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Abstract

We introduce a notion of fractional Laplacian for functions which grow more than linearly at infinity. In such
case, the operator is not defined in the classical sense: nevertheless, we can give an ad-hoc definition which
can be useful for applications in various fields, such as blowup and free boundary problems.

In this setting, when the solution has a polynomial growth at infinity, the right hand side of the equation is not
just a function, but an equivalence class of functions modulo polynomials of a fixed order.

We also give a sharp version of the Schauder estimates in this framework, in which the full smooth Hölder
norm of the solution is controlled in terms of the seminorm of the nonlinearity.

Though the method presented is very general and potentially works for general nonlocal operators, for clarity
and concreteness we focus here on the case of the fractional Laplacian.

1 Introduction

As well known (see e.g. [7,15,20]), to define the fractional Laplacian of a function1 as

(−∆)su(x) := lim
ε→0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy, (1.1)

with s ∈ (0, 1), two types of assumptions are needed, namely:

� the function u needs to be sufficiently regular near x,

� the function u needs to have a growth control at infinity.

The regularity condition is indeed needed in order to make the integral in (1.1) convergent near the singularity
(possibly after cancellation). On the other hand, the growth condition at infinity is needed to make the tail of the
integrand convergent: for this scope, usually the most general assumption on u at infinity can be written in the form∫

Rn

|u(y)|
1 + |y|n+2s

dy < +∞. (1.2)

The need of assumptions at infinity is a typical feature of fractional problems (of course, in the case of the classical
Laplacian, there is no need to prescribe this kind of conditions in order to compute derivatives). In this sense,
the study of nonlocal operators presents several conceptual difficulties with respect to the classical case, inherited
from the fact that the behavior at infinity may deeply affect the value of the fractional Laplacian: see e.g. [8, 9] for
rather general examples (in particular, roughly speaking, appropriate oscillations at infinity can make the fractional
Laplacian vanish identically in a given ball, basically independently on the values of the function in such a ball).

In addition, conditions at infinity such as (1.2) often provide a series of additional difficulties in the regularity theories
for fractional operators since this type of assumptions behaves badly with respect to scalings and blowups: as an
example, one can consider a function which is bounded and quadratic near the origin and check that its blowup does
not satisfy (1.2) (in spite of the fact that both the original function and its blowup may be as smooth as we wish).

1For short, in the rest of the paper, the principal value notation in (1.1) will be tacitly understood and not repeated.
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The goal of this paper is to provide a natural setting to make sense of the fractional Laplacian under weaker condi-
tions at infinity. Of course, some condition at infinity must be taken in order to avoid the examples in [8,9], neverthe-
less we give here a framework which is more flexible and compatible with scalings and blowups.

The basic idea for this is that, if the function grows too much at infinity, its fractional Laplacian diverges, but it can
be written as a given function “plus a diverging sequence of polynomials2 of a given degree”. For instance, if the
function grows linearly at infinity and s = 1/2, then condition (1.2) is violated and

√
−∆ cannot be defined in the

usual sense. We will see that, in this case, a definition is possible, up to “a diverging sequence of constants”.

From this, one is formally allowed to “take derivatives of the equation” and obtain regularity estimates: in the previous
example, one would say that the derivatives of the constants play no role and, in case one has “polynomials of
degree k − 1 as a remainder”, the equation will be well posed “up to derivatives of order k” (which make these
polynomials vanish). Clearly, a rather delicate argument will be used to check that this formal idea makes sense at
all, since these additional “remainders” are divergent and so they do not obviously vanish after differentiation.

As a matter of fact, to introduce the general setting of possibly divergent fractional Laplacians and to develop the
related regularity theory, we will use sequences of cutoffs to reduce the problem to the more usual setting and we
will obtain uniform estimates in an appropriate sense. To this aim, we consider3 the family of cutoffs

χR(x) :=

{
1 if x ∈ BR,
0 otherwise,

(1.3)

and we fix the following setting.

Definition 1.1. Let s ∈ (0, 1), k ∈ N, u : Rn → R and f : B1 → R. Assume that u is continuous in B1 and∫
Rn

|u(y)|
1 + |y|n+2s+k

dy < +∞. (1.4)

We say that

(−∆)su
k
= f in B1

if there exist a family of polynomials PR, which have degree at most k − 1, and functions fR : B1 → R such that

(−∆)s(χRu) = fR + PR (1.5)

in B1 in the viscosity sense, with
lim

R→+∞
fR(x) = f(x) (1.6)

for any x ∈ B1.

We stress again the fact that a classical definition of (−∆)s is not available in the setting of Definition 1.1 (not even
for smooth functions) unless one requires condition (1.2) (and, of course, the condition in (1.4) is weaker than the
one in (1.2) when k > 1). In this sense, the notation (−∆)su in the case of Definition 1.1 represents a “divergent”
operator. Nevertheless, as we will see in the forthcoming Corollary 3.2, it is always possible to construct a function f
as requested by Definition 1.1 (in particular, the set of functions u for which Definition 1.1 makes sense is non-void).

Also, as it will be discussed in Corollary 3.8, the notion given by Definition 1.1 reduces to the standard fractional
Laplacian when k = 0.

2As customary, polynomials of negative degree are set to be zero.
3The choice of the particular cutoff in (1.3) has been made for the sake of concreteness. Other choices are indeed possible as well.
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Moreover, it follows easily from Definition 1.1 that

if (−∆)su
k
= f in B1, then (−∆)su

k+1
= f in B1. (1.7)

In terms of applications, we mention that condition (1.2) is often “too rigid” in the nonlocal framework: for instance, in
many free boundary problems, it is important to look at blowup sequences with degree higher than one (say, 3/2),
and the blowup will not satisfy (1.2), see e.g. [4,10]. Some ad-hoc arguments have been sometimes exploited in the
literature to overcome this type of difficulties, but we believe that a setting as the one in Definition 1.1 can provide
technical simplifications and conceptual advantages when dealing with these cases.

