically, is fea-

sible. In this paper, we focus on the limiting current. We compare numerical solutions of a macroscopic

model to a generalization of a Leveque-type asymptotic estimate for circular electrodes, and to mea-

surements obtained in the aforementioned flow cell. We establish, that on properly aligned meshes, the

numerical method reproduces the asymptotic estimate. Furthermore, we demonstrate, that the mea-

surements are partially performed in the sub-asymptotic regime, in which the boundary layer thickness

exceeds the cell height. Using the inlet concentration and the diffusion coefficient from literature, we

overestimate the limiting current. On the other hand, the use of fitted parameters leads to perfect

agreement between model and experiment.

1. Introduction

Thin-layer channel flow cells are widely used in (electro)analytical chemistry as electrochemical de-
tectors [1, 2]. Due to their small working volume (in the range of microliters), a fast signal response can
be achieved and utilized for flow-injection analysis [3]. Alternatively, the concentration of electro-active
species can be monitored on-line under continuous flow of the analyte. In addition to measuring the
analyte concentration via the Faradaic current, the formation of electro-active species on the working
electrode (‘generator’) can be detected and quantified by a second electrode (’collector’), e.g., by po-
sitioning two adjacent electrode stripes across the flow channel [4, 5]. In many studies, the transport
characteristics of thin-layer flow cells have been modeled e.g., for a quantitative evaluation of reaction
kinetics [6].

In contrast to their wide use in electroanalysis, thin-layer flow cells are much less often applied
in electrocatalysis research, despite of their considerable potential for these applications. The latter is
demonstrated by a number of model studies on electrocatalytic reactions, including e.g., methanol oxida-
tion reaction (MOR) [7, 8, 9] and oxygen reduction reaction(ORR) [10, 11, 12, 13, 14]. These studies
demonstrated the importance of operating under controlled and continuous electrolyte flow. A particular
advantage of flow cell measurements compared to other hydrodynamic electrochemical techniques such
as rotating disk electrode measurements [15, 16], is their capability for rapid electrolyte exchange, which
is important for transient measurements [13], and their ability to work at elevated temperatures and
pressures [10, 11]. The potential of thin-layer flow cell measurements for electrocatalysis research was
further extended by a recently developed dual thin-layer flow cell design [17], which allows the on-line and
in-situ detection of volatile reaction products [18, 19] and of adsorbed reaction intermediates/products
by connection to a mass spectrometer or to an infrared spectrometer [18, 19, 20, 21]. Alternatively, a
second collector electrode can be included for electroactive product detection [12, 13, 14].

A quantitative interpretation of the measured data is possible on the basis of mathematical models
describing the coupled electrolyte flow, transport and the ongoing reactions [16]. Often a description
by partial differential equations is utilized [5]. In the general case, where boundary layer theory is not
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Figure 1. Schematic of the flow cell, WE-working electrode, CE-counter electrode

applicable, and analytical solutions of the corresponding partial differential equations are not available,
numerical methods have to be used in order to obtain approximate solutions (see, e.g., refs. [22, 23, 24]).
In this paper, we present a simulation approach based on the finite volume method, which can be
considered as a generalization of the finite difference method to unstructured meshes. This method
allows for more geometrical flexibility with the limitation that a proper mesh alignment to the flow
direction is essential for obtaining the asymptotic values, as is demonstrated by comparison with the
results of boundary layer theory for the asymptotic case. The method presented here works in one, two
and three space dimensions and is implemented for a rather general class of convection-diffusion-reaction
systems [25, 24]. Earlier work on the numerical description of coupled transport-reaction processes in
flow cells was mostly restricted to tensor product grids [26]. Due to unwinding, the method presented
here is unconditionally stable also for high flow rates and thus is able to reproduce physical properties
of the processes such as the positive value of the concentrations and the local maximum principle (“no
overshoots”). Furthermore, a Levenberg-Marquardt procedure [27] is coupled to the solver of the partial
differential equations which allows to fit model parameters to measurements.

In the present communication, we describe the transport characteristics of a novel rectangular channel
flow cell design with a circular electrode by numerical simulations, and compare the model results with
experimental data and with well-known asymptotic expressions. As test reaction, we use the hydrogen
oxidation reaction (HOR) on a Pt/C catalyst thin-film electrode, which is an ideal example for a purely
mass transport controlled electrocatalytic reaction. In contrast to the circular dual thin-layer flow cell used
previously [17], the flow characteristics of this flow cell design is uniform. Therefore, the mathematical
description of the flow pattern is much simpler compared to the pseudo-radial flow profile in the circular
thin-layer flow cell, allowing the use of analytical expressions to describe the flow pattern [28]. The quality
and relevance of the simulations is tested by comparing to experimental results for the dependence of the
reaction rate on the temperature and on the electrolyte flow rate.

The paper is organized as follows: In section 2 we describe the design of the channel flow cell with a
circular electrode, and present experimental results for the hydrogen oxidation reaction. In section 3 we
describe the continuous model for the calculation of the limiting current, assuming Hagen Poiseuille flow
of the electrolyte, and its approximation by the Voronoi box based finite volume method. In section 4
we verify the ability of this approach to resolve the parabolic boundary layer, comparing to asymptotic
expressions for the limiting current at high Peclet number for the infinite strip geometry and for the
circular electrode case. Finally, in section 5, we compare the numerical method with measurements
described in section 2. We fit the measured data to different functional descriptions of the temperature
dependence for these values. A self-contained derivation of the asymptotic expressions is provided in the
appendices A and B.

