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An asymptotic analysis
for a generalized Cahn–Hilliard system

with fractional operators
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In the recent paper ‘Well-posedness and regularity for a generalized fractional Cahn–Hilliard
system’ (Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), 437-478), the same authors
have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which
nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth po-
tentials with indicator functions, were admitted. The operators appearing in the system equations
are fractional powers A2r and B2σ (in the spectral sense) of general linear operators A and B,
which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L2(Ω), for
some bounded and smooth domain Ω ⊂ R3, and have compact resolvents. Existence, unique-
ness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous
system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the
operator B2σ decreasingly tends to zero. We prove convergence to a phase relaxation problem
at the limit, and we also investigate this limiting problem, in which an additional term containing
the projection of the phase variable on the kernel of B appears.

1 Introduction

A research project that the three of us recently carried out in [15–17], deals with the well-posedness,
regularity and optimal control for the abstract evolutionary system

∂tϕ+ A2rµ = 0, (1.1)

τ∂tϕ+B2σϕ+ F ′(ϕ) = µ+ f, (1.2)

ϕ(0) = ϕ0, (1.3)

whereA2r andB2σ, with r > 0 and σ > 0, denote fractional powers of the linear operatorsA andB,
respectively. These operators are supposed to be densely defined in H := L2(Ω), with Ω ⊂ R3,
selfadjoint and monotone, and to have compact resolvents. The above system is a generalization of
the standard or viscous Cahn–Hilliard system (depending on whether τ = 0 or τ > 0), which models
a phase separation process taking place in the container Ω. The particular sample caseA2r = B2σ =
−∆ with homogeneous Neumann boundary conditions is included, indeed. The physical variables ϕ
and µ stand for the order parameter and the chemical potential, respectively, while f is a given source
term. Moreover, F denotes a double-well potential. We offer three physically significant examples for
F , namely,
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P. Colli, G. Gilardi, J. Sprekels 2

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.4)

Flog(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 , r ∈ (−1, 1)

2 ln(2)− c1 , r ∈ {−1, 1}
+∞ , r 6∈ [−1, 1]

, (1.5)

F2obs(r) := −c2r
2 if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1, (1.6)

where the constants ci in (1.5) and (1.6) satisfy c1 > 1 and c2 > 0, so that Flog and F2obs are
nonconvex. These potentials are called the classical regular potential, the logarithmic potential , and
the double obstacle potential , respectively. In irregular situations like (1.6), one has to split F into a
nondifferentiable convex part β̂ (the indicator function of [−1, 1], in the case of (1.6)) and a smooth
perturbation π̂. At the same time, one has to replace the derivative of the convex part by the sub-
differential and to interpret (1.2) as a differential inclusion or, equivalently, as a variational inequality
involving β̂ rather than its subdifferential, as actually done in [15].

Fractional versions of the Cahn–Hilliard system have been considered by different authors and are the
subject of several papers. As for references regarding well-posedness and related problems, a rather
large list of citations is given in [15]; we recall some concerned and recent literature also here, by
mentioning [1, 2, 8, 21, 30, 33]. Moreover, one can find a number of results regarding the asymptotic
behavior of solutions, for the standard Cahn–Hilliard equations, for variants thereof, and for systems
including the Cahn–Hilliard equations: without any claim of completeness, we can quote, e.g., [3, 6,
9–12, 14, 18–20, 23–25, 31, 32, 34, 35]. These works mainly deal with the asymptotics with respect to
parameters, or the study of the trajectories and related topics, or the existence of global or exponential
attractors and their properties. A special role in our citations is played by the paper [13], where the
longtime behavior of the solutions as well as an asymptotic analysis similar to the one we address
here are investigated for a fractional system involving the Allen–Cahn equation.

In this paper, we consider the viscous case τ > 0 within the system (1.1)–(1.3) and study the asymp-
totic behavior of the solution as the parameter σ involved in the operator B2σ tends to zero. In this
analysis, a crucial role is played by the orthogonal projection operator P : H → H on the kernel
kerB of B. Indeed, if (ϕσ, µσ) denotes the solution to system (1.1)–(1.3) for an arbitrary σ > 0, we
prove that (ϕσ, µσ) converges as σ ↘ 0 to a solution (ϕ, µ) to the system

∂tϕ+ A2rµ = 0, (1.7)

τ∂tϕ+ ϕ− Pϕ+ F ′(ϕ) = µ+ f, (1.8)

ϕ(0) = ϕ0. (1.9)

In general, the convergence occurs along a subsequence, but in the case when the limit pair (ϕ, µ)
uniquely solves (1.7)–(1.9), then the whole family (ϕσ, µσ) converges to (ϕ, µ) in the sense made
precise by the statement of Theorem 2.5 below. Moreover, let us point out that the component ϕ of the
pair (ϕ, µ) is always uniquely determined, as it follows from the continuous dependence result given
by Theorem 2.10. In the last part of the paper, we also discuss the limiting problem by proving a class
of regularity results, quite interesting in our opinion, for which we have to use some sophisticated tools
of interpolation theory. Our approach may be considered as an extension and further investigation with
respect to the asymptotic results of [13, Section 7], in which a phase relaxation problem is obtained at
the limit. Also in the present paper the equation (1.8) can be seen as an ordinary differential equation,
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Generalized fractional Cahn–Hilliard system 3

but with a nonlocal structure due to the presence of the projection operator P . Our contribution here
gives account of a new line of investigation that in our opinion should be further explored.

The rest of the paper is organized as follows: in the next Section 2, we list our assumptions and state
our results. The corresponding proofs are given in the last two Sections 3 and 4.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. Our framework is
the same as in [15], and we briefly recall it here, for the reader’s convenience. First of all, the open set
Ω ⊂ R3 is assumed to be bounded, connected and smooth. We use the notation

H := L2(Ω) (2.1)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product ofH . As for the operators involved
in our system, we postulate that

A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are

unbounded, monotone, selfadjoint, linear operators with compact resolvents. (2.2)

We denote by {λj} and {λ′j} the nondecreasing sequences of the eigenvalues of A and B, and by
{ej} and {e′j} the (complete) systems of the corresponding orthonormal eigenvectors, that is,

Aej = λjej, Be′j = λ′je
′
j, and (ei, ej) = (e′i, e

′
j) = δij for i, j = 1, 2, . . . , (2.3)

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ λ′1 ≤ λ′2 ≤ . . . , with lim
j→∞

λj = lim
j→∞

λ′j = +∞, (2.4)

where δij denotes the Kronecker index. The power Ar of A with an arbitrary positive real exponent r
is given by

Arv =
∞∑
j=1

λrj(v, ej)ej for v ∈ V r
A, where (2.5)

V r
A := D(Ar) =

{
v ∈ H :

∞∑
j=1

|λrj(v, ej)|2 < +∞
}
. (2.6)

In principle, we could endow V r
A with the standard graph norm in order to make V r

A a Hilbert space.
However, we will choose an equivalent Hilbert structure later on. In the same way, for σ > 0, we define
the power Bσ of B. For its domain we use the notation

V σ
B := D(Bσ), with the norm ‖ · ‖B,σ associated to the inner product

(v, w)B,σ := (v, w) + (Bσv,Bσw) for v, w ∈ V σ
B . (2.7)

At this point, we can start listing our assumptions. First of all,

r, σ0 and τ are fixed positive numbers, and σ ∈ (0, σ0) is a parameter. (2.8)

As for the linear operators, we postulate, besides (2.2), that

either λ1 > 0 or 0 = λ1 < λ2 and e1 is a constant; (2.9)

if λ1 = 0, then the constant functions belong to V σ
B . (2.10)
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In [15] some remarks are given on the above assumptions. Moreover, it is shown that an equivalent
Hilbert structure on V r

A is obtained by taking the norm defined by

‖v‖2
A,r :=


‖Arv‖2 =

∞∑
j=1

|λrj(v, ej)|2 if λ1 > 0,

|(v, e1)|2 + ‖Arv‖2 = |(v, e1)|2 +
∞∑
j=2

|λrj(v, ej)|2 if λ1 = 0,

(2.11)

and the corresponding inner product, which we term ( · , · )A,r. This equivalence is trivial if λ1 > 0. In
the opposite case λ1 = 0, with the notation

mean v :=
1

|Ω|

∫
Ω

v for v ∈ L1(Ω) (2.12)

for the mean value of the generic function v, the equivalence relies on the inequality

‖v‖ ≤ CP ‖Arv‖ for every v ∈ V r
A with mean v = 0 if λ1 = 0, (2.13)

which is of Poincaré type, since the term (v, e1) appearing in (2.11) and involving the constant func-
tion e1 (see (2.9)) is proportional to mean v. Next, the nonlinear potential F appearing in (1.2) is split
as follows:

F = β̂ + π̂, where (2.14)

β̂ : R→ [0,+∞] is convex, proper and l.s.c. with β̂(0) = 0; (2.15)

π̂ : R→ R is of class C1 with a Lipschitz continuous first derivative; (2.16)

it holds lim inf
|s|↗+∞

s−2F (s) > 0 . (2.17)

Notice that these assumptions are fulfilled by all of the important potentials (1.4)–(1.6). We set, for
convenience,

β := ∂β̂, π := π̂′, and Lπ := the Lipschitz constant of π . (2.18)

Moreover, we term D(β̂) and D(β) the effective domains of β̂ and β, respectively, and notice that
β is a maximal monotone graph in R × R. The same symbol β is used for the maximal monotone
operators induced in L2(Ω) and L2(Q). Finally, we introduce

P : H → H, the orthogonal projection operator on the kernel of B. (2.19)

