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Abstract

Background: To elucidate biogas microbial communities and processes, the application of high-throughput DNA
analysis approaches is becoming increasingly important. Unfortunately, generated data can only partialy be inter-
preted rudimentary since databases lack reference sequences.

Results: Novel cellulolytic, hydrolytic, and acidogenic/acetogenic Bacteria as well as methanogenic Archaea origi-
nating from different anaerobic digestion communities were analyzed on the genomic level to assess their role in
biomass decomposition and biogas production. Some of the analyzed bacterial strains were recently described as
new species and even genera, namely Herbinix hemicellulosilytica T3/55", Herbinix luporum SD1D', Clostridium borni-
mense M2/40", Proteiniphilum saccharofermentans M3/6', Fermentimonas caenicola ING2-E5B', and Petrimonas mucosa
ING2-E5A". High-throughput genome sequencing of 22 anaerobic digestion isolates enabled functional genome
interpretation, metabolic reconstruction, and prediction of microbial traits regarding their abilities to utilize complex
bio-polymers and to perform specific fermentation pathways. To determine the prevalence of the isolates included

in this study in different biogas systems, corresponding metagenome fragment mappings were done. Methanocul-
leus bourgensis was found to be abundant in three mesophilic biogas plants studied and slightly less abundant in a
thermophilic biogas plant, whereas Defluviitoga tunisiensis was only prominent in the thermophilic system. Moreover,
several of the analyzed species were clearly detectable in the mesophilic biogas plants, but appeared to be only mod-
erately abundant. Among the species for which genome sequence information was publicly available prior to this
study, only the species Amphibacillus xylanus, Clostridium clariflavum, and Lactobacillus acidophilus are of importance
for the biogas microbiomes analyzed, but did not reach the level of abundance as determined for M. bourgensis and D.
tunisiensis.

Conclusions: Isolation of key anaerobic digestion microorganisms and their functional interpretation was achieved
by application of elaborated cultivation techniques and subsequent genome analyses. New isolates and their
genome information extend the repository covering anaerobic digestion community members.
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tunisiensis, Methanoculleus bourgensis

*Correspondence: aschluet@cebitec.uni-bielefeld.de

fIrena Maus and Andreas Bremges contributed equally to this work
! Center for Biotechnology (CeBiTec), Bielefeld University,
Universitdtsstrasse 27, 33615 Bielefeld, Germany

Full list of author information is available at the end of the article

- © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
() Biomed Centra| (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-017-0947-1&domain=pdf

Maus et al. Biotechnol Biofuels (2017) 10:264

Background

Anaerobic digestion (AD) and biomethanation are com-
monly applied for the treatment and decomposition of
organic material and bio-waste, finally yielding methane
(CH,)-rich biogas. The whole AD process can be divided
into four phases: hydrolysis, acidogenesis, acetogen-
esis, and methanogenesis. Organic polymers are hydro-
lyzed into sugar molecules, fatty acids, and amino acids
by hydrolytic enzymes. These metabolites are further
degraded into the intermediate volatile fatty acids (VFA),
acetate, alcohols, carbon dioxide (CO,), and hydrogen
(H,) during acidogenesis and acetogenesis. Finally, CH, is
produced either from acetate or from H, and CO,. The
challenges in each of these steps are reflected within the
complexity of the microbial community converting bio-
mass to biogas. Community compositions and dynamics
were frequently investigated using different molecular
biological methods. Among these, quantitative ‘real-time’
polymerase chain reaction (qPCR), e.g., [1-5], termi-
nal restriction fragment length polymorphism (TRFLP)
[6-8], and the 16S rRNA gene amplicon [9, 10] as well as
metagenome sequencing approaches [9, 11-14] applying
high-throughput (HT) technologies are the most com-
monly used methods. In these studies, bacterial members
belonging to the classes Clostridia and Bacteroidia were
identified to dominate the biogas microbial communities,
followed by Proteobacteria, Bacilli, Flavobacteria, Spiro-
chaetes, and Erysipelotrichi. Within the domain Archaea,
members from the orders Methanomicrobiales, Metha-
nosarcinales, and Methanobacteriales were described to
be abundant in biogas systems.

However, all recently published metagenome and
metatranscriptome studies addressing elucidation of the
biogas microbiology reported on a huge fraction of unas-
signable sequences suggesting that most of the micro-
organisms in biogas communities are so far unknown
[15-18]. This is due to the limiting availability of refer-
ence strains and their corresponding genome sequences
in public databases. Moreover, reference sequences are
often derived from only distantly related strains isolated
from different environments. For a better understanding
of the microbial trophic networks in AD and any further
biotechnological optimization of the biomethanation
process, extension of public databases regarding rele-
vant sequence information seems to be an indispensable
prerequisite.

Recently, studies on the isolation, sequencing, and
physiological characterization of novel microbial strains
from various mesophilic and thermophilic biogas reac-
tors were published, e.g., [18-29]. However, only few
of these studies addressed the question of whether the
described strain played a dominant role within the ana-
lyzed microbial community. Accordingly, the objective
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of this work was to sequence and analyze a collection of
recently described as well as newly isolated bacterial and
archaeal strains from different biogas microbial commu-
nities to provide insights into their metabolic potential
and life-style, and to estimate their prevalence in selected
agricultural biogas reactors. In total, 22 different strains
originating from meso- and thermophilic anaerobic
digesters utilizing renewable primary products and/or
organic wastes were analyzed. Based on genome analy-
ses, isolates were functionally classified and assigned to
functional roles within the AD process. Moreover, refine-
ment of the metagenome fragment recruitment approach
was used for the evaluation of an isolate’s prominence
in different biogas communities. Overall the aim of this
study was the considerable complementation of the ref-
erence repository by new genome information regarding
AD communities.