2. Experimental

The experiments are performed using a novel thin-layer flow cell. The cell body is made of a chemically
inert and physically resistant polymer (PolyEtherEtherKetone - PEEK). As described schematically in
Fig. 1, the upper part of the flow cell consists of a glassy carbon plate (20× 30× 5 mm3) with the catalyst
film deposited in the middle (5 mm diameter). A glass frit placed in the polymer cell body opposite to the
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u/(µLs−1) u1/3/(µLs−1)1/3 ilim at 20 ◦C ilim at 40 ◦C ilim at 60 ◦C ilim at 80 ◦C
0.5 0.794 0.137 0.119 0.118 0.089
1.0 1.000 0.213 0.206 0.203 0.167
2.0 1.260 0.410 0.401 0.404 0.356
5.0 1.710 0.740 0.793 0.853 0.842
10.0 2.154 1.026 1.088 1.216 1.289
20.0 2.714 1.330 1.452 1.627 1.774
50.0 3.684 1.900 2.049 2.300 2.528

Table 1. Table of measured values at different flow rates u and different temperatures

catalyst film separates the working electrode from the counter electrode. The flow channel is defined by
a 50 µm thick polymer film gasket (2× 3 cm2, Fluorinated Ethylene-Propylene - FEP, Bohlender) with a
rectangular cut in the middle (8× 12 mm2), which is inserted between cell body and glassy carbon plate.

The cell is ionically connected to the reference electrode (saturated calomel electrode - SCE) via
a capillary at the inlet of the cell. All potentials in the paper are quoted, however, versus that of a
reversible hydrogen electrode (RHE). The potential of the reference electrode was calibrated vs. the
temperature by the onset of the HER/HOR in the H2-pressurized (3 · 105 Pa) supporting electrolyte. A
platinum wire was used as counter electrode. Between the reference electrode and the counter electrode
a capacitor (4.7 nF) had to be installed in order to slow down the feedback circuit in the potentiostat
and thus prevent oscillations. In all electrochemical experiments a PINE potentiostat (model AFRDE5)
was used.

The supporting electrolyte (0.5 mol ·L−1H2SO4) was prepared from Millipore MilliQ water and ul-
trapure sulfuric acid (Merck, suprapur). For reaction measurements, the electrolyte was first purged with
Ar (99.9999% from Westfalen, Germany) to remove O2 and then saturated with H2 (99.999% from MTI
AG, Germany), pressurized at 3 · 105 Pa. The exact pressure was measured by an electronic pressure
meter (Wika, Tronic Line).

In order to perform experiments at elevated temperatures (40 ◦C, 60 ◦C and 80 ◦C), the cell was
placed in a thermostated box. Thick-wall glass bottles with solutions were kept in a thermostated water
bath (Lauda, EcoLine 003), and pressurized to the desired overpressure. The electrolyte flow rate was
controlled by a syringe pump (Harvard Instruments, model PHD 2000) connected at the outlet of the
cell.

The glassy carbon plates (Sigradur G from Hochtemperatur Werkstoffe GmbH), were polished with
an alumina slurry down to 0.05 µm grade, followed by chemical etching with 5 mol ·L−1 KOH and
subsequently by concentrated H2SO4. After rinsing with Millipore MilliQ water, the surface was dried
in a nitrogen stream. The catalyst layer (ca. 5 mm diameter) was deposited in the middle of the polished
glassy carbon plate by pipetting and drying an aqueous catalyst suspension (2 mg ·mL−1 20% Pt/C, E-
Tek), resulting in a thin film (Pt loading 28 µg · cm−2). Finally, a thin Nafion film (thickness ca. 0.1 µm),
prepared from a Nafion R© solution [29] was used to mechanically fix the catalyst film.

The electrochemical oxidation of hydrogen was investigated measuring the anodic current at a fixed
potential of 0.37 V for different flow rates u (from 0.5 to 50 µL · s−1) and different temperatures (20, 40,
60 and 80◦C). The measured values of the mass transport limited current (limiting current, see below),
Ilim at 0.37 V and different temperatures and 3 · 105 Pa pressure are shown in Table 1. In order to remove
possible impurities adsorbed at low potential, the potential was stepped to 1.3 V after each measurement.

3. Limiting current models

3.1. Physical background. At fixed temperature T and fixed pressure p, a H2SO4 based elec-
trolyte containing dissolved H2 enters the cell at the inlet, flows over the anode, and leaves the cell at
an outlet. At the inlet, the solute concentration is given by a value cI , which depends on pressure and
temperature. H2 transported to the anode reacts at the catalytic surface according to

H2 → 2H+ + 2e−,(3.1)

creating two electrons and two protons per reacted molecule. The amount of electrons generated during
this reaction is measured as an electrical current. For high enough ion concentration, which is given in
the present experiment (0.5 mol ·L−1 H2SO4 solution), ohmic potential drops are negligible. In a similar
way, we assume that hydrogen oxidation is purely transport limited. The current measured in such a
situation is called limiting current.

3



Experimental and numerical model study of limiting current

ΓI ΓO

ΓA

~vH

L0 L L0

ΓN

x

z

ΓA

ΓI ΓO
ΓS

x

y

Figure 2. Geometry and boundary conditions of the three-dimensional cell (bottom)
and its two-dimensional cross section (top)

3.2. Channel cell geometries. For the modeling of this process, we consider two idealized cell
geometries, represented by two- or three-dimensional domains Ω ⊂ Rd, d = 2, 3. The length of the model
region in the flow direction is L + L0 for d = 2 and L + 2L0 for d = 3.