As for the data of our problem, we allow the forcing term appearing in (1.2) to depend on σ and
assume that:

fσ ∈ L2(0, T ;H); (2.20)

ϕ0 ∈ V σ0
B and β̂(ϕ0) ∈ L1(Ω); (2.21)

if λ1 = 0 then m0 := meanϕ0 belongs to the interior of D(β). (2.22)

At this point, we make the notion of solution precise. In the following, we use the notations

Qt := Ω× (0, T ) for t ∈ (0, T ] and Q := QT . (2.23)

DOI 10.20347/WIAS.PREPRINT.2741 Berlin 2020



Generalized fractional Cahn–Hilliard system 5

A solution to our system is a pair (ϕσ, µσ) fulfilling the regularity requirements

ϕσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (2.24)

µσ ∈ L2(0, T ;V 2r
A ), (2.25)

β̂(ϕσ) ∈ L1(Q), (2.26)

and satisfying the following weak formulation of the equations (1.1)–(1.3):

(∂tϕσ(t), v) + (Arµσ(t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ), (2.27)

τ
(
∂tϕσ(t), ϕσ(t)− v

)
+
(
Bσϕσ(t), Bσ(ϕσ(t)− v)

)
+

∫
Ω

β̂(ϕσ(t)) +
(
π(ϕσ(t))− fσ(t), ϕσ(t)− v

)
≤
(
µσ(t), ϕσ(t)− v

)
+

∫
Ω

β̂(v)

for every v ∈ V σ
B and for a.a. t ∈ (0, T ), (2.28)

ϕσ(0) = ϕ0 . (2.29)

We notice that (2.26) implies that β̂(ϕσ(t)) ∈ L1(Ω) for a.a. t ∈ (0, T ), so that (2.28) has a precise

meaning. In the same inequality, one obviously has to read
∫

Ω
β̂(v) = +∞ if v ∈ V σ

B and β̂(v) 6∈
L1(Ω).

Remark 2.1. The regularity (2.25) of the second component of the solution is expected even though
(2.27) just suggests µσ ∈ L2(0, T ;V r

A). Indeed, for a.a. t ∈ (0, T ) the variational equation has the
form

(Aru,Arv) = (g, v) for every v ∈ V r
A,

with g ∈ H . From this, one easily derives that u ∈ V 2r
A and ‖A2ru‖ ≤ ‖g‖ (one can formally test by

A2ru, but a regularization procedure makes the argument rigorous). Since ∂tϕσ ∈ L2(0, T ;H), we
thus have the regularity (2.25) as well as

∂tϕσ + A2rµ = 0 a.e. in (0, T ), (2.30)

i.e., the equation holds in its strong form.

Remark 2.2. In the sequel, the symbol 1 denotes the constant function on Ω that takes the value 1
at every point. With this notation, we remark that (2.9) implies that Ar(1) vanishes if λ1 = 0, so that
(2.27) and (2.29) imply that

d

dt

∫
Ω

ϕσ(t) = 0 for a.a. t ∈ (0, T ), whence

meanϕσ(t) = m0 for every t ∈ [0, T ] (2.31)

in this case. On the contrary, if λ1 > 0, no conservation property is expected.

The well-posedness result (cf. [15, Thm. 2.6]) reads as follows:

Theorem 2.3. Let the assumptions (2.2), (2.8)–(2.10) and (2.14)–(2.17) on the structure of the system
and (2.20)–(2.22) on the data be fulfilled. Then, there exists a pair (ϕσ, µσ) satisfying (2.24)–(2.26)
and solving problem (2.27)–(2.29). Moreover, the component ϕσ of the solution is unique.

DOI 10.20347/WIAS.PREPRINT.2741 Berlin 2020
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Remark 2.4. No uniqueness for the component µσ of the solution can be expected, in general. How-
ever, in particular situations, µσ is unique, too. This is the case if λ1 > 0. Indeed, this assumption
implies that A2r is invertible so that (2.30) can be uniquely solved for µσ. On the contrary, the case
λ1 = 0 is much more delicate. A sufficient condition that ensures uniqueness for µσ is the following
(see [15, Rem. 4.1]): β̂ is an everywhere defined C1 function and ϕσ is bounded. We notice that the
same argument used in the quoted remark also applies if D(β) is an open interval and β is a contin-
uous single-valued function on it (like in the case (1.5) of the logarithmic potential) provided that all of
the values of ϕσ belong to a compact subset of D(β).

Let us come to the results of this paper. The first deals with the behavior of the solutions to problem
(2.27)–(2.29) as σ tends to zero.

Theorem 2.5. Besides the assumptions of Theorem 2.3, assume that

fσ → f strongly in L2(0, T ;H) as σ ↘ 0. (2.32)

Then, for every σ > 0 there is a solution (ϕσ, µσ) to problem (2.27)–(2.29) such that

ϕσ → ϕ weakly in H1(0, T ;H), (2.33)

µσ → µ weakly in L2(0, T ;V 2r
A ), (2.34)

Bσϕσ → ζ weakly star in L∞(0, T ;H), (2.35)

as σ ↘ 0, possibly along a subsequence, for some triplet (ϕ, µ, ζ) satisfying

ϕ ∈ H1(0, T ;H), µ ∈ L2(0, T ;V 2r
A ) and ζ ∈ L∞(0, T ;H) . (2.36)

Moreover, under the additional assumption,

for all v ∈ H such that β̂(v) ∈ L1(Ω) there exists a sequence {vn} ⊂ V σ0
B

such that vn → v in H and lim inf
n→∞

∫
Ω

β̂(vn) =

∫
Ω

β̂(v) , (2.37)

the following holds true: whenever (ϕσ, µσ) is a solution to problem (2.27)–(2.29) for σ > 0 and
(2.33)–(2.35) hold for some triplet (ϕ, µ, ζ), then ζ = ϕ−Pϕ and the pair (ϕ, µ) is a solution to the
system

(∂tϕ(t), v) + (Arµ(t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ), (2.38)

τ
(
∂tϕ(t), ϕ(t)− v

)
+
(
ϕ(t)− Pϕ(t), ϕ(t)− v

)
+

∫
Ω

β̂(ϕ(t)) +
(
π(ϕ(t))− f(t), ϕ(t)− v

)
≤
(
µ(t), ϕ(t)− v

)
+

∫
Ω

β̂(v)

for every v ∈ H and for a.a. t ∈ (0, T ), (2.39)

ϕ(0) = ϕ0 . (2.40)

Remark 2.6. The above statement looks a little involved. Besides the assumption (2.37) we are going
to discuss in a while, we point out that that no uniqueness for the solution (ϕσ, µσ) is required. On
the contrary, if additional assumptions were made that guarantee uniqueness for (ϕσ, µσ) (see Re-
mark 2.4) and (2.37) were assumed, then the statement would look much simpler, namely: as σ tends
to zero, the solution (ϕσ, µσ) converges (in the sense of (2.33)–(2.34), possibly along a subsequence)
to a solution (ϕ, µ) to problem (2.38)–(2.40). If, in addition, uniqueness holds for the solution (ϕ, µ)
to the limiting problem, then the whole family {(ϕσ, µσ)} converges to (ϕ, µ) as σ tends to zero.

DOI 10.20347/WIAS.PREPRINT.2741 Berlin 2020



Generalized fractional Cahn–Hilliard system 7

Remark 2.7. As observed in the forthcoming Remark 3.3, if (2.37) is not assumed, a weaker con-
clusion can anyway be obtained: the variational inequality (2.39) is fulfilled by all the test functions
v ∈ V σ0

B . Indeed, it is stressed in the remark that assumption (2.37) is used in the proof of Theo-
rem 2.5 just to extend to any v ∈ H the validity of (2.39) proved for test functions v ∈ V σ0

B .

Remark 2.8. So, if (2.37) is assumed, then every limiting pair (ϕ, µ) satisfies (2.39) with arbitrary test
functions v ∈ H . This has the following important consequence: there exists some ξ satisfying

ξ ∈ L2(0, T ;H) and ξ ∈ β(ϕ) a.e. in Q , (2.41)

τ∂tϕ+ ϕ− Pϕ+ ξ + π(ϕ) = µ+ f a.e. in Q . (2.42)

Indeed, if we set
ξ := µ− τ∂tϕ− ϕ+ Pϕ− π(ϕ) + f (2.43)

then ξ belongs to L2(0, T ;H), equation (2.42) is satisfied, and (2.39) becomes∫
Ω

β̂(ϕ(t) ≤
(
ξ, ϕ(t)− v

)
+

∫
Ω

β̂(v) for every v ∈ H and for a.a. t ∈ (0, T ). (2.44)

But this exactly means that ξ(t) ∈ ∂β̂(ϕ(t)) = β(ϕ(t)) for a.a. t ∈ (0, T ), i.e., the second condition
in (2.41). If instead (2.37) is not assumed, then (2.39) is satisfied only for test functions v ∈ V σ0

B ,
as said in Remark 2.7. Nevertheless, the definition (2.43) still yields ξ ∈ L2(0, T ;H) and implies
that (2.42) is satisfied. However, in this case, (2.44) is only true for v ∈ V σ0

B , and this means that for

a.a. t ∈ (0, T ) the function ξ(t) belongs to the subdifferential of the function V σ0
B 3 v 7→

∫
Ω
β̂(v).