Methods

Microbial strains used in this study and isolation of novel
strains

In this study, 22 bacterial and archaeal strains were stud-
ied from eight meso- and thermophilic, laboratory-scale
and agricultural biogas plants (BGPs) utilizing renew-
able primary products as well as from three further AD
sources (detailed information listed in Table 1). The
strains Methanoculleus chikugoensis L21-11-0 and Spora-
naerobacter sp. PP17-6a were isolated within this study
as follows.

Methanoculleus chikugoensis L21-1I-0 Reactor mate-
rial was diluted fivefold in DSMZ medium 287 [30] con-
taining 20 mM acetate and H,/CO, as the only carbon
and energy sources. Initial incubation occurred at 37 °C
for 4 weeks without antibiotics. Subsequent cultiva-
tion was performed by successive transfer of culture ali-
quots after incubation periods of 4 weeks into the same
medium supplemented with different combinations
of the antibiotics tetracycline HCI (15 pg ml™!), vanco-
mycin HCI (50 pug ml™), ampicillin (100 ug ml™'), and
bacitracin (15 pg ml™!) or with penicillin (350 pg ml™).
After a total of 12 cultivation cycles, purity of the cul-
ture was confirmed by microscopic inspection and by
denaturing gradient gel electrophoresis (DGGE) finger-
print analysis. Strain M. chikugoensis L21-11-0 is available
from the Leibniz Institute German Collection of Micro-
organisms and Cell Cultures (DSMZ, Braunschweig,
Germany) under the Accession No. DSM 100195. Spo-
ranaerobacter sp. PP17-6a: Reactor material was diluted
5 x 10°fold in DSMZ medium 120 [31]. After 4 weeks
of incubation at 37 °C, an aliquot of the culture was
transferred into the same medium supplemented with
penicillin (350 pg ml™!). Transfer and incubation in the
same medium were repeated four times. Subsequently,
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cultivation occurred by successive transfer of culture
aliquots after incubation periods of 4 weeks into fresh
medium supplemented with different combinations of
antibiotics as mentioned above for isolation of the strain
L21-1I-0. After 14 cultivation cycles, isolation of the
bacterial strain was performed by plating of the culture
material on BBL"™ Columbia Agar Base medium (Th.
Geyer, Germany) supplemented with 5% laked horse
blood (Oxoid, Germany). For purification, single colonies
were picked and re-streaked, and incubation occurred at
37°C.

Phylogenetic classification of the analyzed bacterial

and archaeal strains

To determine the phylogenetic relationship between the
different strains and closely related type strains, a phy-
logenetic tree was constructed. For this, the 16S rRNA
gene sequences retrieved from the genome sequences of
the analyzed strains were aligned using the SINA align-
ment service v.1.2.11, which is provided online [32]. Sub-
sequently, the SINA alignment and the All-Species Living
Tree LTPs123 [33] from the SILVA ribosomal RNA pro-
ject [34], only consisting of the 16S rRNA gene sequences
of validly described type strains, were loaded into the
ARB program [35]. Finally, the SINA alignment was
placed into the existing LTP tree using ARB’s parsimony
method. Only type strains closely related to the corre-
sponding isolate analyzed within this study are shown in
the tree, whereas the remaining type strains were hidden
manually applying “remove species from the tree” func-
tion implemented in ARB.

Genomic DNA extraction, sequencing, and bioinformatic
analyses of biogas community members

Whole genome sequences of 13 strains, which were used
in this study, were published previously (references given
in Table 2). Genome sequencing of the following strains
was performed within this study: Proteiniborus sp. DW1,
Clostridium sp. N3C (DSM 100067), Sporanaerobacter
sp. PP17-6a, Proteiniphilum saccharofermentans M3/6",
Petrimonas mucosa ING2-E5AY, Methanobacterium for-
micicum Mb9, Methanobacterium congolense Buetzberg,
[36] Methanothermobacter wolfeii SIV6, and M. chiku-
goensis 121-11-0. In the case of Clostridium sp. N3C,
Sporanaerobacter sp. PP17-6a, and P saccharofermen-
tans M3/6", genomic DNA was extracted applying the
innuPREP Bacteria DNA Kit (Analytik Jena, Germany).
Genomic DNA of P. mucosa ING2-E5AT and M. chiku-
goensis L21-11-0 was extracted as described previously
[37]. Genomic DNA of the strain Proteiniborus sp. DW1
was obtained applying the protocol published previously
[19] and genomic DNA from M. congolense Buetzberg
was extracted from 10 x 10 ml of a liquid culture using
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the Gene Matrix stool DNA purification kit (Roboklon,
Germany). DNA of strain M. wolfeii SIV6 was obtained
applying the FastDNA Spin Kit for Soil (MP Biomedicals).

For bacterial strains mentioned above, 4 pg of purified
chromosomal DNA was used to construct an 8-k mate-
pair sequencing library (Nextera Mate Pair Sample Prep-
aration Kit, Illumina Inc., Eindhoven, Netherlands) and
sequenced applying the mate-pair protocol on an Illu-
mina MiSeq system. Sequencing libraries of the archaeal
strains M. chikugoensis L21-11-0 and M. wolfeii SIV6 were
made from 2 pg of chromosomal DNA using the TruSeq
DNA PCR-Free Library Preparation Kit (Illumina Inc.,
Eindhoven, Netherlands) and sequenced applying the
paired-end protocol on an Illumina MiSeq system.

