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ABSTRACT

A 2-dimensional extension of the simple Lovelock-Watson model for geosphere-biosphere feed-
back is introduced and discussed. Our enriched version also takes into account various pertinent
physical, biological, and civilisatory processes like lateral heat transport, species competition,
mutation, germination, and habitat fragmentation. The model is used as a caricature of the
Earth System, which allows potential response mechanisms of the biosphere to environmental
stress (as generated, e.g., by global warming or anthropogenic land-cover change) to be investi-
gated qualitatively. Based on a cellular automaton representation of the system, extensive
calculations are performed. They reveal a number of remarkable and, partially, counter-intuitive
phenomena: our model biosphere is able to control almost perfectly the geophysical conditions
for its own existence. If the environmental stress exceeds certain thresholds, however, life breaks
down on the artificial planet via a first-order phase transition, ie., in a non-reversible way.
There is a close connection between self-stabilizing capacity, biodiversity and geometry of
habitat fragmentation. It turns out, in particular, that unrestricted Darwinian competition,
which reduces the number of co-existing species, is the best guarantee for survival of the artificial

ecosphere as a whole.

1. Introduction

Humanity’s experiment in exploring the resili-
ence of the Earth System to large scale perturba-
tions (e.g, modification of atmospheric
composition or fragmentation of terrestrial vegeta-
tion cover) is now in full gear. First results of this
experiment (called Global Change) have already
been achieved, in particular, statistical evidence
for anthropogenic global warming and the erosion
of biodiversity. A full account of the climatic
aspects is provided by the forthcoming IPCC
Report (Bolin et al. 1996); the present state of the
biosphere is described, for instance, in Walter and
Breckle (1991).

Unfortunately, the investigators here are prob-
ing their own material support system, which
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cannot simply be replaced by a new specimen
once the previous one has been worn out. The
only way out this dilemma seems to be in model-
ling and computer simulation based on extensive
non-destructive measuring and monitoring cam-
paigns. The so-emerging virtual Earth Systems
can be scrutinized safely in order to give deeper
insights into the interactions of the various con-
stituents and so avoid irreversible dead-end streets
for the evolution of the original planet.

Big international research programmes like
WCRP (WCRP 1994) and IGBP (IGBP 1994)
are considered major stepping stones on our way
towards such a fully-fledged Earth-System ana-
lysis. As a matter of fact, detailed 3D analogical
models of the coupled geosphere-biosphere
dynamics are supposed to transpire from these
and related efforts within the next decade.

At present, such models are not yet available,
but even when they exist they may be almost as
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difficult to handle as their real counterpart.
Therefore it seems to be wise to keep on studying
caricatures of the Earth System too, in the form
of conceptual or even tutorial models (the different
approaches to Earth-System modelling are discus-
sed, e.g., in Schellnhuber 1996). Such a strategy is
well-suited for uncovering qualitative phenomena
and for exploring the topology, though not per-
haps the geometry, of the system’s phase space.
The caricature may specifically reveal pertinent
traits of the complex object under investigation
and shatter conventional folklore based on convic-
tion rather than analysis.

This modelling philosophy is further supported
by recent insights of non-linear physics (Schuster
1989, Ott et al. 1994). They suggest looking for
generic dynamical patterns of complex systems
rather than striving for numerical predictions of
details, which generally exhibit exponential sensit-
ivity to conditional and computational errors. The
identification of the major feedback mechanisms
regulating or destabilizing the system in question
is a crucial element of such a semi-quantitative
analysis.

The evolution of the global ecosphere through
billions of years was governed by the interaction
of the biosphere and its geophysical environment
as defined by the main factors insolation, plate
tectonics, and the state of the atmosphere-
hydrosphere system. A full explanation and recon-
struction of the quaternary glaciation episodes,
for example, seems to demand a thorough under-
standing of the planetary biogeochemical cycles
as mediated by Life. The scientific paradigm
behind these theories has been pioneered by
J. Lovelock and his geophysiological approach to
Earth-System analysis (Lovelock 1989, 1991).

A particularily useful ansatz for the investi-
gation of geosphere-biosphere feed-backs is the
Lovelock-Watson model (LWM) of “Daisyworld”
(Watson and Lovelock 1982, Watson and
Lovelock 1983). Despite its toy character, this
model investigates possible mechanisms of envir-
onment stabilization through evolutionary
adaption of terrestrial vegetation to varying
insolation. We present here a 2D cellular auto-
maton (CA) version of the original LWM, which
takes into account a number of physical (e.g.,
lateral heat flow) and biological (e.g., competition
and mutation) processes reflecting the dynamics
within the real Earth System.
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Our study has two main objectives, namely: (i)
to mimick, on a tutorial level, the impacts of
global change, like the modification of radiative
forcing through anthropogenic emissions of green-
house gases or man-made fragmentation of land-
scapes; (ii) to provide, on a conceptual level,
potential building blocks for more sophisticated
Earth-System models to be constituted in
coming years.