Notice that this subdifferential is a subset of the dual space (V σ0
B )∗ and might contain elements that do

not belong to H (in the sense of the Hilbert triplet (V σ0
B , H, (V σ0

B )∗)). Moreover, if a function u ∈ H
belongs to such a subdifferential, then it is not clear whether it also belongs to the subdifferential in H
(i.e., that of the function H 3 v 7→

∫
Ω
β̂(v)), so that we cannot conclude that ξ ∈ β(ϕ) a.e. in Q.

About this matter, let us quote the paper [5] for related issues.

Remark 2.9. A sufficient condition for (2.37) to hold true is the following (satisfied in all of the concrete
cases, at least if σ0 is small enough):

H2(Ω) ⊂ V σ0
B . (2.45)

In order to construct the sequence {vn} for a given v ∈ H , we solve the Neumann boundary value
problem ∫

Ω

vnz +
1

n

∫
Ω

∇vn · ∇z =

∫
Ω

vz for every z ∈ H1(Ω). (2.46)

Since v ∈ H , we have that vn ∈ H2(Ω) and thus vn ∈ V σ0
B , by (2.45). Now, if we take z = vn in

(2.46) and use the Cauchy–Schwarz inequality in the right-hand side, then we easily find that

‖vn‖ ≤ ‖v‖ and ‖ 1
n
∇vn‖2 ≤ 1

n
‖v‖2 for all n ∈ N. (2.47)

Hence, there are a subsequence {vnk} and somew ∈ H such that vnk → w weakly inH . Moreover,
since 1

n
∇vn → (0, 0, 0) strongly in H × H × H by (2.47), we easily infer from (2.46) that w = v.

A fortiori, by the uniqueness of the limit point, the entire sequence {vn} converges weakly in H to v.
But then, by the weak sequential lower semicontinuity of norms,

‖v‖ ≤ lim inf
n→∞

‖vn‖ ≤ lim sup
n→∞

‖vn‖ ≤ ‖v‖,

where the latter inequality follows from (2.47). We thus have ‖v‖ = limn→∞ ‖vn‖, and the uniform
convexity of H yields that vn → v strongly in H .

DOI 10.20347/WIAS.PREPRINT.2741 Berlin 2020
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Now, denoting by β̂ε and βε the Moreau–Yosida ε-approximations of β̂ and β, respectively (see,
e.g., [7, p. 28]), we account for the definition of the subdifferential βε = ∂β̂ε and the identity obtained
by testing (2.46) by βε(vn) ∈ H1(Ω). We have that∫

Ω

β̂ε(vn)−
∫

Ω

β̂ε(v) ≤
∫

Ω

βε(vn)(vn − v) = − 1

n

∫
Ω

β′ε(vn)|∇vn|2 ≤ 0,

and we deduce that∫
Ω

β̂ε(vn) ≤
∫

Ω

β̂ε(v) ≤
∫

Ω

β̂(v), whence also

∫
Ω

β̂(vn) ≤
∫

Ω

β̂(v),

by letting ε tend to zero. This implies the inequality “≤” in (2.37). Since the opposite inequality clearly
follows from the lower semicontinuity of the function z 7→

∫
Ω
β̂(z) inH , we finally conclude the validity

of (2.37).

Notice that Theorem 2.3 ensures the existence of at least one solution to the limiting problem (2.38)–
(2.40) with the regularity specified in (2.36). Our next result deals with partial uniqueness and continu-
ous dependence of the solution. This will be proved in the last Section 4, which is devoted to the study
of the limiting problem.

Theorem 2.10. Let the general assumptions on the structure be fulfilled, and assume that ϕ0 satisfies
(2.21). Moreover, let fi ∈ L2(0, T ;H), i = 1, 2, be two choices of the forcing term f appearing in
(2.39), and let (ϕi, µi) ∈ H1(0, T ;H) × L2(0, T ;V 2r

A ) be two corresponding solutions to problem
(2.38)–(2.40) with f = fi. Then we have

‖ϕ1 − ϕ2‖L∞(0,T ;H) ≤ Ccd‖f1 − f2‖L2(0,T ;H), (2.48)

with a constant Ccd that depends only on τ , the Lipschitz constant Lπ, and T . In particular, if f ∈
L2(0, T ;H), then the first component ϕ of the solution (ϕ, µ) to problem (2.38)–(2.40) is uniquely
determined.

In our final result, we require some regularity of the data and further assumptions on the structure that
are satisfied in all of the concrete cases of interest, and we prove a regularity result. As a byproduct, we
obtain a sufficient condition for the uniqueness of the second component µ of the solution. Sufficient
conditions for uniqueness in a different direction are given in the forthcoming Remark 4.5.

Theorem 2.11. Let the general assumptions on the structure be fulfilled. In addition, assume that

V n
B ⊂ H1(Ω) for some positive integer n, (2.49)

V 2r
A ⊂ Hη(Ω) , f ∈ L2(0, T ;Hη(Ω)) and ϕ0 ∈ Hη(Ω) for some η ∈ (0, 1], (2.50)

and let (ϕ, µ) with
ϕ ∈ H1(0, T ;H) and µ ∈ L2(0, T ;V 2r

A ) (2.51)

be a solution to problem (2.38)–(2.40). Then ϕ enjoys the further regularity

ϕ ∈ L2(0, T ;Hη(Ω)), (2.52)

and there exists some ξ satisfying (2.41)–(2.42). In particular, even the second component µ of the
solution is unique if β is single-valued.
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Throughout the paper, we widely use the Cauchy–Schwarz and Young inequalities, the latter in the
form

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0. (2.53)

Moreover, in performing a priori estimates, we use the same small letter c for (possibly) different
constants that depend only on the structure of our system but σ, and on the assumptions on the data.
In particular, the values of c do not depend on the regularization parameter λ we introduce in the next
section. On the contrary, some precise constants are denoted by different symbols (see, e.g., (2.13),
where a capital letter with an index is used).

3 Asymptotic analysis

This section is devoted to the proof of Theorem 2.5. The construction of the solutions (ϕσ, µσ) men-
tioned in the statement relies on a priori estimates on the solutions to a regularized problem, as done
in [15] to solve problem (2.27)–(2.29) with a fixed σ. Hence, we briefly recall that regularization proce-
dure. For λ > 0 (small enough if needed), let βλ be the Yosida approximation of β at the level λ (see,
e.g., [7, p. 28]). The corresponding Moreau regularization β̂λ of β̂ is thus given by

β̂λ(s) =

∫ s

0

βλ(s
′) ds′ for s ∈ R,

since βλ(0) = 0 due to (2.15). Then, the regularized problem consists in looking for a pair (ϕλσ , µ
λ
σ)

satisfying the regularity requirements

ϕλσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ) and µλσ ∈ L2(0, T ;V 2r
A ), (3.1)

and solving the following system:

(∂tϕ
λ
σ (t), v) + (Arµλσ(t), Arv) = 0 for every v ∈ V r

A and for a.a. t ∈ (0, T ), (3.2)

τ
(
∂tϕ

λ
σ (t), v

)
+
(
Bσϕλσ (t), Bσv

)
+
(
βλ(ϕ

λ
σ (t)) + π(ϕλσ (t))− fσ(t), v

)
=
(
µλσ(t), v

)
for every v ∈ V σ

B and for a.a. t ∈ (0, T ), (3.3)

ϕλσ (0) = ϕ0 . (3.4)

We notice that the variational inequality (2.28) is replaced by the equality (3.3) in the approximating
problem (since βλ is an everywhere defined Lipschitz continuous function). The existence part of
Theorem 2.3 is proved by solving the above regularized problem (cf. [15, Thm. 5.1]) and showing that
its solution (ϕλσ , µ

λ
σ) converges as λ↘ 0 (in a suitable topology, possibly just along a subsequence)

to a pair (ϕσ, µσ) which turns out to solve problem (2.27)–(2.29). This solution, where now σ is a
varying parameter that we intend to approach zero, will be the good candidate for Theorem 2.5.

Before starting to estimate, it is worth observing that Remark 2.1 applies to both equations (3.2) and
(3.3). This is obvious for the former. As far as the latter is concerned, one has to replaceA and r byB
and σ, respectively, and notice that βλ is Lipschitz continuous, so that µλσ + fσ − βλ(ϕλσ )− π(ϕλσ ) ∈
L2(0, T ;H). This justifies the last regularity condition for ϕλσ in (3.1) (in contrast with (2.24)) and
implies the strong form of both equations, i.e.,

∂tϕ
λ
σ + A2rµλσ = 0 a.e. in (0, T ), (3.5)

τ∂tϕ
λ
σ +B2σϕλσ + βλ(ϕ

λ
σ ) + π(ϕλσ ) = µλσ + fσ a.e. in (0, T ) . (3.6)
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We also recall the convention on the symbol c for possibly different constants made at the end of
Section 2. Moreover, since (2.32) implies that fσ is bounded in L2(0, T ;H), we allow c to also depend
on a bound for the corresponding norm.

First a priori estimate. We test (3.2) written at the time s by µσ(s). At the same time, we insert
+ϕλσ (s) to both sides of (3.6) written at the time s and multiply it by ∂tϕλσ (s), then integrating over Ω.
We sum up both equalities, noting that a cancellation occurs, and integrate over (0, t) with respect
to s. We obtain∫ t

0

‖Arµλσ(s)‖2 ds+ τ

∫
Qt

|∂tϕλσ |2 +
1

2

(
‖ϕλσ (t)‖2 + ‖Bσϕλσ (t)‖2

)
+

∫
Ω

β̂λ(ϕ
λ
σ (t))

=
1

2

(
‖ϕ0‖2 + ‖Bσϕ0‖2

)
+

∫
Ω

β̂λ(ϕ0) +

∫
Qt

(fσ + ϕλσ − π(ϕλσ ))∂tϕ
λ
σ .