The obtained sequences were de novo assembled
using the GS de novo Assembler Software (version 2.8,
Roche). An in silico gap closure approach was performed
[38], which resulted in a draft genome sequence or in
a circular chromosome. Gene prediction and annota-
tion of the genomes were performed within the GenDB
2.0 annotation system [39]. Manual metabolic path-
way reconstruction was carried out by means of the
KEGG pathway mapping implemented in GenDB that
compares gene sequences with the corresponding gene
product sequences of the NCBI database, with pairwise
protein sequence identity being at least 30%. To predict
genes encoding carbohydrate-active enzymes, the carbo-
hydrate-active enzyme database (CAZy) annotation web-
server dbCAN [40] was used.

Prevalence of the investigated strains within microbial
communities of four different agricultural biogas plants
applying the metagenome fragment recruitment approach
To evaluate the prevalence of the 22 analyzed strains
within the microbial communities of the four differ-
ent BGPs described previously [41], the correspond-
ing metagenome sequences available for these BGPs
(metagenome Accession Nos. at the NCBI data-
base: SRA357208-09, SRA357211, SRA357213-14,
SRA357221-23) were mapped on the genome sequences
of these isolates with FR-HIT (v0.7; [42]) to sensitively
recruit also metagenomic reads with lower sequence
identity (global alignment down to 75% nucleotide
sequence identity; Additional file 1).

As a baseline to compare against, four known and
abundant metagenome-assembled genomes (MAGs)
published previously [41] were included (the fifth
genome bin 206_Thermotogae matching Defluviitoga
tunisiensis L3 was excluded, because it is contained in the
isolate collection; Table 1).

Furthermore, Mash (v1.1; [43]) was used to quickly
identify potentially abundant and publicly available
genome sequences in RefSeq (as of June 14, 2016; [44]).
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The meaning of abundance in this context refers exclu-
sively to the number of metagenome sequences mapped
to the genome sequence. For a sketch size of 1,000,000
and a k-mer size of 21, pairwise distances between the
metagenomic read sets and all 5061 genomes in RefSeq
(plus, as a control, the 22 strains from this study) were
calculated. Requiring a minimum of 20 k-mer hits not
only confirmed the potential relevance of the selected 22
strains, but additionally identified 46 publicly available
strains from RefSeq for further analyses.

All metagenome sequences available for the four BGPs
were mapped on the genome sequences of these isolates, the
four MAGs, and the 46 reference strains with Kallisto [45]
(v0.43.1). For each genome, the GPM (genomes per million)
values were calculated using the TPM (transcripts per mil-
lion) values reported by Kallisto (see Additional file 3).

Results and discussion

Selection of a set of microbial isolates from different
biogas-producing communities

Limited availability of genome sequence information in
public databases for AD community members gener-
ally constrains the interpretation of metagenomic and
metatranscriptomic data of such communities leading to
large amounts of non-classifiable metagenome sequences
from AD habitats [15-18, 46, 47]. Accordingly, paral-
lel application of both traditional culturomics [48] as
well as molecular analysis combined with HT sequenc-
ing techniques is necessary for detailed studies of com-
plex microbial biogas consortia. Applying 16 different
isolation strategies, bacterial and archaeal isolates were
obtained from different mesophilic and thermophilic
production- and laboratory-scale BGPs (Table 1). Fur-
thermore, two archaeal members, namely M. bourgensis
MS2T [49] and M. formicicum MF? [50], were obtained
from the DSMZ and included in this study as the refer-
ence strains for methanogenic Archaea since they were
also isolated from AD communities. German BGPs sam-
pled for this study differed in utilized substrates ranging
from maize silage, grass, and wheat straw to cattle and/
or pig manure. Moreover, one digester analyzed was fed
with organic residues and waste material as substrate.
Additionally, a bio-waste compost treatment site close
to the city of Munich (Germany) was sampled to isolate
cellulolytic bacteria. Besides different renewable biomass
sources utilized for the AD process, the biogas reactors
differed regarding digester design, fermentation technol-
ogy, and the applied temperature regime ranging from 37
to 54 °C.

This study comprises the analysis of 15 bacterial strains
classified as belonging to the phyla Firmicutes, Thermo-
togae, and Bacteroidetes and seven archaeal isolates of
the phylum Euryarchaeota. Details on all isolates of this
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study, their taxonomy, their origin, and the respective
isolation strategy applied are provided in Table 1.

Phylogenetic classification of the microbial isolates
selected from different biogas communities

To determine the taxonomic position of the strains ana-
lyzed, their 16S rRNA gene sequences were compared
to the corresponding sequences from closely related
type strains deposited in the SILVA database (Fig. 1).
The calculated phylogenetic tree comprises four main
groups representing the phyla Bacteroidetes, Firmicutes,
Thermotogae, and Euryarchaeota. Among the Bacteroi-
detes members, the strains P. saccharofermentans M3/6",
P mucosa ING2-E5A", and Fermentimonas caenicola
ING2-E5BT were recently described as novel species and
were suggested to participate in hydrolysis and acidogen-
esis of the AD process [26].

Most of the bacterial strains analyzed were allocated
to the phylum Firmicutes, and within this taxon to the
classes Clostridia, Bacilli, Tissierellia, and Negativicutes.
A diverse group of isolates belong to the class Clostridia.
They are related to characterized species such as Clostrid-
ium cellulosi (also denominated as ‘Ruminiclostridium’
cellulosi), Clostridium thermocellum (also denominated
as ‘Ruminiclostridium’ thermocellum [51], Clostridium
cellulovorans, and Clostridium bornimense. The latter one
was recently described as novel species [20]. All men-
tioned species represent lignocellulosic biomass degrad-
ers [20, 52, 53]. Two other Clostridia isolates, namely
T3/55" and SD1DY, were recently assigned to the species
Herbinix hemicellulosilytica [54] and Herbinix luporum
[55], respectively, of the new genus Herbinix. Both strains
are distantly related to the type strain Mobilitalea sibirica
P3M-3T [56] and were described to be involved in ther-
mophilic degradation of lignocellulosic biomass.