In the first geometry, we assume a channel of height H and infinite width (see Fig. 2, top). An
electrode of length L is located at the bottom of the cell. In the second geometry, a finite width of the
channel and the circular geometry of the electrode are considered. The geometry, depicted in Fig. 2,
represents a flow cell of width W , length L and height H. At the bottom, a circular electrode of radius
R, whose center is at a distance L0 + R from the cell edge, is placed. Due to symmetry reasons, it will
be sufficient to regard one half of the domain. As in the two-dimensional case, the boundary Γ of this
half domain has the segments ΓA, ΓN , ΓI , ΓO. Another segment ΓS arises at the symmetry boundary.

3.3. The continuous model. For a given velocity field ~v with ∇ ·~v = 0, we regard the stationary
convection diffusion equation describing the concentration c of a dissolved species in a two- or three-
dimensional domain,

−∇ · (D∇c− c~v) = 0.(3.2)

Here, D is the molecular diffusion coefficient.
For the boundary ∂Ω = ΓI ∪ ΓO ∪ ΓA ∪ ΓN ∪ ΓS , we assume the following boundary conditions for c

and conditions on ~v:

(D∇c− c~v) ·~n = 0 ~v ·~n = 0 on ΓS (symmetry)
(D∇c− c~v) ·~n = 0 ~v = 0 on ΓN (impermeable wall, no slip)
(D∇c− c~v) ·~n = −c~v ·~n on ΓO (outflow)

c = cI on ΓI (inflow)
c = cA ~v = 0 on ΓA (electrode, no slip)

(3.3)

The value cI is the inlet concentration, cA is the boundary concentration at the anode, which in most
cases will be assumed to be 0, modeling a surface reaction with infinitely fast kinetics. For reaction (3.1),
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the limiting current can be calculated from the amount of solute leaving the domain at the anode as

I = 2F

∫
ΓA

(D∇c− c~v) ·~nds.(3.4)

In general, ~v is the solution of the Navier-Stokes equations for an incompressible fluid. The velocity
field in the cell geometries given in subsection 3.2 is described by the Hagen-Poiseuille law which states
that the y and z components of the velocity are zero, while the x component is given by

(3.5) vx = 4v] z

H
(1− z

H
) = 6v̄

z

H
(1− z

H
)

Here, z is the vertical direction, v] is the maximal flow velocity, and v̄ is the average flow velocity. In
the three-dimensional case, we use the symmetry boundary conditions at the side walls of the cell instead
of the no slip boundary conditions. The assumption of symmetry boundary conditions can be justified by
the fact that the width of the flow boundary layer at the side walls is small in comparison to the width
of the cell [28]. We introduce the flow rate u = v̄WH, where we set W = 1 in the two-dimensional case.
Even for this simple configuration equation (3.2) has no known analytical solution. However, it can be
shown that the concentration attains its maximum value at the boundaries of the domain, and that no
local maxima of the concentration are found in the interior of the domain [30].

3.4. Asymptotic models. Due to the lack of analytical solutions, asymptotic models based on
boundary layer theory have been used for a long time to derive quantitative estimates. For the channel
flow with an infinite strip electrode, the solution was given in [31]. For the purpose of easy reference,
we provide a short derivation of this estimate in appendix A. From equation (A.11), we establish the
limiting current

I = 2FD(cI − c0)
A

L
Sh(3.6)

where

Sh =
3

4
3

2Γ( 1
3 )

Pe
1
3 ≈ 0.8075491Pe

1
3(3.7)

is the dimensionless Sherwood number, and A is the electrode surface, which in this case is equal to L.
The dimensionless Peclet number Pe is defined by Pe = βL2

D , where β = 6v̄
H .

For the case of a circular electrode, an asymptotic estimate has been mentioned by [32]. The deriva-
tion, presented in appendix B for Pe = βR2

D [32, 33], yields

I = 2FD(cI − c0)πRSh(3.8)

with

Sh =
3

4
3 2

2
3

5
√

πΓ( 5
6 )

Pe
1
3 =

2
1
3 3

4
3 Γ( 1

3 )
5πΓ( 2

3 )
Pe

1
3 ≈0.68658Pe

1
3 .(3.9)

The second expression can be found in [32, 33].

3.5. Finite volume models. Numerical models have the potential to avoid the limitations of
asymptotic models. Furthermore, they can be generalized to more complex processes. They are derived
from continuous models like (3.2) by discretization. A particular discretization method is the Voronöı
box based finite volume method [34], known also as “box method” [35] or “control volume method”.

This discretization is based on a subdivision of the domain Ω (see 3.3) into a finite number of open,
polygonal control volumes K around the discretization points ~xK . Such a control volume subdivision can
be obtained by using a triangular or tetrahedral grid. For this grid, we require the boundary-conforming
Delaunay property [36]. This means that for any given triangle resp. tetrahedron (simplex) of the grid,
the interior of the circle resp. ball spanned by its vertices does not contain any vertex of any other simplex,
and that its center is located in the interior of the domain Ω or its boundary. In two space dimensions,
the mesh generator “triangle” [37] is able to create this type of grids. In three space dimension, this
question is still under research. With a 70o constraint on the input angles, TetGen [38] allows to create
this type of meshes.

This Delaunay property allows to obtain the control volumes surrounding each given discretization
node by joining the circumcenters of the simplices adjacent to it (Fig. 3).