Even the last integral on the left-hand side is nonnegative. We estimate the terms on the right-hand
side by accounting for the assumptions (2.21) and (2.32) on ϕ0 and fσ, respectively, and owing to the
Lipschitz continuity of π. Recalling also (2.7), we have that

‖ϕ0‖2 + ‖Bσϕ0‖2 = ‖ϕ0‖2
B,σ =

∞∑
j=1

(1 + (λ′j)
2σ)|(ϕ0, e

′
j)|2

≤
∞∑
j=1

(2 + (λ′j)
2σ0)|(ϕ0, e

′
j)|2 ≤ 2‖ϕ0‖2

B,σ0
,

∫
Ω

β̂λ(ϕ0) ≤
∫

Ω

β̂(ϕ0) ,∫
Qt

(fσ + ϕλσ − π(ϕλσ ))∂tϕ
λ
σ ≤

τ

2

∫
Qt

|∂tϕλσ |2 + c

∫ t

0

(
‖fσ(s)‖2 + ‖ϕλσ (s)‖2 + 1

)
ds

≤ τ

2

∫
Qt

|∂tϕλσ |2 + c

∫ t

0

‖ϕλσ (s)‖2 ds+ c .

Therefore, by rearranging and applying the Gronwall lemma, we conclude that

‖Arµλσ‖L2(0,T ;H) + ‖ϕλσ ‖H1(0,T ;H) + ‖ϕλσ ‖L∞(0,T ;V σB ) + ‖β̂λ(ϕλσ )‖L∞(0,T ;L1(Ω)) ≤ c . (3.7)

From this and (3.5) we deduce that

‖A2rµλσ‖L2(0,T ;H) ≤ c . (3.8)

Second a priori estimate. Our aim is to improve the estimate concerning µλσ. Indeed, for the follow-
ing we need that

‖µλσ‖L2(0,T ;V rA) ≤ c . (3.9)

We notice at once that this and (3.8) would imply that

‖µλσ‖L2(0,T ;V 2r
A ) ≤ c . (3.10)

The desired estimate trivially follows from (3.7) if λ1 > 0. So, we now deal with the other case λ1 = 0
and apply a well-known trick based on the assumption (2.22) and the consequent inequality

βλ(s)(s−m0) ≥ δ0|βλ(s)| − C0, (3.11)
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which holds for some C0 > 0 and every s ∈ R and λ ∈ (0, 1), where δ0 is such that the interval
[m0−δ0,m0+δ0] is included in the interior ofD(β) (cf. [28, Appendix, Prop. A.1]; see also [22, p. 908]
for a detailed proof). Inequality (3.11) implies that(

βλ(ϕ
λ
σ (t)), ϕλσ (t)−m01

)
≥ δ0 ‖βλ(ϕλσ (t))‖L1(Ω) − c for a.a. t ∈ (0, T ), (3.12)

and this can be used when testing equation (3.3) by ϕλσ −m01. To this concern, we recall that 1 ∈ V σ
B

by (2.10) and notice that the conservation property (2.31) also holds for ϕλσ , i.e., meanϕλσ (t) = m0

for every t ∈ [0, T ]. So, for a.a. t ∈ (0, T ), we test (3.3) by ϕλσ (t) − m01 and rearrange a little.
However, we omit writing the time t for a while. We also write k instead of k1 if k is a real number. We
have a.e. in (0, T ) that

‖Bσϕλσ ‖2 +
(
βλ(ϕ

λ
σ ), ϕλσ −m0

)
= (µλσ, ϕ

λ
σ −m0) +

(
fσ − τ∂tϕλσ − π(ϕλσ ), ϕλσ −m0

)
+ (Bσϕλσ , B

σm0). (3.13)

The left-hand side of this equality can be estimated from below by virtue of (3.12). The first term on
the right-hand side can be dealt with by accounting for the Poincaré type inequality (2.13) as follows:

(µλσ, ϕ
λ
σ −m0) = (µλσ −meanµλσ , ϕ

λ
σ −m0) ≤ ‖µλσ −meanµλσ‖ ‖ϕλσ −m0‖

≤ c ‖Ar(µλσ −meanµλσ)‖ ‖ϕλσ −m0‖ = c ‖Arµλσ‖ ‖ϕλσ −m0‖ ,

the last equality being due toAr1 = 0. Therefore, by recalling (3.7), we have that the whole right-hand
side of (3.13) is bounded in L2(0, T ) and conclude that

‖βλ(ϕλσ )‖L2(0,T ;L1(Ω)) ≤ c, whence immediately ‖mean βλ(ϕ
λ
σ )‖L2(0,T ) ≤ c .

At this point, we can test the second equation (3.3) by 1 and deduce a bound for meanµλσ inL2(0, T ).
This and (3.7) imply (3.9). As already noticed, (3.10) is proved as well.

First conclusion. As already remarked, in the proof of [15, Thm. 5.1] with a fixed σ it is shown that
(ϕλσ , µ

λ
σ) converges as λ tends to zero (in a proper topology, possibly along a subsequence) to some

pair (ϕσ, µσ), and it is proved that such a pair is a solution to problem (2.27)–(2.29). We prove that
the family {(ϕσ, µσ)}σ>0 constructed in this way satisfies all the requirement of the statement. The
starting point is the conservation of the bounds just proved in the limit as λ↘ 0. We have that

‖ϕσ‖H1(0,T ;H) + ‖µσ‖L2(0,T ;V 2r
A ) + ‖Bσϕσ‖L∞(0,T ;H) ≤ c ,

and we conclude that (2.33)–(2.35) hold true for some triplet (ϕ, µ, ζ) satisfying (2.36). This ends the
proof of the first part of the statement.

Let us come to the second part. So, we assume that {(ϕσ, µσ)}σ>0 is a family of solutions to problem
(2.27)–(2.29) and that (2.33)–(2.35) hold true for some triplet (ϕ, µ, ζ) satisfying (2.36) as σ ↘ 0,
possibly for a subsequence (however, we always write σ instead of the elements of some subsequence
{σk}, for brevity). We have to prove that ζ = ϕ− Pϕ and that (ϕ, µ) solves problem (2.38)–(2.40),
by also assuming (2.37).

First characterization. We are going to show that ζ = ϕ− Pϕ by proving that

Bσϕσ → ϕ− Pϕ weakly in L2(Q). (3.14)

To this end, we use the eigenvalues λ′j and the eigenfunctions e′j ofB and notice that e′j is orthogonal
to kerB if λ′j > 0 while λ′j = 0 if e′j ∈ kerB. We set, for convenience,

Aσj (ψ) :=

∫ T

0

(
Bσϕσ(t), ψ(t) e′j

)
dt = (λ′j)

σ

∫ T

0

(
ϕσ(t), ψ(t) e′j

)
dt
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for ψ ∈ L2(0, T ) and j = 1, 2, . . . , and we notice that (3.14) follows if we prove that

lim
σ↘0

Aσj (ψ) = A0
j(ψ) :=

∫ T

0

(
ϕ(t)− Pϕ(t), ψ(t) e′j

)
dt (3.15)

for every ψ and j as before, since the linear combinations of the products ψ e′j of such real functions
and eigenfunctions ofB form a dense subspace of L2(Q). So, we fix ψ and j. As for j, we distinguish
two cases. Assume first that λ′j > 0. Then, (λ′j)

σ tends to 1 as σ tends to zero. Moreover, (2.33) holds.
We thus deduce that

lim
σ↘0

Aσj (ψ) =

∫ T

0

(
ϕ(t), ψ(t) e′j

)
dt = A0

j(ψ),

the last equality being due to the orthogonality between Pϕ(t) and e′j . Assume now that λj = 0.
Then, we trivially have that Aσj (ψ) = 0 for every σ > 0. On the other hand, we also have that
A0
j(ψ) = 0 since e′j ∈ kerB and ϕ(t)−Pϕ(t) is orthogonal to kerB for a.a. t ∈ (0, T ). Therefore,

(3.15) is proved in any case.

Remark 3.1. The same argument shows that, for every v ∈ L2(0, T ;V σ0
B ), the weak convergence

Bσv → v − Pv in L2(0, T ;H) holds true as σ tends to zero. In fact, the convergence is strong:

Bσv → v − Pv strongly in L2(0, T ;H) for every v ∈ L2(0, T ;V σ0
B ). (3.16)

Indeed, for a.a. t ∈ (0, T ), Bσv(t) → v(t) − Pv(t) strongly in H by [13, Lem. 7.5]. Moreover, the
Lebesgue dominated convergence theorem can be applied since

‖Bσv(t)‖2 =
∞∑
j=1

(λ′j)
2σ|(v(t), e′j)|2 ≤

∞∑
j=1

(1 + (λ′j)
2σ0)|(v(t), e′j)|2 = ‖v(t)‖2

B,σ0

for a.a. t ∈ (0, T ) and every σ ∈ (0, σ0], and ‖v( · )‖2
B,σ0

belongs to L1(0, T ).

To conclude the proof, we have to show that (ϕ, µ) solves problem (2.38)–(2.40) under the further
assumption (2.37). The first equation obviously follows from (2.27) due to (2.33)–(2.34), and the initial
condition (2.40) is satisfied as well since (2.33) implies weak convergence in C0([0, T ];H). So, it
remains to verify the variational inequality (2.39). To this concern, it is convenient to give different
formulations of both (2.28) and (2.39). This procedure is based on the lemma stated below, which
follows from the classical theory of variational inequalities of elliptic type in the framework of Convex
Analysis. However, for the reader’s convenience, we also give a simple proof.