We also observe that the function f in Definition 1.1 is not uniquely determined, since any fixed polynomial can be
added to fR (and subtracted to PR) without affecting the setting in Definition 1.1, and so

if (−∆)su
k
= f in B1, then (−∆)su

k
= f + P in B1 for any polynomial of degree k − 1. (1.8)

Nevertheless, the multiplicity in (1.8) is exactly the one which characterizes f . Namely, we have that f is determined
up to polynomials of degree k − 1, as pointed out by the following observation (whose simple proof is given in
Section 2):

Lemma 1.2. Assume that (−∆)su
k
= f and (−∆)su

k
= f̃ in B1. Then, there exists a polynomial P of degree at

most k − 1 such that f − f̃ = P .

As an illustrative example of our setting, let us point out that one can compute
√
−∆u when u(x) = x2 in

dimension n = 1, using Definition 1.1 with k = 2. Indeed by a direct computation, one sees that

√
−∆x2 2

= 0, (1.9)

and in fact a more general result will be presented in Theorem 1.5 below.

Of course, from (1.9) and Lemma 1.2, a bunch of “curious” identities follows, such as

√
−∆x2 2

= 0,
√
−∆x2 2

= 1,
√
−∆x2 2

= − 1,
√
−∆x2 2

= x
√
−∆x2 2

= ax+ b,
(1.10)

for any a, b ∈ R (these identities indeed look funny at a first glance, nevertheless they are all correct in our setting).

A counterpart of our construction could be also discussed in terms of extension results and Dirichlet-to-Neumann
operators. For instance, if one looks for the general harmonic functionU = U(x, y) in R×(0,+∞) withU(x, 0) =
x2 and with at most quadratic growth at infinity, one has that U(x, y) = x2 − y2 − axy − by. In this sense, one
is tempted (as usual) to identify

√
−∆x2 with −∂yU(x, 0) = ax + b, for any a, b ∈ R which is indeed the last

identity in (1.10).

As a matter of fact, an alternative approach to the one given in Definition 1.1 would consist in considering an
extension problem (modulo polynomials), but we followed the procedure in Definition 1.1, since it can be applied to
more general kernels.

Besides the intrinsic beauty of identities such as the ones in (1.10), in our framework, the usefulness of Definition
1.1 lies in its flexibility and possibility of applications to obtain sharp regularity estimates. In this sense, we give the
following result, which can be seen as an optimal bound in Hölder spaces for the derivatives of the solution in terms
of the seminorm of its (possibly divergent) fractional Laplacian and a weak control of the function at infinity, as given
in (1.4).
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To this aim, as usual, if m ∈ N, θ ∈ (0, 1) and γ = m+ θ, we use the notation

‖f‖Cm(B1) :=
m∑
j=0

‖Djf‖L∞(B1),

[f ]Cγ(B1) := sup
x 6=y∈B1

|Dmf(x)−Dmf(y)|
|x− y|θ

and ‖f‖Cγ(B1) := ‖f‖Cm(B1) + [f ]Cγ(B1).

It is also convenient to introduce the following k-convention on Hölder norms: we denote

[f ]Cγ(Ω;k) := inf[f − P ]Cγ(Ω), (1.11)

where the inf is taken over all the polynomials P of degree at most k − 1; of course, when γ > k − 1, these
polynomials disappear after derivation and we have that

[f ]Cγ(Ω;k) = [f ]Cγ(Ω) if γ > k − 1. (1.12)

Notice that the setting in (1.11) is consistent with the multiplicity in (1.8), since, for any polynomial Q of degree at
most k − 1, we have that

[f +Q]Cγ(Ω;k) = [f ]Cγ(Ω;k).

With this notation, the precise statement of our Schauder estimates4 is the following.

Theorem 1.3. [kth order Schauder estimates for divergent fractional Laplacians] Let s ∈ (0, 1), k ∈ N and
u : Rn → R.

Assume that u is continuous in B1 and

Ju,k :=

∫
Bc

1/2

|u(y)|
|y|n+2s+k

dy < +∞.

Suppose that

(−∆)su
k
= f in B1.

Then, for any γ > 0 such that γ 6∈ N and γ + 2s 6∈ N, and any ` ∈ N, it holds that

‖u‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1;`) + Ju,`

)
, (1.13)

for some C > 0, only depending on n, s, γ, k and `.

We remark that, differently from the usual way of writing the Schauder estimates, the right hand side of (1.13) does
not contain ‖u‖L∞(B1) nor ‖f‖Cγ(B1). That is, we can bound the whole norm ‖u‖Cγ+2s(B1/2) with a contribution of

u coming from outsideB1/2, which is encoded in the term Ju,`, and the oscillation of f in the seminorm [f ]Cγ(B1;`).

In this sense, Theorem 1.3 not only applies to divergent operators, but it is also a sharp version of the Schauder
estimates for non-divergent operators (notice indeed that when k = 0, the setting of Theorem 1.3 reduces to the one
of the classical fractional Laplace equation, and in this case Theorem 1.3 provides already a sharp result, compare
e.g. with Theorem 6 in [1], Theorem 1.1 in [18], Proposition 7.1 in [3] and the references therein).

A simple, but rather instructive consequence of Theorem 1.3 is a uniform bound on polynomial nonlinearities in
which the nonlinearity does not appear explicitly on the right hand side (but it affects the size of u near the boundary
of the domain):

4Throughout this paper, we will use the standard notation for the complementary set. Namely, given X ⊆ Rn we set Xc := Rn \X .
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Corollary 1.4. Let s ∈ (0, 1), k ∈ N and u : Rn → R.

Assume that u is continuous in B1 and

Ju,k :=

∫
Bc

1/2

|u(y)|
|y|n+2s+k

dy < +∞.