By ∂K, we denote the boundary of the control volume K, and by |ξ|, the measure (volume, surface,
length) of a geometrical object ξ. For each control volume K, we integrate equation (3.2) and apply the
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Figure 3. Simplices and control volumes in two and three space dimensions

Gauss theorem to the integral of the flux divergence. After that, we choose appropriate approximations
for the remaining integrals:

0 =−
∫
K

∇ · (D∇c− c~v)dx = −
∫

∂K

(D∇c− c~v) ·~nds

=−
∑

L neighbor of K

∫
∂K∩∂L

(D∇c− c~v) ·~nKLds−
∑

σ∈Γ∩∂K

∫
σ

(D∇c− c~v) ·~nσds

≈
∑

L neighbor of K

|∂K ∩ ∂L|
|~xK − ~xL|

g(cK , cL, vKL) main part

+
∑

σ∈ΓN∩∂K

|σ|0 no flux

+
∑

σ∈ΓO∩∂K

|σ|g(cK , cK , vσ) outflow

+
∑

σ∈ΓI∩∂K

1
ε
(cK − cI) +

∑
σ∈ΓA∩∂K

1
ε
(cK − c0) inflow, anode

(3.10)

Here, cK is the average value of the unknown in the control volume. For any planar facet σ ⊂ Ω̄,

vσ =
1
|σ|

∫
σ

~v ·~nds(3.11)

is the average normal flux of ~v through σ. The flux function g(cK , cL, vKL) is an approximation of the
scaled normal flux (−D∇c + c~v) · (~xK − ~xL) through the facet ∂K ∩ ∂L. The summation goes over all
planar facets belonging to ∂K. These may be interfaces to neighboring control volumes, or parts of
the boundary ∂Ω. Expressions for the flux function can be derived from one-dimensional upwind finite
difference approximations. In our discrete model, we define the flux function by

g(cK , cL, v) = D
(
U

( v

D

)
cK − U

(
− v

D

)
cL

)
,(3.12)

where U(ξ) is an upwind function [39]. A preferable choice for the function U , which goes back to Allen
and Southwell [40], is

U(ξ) = B(ξ) =
ξ

eξ − 1
.(3.13)

This choice, also known as exponential fitting scheme, keeps the amount of artificial diffusion added for
the purpose of stabilization low by utilizing the diffusion inherent to the problem. It can be derived
from a solution of a projection of the transport problem (3.2) onto the one-dimensional edge ~xK~xL.
The validity of the expression from the outflow boundary condition follows from the particular property
g(c, c, v) = cv. The Dirichlet boundary conditions are implemented by a penalty method which for
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ε << 1 in the corresponding nodes leads to cK = cI resp. cK = cA in the floating point arithmetic of the
computer.

For the calculation of boundary fluxes, we use a scheme which is similar to that used in [41]. For
the motivation, we start with the continuous case. Assume that the boundary ∂Ω = Γ = ΓN

⋃
(
⋃

i Γi)
is subdivided into non-overlapping boundary parts such that ~v(x) ·~n = 0 and (D∇c− c~v) ·~n = 0 on ΓN .
Let T be a test function such that ∇T ·~n = 0 on ΓN , T |Γi

= 1 and T |Γj
= 0 for j 6= i. To obtain the

flux Q through the boundary piece Γi, we calculate, using ∇ · ~q = 0:

Q =
∫
Γi

T~q ·~ndγ +
∫

ΓN

T~q ·~ndγ +
∑
l 6=i

∫
Γl

T~q ·~ndγ(3.14)

=
∫
Γ

T~q ·~ndγ =
∫
Ω

∇ · (T~q)dω =
∫
Ω

∇T · ~qdω(3.15)

The last term is discretized in the following way,

Q =
∫
Ω

∇T · ~qdω ≈
∑
K,L

∂K∪∂L6=∅

(∇T )KL qKL aKL =
∑
K,L

∂K∪∂L6=∅

|∂K ∪ ∂L|
|~xK − ~xL|

(TK − TL)g(cK , cL)(3.16)

Here, aKL = 1
d |∂K ∪ ∂L||~xK − ~xL| is the volume of the “diamond”, the double pyramid spanned by the

interface ∂K ∪ ∂L between two control volumes and the end points of the corresponding edge ~xK , ~xL.
The discrete gradient writes as (∇T )KL = d TK−TL

|~xK−~xL| , and the flux projection is by the very definition of
the finite volume scheme qKL = g(cK , cL, vKL).

The described discretization results in linear systems of equations with sparse matrices. For the
solution we use the solver Pardiso[42], which as a direct solver with an efficient storage scheme.

4. Comparison between finite volume and asymptotic models

4.1. Limiting current asymptotics in for a 2D problem (“infinite strip case”). The ge-
ometry of the two-dimensional problem is depicted on the top in Fig. 2. The measures of the cell are
H = 50 µm, L0 = 1 mm, L = 9 mm. Furthermore, we set cI = 1 mol ·m−3, D = 9.5 · 10−9 m2 · s−1. In

this case, equation (A.11) yields a mass transfer rate M = 0.055362
(

v]

HD

) 1
3

mol · s−1. We performed

calculations for Pe = 4L2

HD v] varying from 1 to 1012 with an isotropic triangular grid with 204682 vertices
(created by “triangle” [37]), and with another grid aligned with the flow direction and adapted to the
boundary layer and the electrode edge, with 64000 vertices, as shown in Fig. 4, left. In Fig. 4, right, we
see that the finite volume solution properly describes the asymptotic behavior of the Sherwood number
for a wide range of Peclet numbers, provided, the grid is aligned to the flow and the boundary layer is
resolved. The asymptotic regime is reached on the boundary layer grid for Pe ' 108. From equation
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T/◦C D/(10−9 m2 · s−1) kH/(10−2) cI/(mol ·m−3)
20 3.2 1.95 2.40
40 4.9 1.85 2.13
60 7.1 1.86 2.01

Table 2. Literature values from[44] of the diffusion coefficient D, the Henry constant
kH for p = 105 Pa and the resulting cI value, from Henry’s law for p = 3 · 105 Pa.