Lemma 3.2. Let V be a Hilbert space, V ∗ its dual space, 〈 · , · 〉 the duality pairing between V ∗

and V , and a : V × V → R a continuous bilinear form. Moreover, assume that

γ̂1 : V → (−∞,+∞] is convex, proper and lower semicontinuous, (3.17)

γ̂2 : V → R is convex and Gâteaux differentiable,

and γ2 : V → V ∗ is its Gâteaux derivative. (3.18)

Then, for every u ∈ V and g ∈ V ∗, the variational inequalities

a(u, u− v) + γ̂1(u) + 〈γ2(u), u− v〉 ≤ 〈g, u− v〉+ γ̂1(v) for every v ∈ V , (3.19)

a(u, u− v) + γ̂1(u) + γ̂2(u) ≤ 〈g, u− v〉+ γ̂1(v) + γ̂2(v) for every v ∈ V , (3.20)

are equivalent to each other.
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Proof. Assume (3.19) and let v ∈ V . Since γ̂2 is convex and γ2 is its derivative, we have that

γ̂2(u) ≤ 〈γ2(u), u− v〉+ γ̂2(v),

whence the chain

a(u, u− v) + γ̂1(u) + γ̂2(u)

≤ a(u, u− v) + γ̂1(u) + 〈γ2(u), u− v〉+ γ̂2(v)

≤ 〈g, u− v〉+ γ̂1(v) + γ̂2(v)

follows, that is, (3.20). Assume now (3.20) and let v ∈ V . By writing (3.20) with w in place of v and
then choosing w = u+ ϑ(v − u) with ϑ ∈ (0, 1) (whence u− w = ϑ(u− v)), we obtain that

ϑ a(u, u− v) + γ̂1(u) + γ̂2(u) ≤ ϑ 〈g, u− v〉+ γ̂1(u+ ϑ(v − u)) + γ̂2(u+ ϑ(v − u)).

By rearranging and dividing by ϑ, we deduce that

a(u, u− v) +
γ̂1(u)− γ̂1(u+ ϑ(v − u))

ϑ
+
γ̂2(u)− γ̂2(u+ ϑ(v − u))

ϑ
≤ 〈g, u− v〉 .

On the other hand, the convexity of γ̂1 implies that

γ̂1(u) ≤ γ̂1(u)− γ̂1(u+ ϑ(v − u))

ϑ
+ γ̂1(v) .

By combining these inequalities, we deduce that

a(u, u− v) + γ̂1(u) +
γ̂2(u)− γ̂2(u+ ϑ(v − u))

ϑ
≤ 〈g, u− v〉+ γ̂1(v),

and letting ϑ tend to zero, we obtain (3.19).

As already announced, we use this lemma to replace both (2.28) and (2.39) by different variational
inequalities.

First alternative formulation. We first observe that (2.28) for every v ∈ V σ
B as required implies

the same inequality for every v ∈ V σ0
B since V σ0

B ⊂ V σ
B . Now, by recalling that Lπ is the Lipschitz

constant of π, we replace the latter variational inequality by an equivalent one by applying lemma with
the choices

V = V σ0
B , a(u, v) =

∫
Ω

(Bσu,Bσv)− Lπ(u, v) for u, v ∈ V ,
γ̂1(v) =

∫
Ω
β̂(v) and γ̂2(v) =

∫
Ω

(
π̂(v) + Lπ

2
v2
)

for v ∈ V ,
and, for a.a. t ∈ (0, T ), u = ϕσ(t) and g = µσ(t) + fσ(t)− τ∂tϕσ(t) .

Notice that γ̂2 actually is convex (since π′ + Lπ ≥ 0 a.e. in R) and Gâteaux differentiable and that
its derivative γ2 is given by 〈γ2(u), v〉 = (π(u) + Lπu, v). Hence, we deduce that the variational
inequality (2.28) required just for every v ∈ V σ0

B is equivalent to

τ
(
∂tϕσ(t), ϕσ(t)− v

)
+
(
Bσϕσ(t), Bσ(ϕσ(t)− v)

)
− Lπ

(
ϕσ(t), ϕσ(t)− v

)
+

∫
Ω

α̂(ϕσ(t)) ≤
(
µσ(t) + fσ(t), ϕσ(t)− v

)
+

∫
Ω

α̂(v)

for every v ∈ V σ0
B and for a.a. t ∈ (0, T ), (3.21)
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where, for brevity, we have set

α̂(s) := β̂(s) + π̂(s) +
Lπ
2
s2 for s ∈ R . (3.22)

We fix what we have established:

the variational inequality (2.28) implies (3.21). (3.23)

Second alternative formulation. Similarly, we would like to show that (2.39) is equivalent to

τ
(
∂tϕ(t), ϕ(t)− v

)
+
(
ϕ(t)− Pϕ(t), ϕ(t)− v

)
− Lπ

(
ϕ(t), ϕ(t)− v

)
+

∫
Ω

α̂(ϕ(t)) ≤
(
µ(t) + f(t), ϕ(t)− v

)
+

∫
Ω

α̂(v)

for every v ∈ V σ0
B and for a.a. t ∈ (0, T ). (3.24)

Unfortunately, this does not seem to be true, in general, and we prove the following:

the variational inequality (2.39) with v varying in V σ0
B is equivalent to (3.24). (3.25)

To this aim, it suffices to apply the lemma with the same γ̂i as before and obvious u and g, but with
V = V σ0

B and a defined by a(u, v) := (u− Pu, v)− Lπ(u, v) for u, v ∈ V σ0
B .

Conclusion of the proof. In view of (3.23) and (3.25), our aim is first to verify (3.24) by starting from
(3.21) (implied by (2.28)), while (2.39), as it is, will be proved at the end by accounting for (2.37). How-
ever, the left-hand side of (3.21) contains the quadratic term associated to the map v 7→ −Lπ

∫
Ω
|v|2.

This term is unpleasant since the related map is concave. To get rid of it, we adapt the procedure
introduced in [13] to the present case. We set, for convenience,

κ :=
Lπ
τ
, ρσ(t) := e−κtϕσ(t) and ρ(t) := e−κtϕ(t) for a.a. t ∈ (0, T ), (3.26)

and we notice that w 7→
∫
Q
e−2κtw2 is the square of an equivalent norm in L2(Q). At this point, we

pick an arbitrary v ∈ L2(0, T ;V σ0
B ), write (3.21) by taking v(t) as test function, multiply by e−2κt, and

integrate over (0, T ). We obtain∫ T

0

τ
(
e−κt

(
∂tϕσ(t)− κϕσ(t)

)
, e−κt(ϕσ − v)(t)

)
dt+

∫ T

0

e−2κt‖Bσϕσ(t)‖2 dt

−
∫ T

0

e−2κt
(
Bσϕσ(t), Bσv(t)

)
dt+

∫
Q

e−2κt α̂(ϕσ)

≤
∫ T

0

e−2κt
(
µσ(t) + fσ(t), (ϕσ − v)(t)

)
dt+

∫
Q

e−2κt α̂(v) . (3.27)

Well, we want to take the limit as σ tends to zero in this inequality. As for the first term on the left-hand
side, we have that∫ T

0

τ
(
e−κt

(
∂tϕσ(t)− κϕσ(t)

)
, e−κt(ϕσ − v)(t)

)
dt =

∫ T

0

τ
(
∂tρσ(t), ρσ(t)− e−κtv(t)

)
dt

=
τ

2
‖ρσ(T )‖2 − τ

2
‖ϕ0‖2 −

∫ T

0

τ
(
∂tρσ(t), e−κtv(t)

)
dt .
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By observing that ρσ converges to ρ weakly in H1(0, T ;H), thus weakly in C0([0, T ];H), so that
ρσ(T ) converges to ρ(T ) weakly in H , we therefore have that

lim inf
σ↘0

∫ T

0

τ
(
e−κt

(
∂tϕσ(t)− κϕσ(t)

)
, e−κt(ϕσ − v)(t)

)
dt

≥ τ

2
‖ρ(T )‖2 − τ

2
‖ϕ0‖2 −

∫ T

0

τ
(
∂tρ(t), e−κtv(t)

)
dt

=

∫ T

0

τ
(
e−κt

(
∂tϕ(t)− κϕ(t)

)
, e−κt(ϕ− v)(t)

)
dt .

Next, by (3.14) and the lower semicontinuity of the norms, we have that

lim inf
σ↘0

∫ T

0

e−2κt‖Bσϕσ(t)‖2 dt ≥
∫ T

0

e−2κt‖(ϕ− Pϕ)(t)‖2 dt .

By also recalling (3.16), we can write

lim
σ↘0

∫ T

0

e−2κt
(
Bσϕσ(t), Bσv(t)

)
dt =

∫ T

0

e−2κt
(
(ϕ− Pϕ)(t), (v − Pv)(t)

)
dt .

By taking the difference, we deduce that

lim inf
σ↘0

(∫ T

0

e−2κt‖Bσϕσ(t)‖2 dt−
∫ T

0

e−2κt
(
Bσϕσ(t), Bσv(t)

)
dt
)

≥
∫ T

0

e−2κt‖(ϕ− Pϕ)(t)‖2 dt−
∫ T

0

e−2κt
(
(ϕ− Pϕ)(t), (v − Pv)(t)

)
=

∫ T

0

e−2κt
(
(ϕ− Pϕ)(t), (ϕ− Pϕ)(t)− (v − Pv)(t)

)
dt

=

∫ T

0

e−2κt
(
(ϕ− Pϕ)(t), (ϕ− v)(t)

)
dt ,

the last equality being due to the orthogonality between (ϕ − Pϕ)(t) ∈ (kerB)⊥ and (Pϕ −
Pv)(t) ∈ kerB. Moreover, by observing that the functional w 7→

∫
Q
e−2κtα̂(w) is lower semicon-

tinuous on L2(Q), and recalling that ϕσ converges to ϕ weakly in L2(Q), we deduce that

lim inf
σ↘0

∫
Q

e−2κtα̂(ϕσ) ≥
∫
Q

e−2κtα̂(ϕ) .