Our material is organized as follows. In
Section 2, we briefly review the original LWM. In
Section 3, the extended model, which allows for
infinitely many coexisting species, is introduced
and discussed. The results of the quantitative
analysis are presented in Section 4. In Section 5,
the impacts of habitat fragmentation, ie. the
effects of heterogeneity, are analysed. The lessons
to be learned from our geophysiological approach
are summarized in the concluding section.

2. The original Daisyworld model

The familiar LWM is a zero-dimensional carica-
ture of a planet, which is illuminated by the sun
and which is able to support merely 2 different
types of vegetation cover.

The surface of the “naked” planet, i.e., the planet
without vegetation, is characterized by an overall
albedo A,. The equilibrium temperature T,
depends on the insolation S and the black body
radiation according to

opT§=5(1—4,), (1)

where oy is the Stephan-Boltzmann constant. The
biosphere consists of 2 components only.

® Species 1 with albedo 4; > A4, (“white daisies™),
covering an area a, with temperature T; < Ty,.
® Species 2 with albedo A, < A4, (“black daisies”),
covering an area a, with temperature 7, > T,.

The growth rate S(T;) of species i is a unimodular

function with a maximum at 7, =22.5°C:
i—5)(40—T;
B(T) = (40-5) (T=3)(40-T), 5<T;<40,
v 0, otherwise.

(2)

Tellus 49B (1997), 3
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The dynamics of the toy biosphere is governed by
a system of 2 coupled nonlinear differential equa-
tions:

a4y =a;(B(T)x—y),
a=a(f(T)x—7). (3)

Here y denotes a constant mortality rate and x,
the uncovered area, is trivially given by

x=1—a;—a,. (4)

For the sake of even more simplicity, the total
area of the planet has been set equal to unity and
the solar radiation is measured in “optimal insola-
tion” units:

1—A4,

e
O-BTOpt

§'=8

(5)

This feedback system has been analysed by several
authors (Isakari and Somerville 1989, Zeng et al.
1990, De Gregorio et al. 1992, Saunders 1994) in
great detail. One remarkable result is that, in
contrast to the uncovered planet, the “bioplanet”
is able to hold the global temperature relatively
constant when the external “control parameter” S
is varied within a rather wide range. This property
of self-regulation is referred to as “homeostasis”.
As a matter of fact, homeostasis is achieved here
by a rather simple mechanism: white (black) dais-
ies are fitter in hot (cold) climates as their compar-
atively high (low) albedo tends to reduce (increase)
the local temperature.

Note that by conceiving oy as a function of the
CO, concentration of the atmosphere, it is possible
to take the greenhouse effect into account.

3. Introducing spatial dependence,
competition, and mutation into Daisyworld

In general, the stable coexistence of many
different species in Daisyworld can be brought
about either by temporal fluctuations or by
extending the spatial dimensionality. In this paper,
the second approach is used and our planet will
be represented by a 2D plane with coordinates x
and y (Schellnhuber and Von Bloh 1994).

The “climate” here coincides with the temper-
ature field T(x,y,t), which is governed by an
elementary energy balance equation (Henderson-

Tellus 49B (1997), 3
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Sellers and McGuffie 1990):

OT(x, y,t) 0* 0?
C @f _DT 6X2 ay; T(X, yat)
—apT(x, y,t)* + S(1—A(x, y, 1)),
(6)

where D; denotes the diffusion constant and
A(x, y,t) represents the spatiotemporal distribu-
tion of albedo. The latter reflects the prevailing
vegetation pattern. The homogeneous solutions of
eq. (6) are equivalent to the solutions of eq. (1) of
the original LWM.

We consider an extended biosphere consisting
of infinitely many different species, which may be
conveniently classified by their specific albedos
A € [0, 1]. Hence, the variable 4 serves a 2-fold
purpose, namely (i) to label the “daisies” stored
in the genetic pool, and (ii) to express their
radiative properties. As a consequence, the vegeta-
tion dynamics within our model can be directly
represented by the albedo dynamics.

To achieve this, we have to translate the vegeta-
tion growth rules, which can be set up in the spirit
of the LWM, into albedo modification rules. Their
dependence on T and eq. (6) then determine the
coevolution of albedo and temperature field in the
plane. As the analytic solution of this intricate
non-linear dynamics is unfeasible, we will have to
resort to numerical computation schemes based
on discretization of the system. It is therefore
reasonable to employ the CA approach from the
outset (Wolfram 1986, Goles 1994.) One major
advantage of this approach is the fact that consist-
ent albedo modification rules can be written down
immediately.