Suppose that f is a polynomial of degree d and

(−∆)su
k
= f in B1.

Then, for any γ > 0 such that γ 6∈ N and γ + 2s 6∈ N, it holds that

‖u‖Cγ+2s(B1/2) 6 C Ju,d+1,

for some C > 0, only depending on n, s, γ, k and d.

We observe that Corollary 1.4 is indeed an immediate consequence of Theorem 1.3, by taking ` := d + 1 there.
As a matter of fact, Corollary 1.4 is new, to the best of our knowledge, even in the case k = 0 corresponding to the
standard fractional Laplacian.

We also say that (−∆)su
k
= f in Rn if the setting of Definition 1.1 holds true inBM (instead ofB1), for allM > 0.

As a consequence of Theorem 1.3, we also obtain a rigidity and classification result for possibly divergent s-harmonic
functions, as given here below.

Theorem 1.5. [Liouville Theorem for divergent fractional Laplacians] Let s ∈ (0, 1), k ∈ N and u : Rn → R.

Assume that u is continuous and ∫
Rn

|u(y)|
1 + |y|n+2s+k

dy < +∞.

Let

d(k, s) :=

{
k + 1 if s ∈

(
1
2 , 1

)
,

k if s ∈
(
0, 1

2

]
.

(1.14)

Then,

(−∆)su
k
= 0 in Rn

if and only if u is a polynomial of degree at most d(k, s).

We recall that the study of rigidity properties for solutions of nonlocal equations and related Liouville results are a
very active field of research, and this type of results has also important consequences on several aspects of the
regularity theory, see e.g. [6, 11, 13, 14, 18, 20] and the references therein. As far as we know, Theorem 1.5 is the
first result of this type which takes into account the case of possibly divergent operators.

We also point out that the notion given in Definition 1.1 is stable under limits, as given by the following result:

Theorem 1.6. [Stability of divergent fractional Laplacians] Let s ∈ (0, 1) and k ∈ N. Let us consider sequences of
functions um : Rn → R and fm : B1 → R such that um and fm are continuous in B1, and

(−∆)sum
k
= fm in B1. (1.15)

Assume that um → u in L1(B1) and locally uniformly in B1, and that fm → f locally uniformly in B1 as
m→ +∞, for some functions u ∈ L1(Rn) and f : B1 → R.
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Suppose also that

sup
m∈N

∫
Rn

|um(y)|
1 + |y|n+2s+k

dy < +∞ (1.16)

and that um converges to u weakly in the following sense:

lim
m→+∞

∫
Rn

um(y)ϕ(y)

1 + |y|n+2s+k
dy =

∫
Rn

u(y)ϕ(y)

1 + |y|n+2s+k
dy, (1.17)

for any ϕ ∈ L∞(Rn).

Then, it holds that

(−∆)su
k
= f in B1. (1.18)

Theorem 1.6 is the counterpart, in our setting, of classical approximation and stability results in the fractional setting,
see [5].

The rest of the paper is organized as follows. In Section 2, we recall some ancillary results on polynomials and we
prove Lemma 1.2. In Section 3, we compute the fractional Laplacian of a cutoff function and we expand its possibly
divergent behavior for a family of cutoffs, showing that this procedure is compatible with Definition 1.1 and we provide
a series of consistency results between Definition 1.1 and the standard fractional Laplacian, when the two settings
overlap.

Then, we provide the proof of Theorem 1.3 in Section 4. This in turn will allow us to prove Theorem 1.5 in Section 5.
The proof of Theorem 1.6 is given in Section 6. The paper ends with some auxiliary appendices.

2 Some remarks on polynomials

Here we recall the following elementary, but useful, algebraic observations (the standard proofs, for the convenience
of the reader, are given in Appendix B):

Lemma 2.1. Let P (j) be a sequence of polynomials of degree at most d− 1. Assume that there exist a bounded,
open set U ⊆ Rn and a function F : U → R such that

lim
j→+∞

P (j)(x) = F (x) (2.1)

for any x ∈ U . Then, F is a polynomial of degree at most d− 1 and the convergence in (2.1) holds in Cm(U) for
any m ∈ N.

We also provide a variant of Lemma 2.1, which will be used in the proof of Theorem 1.6. For this, we introduce some
notation: for any polynomial P , let U ⊆ Rn be a bounded, open set with smooth boundary and define

‖P‖? := sup
ϕ∈C2

0(U)

‖ϕ‖
C2(Rn)

61

∫
U
P (x)ϕ(x) dx. (2.2)

Then, we have the following convergence result:

Lemma 2.2. Let P (j) be a sequence of polynomials of degree at most d − 1. Assume that P (j) is a Cauchy
sequence in the norm ‖ · ‖?. Then, there exists a polynomial P of degree at most d− 1 such that P (j) converges
to P uniformly in U as j → +∞.

With Lemma 2.1, we can give the proof of Lemma 1.2, by arguing as follows.
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Proof of Lemma 1.2. From Definition 1.1, we know that there exist two families of polynomials PR and P̃R, with
degree at most k − 1, such that, for any x ∈ B1,

lim
R→+∞

(−∆)s(χRu)(x)− PR(x) = f(x)

and lim
R→+∞

(−∆)s(χRu)(x)− P̃R(x) = f̃(x).

Accordingly,
f(x)− f̃(x) = lim

R→+∞
PR(x)− P̃R(x).

Since PR− P̃R is a polynomial of degree at most k−1, we deduce from Lemma 2.1 that f− f̃ is also a polynomial
of degree at most k − 1, as desired.

We also give the following rigidity result (for general unique continuation principles in the nonlocal setting, see
also [12]).

Lemma 2.3. LetR > r > 0. Let P be a polynomial and u be a viscosity solution of (−∆)su = P inBR. Assume
that u = 0 in Bc

r . Then u vanishes identically.