This ends the treatment of the terms on the left-hand side of (3.27). Concerning the right-hand side,
we have to overcome the difficulty due to the coupling between µσ and ϕσ. To this end, we introduce
the notation

(1 ∗ w)(t) :=

∫ t

0

w(s) ds for every w ∈ L2(0, T ;H) and t ∈ [0, T ]

and deduce from (2.30) that
ϕσ + A2r(1 ∗ µσ) = ϕ0 .

Hence, we have that∫ T

0

e−2κt
(
µσ(t), (ϕσ − v)(t)

)
dt =

∫ T

0

e−2κt(µσ(t), ϕ0) dt

−
∫ T

0

e−2κt
(
Arµσ(t), Ar(1 ∗ µσ)(t)

)
dt−

∫ T

0

e−2κt
(
µσ(t), v(t)

)
dt .
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Now, from (2.34) we deduce that 1 ∗ µσ converges to 1 ∗ µ weakly in H1(0, T ;V 2r
A ). Since the

embedding H1(0, T ;V 2r
A ) ⊂ L2(0, T ;V r

A) is compact, we infer that 1 ∗ µσ converges to 1 ∗ µ
strongly in L2(0, T ;V r

A). In view of (2.38) and (2.40), we deduce that

lim
σ↘0

∫ T

0

e−2κt
(
µσ(t), (ϕσ − v)(t)

)
dt =

∫ T

0

e−2κt(µ(t), ϕ0) dt

−
∫ T

0

e−2κt
(
Arµ(t), Ar(1 ∗ µ)(t)

)
dt−

∫ T

0

e−2κt
(
µ(t), v(t)

)
dt .

=

∫ T

0

e−2κt
(
µ(t), (ϕ− v)(t)

)
dt .

Finally, by recalling (2.32), we see that the term involving fσ and the last one of (3.27) do not give any
trouble. Therefore, we conclude that∫ T

0

τ
(
e−κt

(
∂tϕ(t)− κϕ(t)

)
, e−κt(ϕ− v)(t)

)
dt

+

∫ T

0

e−2κt
(
(ϕ− Pϕ)(t), (ϕ− v)(t)

)
dt+

∫
Q

e−2κt α̂(ϕσ)

≤
∫ T

0

e−2κt
(
µ(t) + f(t), (ϕ− v)(t)

)
dt+

∫
Q

e−2κt α̂(v) , (3.28)

and this holds for every v ∈ L2(0, T ;V σ0
B ). On the other hand, (3.28) is equivalent to

τ
(
e−κt

(
∂tϕ(t)− κϕ(t)

)
, e−κt(ϕ(t)− v)(t)

)
+ e−2κt

(
(ϕ− Pϕ)(t), ϕ(t)− v

)
+

∫
Q

e−2κt α̂(ϕσ)

≤ e−2κt
(
µ(t) + f(t), ϕ(t)− v

)
+

∫
Ω

e−2κt α̂(v)

for a.a. t ∈ (0, T ) and every v ∈ V σ0
B . By multiplying by e2κt and recalling that κ = Lπ/τ , we obtain

(3.24) as claimed. Recalling (3.25), we have proved that the variational inequality (2.39) is satisfied for
every test function v ∈ V σ0

B . At this point, we account for (2.37), not yet used up to now, and show

that (2.39) actually holds for every v ∈ H . To this end, for a given v ∈ H with β̂(v) ∈ L1(Ω) without
loss of generality, it suffices to take a sequence {vn} given by (2.37), test (3.24) by vn and let n tend
to infinity. One obtains (3.24) for v without any trouble. This completes the proof.

Remark 3.3. Going back to the above proof, one justifies what has been announced in Remark 2.7:
if (2.37) is not assumed, one anyway arrives at the variational inequality (2.39) required for every
v ∈ V σ0

B instead of for every v ∈ H . Indeed, (2.37) has been only used at the end, in order to extend
to any v ∈ H the validity of (2.39) already proved for test functions v ∈ V σ0

B .

4 The limiting problem

In this section, we prove Theorem 2.10 and Theorem 2.11. As far as the former is concerned, some
preliminaries are needed. We refer to [15, Sect. 3] for more details. We set

V −rA :=
(
V r
A

)∗
and ‖ · ‖A,−r := the dual norm of ‖ · ‖A,r ,
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Generalized fractional Cahn–Hilliard system 17

and we use the symbol 〈 · , · 〉A,r for the duality pairing between V −rA and V r
A. It is understood that H

is identified with a subspace of V −rA in the usual way, i.e., in order that 〈v, w〉A,r = (v, w) for every
v ∈ H and w ∈ V r

A. Moreover, we introduce the subspaces V ±r0 of V ±rA by setting

V r
0 := V r

A and V −r0 := V −rA if λ1 > 0,

V r
0 := {v ∈ V r

A : mean v = 0} and V −r0 := {ψ ∈ V −rA : 〈ψ, 1〉A,r = 0} if λ1 = 0 .

Next, we define A2r
0 : V r

0 → V −rA by the formula

〈A2r
0 v, w〉A,r = (Arv,Arw)A,r for every v ∈ V r

0 and w ∈ V r
A.

It turns out that the range of A2r
0 is V −r0 and that A2r

0 is an isomorphism between V r
0 and V −r0 . Thus,

we can set A−2r
0 := (A2r

0 )−1 and obtain an isomorphism between V −r0 and V r
0 . It also turns out that(

ArA−2r
0 ψ,Arv) = 〈ψ, v〉A,r for every ψ ∈ V −r0 and v ∈ V r

A. (4.1)

Finally, the following formula holds true:

〈∂tψ,A−2r
0 ψ〉A,r =

1

2

d

dt
‖ψ‖2

A,−r a.e. in (0, T ), for every ψ ∈ H1(0, T ;V −r0 ).

In particular,∫ t

0

〈∂tψ(s), A−2r
0 ψ(s)〉A,r ds ≥ 0 for every ψ ∈ H1(0, T ;V −r0 ) with ψ(0) = 0. (4.2)

Proof of Theorem 2.10. We just prove the continuous dependence part, since uniqueness for the
first component follows as a consequence. We set, for convenience, f := f1−f2, ϕ := ϕ1−ϕ2, and
µ := µ1 − µ2. Now, we write equation (2.38) at the time s for these solutions and take the difference.
Then, we test the resulting identity by v = A−2r

0 ϕ(s), where we observe that ϕ(s) ∈ V −r0 , since
ϕ ∈ C0([0, T ];H) by (2.36) and meanϕ(s) = 0 if λ1 = 0 by the conservation property (2.31), so
that v is a well-defined element of V r

A. Moreover, we have that A−2r
0 ϕ ∈ L∞(0, T ;V r

A). Integrating
over (0, t) with respect to s, where t ∈ (0, T ) is arbitrary, we obtain the identity∫ t

0

〈∂tϕ(s), A−2r
0 ϕ(s)〉A,r ds+

∫ t

0

(
Arµ(s), ArA−2r

0 ϕ(s)
)
ds = 0 .

Now, the first term on the left-hand side is nonnegative by (4.2). Hence, by also noting that µ ∈
L2(0, T ;V r

A) and applying (4.1), we deduce that∫ t

0

(ϕ(s), µ(s)) ds ≤ 0 . (4.3)

At the same time, we write (2.39) for fi and (ϕi, µi), i = 1, 2, test them by ϕ2 and ϕ1, respec-
tively, add the resulting inequalities to each other, and integrate over (0, t) as before. Then, the terms

involving β̂ cancel out. By denoting by I the identity map of H and rearranging, we have that

τ

2
‖ϕ(t)‖2 +

∫ t

0

(
(I − P )ϕ(s), ϕ(s)

)
ds

≤
∫ t

0

(
f(s) + µ(s), ϕ(s)

)
ds −

∫ t

0

(
π(ϕ1(s))− π(ϕ2(s)), ϕ(s)

)
ds . (4.4)

DOI 10.20347/WIAS.PREPRINT.2741 Berlin 2020



P. Colli, G. Gilardi, J. Sprekels 18

We observe that I − P is the projection operator on the orthogonal subspace (kerB)⊥. It follows
that ((I − P )v, v) = ((I − P )v, (I − P )v) ≥ 0 for every v ∈ H , so that the second term on
the left-hand side of (4.4) is nonnegative. By adding (4.3) and (4.4) to each other, and accounting for
this observation, an obvious cancellation, the Lipschitz continuity of π and the Schwarz and Young
inequalities, we deduce that

τ

2
‖ϕ(t)‖2 ≤ 1

4

∫ t

0

‖f(s)‖2 ds+ (1 + Lπ)

∫ t

0

‖ϕ(s)‖2 ds.