The CA is constructed as follows: the plane is
replaced by a quadratic lattice (x;, y;), where x;=
i Ax;y;=j Ay;i,j € N and the basic spatial units
Ax, Ay can be chosen arbitrarily. Time proceeds
in discrete steps t,=n At, where n € N and At is
again an optional unit. Thus any systems variable
F becomes a function F(x;, y;,t,).

The occurence of vegetation in a particular cell
(x;,y;) at time t, can be indicated by a binary
coverage function c(x;,y;,t,): N>—{0,1}. The
albedo dynamics is then determined by the follow-
ing rules:
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(1) clx;, y;,t,)=1, ie., the cell is covered by
vegetation.

1 with probability 1—7y,
c(xiayjatn+l)= 0 ;

>

otherwise

=

A(xi’yja tn) lf c(xisyjs tn+1)= 1 s

A is istn = i
(Xis Yis tn+1) { A, otherwise.

(7
(2) c(x;, y5,t,)=0, i.e., the cell is uncovered.
Then choose at random a next-neighbour cell
(xyn>¥wn) of (x;,y;) and make the following
distinction:
(a) cxyn, yansta)=0

c(xi,yj’tn+1):09

A(x;, Yjrtas1)= Ao - (8)
(b) c(xnn, Yans ta)=1
1 with probability f
X Vst 1) = {0 otherwise ;
=
AXi, Yjstys)=
y {f(A(xNN9 Yawsta) if ¢(x;, yj,the1)=1 .
Ay otherwise.
%)

Thus, y and f again denote mortality and growth
rate per each time step t,, respectively. Regarding
the functional dependence of the growth probabil-
ity on the spatial distribution of temperature, two
obvious choices can be made:

(A) B depends only on the temperature of the
uncovered cell at point (x;,y;), i.e.,

B=B(T(x:, ), ta))- (10)

(B) p is determined by the temperature of the
next-neighbour cell (xyy, yan), i€.,

ﬂzﬂ(T(xNN?yNN’tn))' (11)

Hence in the first version, (A), the growth rate
depends on the state of the area that will be
covered by the vegetation in the next time step,
while in the second version, (B), the temperature
of the vegetation patch which initiates the growth
determines the growth probability. It turns out
that this innocent-looking local distinction induces

VON BLOH ET AL.

rather different behaviour even at the systems
scale (see below).

The function f in (9) offers the opportunity to
incorporate also more sophisticated biological
effects: by choosing, for instance,

fA)=A+R, (12)

where R is a random number distribution with
the properties

R € [~rr], {(R>=0, (13)

it is possible to take mutations of the albedo into
account. Here r>0 can be interpreted as the
mutation rate.

The CA is completed by solving the temperature
evolution eq. (6) by an explicit finite-difference
scheme on the square lattice with the same reso-
lution as employed for the growth dynamics. The
discretization step must be chosen in the way that
the stability of the explicit scheme is guaranteed
and no bifurcation (as, e.g., in the logistic map)
takes place. A list of the chosen parameter settings
is shown in Table 1. These values are used unless
stated otherwise.

3.1. Comparison with the original model

Our extended geophysiological model for bio-
sphere-geosphere interactions contains all the
dynamics of the zero-dimensional LWM as a
special subprocess. To demonstrate this, we have
to consider the true evolution of the vegetation
density N. Within the discrete CA formalism, N
is defined as follows:

N(-xi’yhtn) = <C(xi5yj’tn)>’ (14)

Table 1. List of the values assigned to the adjustable
parameters in all computer simulations referred to
in this paper

Parameter Value

op 56696108
Dy 500

C 2500

Ao 0.5

y 0.02

At 1

Ax 1

Ay 1

Tellus 49B (1997), 3



SELF-STABILIZATION OF THE BIOSPHERE UNDER GLOBAL CHANGE:

where <> denotes an averaging over a statistical

ensemble. Thus N(x;, y;, t,) represents the probab-
ility of encountering vegetation of any type in cell
(x;,y;) at time t,. The dynamics of N is implicitly
determined by the rules summarized in egs. (7)
to (9).

To simplify the calculations, we restrict the
vegetation to 1 species in 2 spatial dimensions
without considering mutations (f(4)=A4). We
have:

N(xi’yj’tn'i'At):(l —Y)N(xiayja tn)+ﬂ(T)
X (1 _N(xisyj’ tn))

1
X 2 {N(x;+Ax,p;,t,) + N(x;

—AX, yjity)
+N(xi1yj+Ay’ tn)+N(xi’yj

The next step is to take the continuous limit by
making a Taylor expansion in Ax, Ay, and At up
to 2nd order in space and 1st order in time, which
results in the following expressions:

ON
N(xi iAx9yj9tn)':N(xi,yjstn)iAx E

2

1, ®N ,
+ 5 A —— +0(Ax),

ON
N(xiryjiAyatn)=N(xi7yja tn)iAy 5;

2

1 0°N
ZAYE 3
+2 Ay e +0(Ay°),

ON
N(x;, yj, t,+At)y=N(x;, y;,1,)+ At o +O(A?).