The isolates 1A1, ING2-D1G, and 2/2-37 are closely
related to the species Bacillus thermoamylovorans (class
Bacilli), Peptoniphilus indolicus (class Tissierellia), and
Propionispora hippie (class Negativicutes), respectively.
The corresponding reference strains were described to
perform hydrolytic and acidogenic functions in the AD
process [57-59].

Another isolate from a thermophilic BGP was classi-
fied as D. tunisiensis (phylum Thermotogae, class Ther-
motogae) representing an isolated branch of the bacterial
part of the tree (Fig. 1). The strain D. tunisiensis L3 was
described to be adapted to high temperatures and able to
utilize different complex carbohydrates to produce etha-
nol, acetate, H,, and CO, [27, 28]. The latter three metab-
olites represent substrates for methanogenic Archaea.

The strains Sporanaerobacter sp. PP17-6a and Pep-
toniphilaceae bacterium str. ING2-D1G are only dis-
tantly related to known bacterial species of the family
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Fig. 1 Phylogenetic diversity of archaeal and bacterial strains analyzed in this study in relation to the corresponding type species. The program
ARB [35] was applied to construct the phylogenetic tree based on the full-length 16S rRNA gene sequences obtained from the strain's genome
sequences and in the case of closely related type species from the SILVA database [34]. The scale bar represents 1% sequence divergence

Clostridiales incertae sedis and Peptoniphilaceae (90—
91% identity), respectively, suggesting that they represent
new species.

The fourth group of the phylogenetic tree represents
methanogenic Archaea classified as members of the
classes Methanomicrobia and Methanobacteria (both
belonging to the phylum Euryarchaeota). Members of
these classes were described to perform hydrogeno-
trophic methanogenesis utilizing CO, and H, as sub-
strates for CH, synthesis [18, 21].

Genome sequence analyses of the whole set of microbial
isolates selected
To gain insights into the functional potential of all
strains listed in Table 1, their genomes were completely
sequenced by application of HT sequencing technologies.
Genome sequence information provides the basis for
metabolic reconstruction and assignment of functional
roles within the AD process, thus enabling biotechnolog-
ical exploitation of genome features involved in fermen-
tation processes utilizing renewable primary products.
Out of 22 genome sequences, nine, namely those of
Proteiniborus sp. DW1, Clostridium sp. N3C, Sporan-
aerobacter sp. PP17-6a, P. saccharofermentans M3/6", P

mucosa ING2-E5ATY, M. formicicum Mb9, M. congolense
Buetzberg, M. wolfeii SIV6, and M. chikugoensis 1.21-11-0,
were newly established in this study. Genome sequences
of the remaining 13 strains were published previously
mainly in the form of Genome Announcements (for ref-
erences, refer to Table 2). The genome sequences of the
microorganisms analyzed were established on an Illu-
mina MiSeq system. In silico and PCR-based gap closure
strategies resulted in 13 finished and nine draft genome
sequences. General genome features, e.g., genome struc-
ture, assembly status, size, GC content, and numbers of
predicted genes, are summarized in Table 2. Established
genomes range in size from 1.6 to 4.4 Mb and feature
GC contents from 28.09 to 61.83%. Moreover, C. borni-
mense M2/40", in addition to the chromosome, harbors
a 699,161-bp chromid (secondary replicon) in its genome
containing 680 coding sequences [37]. The methano-
gen M. congolense Buetzberg also harbors an accessory
genetic element, namely a plasmid featuring a size of
18,118 bp. Genome annotation applying the GenDB 2.0
platform enabled functional interpretation of genes and
reconstruction of metabolic pathways involved in the AD
process. Genome analyses provided insights into the life-
style and functional roles of bacterial and archaeal strains.
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Screening of the subset of bacterial genomes to identify
genes encoding carbohydrate-active enzymes potentially
involved in biomass degradation

To elucidate genes encoding carbohydrate-active
enzymes, functional genome annotation applying the
HMM-based carbohydrate-active enzyme annotation
database dbCAN [40] was performed (Fig. 2). Between
71 and 358 genes encoding enzymes or modules with
predicted activity on carbohydrates were identified in
each of the bacterial strains analyzed. Among them are
dockerin-containing glycoside hydrolases (GH), rep-
resenting putative cellulosomal enzymes, correspond-
ing cohesin-containing scaffoldins, enzymes acting
on large carbohydrate molecules, and carbohydrate-
binding motifs involved in sugar binding. The obtained
results separate the analyzed strains into two groups:
group I strains were predicted to degrade cellulose and
hemicellulose, whereas group II strains represent sec-
ondary fermentative bacteria relying on metabolites
(mainly mono-, di-, and oligosaccharides) produced by
group I members (as obvious presence of cellulolytic
genes). The Clostridiaceae strains DG5, T3/557, SD1D7,
M2/40", and BC1 harbor a more diverse repertoire of
genes involved in the degradation of complex polysac-
charides such as cellulose (GH5, GHS8, GH9, GH48),
xylan (GH10, GH11), and cellobiose- or cellodextrin-
phosphorylase genes (GH94). Furthermore, genes for
cohesin-containing putative scaffoldins and the corre-
sponding dockerin-containing glycoside hydrolases with
a potential for cellulosome formation were also iden-
tified in the genomes of these strains. Previous studies
reported on the importance of the phylum Firmicutes
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for hydrolysis of cellulosic material in biogas digesters
[12, 60]. In particular, Clostridiaceae and Ruminococ-
caceae members are involved in this first step of biomass
digestion [11, 18]. Clostridiaceae strains Proteiniborus
sp. DW1 and Clostridium sp. N3C were predicted to
represent non-cellulolytic isolates (Fig. 2), whereas the
cellulolytic strain C. thermocellum BC1 [61] is known
to be a very efficient cellulose degrader since it encodes
cellulosome components and is able to degrade hemicel-
luloses and pectins [60]. In contrast to the cellulolytic
Clostridiaceae, the Porphyromonadaceae members,
namely P. saccharofermentans M3/6", P. mucosa ING2-
E5AY, and E caenicola ING2-E5B”, encode enzymes
predicted to degrade pectins and a variety of hemicellu-
loses (GH16, GH26, GH28, GH30, GH53, GH74). These
strains do not seem to be able to hydrolyze arabinoxylan
(lack of GH10, GH11) and crystalline cellulose (lack of
GH48). Likewise, D. tunisiensis L3 (Petrotogaceae fam-
ily) also possesses a large set of genes predicted to facili-
tate cleavage of a variety of sugars including cellobiose,
arabinosides (GH27), chitin (GH18), pullulan and starch
(GH13), and lichenan (GH16) [28].