By applying the Gronwall lemma, we conclude that the desired estimate (2.48) holds true with a con-
stant Ccd as in the statement. �

Finally, we prove Theorem 2.11. The proof we give is based on the study of the auxiliary problem of
finding φ ∈ H1(0, T ;H) satisfying

τ
(
∂tφ(t), φ(t)− v

)
+
(
φ(t)− Pφ(t), φ(t)− v

)
+

∫
Ω

β̂(φ(t)) +
(
π(φ(t))− π(0), φ(t)− v

)
≤
(
g(t), φ(t)− v

)
+

∫
Ω

β̂(v) for every v ∈ H and for a.a. t ∈ (0, T ), (4.5)

φ(0) = φ0, (4.6)

for given
g ∈ L2(0, T ;H) and φ0 ∈ H . (4.7)

We have subtracted the constant π(0) to π(φ(t)) in (4.5) in order to use the inequality |π(s)−π(0)| ≤
Lπ |s| for s ∈ R without any additive constant. This is needed in the sequel, indeed. Since β̂ is convex,
P is linear and π is Lipschitz continuous, this problem has a unique solution φ provided that the initial
datum also satisfies

β̂(φ0) ∈ L1(Ω) . (4.8)

In the forthcoming Lemma 4.2, we prove a regularity result by applying a particular case of [29, Sect. I,
Thm. 2] which we present here in the form of a lemma.

Lemma 4.1. Let A0, A1, B0 and B1 be four Banach spaces with the continuous embeddings A0 ⊂
A1 and B0 ⊂ B1, and let T : A1 → B1 be a nonlinear operator satisfying Tv ∈ B0 for every
v ∈ A0. Assume that

‖Tu− Tv‖B1 ≤ C1 ‖u− v‖A1 for every u, v ∈ A1, (4.9)

‖Tv‖B0 ≤ C2‖v‖A0 for every v ∈ A0, (4.10)

for some positive constants C1 and C2. Then, for every ϑ ∈ (0, 1) and p ∈ [1,+∞], we have that

Tv ∈ (B0,B1)ϑ,p and ‖Tv‖(B0,B1)ϑ,p ≤ CCϑ
1C

1−ϑ
2 ‖v‖(A0,A1)ϑ,p

for every v ∈ (A0,A1)ϑ,p, (4.11)

with a constant C that does not depend on T.

In the above lemma, the symbol ‖ · ‖X stands for the norm in the generic Banach spaceX . The same
convention is followed in the rest of the section, where ‖ · ‖X also denotes the norm in the power X3

(however, we keep the short notation ‖ · ‖ without indices if X = H). Moreover, (X, Y )ϑ,p is the real
interpolation space between the Banach spaces X and Y (for basic definitions and properties see,
e.g., [27, Sect. 1.1]).
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Lemma 4.2. Let the general assumption on the structure be fulfilled and assume that the data g and
φ0 satisfy

g ∈ L2(0, T ;Hη(Ω)) and φ0 ∈ Hη(Ω) (4.12)

for some η ∈ (0, 1], as well as (4.8). Then, the solution φ to problem (4.5)–(4.6) enjoys the further
regularity

φ ∈ L2(0, T ;Hη(Ω)), (4.13)

and there exists some ξ satisfying

ξ ∈ L2(0, T ;H) and ξ ∈ β(φ) a.e. in Q , (4.14)

τ∂tφ+ φ− Pφ+ ξ + π(φ)− π(0) = g a.e. in Q . (4.15)

Proof. By still denoting by β̂λ and βλ the Moreau–Yosida approximations of β̂ and β, respectively, we
introduce the approximating problem of finding φλ ∈ H1(0, T ;H) that satisfies

τ∂tφλ + φλ − Pφλ + βλ(φλ) + π(φλ)− π(0) = g a.e. in Q (4.16)

and the initial condition (4.6). For any data satisfying (4.7) (while (4.8) is not needed here) also this
problem has a unique solution φλ. We perform some a priori estimates. As usual, the symbol c stands
for possibly different constants. In this proof, the values of c can only depend on τ , π, Ω, T and the
eigenfunctions e′j associated to the zero eigenvalues of B (if any). In particular, they do not depend
on λ, nor on the data of problem (4.5)–(4.6). Symbols like C and Ci denote particular values of c we
want to refer to. The first three estimates we perform are in the direction of the inequalities (4.9) and
(4.10) which we want to satisfy with a suitable choice of the spaces and the operator. For this reason,
they are obtained under different regularity assumptions on the data.

First a priori estimate. Let gi and φ0,i, i = 1, 2, be two choices of the data satisfying (4.7) and let
φλ,i be the corresponding solutions to the approximating problem. We set for brevity φλ := φλ,1−φλ,2,
g := g1−g2 and φ0 := φ0,1−φ0,2. We write (4.16) for both solutions, take the difference and multiply
it by φλ. Then, we integrate over Qt. We obtain that

τ

2

∫
Ω

|φλ(t)|2 +

∫
Qt

|φλ|2 +

∫
Qt

(
βλ(φλ,1)− βλ(φλ,2)

)
φλ

=
τ

2

∫
Ω

|φ0|2 +

∫
Qt

g φλ +

∫
Qt

(Pφλ)φλ −
∫
Qt

(
π(φλ,1)− π(φλ,2)

)
φλ

Since βλ is monotone, all of the terms on the left-hand side are nonnegative. By estimating the right-
hand side on account of the Lipschitz continuity of π and the Schwarz and Young inequalities, and
then applying the Gronwall lemma, we easily conclude that

‖φλ,1 − φλ,2‖L∞(0,T ;H) ≤ C1,∞
(
‖g1 − g2‖L2(0,T ;H) + ‖φ0,1 − φ0,2‖

)
. (4.17)

It trivially follows that

‖φλ,1 − φλ,2‖L2(0,T ;H) ≤ C1

(
‖g1 − g2‖L2(0,T ;H) + ‖φ0,1 − φ0,2‖

)
. (4.18)

Second a priori estimate. We assume (4.7) on the data. By multiplying (4.16) by φλ and integrating
over Qt, we obtain that

τ

2

∫
Ω

|φλ(t)|2 +

∫
Qt

|φλ|2 +

∫
Qt

βλ(φλ)φλ

=
τ

2

∫
Ω

|φ0|2 +

∫
Qt

gφλ +

∫
Qt

(Pφλ)φλ +

∫
Qt

(
π(φλ)− π(0)

)
φλ .
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All of the terms on the left-hand side are nonnegative since βλ is monotone and βλ(0) = 0. If
we estimate the right-hand side by using the Lipschitz continuity of π and the Schwarz and Young
inequality, we immediately deduce that

‖φλ‖L∞(0,T ;H) ≤ c (‖g‖L2(0,T ;H) + ‖φ0‖) . (4.19)

Third a priori estimate. We set V := H1(Ω) for brevity and assume that the data satisfy g ∈
L2(0, T ;V ) and φ0 ∈ V . Before going on, we make an observation. Assume first that kerB = {0}.
Then P = 0 and (4.5) is an ordinary differential equation where the space variable is just a parameter.
In the opposite case, the presence of the nonlocal operator P could be unpleasant. However, we are
reduced to the same situations as before by moving the term Pφλ to the right-hand side and treating
it as a datum. More precisely, in this case, kerB has a finite dimension m > 0 and is spanned by the
first m eigenfunctions (those corresponding to the zero eigenvalues). Since every eigenfunction of B
belongs to the domain V n

B ofBn for every n ∈ N and we are assuming (2.49), the eigenfunctions (we
are interested in) belong to V , and we have the identities

Pv =
m∑
j=1

(v, e′j)e
′
j and ∇Pv =

m∑
j=1

(v, e′j)∇e′j for every v ∈ H . (4.20)

Namely, we have that Pv ∈ V even though v only belongs to H . Therefore, in any case, the solution
φλ enjoys some space regularity. Precisely, it belongs to L2(0, T ;V ) as well as its time derivative and
we have that

τ ∂t∇φλ +∇φλ + β′λ(φλ)∇φλ + π′(φλ)∇φλ = ∇g +∇Pφλ a.e. in Q .

By multiplying this equation by∇φλ and integrating over Qt, we obtain that

τ

2

∫
Ω

|∇φλ(t)|2 +

∫
Qt

|∇φλ|2 +

∫
Qt

β′λ(φλ)|∇φλ|2

=
τ

2

∫
Ω

|∇φ0|2 +

∫
Qt

∇g · ∇φλ +

∫
Qt

(∇Pφλ) · ∇φλ −
∫
Qt

π′(φλ)|∇φλ|2 .