(16)

Substituting the approximations in eq. (15) and
performing some transformations, the following
PDE can be obtained for growth version A, if we
neglect the terms of higher order:

ON , ,
S = —¥N4 DN
*N 0*N
X{N-{-DXW +Dy_57}’ (17)

where y'=y/At, p'=B/At, D,=1Ax?, and D,=

Tellus 49B (1997), 3
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1Ay?. In order to have a non-vanishing diffusion
for low values of Ax, Ay, f must be enlarged. This
can be compensated by a lower value of Az, which
ensures also the stability of the discretization
scheme.

For growth version B, the density N is deter-
mined by:
N(X,-, yj7 tn+ At)=(1 —V)N(xi’ yjs tn)

+(1_N(xi5yj>tn))

1
X 3 BTt A%, yj, )N (i Ax, y;, )
+ﬁ(T(xi”Ax’yj’ tn))N(xi—Axs Vis tn)
+B(T(xi> yj+Aya tn))N(xi3y+ij> tn)
+ B(T(x;, y;— Ay, ta))N(x;, y;— Ay, 1,)} .

The resulting PDE for N is

(18)

N o N+(1=N)
o 7

) & LA
x{ﬂN+ (Dx@ +D, 6_))2) (BN)}‘ (19)

Let us emphasize here that for homogeneous
solutions, i.e., N(x,y,t)=N(t), the egs. (15) and
(18), respectively, are identical to the zero-
dimensional LWM for one species (see eq. (3)).

If we include mutations of the albedo according
to (12) for the homogeneous solution N(4;t) we
get:

N(Ast,+At)=(1=y)NAt,) + B(T)
x (1 -5 N(A’;t,,)dA') % J4Tr NA'st,)dA’
(20)

A Taylor expansion in A yields the following
expression for N(A+AA4;t,):

0
N(A+AA;t,)=NA,t,)+AA Y N(4;t,)
+ 1AA2 32— N(4;t,)+0(AA3)
2 A o YT :
(21)

Inserting (21) into (20) and taking the continuous
limit in t, the following equation, valid for small
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mutation rates r, is obtained:

% N(;1)= —y'N(A: 1)+ B/(T)
x <1 —[AN@; t)dA’)

(22)

N(A: lza_zNA.t
x| N+ 2% =5 Nds1) ).

This analysis can be expanded to all aspects of
our full CA to demonstrate that the discretization
preserves the right physics and biology.

4. Results

The dynamics of the extended geophysiological
model introduced in the previous section is integ-
rated numerically. We present here results of
extensive investigations performed on a powerful
parallel computer (IBM SP2). In general, the
cellular automaton was implemented on finite
2D-lattices (200 x 200) with periodic boundary
conditions. It should be mentioned that all the
following results have been achieved using model
B, ie., the growth probability depends on the
temperature according to eq. (11).

4.1. Equilibrium behaviour

Let us first choose a fixed insolation well within
the range where the biosphere is able to maintain
optimal subsistence conditions. Let us assume, for
instance, that S'=1, implying T,=T,,. We vary,
however, the mutation rate r in order to reveal
the relations between mutation, biodiversity, and
adaptive capacities.

The system is initialized by a random distribu-
tion of vegetation (albedo): then the rules of the
cellular automaton are applied. After approxi-
mately 10* iterations, the global average temper-
ature  approaches the optimum growth
temperature Ty, i€., the system has relaxed to a
statistical equilibrium. Further iterations produce
significant local fluctuations but do not modify
the mean properties of the model planet. Fig. 1
depicts a typical equilibrium distribution of species
(characterized by their albedo) and the associated
two-dimensional temperature field.

The species spectrum B(A) is defined as follows:

B(A4)dA :=number of species with albedo A’

VON BLOH ET AL.

€ [4,4+dA4]. (23)
Note that due to the finiteness of the lattice we
have only finitely many “daisies” on our planet;
therefore this and the following quantities are well
defined. The mean albedo A of our model bio-
sphere and its variance ¢ are then given by

{6 AB(4)dA, (24)

|5 A*B(4)dA— A7, (25)

2
=B
where B= [§B(4)dA is the total “biomass”.

The variation of the species spectrum as a
function of the mutation rate r is depicted in Fig. 2
for version B of the automaton. Extensive compu-
tations corroborate the fact that B(4) can be
approximated by a Gaussian distribution for

r<0.1, ie.,
B(A) oc e~ A=A20" (26)

The mean albedo 4 consistently turns out to equal
the optimum albedo A4, which is determined by

S(I_Aopt)=O-BT§pt' (27)
Hence, we have
A=Ay =A4,=05, (28)

if the natural choice for 4, is made.