Proof. We argue by induction on the degree d of P . If d = −1, then P vanishes identically and the claim follows
from the maximum principle.

Suppose now the claim true for all polynomials of degree d − 1. Let r′, R′ ∈ (r,R) with R′ > r′. For θ ∈ Rn,
with |θ| sufficiently small, we see that the function u(θ)(x) := u(x + θ) − u(x) satisfies (−∆)su(θ) = P (θ)

in BR′ , with P (θ)(x) := P (x + θ) − P (x), and u(θ) = 0 outside Br′ . We observe that P (θ) is a polynomial
of degree at most d − 1, hence, by inductive hypothesis, it follows that u(θ) is identically zero, and therefore u is
constant.

Since u vanishes outside Br, it thus follows that it vanishes everywhere, as desired.

3 The role of the cutoff for divergent fractional Laplacians

In this section, we show how a cutoff affects the computation of the fractional Laplacian for a function with prescribed
growth at infinity. We will see that the identities obtained are compatible with the setting in Definition 1.1, namely the
growth at infinity, combined with a cutoff, produces a family of polynomials of a fixed degree.

Theorem 3.1. Let s ∈ (0, 1), k ∈ N and u : Rn → R.

Assume that u ∈ Cαloc(B1) for some α > 2s and∫
Rn

|u(y)|
1 + |y|n+2s+k

dy < +∞. (3.1)

Let τ : Rn → R be compactly supported and with τ = 1 in B2. Then, there exist a function fu,τ : Rn → R, and
a polynomial Pu,τ , which has degree at most k − 1, such that

(−∆)s(τu) = Pu,τ + fu,τ (3.2)

in B1.

In addition, fu,τ can be written in the following form: there exists ψ : B1 ×Bc
2 → R, with

sup
x∈B1, y∈Bc2

|∂γxψ(x, y)| < +∞ (3.3)
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for any γ ∈ Nn, such that
fu,τ = f1,u + f2,u + f?u,τ , (3.4)

where

f1,u(x) :=

∫
B2

u(x)− u(y)

|x− y|n+2s
dy,

f2,u(x) :=

∫
Bc2

u(x)

|x− y|n+2s
dy

and f?u,τ (x) :=

∫
Bc2

τ(y)u(y) ψ(x, y)

|y|n+2s+k
dy.

(3.5)

Proof. We stress that the integral defining f?u,τ is finite, thanks to (3.1).

Now we compute, for any x ∈ B1,

(−∆)s(τu)(x) =

∫
B2

u(x)− u(y)

|x− y|n+2s
dy +

∫
Bc2

u(x)− (τu)(y)

|x− y|n+2s
dy

= f1,u(x) + f2,u(x)−
∫
Bc2

(τu)(y)

|x− y|n+2s
dy

= f1,u(x) + f2,u(x)−
∫
Bc2

(τu)(y)

|y|n+2s |xy − yy|n+2s
dy,

(3.6)

where the short notation xy := x/|y| and yy := y/|y| has been exploited.

Now, for any e ∈ ∂B1 and any z ∈ B1/2, we set

ge(z) := |z − e|−n−2s.

We consider a Taylor expansion of ge in the vicinity of the origin, and we write

ge(z) =
∑
|α|6k−1

cα,e z
α +

∑
|α|=k

%α(e, z) zα, (3.7)

with
sup
|α|6k−1
e∈∂B1

cα,e + sup
|α|=k
e∈∂B1
z∈B1/2

|∂γz %α(e, z)| 6 Cγ , (3.8)

for some Cγ > 0, which depends only on n, s and γ ∈ Nn.

As a consequence, we have

(τu)(y)

|y|n+2s |xy − yy|n+2s =
(τu)(y)

|y|n+2s
gyy(xy)

=
(τu)(y)

|y|n+2s

 ∑
|α|6k−1

cα,yy x
α
y +

∑
|α|=k

%α(yy, xy)x
α
y


=

(τu)(y)

|y|n+2s

 ∑
|α|6k−1

cα,yy x
α

|y||α|
+
∑
|α|=k

%α(yy, xy)x
α

|y|k

 .
(3.9)

Thus, we set

κτ,α := −
∫
Bc2

(τu)(y)

|y|n+2s+|α| cα,yy dy

8



and we consider the polynomial of degree at most k − 1

Pu,τ (x) :=
∑
|α|6k−1

κτ,α x
α.

We also define
ψ(x, y) := −

∑
|α|=k

%α(yy, xy)x
α. (3.10)

Notice that (3.3) follows from (3.8). Also, with this notation, we deduce from (3.9) that∫
Bc2

(τu)(y)

|y|n+2s |xy − yy|n+2s = −Pu,τ (x)− f?u,τ (x).

This and (3.6) imply (3.2).

Then, we have the following consequence of Theorem 3.1:

Corollary 3.2. Let s ∈ (0, 1), k ∈ N and u : Rn → R.

Assume that u ∈ Cαloc(B1) for some α > 2s and∫
Rn

|u(y)|
1 + |y|n+2s+k

dy < +∞. (3.11)

Let τR : Rn → [0, 1] be supported in BR and such that

lim
R→+∞

τR = 1 a.e. in Rn. (3.12)

Then, there exist a function fu : Rn → R, and a family of polynomials Pu,τR , which have degree at most k − 1,
such that, for any x ∈ B1, it holds that

lim
R→+∞

[
(−∆)s(τRu)(x)− Pu,τR(x)

]
= fu(x). (3.13)

More precisely, we have that
fu = f1,u + f2,u + f3,u, (3.14)

where f1,u and f2,u are as in (3.5) and

f3,u(x) :=

∫
Bc2

u(y) ψ(x, y)

|y|n+2s+k
dy, (3.15)

with ψ satisfying (3.3).