(A.16), for the maximal thickness of the boundary layer, we get δ ≈ 2.932LPe−
1
3 . In Fig. 4, we ad-

ditionally plotted the value of δ
H vs. the Peclet number. The transition to the asymptotic regime is

clearly correlated with δ
H < 1. The isotropic grid is unable to approximate the asymptotic behavior of

the Sherwood number, though it contains six times more nodes than the aligned grid.
The above observations agree with theoretical findings concerning numerical methods for problems

with diffusive boundary layers [43].

4.2. Limiting current asymptotics for a 3D problem (“Circular electrode case”). In the
case of a circular electrode, it is not possible to reduce the calculations to a two-dimensional cross-section.
We have to solve a three-dimensional problem.

Based on the experience from the two-dimensional case, we constructed grids which are aligned with
the flow direction and have exponentially decreasing distances of grid lines towards the catalyst boundary,
and at the same time are able to reflect the circular electrode geometry, as illustrated in Fig. 5, left.
Grids of this type with three consecutive refinement levels and 1080, 6426, and 43758 nodes, respectively
will be used in the next section.

The simulation results for Peclet numbers varying from 1 to 1012 are plotted in Fig. 5, right, in
order to compare them to the asymptotic estimate (3.9). The numerical method is able to describe the
asymptotic behavior sufficiently well. For the given geometry, the transition from the diffusion limited
regime (small Pe) to asymptotic behavior (large Pe) takes place for Pe ≈ 107.

5. Comparison between finite volume model and experiment

In this section, we compare our numerical model to the experimental data measured as described in
section 2. For the geometry given above and assuming infinitely fast kinetics, there are three parameters:
the flow rate, which is fixed by the experimental conditions, the inlet concentration cI and the molecular
diffusion coefficient D. In a first model run, we use literature values and perform no fitting, while in
further model runs, we use fitting for various approaches concerning D and cI .

5.1. Simulation with literature values for D and cI . In a first approach, we model the experi-
mental set-up using the literature values [44] for the parameters D and cI , which are listed in table 2. The
diffusion coefficient increases with temperature, and the inlet concentration decreases with temperature.

The limiting currents, obtained for different temperatures, are plotted as a function of the electrolyte
flow rate in Fig. 6. The experimentally determined and calculated limiting currents have the same order
of magnitude. Both experimental and simulated values decrease with temperature at low flow rates, and
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Figure 6. Experimentally determined and simulated limiting HOR currents, using val-
ues for D and cI from [44] (table 2). Current vs. third root of flow rate – left. Comparison
to the asymptotic current vs. flow rate behavior

x

u=0.0002

y

z

0.20.81.52.0 0.02

µL/s, Pe=52.8

x

z

0.20.8 0.02

1.5
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2.0
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x

z

0.2
0.8

1.5

2.0
y

u=500µL/s, Pe=1.32e8

Figure 7. Concentration iso-surfaces at different Peclet numbers for the half cell at
40◦C. The circular electrode is located at the bottom.

increase at high flow rates. This leads to a crossing of the low and high temperature curves at a flow rate
between 2 and 5 µL · s−1. This crossing agrees with the experimental observation.

The log-log plot in Fig. 6, right, reveals that at the lower flow rates applied in the experiment, the
cell works in the sub-asymptotic regime, i.e. the observed boundary layer is thicker than the cell height.
Consequently, the limiting current scales with “u

1
3 ” only for higher flow rates u. In Fig. 7, surfaces of

constant concentration are plotted. For the experiments described above, the assumption of working in
the asymptotic regime is true for the higher flow rates.

At the same time, we observe that the simulated values are slightly larger than those measured. As
we could attribute the uncertainty of the data for cI and D as one reason for this fact, in the sequel, we
fit these data to our measurements.

5.2. Independent fit for D and cI at each temperature. We fit the two open parameters D
and cI individually for each temperature, resulting in the values provided in table 4. The fit results are
visualized in the top row of Fig. 8. Except for the 80◦C curve for lower flow rates, we get a very good
agreement between measured and fitted data.

The fitted values for D are in the range of magnitude usually found in the literature. Furthermore,
we observe a monotonic increase of D with temperature, and a decrease of cI with temperature.

5.3. Fit of D and cI for temperature dependent models. We examine a more general approach
utilizing temperature dependent models for D and cI . As a general model for the diffusion coefficient,
we assume [45]

D(T ) = D0 exp
(
− kD

RT

)
(5.1)

For the inlet concentration, we assume equilibrium according to Henry’s law in the following form
[44]:

c =
kH

RT
p(5.2)

where the Henry constant kH is dimensionless.
9
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nref 2 3 4
Model (5.1), (5.2), (5.3) (kH = const)