From Fig. 2, we can also see that ¢ is a monoton-
ically increasing function of r. Without mutation
(r=0) the spectrum actually collapses into a J-
function at A=A, if we take the limit for an
infinite lattice size, while for large r an almost
uniform spectrum emerges.

Fig. 3 reproduces the quantitative relationship
between ¢ and r for fixed S'=1. The saturation
effect here can be explained easily: the uniform
spectrum B(4)=1, where each species has the
same ecological weight in Daisyworld, implies an
upper limit for the variance, namely

(29)

2
1
O'2=_‘~(1) AZdA— (j(l) AdA) = E

The dashed horizontal line in Fig. 3 marks the
value 0=,/1/12=0.28....

4.2. Homeostatic response to increasing insolation

A particulary interesting question is the follow-
ing: does the extended 2D Daisyworld model react

Tellus 49B (1997), 3
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Temperature
distribution

255

Albedo
distribution

Fig. 1. Daisyworld in statistical equilibrium for S’=1: snapshot of typical albedo distribution (right) and associated
spatial temperature fluctuations around T, (left, in false colour representation).

B(A)

R et T o

O v T T T
0 0.2 0.4 0.6 0.8 1
Albedo A of species
Fig. 2. Species spectra after 10° iterations for optimal
constant insolation (T, = T,,,) and for different mutation
rates r=0.0,0.005,0.01,0.02, and 0.1, respectively. The
solid curves represent the appropriate Gaussian fits.
Note that the curve for r=0 becomes a pure d-function
only in the limit of infinite lattice.

in a similar way to external perturbations (as
variations of §') as the simple LWM? We generate
the answer by simulating the system behaviour
under quasistatic increase of the insolation. This
is again done for different mutation rates r, which
heavily influence the adaptive power of our model
biosphere.

Fig. 4 demonstrates how the global mean tem-
perature T evolves with the modification of S".
Note that a moderate mutation rate (r=0.01,
curve b) significantly extends the homeostatic

Tellus 49B (1997), 3

0.4
© 0.3
g I R
= + ¥
RS +
> 0.21
3 +
|
(72} ] +
g o1
o +

0.0 - r r T

0 0.02 0.04 0.06 0.08 0.1

Mutation rate r

Fig. 3. Root-mean-square deviation ¢ of species spectra
as a function of mutation rate r.

100

Fig. 4. Global mean temperature T versus insolation §’
for r=0 (a) and r=0.01 (b). The curved dashed line
indicates the planetary temperature without life.
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effect as compared to the case without mutation
(curve a).

Our general finding is that the extended model
is an even better self-regulator than the simple
LWM. The wiggles around the optimal control
line T= T, are finite-size effects which will disap-
pear on an infinite lattice. As mentioned above,
however, the dependence of self-stabilizing behavi-
our on mutation is quite massive: for r=0, the
critical insolation for vegetation breakdown is
given by S'c; = 1.47, while for r=0.01 the critical
value has increased to 2.19!

We generalize these observations by calculating
S'.ie as a function of r. The result is shown in
Fig. 5, which clearly reveals the existence of an
optimum mutation rate r,,, ~0.06. The associated
maximum critical insolation strength is given by
S'ir=2.41.

The different realizations A and B (see egs. (10)
and (11) for the CA growth rules result in rather
distinct responses to increasing insolation. This is
demonstrated in Fig. 6, which contrasts the evolu-
tion of Twith growing S’ and identical r =0.05 for
the 2 versions. We observe that the critical insola-
tion in case A is significantly smaller than in case B.

Of course, the increase of S’ heavily influences
the species spectrum which adjusts in a self-
stabilizing way. As a matter of fact, the rms-
deviation o significantly decreases when the sun
becomes brighter (or the greenhouse gases accu-
mulate). In other words, adaptation to non-
optimal environmental conditions implies loss of
biodiversity. Fig. 7 depicts the species spectra asso-

2.5
[EEEES S
¥ ¥
X
2.0
n
1.5
1.0 T r T
0.0 0.05 0.1 0.15 0.2
Mutation rate r
Fig. 5. Upper-limit insolation S'y; for biosphere

homeostasis as a function of mutation rate r. All values
result from averaging over 10 different simulations; the
error bars are included.

VON BLOH ET AL.

T (°C)

Fig. 6. Global mean temperature T versus insolation S’
for version A and B, respectively, of the CA growth rules
(mutation rate r=0.05).

B(A)

0 0.2 0.4 06 0.8 i
Albedo A of species

Fig. 7. Species spectra for $’=1.24 and 2.01, respectively;
r=0.01.

ciated with two different values of S’ and identical
mutation rate.