Another strain supposed to represent a secondary fer-
mentative bacterium, namely B. thermoamylovorans 1A1
(Bacillaceae family), may contribute to oligosaccharide
degradation with genes for GH1, GH2, GH3, or GH43
enzymes. In addition, genes required for growth on cello-
biose are present in its genome. Considering the fact that
strain 1A1 originally was isolated from a co-culture also
containing C. thermocellum [61], it is assumed that B.
thermoamylovorans 1A1 further metabolizes cellobiose
produced by cellulolytic Clostridia.
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Members of the genus Propionispora (Veillonellaceae)
previously were identified in AD communities [62] and
predicted to utilize mostly sugars and sugar alcohols,
e.g., glucose, fructose, xylitol, or mannitol for growth
[59]. The strain Propionispora sp. 2/2—37 analyzed in this
study additionally harbors genes encoding enzymes par-
ticipating in cellobiose, starch, and chitin degradation as
determined by means of the CAZy analysis.

In contrast, the results obtained for Peptoniphilaceae
bacterium str. ING2-D1G showed that this bacterium
does not encode enzymes involved in the degradation of
complex carbohydrates. However, the strain ING2-D1G
encodes all enzymes needed to utilize amino acids and
monomeric carbohydrates as a carbon source [22]. Its func-
tion in the anaerobic digestion process can be hypothesized
to be associated with acidogenesis, which was supported by
reconstruction of corresponding metabolic pathways.

Prediction of fermentation pathways based on sequence
information for the subset of bacterial genomes

Bacteria involved in AD perform a number of different
fermentation pathways to recycle reduction equivalents
that are produced in the course of metabolite utilization.
To determine the fermentation type and the functional
role of a given isolate within the biogas process, enzymes
encoded in its genome were assigned to selected fer-
mentation pathways represented in the KEGG database
(Table 3, Additional file 2 and Fig. 3). Pathways leading to
propionate, ethanol, formate, butyrate, acetate, and lac-
tate synthesis were considered in this approach.

Certain bacteria are able to convert sugars, acids, alco-
hols, or amino acids to propionic acid under anaero-
bic conditions utilizing the methylmalonyl-CoA or the
acrylyl-CoA pathways of the propanoate metabolism
[27]. Among the analyzed bacteria, the strains Propionis-
pora sp. 2/2-37, P. saccharofermentans M3/6", P. mucosa
ING2-E5AT, and E caenicola ING2-E5BT encode all
enzymes of the methylmalonyl-CoA pathway for the pro-
duction of propionic acid from pyruvate. Only the strain
Proteiniborus sp. DW 1 was predicted to utilize lactate for
propionic acid production via the acrylyl-CoA pathway.
Since the enrichment of propionic acid was described as
an indicator for process imbalance [27, 63], data on the
physiology of propionic acid-producing bacteria can be
valuable for the optimization of the biogas plants.

Butyric acid-forming bacteria in biogas systems have
been insufficiently characterized so far [27]. Genes
encoding enzymes required for butyric acid formation
via the butanoate pathway were found in the genomes
of the strains Propionispora sp. PP16-6a, Peptoniphi-
laceae bacterium str. ING2-D1G, C. bornimense M2/407,
P saccharofermentans M3/6", Clostridium sp. N3C, P
mucosa ING2-E5AY, E caenicola ING2-E5BT, and B.
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thermoamylovorans 1A1l. Butanoate production was
recently described for the strains H. luporum SD1DT
[55] and H. hemicellulosilytica T3/55" [54]. However,
the genomes of these bacteria only encode the last two
enzymes of the butanoate pathway, namely the phosphate
butyryl transferase Ptb and butyrate kinase Buk, pre-
dicted to be responsible for butanoate synthesis in these
strains.