D0/(10−7 m2 · s−1) 2.6634 2.8579 2.9519
kD/(104 J ·mol−1) 1.1269 1.1192 1.1173

kH/(10−2) 1.5281 1.5583 1.5642
Model (5.1), (5.2), (5.4) (kH = k0 exp(− kc

RT ))
D0/(10−7 m2 · s−1) 2.2531 2.3440 2.4242
kD/(104 J ·mol−1) 1.0809 1.0647 1.0631

k0/(10−2) 1.6901 1.7574 1.7630
kc/(102 J ·mol−1) 2.7760 3.3126 3.2941

Model (5.1), (5.2), (5.5) (kH = k0RT exp(− kc

RT ))
D0/(10−8 m2 · s−1) 4.9832 5.4481 5.8973
kD/(103 J ·mol−1) 6.6958 6.6628 6.7536
k1/(10−6 mol · J−1) 5.5781 5.6831 5.6846

k1RTref/(10−2) 1.5451 1.5742 1.5746
kc/(10−5 J ·mol−1) 1.9937 2.2155 2.2814

Table 3. Constants for various models for temperature dependent inlet concentrations
and diffusion coefficients on three grid levels in the temperature range 21 - 80◦C. In order
to verify that k1RT in model (5.5) has the same order as k0 in model (5.4), k1RTref is
calculated, where Tref = 60◦C.

The expression for the temperature dependence of the Henry constant kH is discussed controversially
in the literature. Following different proposals found in the literature, we assume a constant value

kH = const,(5.3)

or alternatively [46]

kH = k0 exp(− kc

RT
),(5.4)

or

kH = k1RT exp(− kc

RT
).(5.5)

By inverse modeling, we estimate parameters for all three approaches. Table 3 lists the fit parameters
for each approach in the first column. In order to fit these values, we couple the code levmar [27] for
parameter identification based on the Levenberg-Marquardt method to our software. The results for
the fits to the three models are presented in table 3. The resulting values for the diffusion coefficients
and inlet concentrations are shown in table 4, together with those for the individual fit. In table 5, we
present the corresponding values for the least squares functionals. Each of the described models is fitted
on the three different grids described in subsection 4.2. Plots of limiting current in dependence of u1/3

for experimental and numerical output are given in 8. These plots are based on the finest grid only.
We judge the quality of the fit by the resulting values of the least squares functional from table 5,

which should be as small as possible. As a general rule, the fit quality improves with finer grids. The
best value is attained by the individual fit for each temperature, as could be expected. In this case, we
present the sum of the values for the least squares functionals for the individual fits.

The second best fit was obtained with exponential formula for the Henry constant (5.4), closely
followed by the model with constant kH (5.3). The more complex approach for kH (5.5) is significantly
worse. This is clearly visible in Fig. 8 (d), where the inversion of the monotonicity behavior of the
current with respect to temperature at a flow rate of approximately (1.4)3 µL · s−1 is not observed in the
simulated curves.

5.4. Discussion. Diffusivity values obtained in section 5.2 and 5.3 agree well to those found in the
literature. For the Henry constant, resp. inlet concentration, we obtain slightly lower values compared to
those in the literature. One has to be aware, however, that we did not find any directly measured values
for p = 3 · 105 Pa to compare with.

There may be different reasons for the lower inlet concentrations compared to those from the litera-
ture. Our assumption that the process of hydrogen dissolution is in equilibrium may not be fully justified.
The same holds true for the assumption of an infinitely fast reaction.

10
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(a) Individual fit for different temperature curves

(b) Model (5.1), (5.2), (5.3) (kH = const)

(c) Model (5.1), (5.2), (5.4) (kH = k0 exp(− kc

RT ))

(d) Model (5.1), (5.2), (5.5) (kH = k0RT exp(− kc

RT ))

Figure 8. Fits of the calculated limiting currents to measured values as a function of
flow rate using different models on the finest grid with nref = 4.

6. Summary and outlook

In this paper, we presented results of a combined experimental and numerical study on the transport
characteristics of a flow cell with rectangular geometry and circular electrode, which was designed for
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D/(10−9 m2 · s−1) cI/(mol ·m−3) (cI/p)/(10−5 mol ·m−3 ·Pa−1)
nref 2 3 4 2 3 4 2 3 4
T/◦C Individual fit for different temperature curves
21 2.8679 3.1905 3.3221 1.8141 1.8439 1.8508 0.6047 0.6146 0.6169
40 3.4429 3.8207 3.9766 1.7499 1.7803 1.7871 0.5833 0.5934 0.5957
60 4.1895 4.6315 4.8204 1.7390 1.7719 1.7784 0.5797 0.5906 0.5928
80 6.0014 6.5819 6.8405 1.5289 1.5626 1.5689 0.5096 0.5209 0.5230

Model (5.1), (5.2), (5.3) (kH = const)
21 2.6568 2.9415 3.0629 1.8744 1.9115 1.9187 0.6248 0.6372 0.6396
40 3.5138 3.8829 4.0412 1.7607 1.7955 1.8023 0.5869 0.5985 0.6008
60 4.5563 5.0261 5.2287 1.6550 1.6877 1.6941 0.5517 0.5626 0.5647
80 5.7369 6.3184 6.5704 1.5612 1.5921 1.5982 0.5204 0.5307 0.5327

Model (5.1), (5.2), (5.4) (kH = k0 exp(− kc

RT ))
21 2.7129 3.0154 3.1394 1.8507 1.8827 1.8900 0.6169 0.6276 0.6300
40 3.5473 3.9269 4.0867 1.7504 1.7830 1.7899 0.5835 0.5943 0.5966
60 4.5512 5.0196 5.2219 1.6559 1.6888 1.6953 0.5520 0.5629 0.5651
80 5.6768 6.2403 6.4896 1.5710 1.6040 1.6101 0.5237 0.5347 0.5367