The dwindling of biodiversity can be explained
analytically, if we inspect the behaviour of ff as a
function of T— T,,. Local energy balance implies

T—Top=[S(1—A4)/o5]""* — [S(1 — Aop)/op]"
=const. X (S)4[(1— A)* —(1— Agp)"*].
(30)
Linearization of the term in square brackets yields
T—T,, ~const. X (§)*(Aop— A4), (31)

in the neighbourhood of optimum albedo A,
which is itself a strictly increasing function of the
insolation S. From the latter equation it becomes
clear that a fixed deviation 4 from the optimal.
albedo, i.e., |4 — Aop ()4 = A >0, is punished the
more severely the larger S’ grows: |T—T,,|
increases monotonically with S’ and the growth
probability f is a unimodular function with unique
maximum at T=T,,. So for higher §"> 1, species
have to possess a closer-to-optimum albedo in

Tellus 49B (1997), 3
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order to exhibit comparable fitness. As a con-
sequence, the spectrum becomes steeper and
steeper with growing insolation.

4.3. Hysteresis of life

Let us emphasize here that the break-down of
the self-organized biosphere, which takes place
when S’ crosses the threshold S'., is a clear cut
first-order phase transition. Therefore hysteretic
behaviour can be observed, i.e., the state of the
system depends on its history.

We want to demonstrate this by forcing our
extended Daisyworld through a full hysteresis
loop. So S’ will be quasi-statically increased from
the optimal value 1 to a supercritical value, thereby
destroying all vegetation. Thereafter, S’ will be
decreased down to the initial value to give the
biosphere a chance for renaissance. But note that
the planet cannot be recolonized by life if all
species have been wiped out together with their
seeds.

Let us therefore introduce a uniform stochastic
background process, which represents the relent-
less germination of seeds protected by the soil.
This can be achieved by slightly modifying the
CA growth rules. Let us assume that c(x;, y;, t,)
and all neighbouring cells are equally devoid of
vegetation. Then instead of applying eq. (8), we
make the following prescription:

1 with probability =

>

C(xi’yjs tn+l)= {

0 otherwise

P if c(x;, iy tar1)=1
Al vy ta1) = {AO otherwise ’
(32)

Here = is a very small number and p is a random
variable with uniform distribution in the interval
[0,1]. The germination process does not disturb
the original dynamics of the system.

Fig. 8 shows what happens under these condi-
tions, when S’ rises and falls again: both the
evolution of the global mean temperature and of
the total vegetated area are depicted. For fixed
r=0.01, recolonization of the planet starts when
the insolation drops to S§'=1.25. This is signific-
antly smaller than the extinction value S'=2.19!
So, once the “point of no return” has been passed,
it takes a great deal of effort to reinstall appro-
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Fig. 8. Hysteresis diagram for the global mean temper-
ature T and the total vegetation area a in response to
variation of S’. The arrows pointing to the right indicate
increasing, the arrows pointing to the left decreasing
insolation; r=0.01, z=10"%.

priate conditions for the self-organized reappear-
ance of the biosphere.

5. The impacts of fragmentation

Within our 2D model, the disposable area for
vegetation growth is the full square, i.e., a simply
connected domain. In the real world, however, the
area available for biospheric adaption to global
change forces is highly fragmented by civilisatory
activities: urban settlements, infrastructures, agri-
culture, tourism, etc. The implications of habitat
fragmentation on biodiversity is at present a much-
debated issue.

Our toy planet constitutes an ideal theatre for
investigating this and related questions in some
depth; we specifically ask how the species spectrum
and the resulting homeostatic properties of the
biosphere depend on landscape heterogeneity. The
latter is simulated here in a well-defined way: we
employ the percolation model from solid state
physics (Stauffer 1985) in order to simulate suc-
cessive non-trivial reduction of growth space.

The percolation model on a square lattice is
formulated in the following way: for a given
probability p € [0, 1], each site will be randomly
occupied with probability p. As a consequence, it
will remain empty with probability I —p. A con-
nected group of occupied sites is called a “cluster”.
The size of the clusters clearly grows with increas-
ing p. “Percolation” is said to set in when the
largest cluster extends from one end of the system
to the other (“spanning cluster”). In the limit of
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infinitely large lattices there exists a sharp thresh-
old value p,=0.59273 ... for percolation. The
spanning cluster associated with this phase trans-
ition is a multiple-connected fractal object with a
power-law hole-size distribution. Fig. 9 gives an
example of such a critical configuration which
allows to traverse the entire lattice via next-
neighbour steps.

Therefore, we have to distinguish between 3
qualitatively different regimes determined by the
occupation probability:

(1) 0<p<1—p.: the collection of occupied sites
does not form any spanning cluster, but the
collection of unoccupied sites represents a
connected “void space”.