Proof. The idea of the proof is to use Theorem 3.1 with τ := τR for any fixedR, and then sendR→ +∞. Indeed,
by (3.3), for any x ∈ B1 and y ∈ Bc

2,

(τRu)(y) ψ(x, y)

|y|n+2s+k
6

C |u(y)|
|y|n+2s+k

,

for some C > 0, and the latter function of y lies in L1(Bc
2), thanks to (3.11).

Consequently, by (3.12) and the Dominated Convergence Theorem,

lim
R→+∞

f?u,τR(x) = lim
R→+∞

∫
Bc2

(τRu)(y) ψ(x, y)

|y|n+2s+k
dy =

∫
Bc2

u(y) ψ(x, y)

|y|n+2s+k
dy = f3,u(x).

Then, (3.13) follows by taking the limit in (3.2).
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Remark 3.3. We stress that, in view of (3.7) and (3.10), the function ψ does not depend on u and thus the quantity
in (3.3) is universal.

Remark 3.4. It is interesting to notice that, from (3.4) and (3.14),

fu,τ = fu − f3,u + f?u,τ .

Remark 3.5. From Definition 1.1 and Corollary 3.2 (used here with τR := χR, in the notation of (1.3)), we can

write (−∆)su
k
= fu in B1, for any u ∈ Cαloc(B1) (for some α > 2s) that satisfies the weak growth condition in

(3.11).

Remark 3.6. From Corollary 3.2 and Remark 3.5, it also follows that, for any u ∈ Cαloc(B1) (for some α > 2s),
the family of cutoffs χR used in Definition 1.1 can be replaced by another family of cutoffs τR, without changing
the explicit expression of fu.

Another useful consequence of Theorem 3.1 is that the pointwise convergence of fR in Definition 1.1 can be
strengthen according to the following result:

Corollary 3.7. Let k ∈ N, u and fR be as in Definition 1.1. Then, for any m > 0, if R′ > R we have that

inf ‖Dm(fR′ − fR − P )‖L∞(B1) 6 C
∫
BcR

|u(y)|
|y|n+2s+k

dy, (3.16)

with C > 0 only depending on n, s and m, where the inf is taken over all the polynomials P with degree at
most k − 1.

Proof. We define v := (1− χ2)u. Obviously, v = 0 in B2 and |v| 6 |u|, so

v ∈ Cαloc(B1) for some α > 2s and Jv,k 6 Ju,k < +∞. (3.17)

Moreover, if R > 2,
(χR − χ2)u = (χR − χ2)v.

Hence, from (1.5),

(−∆)s((χR − χ2)v) = (−∆)s((χR − χ2)u) = fR − f2 + PR − P2 = fR − f2 + P̃R, (3.18)

where P̃R := PR − P2 is a polynomial of degree at most k − 1, and the equation holds in B1 in the sense of
viscosity.

On the other hand, (3.17) allows us to use Theorem 3.1 on the function v (with τ := χR and τ := χ2). We thus
obtain that

(−∆)s((χR − χ2)v) = Pv,χR − Pv,χ2 + fv,χR − fv,χ2

= P̄v,χR + (f1,v + f2,v + f?v,χR)− (f1,v + f2,v + f?v,χ2
) = P̄v,χR + f?v,χR − f

?
v,χ2

= P̄v,χR +

∫
BR\B2

u(y)ψ(x, y)

|y|n+2s+k
dy

in B1 in the viscosity sense, where P̄v,χR := Pv,χR − Pv,χ2 is a polynomial of degree at most k − 1.

Comparing this identity with (3.18), we obtain that in B1

fR = f2 + P ?R +

∫
BR\B2

u(y)ψ(x, y)

|y|n+2s+k
dy,
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where P ?R := P̄v,χR − P̃R is a polynomial of degree at most k − 1.

Therefore, for any m > 0 and any large R′ > R,

‖Dm(fR′ − P ?R′ − fR + P ?R)‖L∞(B1) = ‖DmΨR′,R‖L∞(B1), (3.19)

where

ΨR′,R(x) :=

∫
BR′\BR

u(y)ψ(x, y)

|y|n+2s+k
dy.

From (1.4) and (3.3), we know that

‖ΨR′,R‖Cm(B1) 6 C
∫
BR′\BR

|u(y)|
|y|n+2s+k

dy 6 C
∫
BcR

|u(y)|
|y|n+2s+k

dy,

for some C > 0 possibly depending on m. This and (3.19) imply that

‖Dm(fR′ − P ?R′ − fR + P ?R)‖L∞(B1) 6 C
∫
BcR

|u(y)|
|y|n+2s+k

dy, (3.20)

which gives (3.16).

As a consequence of Corollary 3.7, we have the following consistency result when k = 0:

Corollary 3.8. Let u : Rn → R be bounded and continuous in B1 and such that∫
Rn

|u(y)|
1 + |y|n+2s

dy < +∞. (3.21)

Let f be bounded and continuous in B1.

Then
(−∆)su = f in B1 in the viscosity sense

is equivalent to

(−∆)su
0
= f in B1 in the sense of Definition 1.1.

Proof. We take cutoffs as in (1.3). Suppose first that (−∆)su = f in B1 in the viscosity sense. Then, for R > 10,

(−∆)s(χR/2u) = f +

∫
Rn

(1− χR/2(y))u(y)

|x− y|n+2s
dy (3.22)

in B1 in the viscosity sense. Now, we set
w := (χR − χR/2)u.

Notice that w vanishes outside BR, hence
χRw = w.

Also, w = 0 in B2, so we can exploit Theorem 3.1 to w with k = 0 and get that, for any x ∈ B1,

(−∆)s
(
(χR − χR/2)u

)
(x) = (−∆)sw(x) = (−∆)s(χRw)(x)

= f1,w(x) + f2,w(x) + f?w,χR(x) =

∫
BR\B2

w(y)ψ(x, y)

|y|n+2s
dy =

∫
BR\BR/2

u(y)ψ(x, y)

|y|n+2s
dy.