Model (5.1), (5.2), (5.5) (kH = k0RT exp(− kc

RT ))
21 3.2248 3.5735 3.7272 1.6734 1.7049 1.7054 0.5578 0.5683 0.5685
40 3.8076 4.2158 4.4070 1.6734 1.7049 1.7054 0.5578 0.5683 0.5685
60 4.4432 4.9159 5.1496 1.6734 1.7049 1.7054 0.5578 0.5683 0.5685
80 5.0950 5.6333 5.9120 1.6734 1.7049 1.7054 0.5578 0.5683 0.5685

Table 4. Diffusion coefficient and inlet concentrations for 0.5 mol ·L−1 H2SO4 at p =
3 · 105 Pa (rounded to five significant digits) resulting from fits for different models on
three grid levels

nref 2 3 4
Ind. fit 0.006182 0.004795 0.004256
(5.1), (5.2), (5.3) 0.01187 0.01045 0.009914
(5.1), (5.2), (5.4) 0.01182 0.01037 0.009839
(5.1), (5.2), (5.5) 0.01497 0.01345 0.01288

Table 5. Values of least squares functional for the fits for the different models on three
grid levels.

kinetic measurements in electrocatalytic reactions. As test reaction, we used H2 oxidation on a thin-
layer carbon supported Pt catalyst electrode, which at overpotentials > 50 mV can be assumed to be
infinitely fast. The corresponding model is based on the transport equation with zero homogeneous
Dirichlet boundary conditions (zero concentration) at the anode, which is classically used for deriving the
asymptotic behavior valid at high flow rates. A numerical model, based on the finite volume method, is
introduced, which allows a proper description of the transport properties in the cell under both slow and
fast flow conditions. It is verified to predict the correct behavior for the asymptotic case and applied to
describe the temperature dependent transport behavior for more general temperature dependent set-ups.

Comparison between asymptotic models and the finite volume based numerical model reveals that
proper grid alignment is essential for correct asymptotic results. Properly aligned grids are constructed
which yield the correct asymptotic behavior for flow rates orders of magnitude larger than those used
in experiments. Second, using literature values for the model parameters (H2 diffusion coefficient, inlet
concentration of hydrogen) in the numerical model, we compared the numerical data with experimental
results and find good agreement in the qualitative features, but slightly higher anodic currents in the nu-
merical model than those measured. Furthermore, this comparison reveals that in the measured range of
flow rates, the cell operates in the transition regime between diffusive (low flow rates) and the asymptotic
behavior obtained at higher flow rates. As a consequence, we fit the model parameters to the measure-
ments. Fitting these parameters by comparison of calculated and experimentally determined limiting
currents leads to good agreement for temperature dependent parameters, described by an exponential
law for the diffusion coefficient (model (5.1)) and a constant value of the Henry constant (model (5.2)
and (5.3)). The established values of the diffusion coefficient agree with those reported in the literature,
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while the resulting inlet concentrations are slightly lower than those found in the literature. This was
tentatively attributed to a loss of H2 e.g. on the way from the supply bottle to the reaction cell or
remaining kinetic limitations.

The paper clearly demonstrates that the chosen numerical modeling approach properly describes both
the transport behavior derived from asymptotic theory and the experimental data. It is applicable also for
transport conditions which are not covered by the asymptotic theory, e.g., if the boundary layer thickness
exceeds the cell height. It thus allows the experimentalist to quickly decide whether the experiments
are performed under conditions where asymptotic theories can be applied. For the future, we plan to
extend this numerical model by including the reaction kinetics and to apply the combined modeling and
experimental approach to study the kinetics of electrocatalytic reactions where both reaction kinetics and
transport contribute to the measured Faradaic current and hence to the overall reaction rate. Another
direction of generalization is the inclusion of other cell geometries, which involves the numerical solution of
the Navier-Stokes equations, and a mass-conservative coupling to the numerical scheme for the transport
equation described in the present paper.
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Appendix A. Estimates of limiting current asymptotics for an infinite strip

For the purpose of easy reference, we derive the mass transfer estimate for the asymptotic of high
Peclet numbers. In appendix A, we deal with the idealized case of an electrode with finite length in flow
direction, while appendix B concerns a circular electrode. In the first case, the constellation allows a 2D
description.

The boundary layer theory for a constant shear rate case is due to Leveque [31]. Our derivation
follows that in ref. [47] (see also references cited therein). We consider the problem (3.2) in the two-
dimensional cross-section of an infinite strip described in Fig. 2 (top). Throughout the appendix, the
coordinate direction orthogonal to the electrode surface will be denoted by y instead of z.

A Taylor expansion allows to express the flow velocity near y = 0 using the shear rate β and its
derivative:

(A.1) vx = yβ(x), vy = −1
2
y2β′(x).

Close to the boundary, ∂2c
∂x2 is neglected, leading to the boundary layer equation

(A.2) −D
∂2c

∂y2
+ yβ

∂c

∂x
− 1

2
y2β′ = 0.

Defining the similarity variable

(A.3) ξ =
y
√

β

(9D
∫ x

0

√
βdx)

1
3

and setting c = c(ξ), a straightforward calculation gives

∂c

∂y
= c′

ξ

y
,

∂2c

∂y2
= c′′

ξ2

y2
,

∂c

∂x
= c′

ξβ′

2β
− c′

3Dξ4

y3β
.(A.4)

Using this ansatz, equation (A.2) becomes

c′′ − 3ξ2c′ = 0.(A.5)

It has the general solution

c(ξ) = C0 + C1

∫ ξ

0

e−x3
dx.(A.6)

Setting the boundary conditions c(0) = c0 and c(∞) = cI , we can express

c(ξ) =c0 + (cI − c0)

∫ ξ

0
e−x3

dx∫∞
0

e−x3dx
= c0 + (cI − c0)

γ( 1
3 , ξ3)

Γ( 1
3 )

.