(2) 1—p.<p<p.: neither the occupied nor the
void sites form a connected structure.

(3) p.<p<1:the collection of occupied sites does
form a connected structure, but the void space
is now disconnected.
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We introduce civilisatory land-use into our
extended Daisyworld by gradually diminishing the
potential growth area in the following way: choose
a (small) generating probability p,. In every time
step, n all cells within the finite lattice are consid-
ered one by one and excluded from the growth
space with probability p,. At time ¢, the probabil-
ity that any specific site has been “civilized” is
therefore given by

pt)=1—=(1—po)". (33)
Note that
1—p(t.}=(1—po)" (34)

is then the statistical fraction of habitable area
after n time steps.

Our fragmentation scheme is independent of
the actual status of the cell under consideration.
Furthermore, all physical properties, such as
diffusive heat transport remain unaffected. We
now present some computer simulation results,
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Fig. 9. Patch-work of occupied sites in the standard percolation model at criticality (p=p,=0.5973,...). The fractal
spanning cluster is marked by the darker shade. Lattice size is 100 x 100.
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which shed light on the systems behaviour of
“anthropomorphic Daisyworld”.

First, we test the decay of self-stabilizing power
with increasing patchiness parameter p(t,), i.e., for
growing n. For fixed S’ and p,=12310"5, we
perform n=2-10° time steps, to destroy almost
(x91.3%) all growth sites. Fig. 10 reproduces our
findings regarding the relation between global
mean temperature T and the percolation para-
meter p. We observe that even the fragmented
biosphere is able to stabilize the planetary temper-
ature near the optimal value, unless p exceeds a
value of approximately 0.4.

Our numerical results are robust. A series of
extensive calculations with increasing lattice
dimensions shows that finite-size effects can be
neglected: the homeostatic response of the bio-
sphere to fragmentation results in a well-defined
p-T-curve for any fixed S’ (see Fig. 11).

As a matter of fact it turns out that the above-
mentioned threshold value for patchiness has uni-
versal character, i.e., the behaviour depends neither
on the system size nor the parameter settings. In
particular, the strength of the insolation, which
represents an external driving force, does not affect
the threshold value. This is demonstrated in
Fig. 12, where the self-organized mean temper-
ature T is plotted as a two-dimensional surface
over the control space spanned by the driving-
force variables T; (i.e., S') and p. The adaptive
power of Daisyworld clearly breaks down when p
approaches the value

p:=1—p.,~0407. (35)
1-pe
35 ;
30 1 I To(S)
~~
]
9, 25
LT i it Sttty o Topt
201

Fig. 10. Dependence of global mean temperature T on
the fragmentation parameter p. S’ corresponds to 30°C
for the temperature Ty(S’) of the “dead” planet. The
broken vertical line at p=1—p, indicates the disconnec-
tion threshold for the habitable space.
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Fig. 11. Convergence of numerical results for p— T rela-
tionship for increasing lattice size, (a) 200 x 200, (b)
400 x 400, (c) 800 x 800. S" has been fixed to a value
generating a geophysical planetary temperature
To(S"y=50°C.

The explanation for this phenomenon is simple
but illuminating: for p>p the growth space has
lost its connectivity and is broken up into many
isolated domains. Our toy model hence provides
us with clear-cut evidence that the ecological
performance of a system directly depends on its
topology!

5.1. Fragmentation and biodiversity

In order to study the impacts of fragmentation
on the abundance of different species in
Daisyworld we keep §'=1 fixed (implying T,=
1,,.) and calculate the rms-deviation o of B(4) as
a function of the patchiness parameter p. The
result is shown in Fig. 13. We observe that biodiv-
ersity remains almost constant for p<p, i.e., as
long as the growth space remains connected.
Beyond p, however, the species diversity becomes
a monotonously increasing function of fragmenta-
tion! This finding is in marked constrast to the
results presented in Subsection 4.2, where we
stated that biodiversity decreases as a consequence
of environmental deterioration.

Our observation can be explained as follows:
within a homogeneous landscape, biodiversity is
limited exclusively through competition. Only
species with an albedo in the vicinity of the optimal
value enjoy a sufficiently large growth rate for
survival. And we have shown above that the
“window of fitness” is shrinking with increasing
irradiation.

In the case of habitat fragmentation, the process
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Fig. 12. Bioplanetary temperature T as a function of insolation (as represented by T) and fragmentation (as repres-

ented by p).
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Fig. 13. Growth of biodiversity, expressed by rms-

deviation ¢ of species spectrum B(4), with increasing
fragmentation parameter p. S'=1, i.e., To=T,.

of Darwinian competition becomes more and
more hampered. The growth space is split up into
disconnected “ecological niches” at all scales,
where even species with far-from-optimum proper-

ties can subsist. As the relative number of niches
grows with p, the biodiversity grows as well.