(3.23)
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Since w is smooth in B1, this identity also holds in the viscosity sense. Hence, from (3.22) and (3.23), we find that

(−∆)s(χRu) = (−∆)s
(
(χR − χR/2)u

)
+ (−∆)s(χR/2u)

=

∫
BR\BR/2

u(y)ψ(x, y)

|y|n+2s
dy + f +

∫
Rn

(1− χR/2(y))u(y)

|x− y|n+2s
dy

=: fR

in B1, in the sense of viscosity. We remark that fR → f in B1 as R → +∞, thanks to (3.3) and (3.21). Hence,

we are in the setting of Definition 1.1 (here with k = 0 and PR := 0), and so we conclude that (−∆)su
0
=f in B1,

as desired.

Viceversa, we now suppose that (−∆)su
0
=f in B1. From Definition 1.1 and the fact that k = 0, we have that PR

is always zero, and so we can write that (−∆)s(χRu) = fR in B1 in the sense of viscosity, with fR → f in B1

as R→ +∞.

We observe that χRu approaches u locally uniformly in Rn. Also, we can use here Corollary 3.7: since in this
case k = 0, we have that (3.16) reduces to

‖Dm(fR′ − fR)‖L∞(B1) 6 C
∫
BcR

|u(y)|
|y|n+2s

dy,

for any m > 0. In particular, taking m = 0 and sending R′ → +∞, we obtain that, for any x ∈ B1,

|f(x)− fR(x)| = lim
R′→+∞

|fR′(x)− fR(x)| 6 lim
R′→+∞

‖fR′ − fR‖L∞(B1) 6 C
∫
BcR

|u(y)|
|y|n+2s

dy.

As a consequence, we have that fR converges to f uniformly in B1 as R→ +∞.

From this, we can exploit Lemma 5 in [5] and conclude that (−∆)su = f in the viscosity sense in B1, as desired.

Another consistency result is that if (−∆)su
k
= f and u has growth at infinity better than the one required by

Definition 1.1, then it satisfies the same equation “in a better class, up to the invariance allowed by Definition 1.1”.
The precise result is as follows:

Lemma 3.9. Let the setting of Definition 1.1 hold true and let (−∆)su
k
= f in B1. Suppose that∫

Rn

|u(y)|
1 + |y|n+2s+j

dy < +∞ (3.24)

for some j ∈ N, with j 6 k. Then, there exist a function f̄ and a polynomial P of degree at most k − 1, such

that f̄ = f + P and (−∆)su
j
= f̄ in B1.

Proof. Let v := (1−χ4)u and w := χ4u. Of course, v is zero (and thus smooth) in B1 and, from (3.24), we have
that ∫

Rn

|v(y)|
1 + |y|n+2s+j

dy < +∞.

So, we can apply Remark 3.5 with k replaced with j and find that

(−∆)sv
j
= fv =

∫
Bc4

u(y)ψ(x, y)

|y|n+2s+j
dy,
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thanks to (3.14). By definition, this means that

(−∆)s(χRv) =

∫
Bc4

u(y)ψ(x, y)

|y|n+2s+j
dy + ϕR +QR, (3.25)

in the viscosity sense in B1, for some ϕR such that ϕR → 0 in B1 as R → +∞ and a polynomial QR of degree
at most j − 1.

On the other hand, from Definition 1.1, we have that

(−∆)s(χRu) = f + φR + PR, (3.26)

in the viscosity sense in B1, for some φR such that φR → 0 in B1 as R → +∞ and a polynomial PR of degree
less than or equal to k − 1.

By subtracting (3.25) to (3.26), we obtain

f + φR + PR −
∫
Bc4

u(y)ψ(x, y)

|y|n+2s+j
dy − ϕR −QR = (−∆)s(χR(u− v)) = (−∆)s(χRw) = (−∆)s(χ4w)

in the viscosity sense in B1. This says that the following limit exists:

lim
R→+∞

(φR + PR − ϕR −QR) ,

which in turn boils down to the existence of the limit

lim
R→+∞

(PR −QR).

As a consequence, from Lemma 2.1, we know that

lim
R→+∞

(PR −QR) = P,

for some polynomial P of degree at most k − 1. That is, we take f̄ := f + P and ΦR := φR + PR −QR − P ,
and we see that ΦR → 0 as R→ +∞ and, from (3.26),

(−∆)s(χRu) = f̄ + ΦR +QR

in B1, in the viscosity sense. Since the degree of QR is at most j − 1, this says that (−∆)su
j
= f̄ in B1, as

desired.

For us, Lemma 3.9 is useful since it allows to take fixed cutoffs in Definition 1.1 and reduce to the case of the
standard fractional Laplacian, as formalized by the following result:

Corollary 3.10. Let the setting of Definition 1.1 hold true and let (−∆)su
k
= f inB1. Let also ρ > 1 andw := χρu.

Then, there exists a polynomial P of degree at most k − 1 such that

(−∆)sw = f̄ +

∫
B2∩Bcρ

u(y)

|x− y|n+2s
dy −

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy (3.27)

in B1 in the sense of viscosity, where f̄ := f + P .
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Proof. From Definition 1.1, we can write, in B1 and in the viscosity sense,

(−∆)s(χRu) = f + φR + PR,

where PR is a polynomial with degree at most k − 1 and φR → 0 as R → +∞. We also set v := (1 − χρ)u.
Notice that v = 0 in B1. We can apply Remark 3.5 to v and find that, in B1,

(−∆)sv
k
= fv = −

∫
B2

v(y)

|x− y|n+2s
dy +

∫
Bc2

v(y)ψ(x, y)

|y|n+2s+k
dy

= −
∫
B2\Bρ

u(y)

|x− y|n+2s
dy +

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy,

where we used the obvious notation B2 \Bρ = ∅ if ρ > 2.