During acidogenesis, volatile organic compounds such
as ethanol, acetate, and formate are produced in the
course of the AD process. The latter two metabolites
are substrates for methanogenic Archaea. Analysis of
pathways involved in ethanol, acetate, and formate syn-
thesis, i.e., the mixed-acid fermentation, revealed that
all analyzed bacteria harbor genes encoding enzymes of
this pathway (see Additional file 2). With the exception
of the Peptoniphilaceae bacterium str. ING2-D1G, in all
other isolates the necessary genes to produce ethanol
from pyruvate were identified. Moreover, genes encod-
ing enzymes participating in formate production were
found in the C. cellulosi DG5, C. bornimense M2/407,
D. tunisiensis L3, C. thermocellum BC1, and B. thermoa-
mylovorans 1A1 genomes. Furthermore, all analyzed bac-
teria were predicted to be able to produce acetate from
acetyl-CoA. Genes encoding the enzymes phosphate
acetyltransferase Pta (EC: 2.3.1.8) and acetate kinase Ack
(EC: 2.7.2.1), converting acetyl-CoA to acetyl phosphate
and subsequently to acetate, were found. In addition,
genes encoding the enzymes pyruvate decarboxylase
Pdc (EC: 4.1.1.1) and alcohol dehydrogenase Adh (EC:
1.1.1.1), converting pyruvate to acetaldehyde and finally
to ethanol, were found in all genomes with the excep-
tion of the strain Peptoniphilaceae bacterium str. ING2-
D1G, which does not possess an adh gene. Surprisingly,
in the case of the strains P mucosa ING2-E5A", F cae-
nicola ING2-E5B7, and P. saccharofermentans M3/6%, no
ethanol production was observed in growth experiments
[26]. Possibly, the growth conditions tested might not be
favorable to support ethanol synthesis.

Many bacterial species produce 2,3-butanediol under
anaerobic conditions from glucose, with Klebsiella oxy-
toca and Bacillus licheniformis described as efficient
2,3-butanediol producers [64]. Among the bacteria ana-
lyzed, only Propionispora sp. 2/2—37 harbors a full set
of genes encoding all necessary enzymes (refer to Addi-
tional file 2).

Lactic acid was found to be the main fermentation
product from household waste digestion [65]. Members
of the genera Bacillus, Lactobacillus, Leuconostoc, Pedio-
coccus, and Streptococcus were previously described to
produce lactic acid from several types of sugars [12, 47,
66]. To determine whether the analyzed bacteria have
the potential to produce lactic acid, the genomes were
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screened for encoded enzymes involved in homolactic
and heterolactic acid fermentation. With the expection of
the strain Sporanaerobacter sp. PP17-6a, all other bacte-
rial genomes were predicted to perform homolactic acid
fermentation. They harbor all genes encoding necessary
enzymes including the gene for lactate dehydrogenase
Ldh (EC: 1.1.1.27) converting pyruvate to lactic acid. Fur-
thermore, some genetic determinants of the heterolac-
tic acid fermentation pathway were identified. However,
none of the strains encodes a full set of the genes needed.
Hence, the question which strains are responsible for lac-
tic acid production remains unsolved.
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Prediction of methanogenesis pathways based

on sequence information for the subset of archaeal
genomes

The formation of CH,, the last step in the AD of bio-
mass, is performed by methanogenic Archaea (Fig. 3).
Based on their genetic repertoire, methanogens are able
to perform either the hydrogenotrophic, acetoclastic, or
methylotrophic pathway utilizing CO, and H,, acetate,
or methylamine and methanol, respectively, for CH,
production [67]. To predict the pathway by which the
analyzed Archaea produce CH,, genes involved in the
different methanogenesis pathways mentioned above

acetoclastic

hydrogenotrophic
methanogens

methanogens

—| Hp + CO, |_

Acetate

(short-chain volatile organic acids)

A

[ Propionate, Butyrate, etc. J

[Broken down monomers and oIigomersJ

(sugar, aminio acids, peptides)

A

Complex biopolymers
(polysaccharides, proteins, fats)

acid, butyric acid, and lactic acid fermentation

Methanogenesis

Acetogenesis

Acidogenesis

J Hydrolysis

Methanoculleus bourgensis MS2T,
Methanoculleus chikugoensis21-11-0,
Methanobacterium formicicum MFT,
Methanobacterium formicicumMbS,
Methanobacterium sp. Mb1,
Methanobacterium congolense Buetzberg,
Methanothermobacter wolfeii SIV6

Methanogenic Archaea

Sporanaerobactersp. PP17-6a,
Clostridium sp. N3C,
Defluviitoga tunisiensis L3,
Peptoniphilaceae bacterium str. ING2-D1G,
Proteiniphilum saccharofermentans M3/67,
Fermentimonas caenicola ING2-E5BT,
Petrimonas mucosa ING2-E5AT,
Bacillus thermoamylovorans 1A1,
Propionispora sp. 2/2-37,
Clostridium bornimense M2/40T,
Proteiniborus sp. DW1

Acidogenic/Acetogenic Bacteria

Clostridium cellulosi DGS5,
Herbinix hemicellulosilytica T3/55T,
Herbinix luporum SD1DT,
Clostridium thermocellum BC1

Cellulolytic Bacteria

Biogas reactor

Fig. 3 Overview of the four phases of the conversion of biomass into biogas and allocation of the analyzed microbial strains to the different con-
version steps. Functional roles of the organisms were determined considering relevant KEGG pathways, namely the propionic acid, ethanol, formic
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were examined interpreting functional KEGG assign-
ments calculated within GenDB (Table 4).

All Archaea analyzed encode a full set of genes
involved in CH, production from CO, and H,. This
result was as expected, as members of the families Meth-
anobacteriaceae and Methanomicrobiaceae are known
to solely perform hydrogenotrophic methanogenesis
[68]. Additionally, genes for the formate dehydrogenase
complex FdhA-B and a formate transporter FdhC for
growth on formate as an alternative methanogenic sub-
strate were identified in all seven analyzed genomes. For
acetyl-CoA production from acetate, all seven genomes
encode the acetyl-CoA synthetase Acs. Interestingly,
methanogens from the genus Methanoculleus, namely
the strains MS2T and L21-II-0, also harbor a lactate
dehydrogenase gene involved in conversion of lactate to
pyruvate or vice versa. However, no growth or CH, pro-
duction from lactate has been described for the Metha-
noculleus species so far.