Yet there is a price to be paid for biodiversity:
the overall adaptive capability of the system dra-
matically decays due to the suppression of the
selection process. So Daisyworld becomes more
vulnerable to global change the more it becomes
egalitarian — biodiversity is harmful from the
planetary point of view here!

5.2. Comparison between patchy and trivial
reduction of growth space

We want finally to demonstrate that the geo-
metry of the remaining growth space is indeed of
paramount importance for the ecological perform-
ance of our toy biosphere. To this end, we repeat
our simulations for a trivial process of habitat
reduction, namely progressive shrinking in time of
the rectangular core growth area. The prescription
for the process is as follows:

Tellus 49B (1997), 3
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Let L > 2N denote the size of the lattice, so
the cells (x;, y;) of the system obey the inequalities

—L2<x;,y;<L/2. (36)
Then assume that
c(Xi, yj ta) =0 if |x;|>d/2\/|y;|>d/2, (37)

where d=d(t,), d(0)=L, and d(t,)—0 for ¢,—oo0.
That means that the habitable zone is a dwindling
central square of approximate area d? and is a
decreasing function of time t,. The properties of
the so-restricted system can be compared to those
for the above-described patchy one with identical
total growth area, i.e., for

a1 (4] e

The evolution of the global mean temperature T
as a function of 7 under an insolation that corre-
sponds to T,=30°C is depicted in Fig. 14. Note
that, in contrast to the non-trivially fragmented
system, the “shrinking square biosphere” is not
capable of planetary homeostatic control: T
increases almost linearly with growing =n. This
behaviour is approximated by the formula

Tim)=To(S)m+ (1~ M) Ty - (39)

The markedly different adaptive capabilities
induced by habitat geometry can be explained in
a straightforward way. In the 1st case, where the
growth area is reduced according to the percola-
tion algorithm, we have approximately N,=pI?
non-coverable cells, and almost all of them are
adjacent to cells covered by vegetation. In the 2nd

(38)

35
301
~~
(@]
o 25]
T
20
15 T " - T
0 0.2 0.4 0.6 0.8 1
n=1-(d/L)*

Fig. 14. Variation of global mean temperature T with
progressive trivial shrinkage of habitable area. As in
Fig. 9, S’ has been chosen to generate T(S")=30°C. The
tilted broken line indicates the linear estimation as
expressed in eq. (39).
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case, where the planetary space decays into a
coverable central square and a non-coverable
margin, only a very small number of “dead” cells

N,=4L(1—-n)"? <N, (40)

are neighbour on a “living” cell. In other words:
due to its intricate patchiness, the surface-to-bulk
ratio of a percolation cluster is very large in
comparison with the surface-to-bulk ratio of a
simple square covering the same area! But the size
of the surface is an indicator for the total heat
flow, which can be activated between the sterile
and the fertile zones of Daisyworld. We clearly
find that the patchy and lacunary distribution of
living cells over the planet is sufficient to supress
“hot spots” via thermal relaxation.

6. Conclusion

Our main objective has been the construction
of a 2-dimensional conceptual model for geo-
sphere-biosphere-anthroposphere interaction,
which is based on the Lovelock-Watson approach.
Our model could be seen as being mid-way
between pure toy models and three-dimensional
analogical Earth-System models based on state-
of-the-art and geographically explicit simulation
modules for the atmosphere, the ocean, the biogeo-
chemical cycles, civilisatory land-use etc.

For the sake of computational simplicity, we
have designed our extended Daisyworld as an
cellular automaton, but this technical option does
not affect the validity of our results.

Our system turns out to be rich in exhibiting a
number of remarkable phenomena. In particular,
we find that spatial heat transport and mutation
even improve the self-regulation abilities of the
model biosphere. As a matter of fact, in the limit
of infinite system size, a 1st-order phase transition
from optimum ambient conditions to a non-
habitable environment will take place. The exist-
ence of a phase transition implies accompanying
hysteretic effects, i.e., points of no return.

Fragmentation of potential growth space has a
significant influence on the homeostatic perform-

‘ance of the biosphere. A unique threshold can be

identified, where the regulation of global temper-
ature becomes inhibited due to habitat disconnec-
tion. We also find that an unrestricted Darwinian
selection of species under deteriorating environ-
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mental conditions warrants the subsistence of the
biosphere as a whole. Biodiversity benefits from
fragmentation, yet reduces the overall ecological
performance of Daisyworld.

We plan to further pursue our simple geophysi-
ological approach to Earth-system analysis by
incorporating additional elements into our model.
The next steps will be to include caricatures of the
hydrological and biogeochemical cycles. Another
interesting option is to simulate civilisatory habitat

VON BLOH ET AL.

fragmentation by more realistic processes for urb-
anization and infrastructure expansion.
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