That is, in B1 and in the viscosity sense,

(−∆)s(χRv) = −
∫
B2\Bρ

u(y)

|x− y|n+2s
dy +

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy + φ̃R + P̃R,

where P̃R is a polynomial with degree at most k − 1 and φ̃R → 0 as R→ +∞. Consequently,

(−∆)s(χRw) = (−∆)s(χRu)− (−∆)s(χRv)

= f +

∫
B2\Bρ

u(y)

|x− y|n+2s
dy −

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy + φR − φ̃R + PR − P̃R,

which means that, in B1,

(−∆)sw
k
= f +

∫
B2\Bρ

u(y)

|x− y|n+2s
dy −

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy. (3.28)

We remark that w is a compactly supported function, hence (3.24) holds true for j = 0. Thus, from (3.28) and
Lemma 3.9, we obtain that

(−∆)sw
0
= f +

∫
B2\Bρ

u(y)

|x− y|n+2s
dy −

∫
Bc2∩Bcρ

u(y)ψ(x, y)

|y|n+2s+k
dy + P

in B1, where P is a polynomial of degree at most k − 1. This and Corollary 3.8 imply (3.27), as desired.

It is interesting to point out that, in the setting of Definition 1.1, the functions fR and f are not necessarily smooth,
hence one cannot deduce from Corollary 3.7 that “fR converges to f inCm(B1)”. Also, in principle, one cannot get
rid of the additional polynomials in Corollary 3.7, since they come from the polynomial invariance of Definition 1.1.

In spite of this, it is possible to give a sharper version of Corollary 3.7, by introducing a notion of “optimal represen-
tative” for the functions fR in Definition 1.1, which, in principle, are only “well defined up to polynomials of degree
k − 1”. This will be accomplished by looking at “projection over the orthogonal space to polynomials”. Namely, for
any g ∈ L2(B1) we look at the minimum of ‖g+P‖L2(B1) among all the polynomials P of degree at most k− 1.
We remark that such minimum exists, since the space of polynomials is finite dimensional, and it is unique, due to
the strict convexity of the norm, so we define the minimizing polynomial as P ]g .

Then we set
g] := g + P ]g . (3.29)

In this setting, we have:
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Lemma 3.11. Let the setting of Definition 1.1 hold true. Then

lim
R→+∞

f ]R = f ] (3.30)

a.e. in B1. Also,
f ] − f is a polynomial of degree at most k − 1. (3.31)

Furthermore, for any m > 0, we have that

‖f ] − f ]R‖Cm(B1) 6 C
∫
BcR

|u(y)|
|y|n+2s+k

dy, (3.32)

with C > 0 only depending on n, s and m.

Proof. We set

νR :=

∫
BcR

|u(y)|
|y|n+2s+k

dy.

We claim that
‖f ]R − f

]‖L2(B1) 6 CνR. (3.33)

For this, we observe that, for any function g and any polynomial P with degree at most k − 1, we have that

(g + P )] = g]. (3.34)

Also, from the minimizing property of P ]g we see that g] is orthogonal in L2(B1) to all the polynomials of degree at
most k − 1 and therefore, for any functions g and h, we have that

‖g − h‖2L2(B1) = ‖(g] − h])− (P ]g − P
]
h)‖2L2(B1)

= ‖g] − h]‖2L2(B1) + ‖P ]g − P
]
h‖

2
L2(B1) > ‖g

] − h]‖2L2(B1).
(3.35)

Now, for R′ > R, let PR′,R be such that

‖fR′ − fR − PR′,R‖L∞(B1) = min ‖fR′ − fR − P‖L∞(B1),

where the minimization is meant over all the polynomials P of degree at most k − 1. From (3.16) (used here with
m = 0), we know that

‖fR′ − fR − PR′,R‖L2(B1) 6 ‖fR′ − fR − PR′,R‖L∞(B1) 6 CνR.

Hence, in view of (3.35), we have that

‖f ]R′ − (fR + PR′,R)]‖L2(B1) 6 CνR.

This and (3.34) give that
‖f ]R′ − f

]
R‖L2(B1) 6 CνR. (3.36)

Thus, we can pass to the limit as R′ → +∞ and use Fatou’s Lemma to obtain (3.33), as desired.

Notice that, from (3.33), up to a subsequence we obtain (3.30).

Then, from (3.30), we have that, a.e. in B1,

f ] − f = lim
R→+∞

(f ]R − fR) = lim
R→+∞

P ]fR .
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This and Lemma 2.1 imply that f ] − f is a polynomial of degree at most k − 1, and this proves (3.31).

Then, in view of (1.8) and (3.31), we have that (−∆)su
k
= f ].

This fact and (3.30) give that we can use Corollary 3.7 with the function f ]R: in this way, we fix

m > k + n+ 2 (3.37)

and we have from (3.16) that, for any R′ > R,

‖Dm(f ]R′ − f
]
R)‖L∞(B1) 6 CνR. (3.38)

Now we recall the Gagliardo-Nirenberg Interpolation Inequality (see e.g. pages 125-126 in [16]), namely, for any i 6
m ∈ N,

‖Diϕ‖L2(B1) 6 C
(
‖ϕ‖1−

i
m

L2(B1)
‖Dmϕ‖

i
m

L2(B1)
+ ‖ϕ‖L2(B1)

)
,

for some C > 0. Taking ϕ := f ]R′ − f
]
R and using (3.36) and (3.38), we conclude that, for R′ > R large enough,

‖Di(f ]R′ − f
]
R)‖L2(B1) 6 CνR, (3.39)

for any i ∈ {0, . . . ,m}, up to renaming C > 0.