Here, we use ∫ ξ

0

e−x3
dx =

1
3

∫ ξ3

0

t
1
3−1e−t dt =

1
3
γ(

1
3
, ξ3).(A.7)
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Γ(a) is the gamma function, and γ(a, x) is the incomplete gamma function [48]. Note that this function
is linear in the vicinity of ξ = 0 with

c′(0) =
(cI − c0)

Γ( 4
3 )

(A.8)

due to the recurrence equation Γ(a+1) = aΓ(a). Therefore, the mass transfer rate through the electrode
boundary can be calculated as

M(x) = D
∂c

∂y
|y=0 = Dc′(0)

√
β

(9D
∫ x

0

√
βdx)

1
3

= D
(cI − c0)

Γ( 4
3 )

√
β

(9D
∫ x

0

√
βdx)

1
3
.(A.9)

For a constant value of β we obtain

M(x) = D
(cI − c0)

Γ( 4
3 )

(
β

9Dx

) 1
3

.(A.10)

Integrating over electrode length L, and introducing the dimensionless Peclet number Pe = βL2

D , we
can express ML as [33]

ML = D(cI − c0)
3

1
3

2Γ( 4
3 )

(
βL2

D

) 1
3

= D(cI − c0)
A

L
Sh,(A.11)

where

Sh =
3

4
3

2Γ( 1
3 )

Pe
1
3 ≈ 0.8075491Pe

1
3(A.12)

is the dimensionless Sherwood number and A is the electrode surface, which in this case is equal to L.
In the case of Hagen-Poiseuille flow, we get β = 6 v̄

H = 4 v]

H . Therefore, using the estimate Γ( 4
3 ) =

0.8929795 [49], we arrive at

M(x) = D
(cI − c0)

Γ( 4
3 )

(
2v̄

3HDx

) 1
3

≈ 0.97827D(cI − c0)
( v̄

HDx

) 1
3

,(A.13)

see also [47].
The thickness δ of the boundary layer can be derived in the following way. ξ∗ is defined such that

c(ξ∗) = (1− ε)cI . From the definition of the similarity variable (A.3) in the case of constant β = 6v̄
H we

obtain

ξ∗ = δ

(
β

9Dx

) 1
3

and δ = ξ∗
(

9Dx

β

) 1
3

.(A.14)

Setting ε = 0.01, we estimate [49] that ξ∗ ≈ 1.41. Therefore,

δ ≈ 2.932
(

Dx

β

) 1
3

,(A.15)

and the maximal thickness of the boundary layer can be estimated as

δ] ≈= 2.932LPe−
1
3 .(A.16)

Appendix B. Limiting current asymptotic for a circular electrode

The case of a circular electrode constitutes a 3D problem, that cannot be reduced to 2D. Ignoring
lateral diffusion, we attempt to calculate the limiting current for a circular electrode by integrating
equation (A.11) over the electrode domain, using L = L(y) = 2(R2 − y2)

1
2 and (A.11), this results in

MR = D(cI − c0)
3

1
3

2
1
3 Γ( 4

3 )

(
β

D

) 1
3

∫ R

−R

(R2 − y2)
1
3 dy.(B.1)

According to mathematica [50], using the Gauss hypergeometric function 2F1 [48], the indefinite integral
is expressed as ∫

(R2 − y2)
1
3 dy =

3R2y − 3y3 + 2R2y(1− y2

R2 )
2
3 2F1( 1

2 , 2
3 , 3

2 ; y2

R2 )

5(R2 − y2)
2
3

(B.2)

=
3
5
y(R2 − y2)

1
3 +

2
5
yR

2
3 2F1(

1
2
,
2
3
,
3
2
;

y2

R2
).(B.3)
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The definite integral can be calculated as∫ R

−R

(R2 − y2)
1
3 dy =

4
5
R

5
3
Γ( 3

2 )Γ( 1
3 )

Γ(1)Γ( 5
6 )

=
2
5

√
πΓ( 1

3 )
Γ( 5

6 )
R

5
3(B.4)

using the special value 2F1(a, b, c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) [48]. This results in

MR =D(cI − c0)
(

β

D

) 1
3 2

2
3
√

π3
1
3 Γ( 1

3 )
5Γ( 4

3 )Γ( 5
6 )

R
5
3(B.5)

=D(cI − c0)πR

(
βR2

D

) 1
3 2

2
3 3

4
3

5
√

πΓ( 5
6 )

= D(cI − c0)
π

2
R

(
4βR2

D

) 1
3

2
3

4
3

5
√

πΓ( 5
6 )

.(B.6)

Setting Pe = βR2

D [33], we arrive at

MR = D(cI − c0)πRSh(B.7)

with [32, 33]

Sh =
3

4
3 2

2
3

5
√

πΓ( 5
6 )

Pe
1
3 =

2
1
3 3

4
3 Γ( 1

3 )
5πΓ( 2

3 )
Pe

1
3 ≈0.68658Pe

1
3 .(B.8)

The thickness of the boundary layer can also be estimated from (A.15). For a circular electrode, the
maximal length is 2R, the maximal thickness of the boundary layer is

δ] ≈= 3.694RPe−
1
3 .(B.9)
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