All of the terms on the left-hand side are nonnegative. The volume integrals on the right-hand side,
except the one involving P , can be easily treated thanks to the boundedness of π′ and the Schwarz
and Young inequalities. If P = 0, then we can apply the Gronwall lemma and obtain an estimate
of∇φλ. Recalling (4.19), we conclude that

‖φλ‖L∞(0,T ;V ) ≤ C2,∞ (‖g‖L2(0,T ;V ) + ‖φ0‖V ) . (4.21)

We claim that the same estimate holds true even though kerB is nontrivial. In this case, we recall
the representation formula (4.20) and apply it to φλ. By also accounting for standard inequalities, we
obtain that ∫

Qt

(∇Pφλ) · ∇φλ =

∫
Qt

m∑
j=1

(φλ, e
′
j)∇e′j · ∇φλ

=
m∑
j=1

∫ t

0

(
(φλ(s), e

′
j)

∫
Ω

∇e′j · ∇φλ(s)
)
ds

≤
m∑
j=1

∫ t

0

‖φλ(s)‖ ‖e′j‖ ‖∇e′j‖ ‖∇φλ(s)‖ ds ≤ c

∫ t

0

‖φλ(s)‖ ‖∇φλ(s)‖ ds

≤ c ‖φλ‖2
L2(0,T ;H) + c

∫
Qt

|∇φλ|2 .
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So, it suffices to recall (4.19) and apply the Gronwall lemma to obtain (4.21) also in this case. There-
fore, (4.21) is established and it trivially implies that

‖φλ‖L2(0,T ;V ) ≤ C2 (‖g‖L2(0,T ;V ) + ‖φ0‖V ) . (4.22)

Interpolation. Now, let the data satisfy (4.12) with η ∈ (0, 1). We choose

A0 := L2(0, T ;V )× V , A1 := L2(0, T ;H)×H ,

B0 := L2(0, T ;V ) and B1 := L2(0, T ;H)

and apply Lemma 4.1 to the operator T : A1 → B1 that associates to the pair (g, φ0) the solution
φλ to problem (4.5)–(4.6). Then, (4.18) and (4.22) yield (4.9) and (4.10), respectively. Moreover, by
setting ϑ := 1− η, we have that

(A0,A1)ϑ,2 = (L2(0, T ;V ), L2(0, T ;H))ϑ,2 × (V,H)ϑ,2 = L2(0, T ;Hη(Ω))×Hη(Ω)

so that (g, φ0) ∈ (A0,A1)ϑ,2 by (4.12). It follows that

φλ ∈ (B0,B1)ϑ,2 = L2(0, T ;Hη(Ω)) and

‖φλ‖L2(0,T ;Hη(Ω)) ≤ CCϑ
1C

1−ϑ
2 ‖(g, φ0)‖L2(0,T ;Hη(Ω))×Hη(Ω) (4.23)

with a constant C that does not depend on λ. Notice that (4.23) with η = 1 (i.e., ϑ = 0) is ensured
by (4.22).

Fourth a priori estimate. We are close to the conclusion, and we thus assume that the data g and
φ0 are as in the statement. By multiplying (4.16) by ∂tφλ, integrating over Qt, and rearranging, we
have that

τ

∫
Qt

|∂tφλ|2 +
1

2

∫
Ω

|φλ(t)|2 +

∫
Ω

β̂λ(φλ(t))

=
1

2

∫
Ω

|φ0|2 +

∫
Ω

β̂λ(φ0) +

∫
Qt

(
g + Pφλ − π(φλ) + π(0)

)
∂tφλ .

Since β̂λ is nonnegative and β̂λ(φ0) ≤ β̂(φ0) a.e. in Ω, owing to the Schwarz and Young inequalities
and the Lipschitz continuity of π, and accounting for (4.8) and (4.19), we infer that

‖∂tφλ‖L2(0,T ;H) ≤ c
(
‖g‖L2(0,T ;H) + ‖φ0‖+ ‖β̂(φ0)‖1/2

L1(Ω)

)
. (4.24)

A comparison in (4.16) then yields that

‖βλ(φλ)‖L2(0,T ;H) ≤ c
(
‖g‖L2(0,T ;H) + ‖φ0‖+ ‖β̂(φ0)‖1/2

L1(Ω)

)
. (4.25)

Conclusion. At this point, we let λ tend to zero based on (4.23)–(4.25), the compact embedding
Hη(Ω) ⊂ H for η ∈ (0, 1], and the well-known Aubin–Lions lemma (see, e.g., [26, Thm. 5.1, p. 58]).
We deduce that there exists a pair (φ, ξ) such that

φλ → φ weakly star in H1(0, T ;H) ∩ L2(0, T ;Hη(Ω))

and strongly in L2(0, T ;H) ,

βλ(φλ)→ ξ weakly in L2(0, T ;H) , (4.26)

possibly only for a subsequence λk ↘ 0. Then, φ(0) = φ0, and (4.15) is verified. Moreover, by also
applying, e.g., [4, Lemma 2.3, p. 38], we infer that (φ, ξ) satisfies the inclusion in (4.14). On the other

hand, all this implies (4.5) since β̂ is convex, so that φ is the solution to problem (4.5)–(4.6). This
completes the proof of the lemma.
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Proof of Theorem 2.11. We apply Lemma 4.2 by choosing

g = µ+ f − π(0) and φ0 = ϕ0 .

Notice that conditions (4.12) are satisfied due to (2.50)–(2.51). We thus obtain the existence of some
ξ satisfying (4.14) and (4.15). The latter reads

τ∂tφ+ φ− Pφ+ ξ + π(φ)− π(0) = µ+ f − π(0) a.e. in Q .

But ϕ satisfies this equation (see Remark 2.8) since (ϕ, µ) is a solution to problem (2.38)–(2.40) by

assumption, and this implies (4.5) for ϕ since β̂ is convex. On the other hand, we have that ϕ(0) =
ϕ0 = φ0. Since the solution φ to problem (4.5)–(4.6) is unique, we conclude that φ = ϕ. Therefore,
(2.41)–(2.42) are proved. The last sentence of the statement trivially follows. �

Remark 4.3. We observe that in Theorem 2.11 we start from a solution (ϕ, µ) to problem (2.38)–
(2.40) without using sufficient conditions for the existence of such a solution. In particular, (2.37) is not
accounted for. We also notice that the argument followed in the above proof provides the existence of
a unique solution ϕ to both equation (2.42) and the variational inequality (2.39) for a given µ without
the use of (2.37).

Remark 4.4. It is possible to slightly modify the proof of Lemma 4.2 in the application of Lemma 4.1
and to obtain different regularity results in Theorem 2.11. One can play with the index p in the inter-
polation argument, indeed. If we want to maximize the time regularity, we change the choice of the
spaces Bi by taking

B0 := L∞(0, T ;V ) and B1 := L∞(0, T ;H) (4.27)

and start from (4.17) and (4.21) in place of (4.18) and (4.22). Then, we apply Lemma 4.1 still with
ϑ = 1− η, but with p =∞. Instead of (4.23), we obtain that

φλ ∈ (L∞(0, T ;V ), L∞(0, T ;H))ϑ,∞ and

‖φλ‖(L∞(0,T ;V ),L∞(0,T ;H))ϑ,∞ ≤ CCϑ
1C

1−ϑ
2 ‖(g, φ0)‖L2(0,T ;Hη(Ω))×Hη(Ω) ,

still with a constant C that does not depend on λ. Then everything can proceed as before. At the end
of the proof of Theorem 2.11, we arrive at the regularity

ϕ ∈ (L∞(0, T ;V ), L∞(0, T ;H))ϑ,∞ (4.28)

for the first component ϕ of the solution (ϕ, µ) to problem (2.38)–(2.40). We avoid the troubles that
may arise with the exponent ∞ and do not offer a different representation of the space appearing
in (4.28). We just remark that the regularity (4.28) is neither better nor worse than (2.41), since it
yields some better time regularity at the expense of a lower space regularity. One can prove that
(L∞(0, T ;V ), L∞(0, T ;H))ϑ,∞ ⊂ L∞(0, T ;Hη−ε(Ω)) for every ε > 0 (in particular, the Aubin–
Lions lemma can be applied also in the modified proof of Lemma 4.2) so that the Sobolev type regu-
larity for ϕ we can obtain is

ϕ ∈ L∞(0, T ;Hη−ε(Ω)) for every ε > 0 .

Remark 4.5. Concerning uniqueness for the second component µ of the solution to problem (2.38)–
(2.40), we can give sufficient conditions in a different direction. The situation is similar to the one
encountered for problem (2.27)–(2.29) and mentioned in Remark 2.4. Let us give some detail. As-
sume that (ϕ, µi), i = 1, 2, are solutions corresponding to some data ϕ0 and f (with the same first
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component, due to Theorem 2.10). By writing (2.38) for both solutions and taking the difference, we
immediately obtain that (Ar(µ1 − µ2), v) = 0 for every v ∈ V r

A and a.e. in (0, T ), that is

Ar(µ1 − µ2) = 0 . (4.29)

This implies that µ1 = µ2 if λ1 > 0. In the opposite case λ1 = 0, we can arrive at the same conclusion
under additional conditions, as we show at once by following the ideas of [15, Rem. 4.1]. However, in
the present case, the condition we assume on the solutions is difficult to verify, unfortunately. Suppose
that D(β) is an open interval, the restriction of β̂ to D(β) is a C1 function, and all of the values
attained by ϕ belong to a compact subinterval [a, b] ⊂ D(β). Now, choose δ0 such that the interval
[a − δ0, b + δ0] is contained in D(β). Then, for an arbitrary δ ∈ (0, δ0) and for a.a. t ∈ (0, T ), we
can choose v = ϕ(t)− δ (whence ϕ(t)− v = δ) and v = ϕ(t) + δ (whence ϕ(t)− v = −δ) in the
variational inequality (2.39) written for (ϕ, µ1) and (ϕ, µ2), respectively. Then, by adding the resulting
inequalities, we deduce that

2

∫
Ω

β̂(ϕ) ≤ δ(µ1 − µ2,1) +

∫
Ω

β̂(ϕ− δ) +

∫
Ω

β̂(ϕ+ δ) a.e. in (0, T ).

Division by δ then yields that∫
Ω

β̂(ϕ)− β̂(ϕ− δ)
δ

+

∫
Ω

β̂(ϕ)− β̂(ϕ+ δ)

δ
≤ (µ1 − µ2,1).

Taking the limit as δ ↘ 0, we conclude from the Lebesgue dominated convergence theorem that

0 =

∫
Ω

β(ϕ)−
∫

Ω

β(ϕ) ≤ (µ1 − µ2,1).

Interchanging the roles of µ1 and µ2, we then infer that meanµ1 = meanµ2 a.e. in (0, T ). By
combining this with (4.29), we conclude that µ1 = µ2.
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