For activation of H, during methanogenesis, all seven
Archaea analyzed encode the cytoplasmic coenzyme
F,yo-reducing [NiFe]-hydrogenases FrhA-D, the cyto-
plasmic [NiFe]-hydrogenase MvhADG, and the hetero-
disulfide reductase HdrABC in their genomes. The latter
two enzyme complexes interact with the cytoplasmic
[NiFe]-hydrogenase MvhADG, which was also identi-
fied in all investigated methanogens, for the coupled
H,-driven reduction of ferredoxin and heterodisulfide
CoM-S-5-CoB [69]. Furthermore, methanogens of the
family Methanobacteriaceae encode the membrane-
bound energy-converting [NiFe]-hydrogenases EhaA-T
and EhbA-Q [70], whereas the Methanomicrobiaceae
strains encode the energy-converting [NiFe]-hydrogenase
EchA-F in their genomes. Members of the order Metha-
nomicrobiales were described to exhibit a high affinity
for H, (ca. 0.1 pM resp. 15 Pa H, pressure [71]), possibly
providing an advantage over certain Methanobacteriales
under conditions of low H, partial pressure.

Prevalence of bacterial and archaeal isolates in different
microbial biogas communities analyzed by metagenome
fragment mappings

To determine the prevalence or rather the abundance of
the bacterial and archaeal isolates analyzed in this study
in communities of production-scale BGPs, metagenome
fragment mappings were done using deeply sequenced
metagenomes from three mesophilic (BGP1-3) and one
thermophilic (BGP4) agricultural BGPs which were
published recently [41]. Configurations and process
parameters corresponding to these BGPs are docu-
mented in the publication cited above. To identify
metagenome sequence reads of the BGPs that match
the genome sequences of the biogas isolates, these
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were mapped to the genomes applying Kallisto. Reads
assigned to certain genomes were summed up and nor-
malized according to dataset and genome sizes analo-
gous to TPM (transcripts per million, [72]) values in
RNASeq studies, to allow for quantitative comparisons.

Metagenome fragment mapping results were distin-
guished into the following groups: (I) abundant fully
covered genomes, (II) less abundant but fully covered
genomes, (III) rare but fully covered genomes, and (IV)
rare, partially covered genomes (examples for each group
are shown in Additional file 1).

Only three genomes, namely those of Methanocul-
leus bourgensis MS2Y, D. tunisiensis 1.3, and Clostridium
sp. N3C, fall into group I. M. bourgensis is abundant in
all mesophilic BGPs studied and slightly less abundant
in the thermophilic BGP, whereas D. tunisiensis and
Clostridium sp. N3C are prominent in the thermophilic
BGP (Fig. 4, Additional file 3).

Several of the analyzed strains were clearly detectable
in the mesophilic BGPs but appeared to be only moder-
ately abundant (group II). The strains H. luporum SD1D",
M. chikugoensis L21-11-0, Sporanaerobacter sp. PP17-6a,
and M. wolfeii SIV6 fall into this category. They are sup-
posed to perform functions that are also taken by other
community members. In other words, the corresponding
microbial guilds are composed of several species featur-
ing similar functionalities. Specific adaptation of species
within a guild may refer to slight fluctuations in environ-
mental conditions with one or the other species being
more competitive under a particular condition.

The strains C. bornimense M2/40%, E caenicola ING-
E5BY, H. hemicellulosilytica T3/55%, and C. thermocellum
BC1 seem to be rare in most of the analyzed BGPs (group
III), whereas the isolates Proteiniborus sp. DW1, Pep-
toniphilaceae bacterium str. ING-D1G, P. mucosa ING-
E5AT, Methanobacterium sp. Mbl, P. saccharofermentans
M3/6", B. thermoamylovorans 1A1, Propionispora sp.
2/2-37, M. formicicum MEY, M. formicicum Mb9, M. con-
golense Buetzberg, and C. cellulosi DG5 seem to be, if at
all, of minor importance in most BGPs (group IV).

Furthermore, the non-cultivable fractions of the biogas
microbiomes residing in BGPs 1 to 4 were studied by
Stolze et al. [41], applying metagenome assembly com-
bined with a binning method. This approach enabled
the identification of novel and uncharacterized spe-
cies represented by MAGs, namely 206_Thermotogae,
175_Fusobacteria, 138_Spirochaetes, 244_Cloacimonetes,
and 120_Cloacimonetes. To determine the prevalence of
these MAGs in the biogas microbiomes analyzed, frag-
ment recruitments were performed. The obtained results
showed that the species represented by the bin 175_Fuso-
bacteria is abundant in the mesophilic BGP3, whereas
both Cloacimonetes MAGs were abundant in BGP2 and
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Bacillus thermoamylovorans 1A1 -
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and genomes obtained from the RefSeq database are visualized in black

Fig. 4 Prevalence of bacterial and archaeal strains within different biogas-producing microbial communities as determined by the fragment
recruitment approach. Metagenome sequences derived from the microbial communities of three mesophilic (BGP1-3) and one thermophilic biogas
plants (BGP4) described previously [41] were mapped on the genome sequences of the 22 strains analyzed in this study, the four MAGs described
previously [41], and 46 publicly available genomes obtained from the RefSeq database [44]. Results for the 25 most abundant organisms are shown
in the upper part of the figure. The prevalence of the remaining eight isolates of this study, representing non-abundant organisms, is shown in the
lower part of the figure. The x-axis represents the number of GPMs (genomes per million; analogous to TPM = transcripts Per Million), and the y-axis
shows the analyzed organisms. Isolates investigated within this study are shown in red, genome bins obtained from a previous study [41] in blue,
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GPM (genomes per million)

BGP3. Furthermore, all three MAGs represent fully cov-
ered genomes and therefore fall into the groups I and II
in the case of 175_Fusobacteria and both Cloacimonetes
MAG, respectively. The bin 138_Spirochaetes is detectable
in the mesophilic BGP3 but appeared to be only moder-
ately abundant (group III). The MAG 206_Thermotogae is
very similar to D. tunisiensis L3 showing an ANI (average
nucleotide identity) value of 99.25%, indicating that these
two members belong to the same species [73]. Fragment
recruitments for such closely related microorganisms lead
to random distribution of the corresponding metagenome
sequences to both genome sequences resulting in under-
estimation of the abundances of both strains. Hence, the

206_Thermotogae MAG was not further considered for
fragment recruitments.

Among the publicly available reference species, only
the genomes of M. bourgensis MAB1 [74] originating
from a laboratory-scale biogas reactor and Amphibacil-
lus xylanus NBRC 15112 [75], isolated from compost
of manure with grass and rice straw, were almost com-
pletely covered with metagenome sequences featuring
high matching accuracy. The bacterial species A. xylanus
NBRC 15112 was found to be highly abundant within
the BGP1 microbiome, whereas the hydrogenotrophic
methanogen M. bourgensis MAB1 was dominant in the
mesophilic digesters 2 and 3 (Fig. 4). The genomes of
both strains fall into group I regarding their fragment
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recruitment profiles. Among the microorganisms of
group II, the species C. clariflavum involved in hydrolysis
of cellulose and hemicellulose [76] and Streptococcus suis
BM407, a human pathogen [77], were found to be nearly
fully covered but less abundant.

Based on these findings, metagenome fragment map-
pings clearly showed that the culturomics approach led
to isolation and characterization of dominant and there-
fore important members of the biogas microbiome. How-
ever, since it is assumed that many biogas community
members cannot be cultured by currently available culti-
vation techniques, further prevalent key microorganisms
remain to be discovered.

Conclusions

Application of high-throughput and -omics technologies
such as metagenomics, metatranscriptomics, metaprot-
eomics, and genomics for the analysis of biogas microbial
communities is becoming increasingly important. However,
currently, the interpretation of generated data is limited due
to the restricted availability of the corresponding and appro-
priate reference genome sequences connected with func-
tional and metabolic information in public databases.

In this study, whole genome sequence information
for 22 bacterial and archaeal strains was analyzed with
respect to their metabolic functions in AD communities.
For 15 bacterial strains, their participation in hydroly-
sis and/or acidogenesis/acetogenesis of plant biomass
decomposition was predicted and partially verified by
in vivo characterization of pure cultures. Clostridium
cellulosi DG5, H. hemicellulosilytica T3/55", H. luporum
SDIDTY, and C. thermocellum BC1 represent cellulose
degraders, while the nine remaining bacteria presumably
play a role in acidogenesis and/or acetogenesis. The seven
analyzed methanogenic Archaea were predicted to pro-
duce CH, via the hydrogenotrophic pathway, represent-
ing the final phase of the AD chain.

Among the microorganisms analyzed in this study,
only two species, namely M. bourgensis and D. tunisien-
sis, were identified to play a dominant role within biogas
microbial communities. Defluviitoga tunisiensis was pro-
posed as a marker organism for the thermophilic biogas
processes. This species is very versatile in the utilization
of different sugars that can be converted to metabolites
serving as substrates for methanogenesis. Methanoculleus
bourgensis has frequently been found to dominate meth-
anogenic sub-communities residing in production-scale
BGPs and is assumed to be well adapted to high-osmolar-
ity conditions and ammonia/ammonium concentrations
prevailing when manure is used as a substrate for biogas
production. Furthermore, the fragment recruitment
analysis of MAGs published by Stolze et al. [41] could
also show that in addition to the classical cultivation and
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isolation strategy, the metagenome assembly and binning
approach may also enable the identification and charac-
terization of previously unknown but abundant species
featuring important functional potential in the context of
the anaerobic digestion process.

It appeared that among the publicly available genomes
only those of the species A. xylanus, C. clariflavum,
and C. thermocellum were found to be well represented
within biogas microbiomes, but do not reach the level
of abundance as observed for M. bourgensis and D.
tunisiensis. Surprisingly, among 5061 complete genome
sequences archived in the public database NCBI, only
those mentioned above seem to be of pronounced impor-
tance for agricultural biogas systems. Accordingly, the
applied culturomics approach led to the isolation of fur-
ther key AD species, thus providing genome sequence
information for novel biogas community members. In
the future, the non-cultivable fraction of AD communi-
ties should also be accessed by single-cell genomics to
uncover genome sequence information of further, so far
unknown biogas community members.

Additional files

Additional file 1. Fragment recruitment of metagenome sequences
derived from four biogas-producing microbiomes to the genome
sequences of the exemplarily chosen strains Amphibacillus xylanus NBRC
151127, Clostridium sp. N3C, Fermentimonas caenicola ING2-E5B', Metha-
nobacterium formicicum MFT and Methanoculleus bourgensis MAB1. The
x-axis: microbial genome analyzed, y-axis: percent identities of mapped
metagenome reads.

Additional file 2. Genomic loci encoding enzymatic functions participat-
ing in the propionic acid, ethanol, formic acid, butyric acid and lactic acid
fermentation for each strain analyzed.

Additional file 3. List of the 72 most abundant bacterial and archaeal
strains within the biogas microbial communities analyzed, their GPM
(genomes per million) values and further coverage statistics.
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