Now, since we do not know if f ]R is sufficiently smooth, we perform a technical argument to take limits. Namely, we
set

ξR := f ]R − f
]. (3.40)

From (3.33) and (3.39), for any φ ∈ C∞0 (B1) and any ι ∈ Nn with |ι| = i ∈ {0, . . . ,m}, we have that∫
B1

DιξRφ = (−1)i
∫
B1

ξRD
ιφ = (−1)i

∫
B1

(f ]R − f
])Dιφ

= lim
R′→+∞

(−1)i
∫
B1

(f ]R − f
]
R′)D

ιφ = lim
R′→+∞

∫
B1

Dι(f ]R − f
]
R′)φ

6 CνR

∫
B1

|φ| 6 CνR ‖φ‖L2(B1).

Then, by the density of C∞0 (B1) in L2(B1), this inequality holds for any φ ∈ L2(B1), and thus

‖DιξR‖L2(B1) = sup
06=φ∈L2(B1)

∫
B1

DιξRφ

‖φ‖L2(B1)
6 CνR.

Accordingly, since this is valid for all |ι| = i ∈ {0, . . . ,m},

‖ξR‖Wm,2(B1) 6 CνR,

up to renaming constants.

From this and the Sobolev Inequality, recalling also (3.40), it follows5 that

‖f ]R − f
]‖Cm′ (B1) = ‖ξR‖Cm′ (B1) 6 CνR,

with m′ = m − bn2 c − 1, up to renaming C > 0. This is the desired result in (3.32), up to renaming m in the
statement of Lemma 3.11.

5We use the standard notation for the integer part of a real number. Namely, given % ∈ R, we denote by b%c := max{m ∈ Z s.t. m 6
%}.
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4 Schauder estimates for divergent fractional Laplacians

This section is devoted to the proof of Theorem 1.3. For this, we first give a uniform bound for solutions, as stated in
the following result:

Lemma 4.1. Let β ∈ (0, 1), m ∈ N, s ∈ (0, 1) and u : Rn → R.

Assume that u is continuous in B1 and that

Ju,0 :=

∫
Bc

1/2

|u(y)|
|y|n+2s

dy < +∞.

Suppose that
(−∆)su = f in B1

in the viscosity sense. Then

‖u‖L∞(B9/10) + ‖f‖Cm(B99/100) 6 C
(

[f ]Cm+β(B1) + Ju,0

)
,

for some C > 0, only depending on n, s, m and β.

Proof. By contradiction, we can suppose that there exist sequences of functions uj and fj such that (−∆)suj =
fj in B1, with

Θj := ‖uj‖L∞(B9/10) + ‖fj‖Cm(B99/100) > j
(

[fj ]Cm+β(B1) + Juj ,0

)
. (4.1)

We define

ũj :=
uj
Θj

and f̃j :=
fj
Θj
.

Then,
(−∆)sũj = f̃j in B1. (4.2)

Also,

‖f̃j‖Cm(B99/100) =
‖fj‖Cm(B99/100)

Θj
6 1 (4.3)

and

[f̃j ]Cm+β(B1) =
[fj ]Cm+β(B1)

Θj
6

1

j
, (4.4)

due to (4.1).

In particular, we have that ‖f̃j‖Cm+β(B99/100) 6 2. From this, up to a subsequence, we may suppose that

f̃j converges to some f̃ in Cm+β(B99/100). (4.5)

We also remark that

[f̃ ]Cm+β(B99/100) 6 [f̃ − f̃j ]Cm+β(B99/100) + [f̃j ]Cm+β(B99/100) 6 ‖f̃ − f̃j‖Cm+β(B99/100) +
1

j
,

which goes to zero as j → +∞. This means thatDmf̃ is constant inB99/100, henceDm+1f̃ vanishes inB99/100

and
f̃ is a polynomial of degree m. (4.6)

Moreover,

Jũj ,0 =
Juj ,0

Θj
6

1

j
, (4.7)
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thanks to (4.1).

Now, from (4.2) and Lemma 5.2 in [3] (see also the remark after it), we have that

‖ũj‖L∞(B97/100) 6 C
(
‖f̃j‖L∞(B99/100) + Jũj ,0

)
, (4.8)

for some C > 0.

Also, by Proposition 7.1(a) in [3], we have that, for any fixed α ∈ (0, 2s),

‖ũj‖Cα(B9/10) 6 C
(
‖f̃j‖L∞(B97/100) + ‖ũj‖L∞(B97/100) + Jũj ,0

)
,

for someC > 0. Hence, making use of (4.3), (4.7) and (4.8), we conclude that ‖ũj‖Cα(B9/10) is bounded uniformly

in j and so, up to a subsequence, we may assume that ũj converges to some ũ in L∞(B9/10).

As a matter of fact, from (4.7), we also know that ũj converges to zero a.e. outside B1/2, hence we can extend ũ to
be zero outside B9/10 and write that

lim
j→+∞

‖ũj − ũ‖L∞(B9/10) +

∫
Rn

|ũj(y)− ũ(y)|
1 + |y|n+2s

dy = 0, (4.9)

with
ũ = 0 outside B1/2. (4.10)

Hence, exploiting (4.5), (4.9) and Lemma 5 in [5], we can pass (4.2) to the limit and find that

(−∆)sũ = f̃ in B9/10. (4.11)

From this, (4.6), (4.10) and Lemma 2.3, we obtain that ũ vanishes identically.

This and (4.11) give that f̃ = 0 in B9/10 (and in fact, from (4.6), we have that f̃ = 0 in B99/100). Consequently,
recalling (4.5) and (4.9),

1 = lim
j→+∞

‖uj‖L∞(B9/10) + ‖fj‖Cm(B99/100)

Θj
= lim

j→+∞
‖ũj‖L∞(B9/10) + ‖f̃j‖Cm(B99/100)

= lim
j→+∞

‖ũj − ũ‖L∞(B9/10) + ‖f̃j − f̃‖Cm(B99/100) = 0,

which is, of course, a contradiction.

To address the Schauder estimates of Theorem 1.3, we now provide a simpler, suboptimal version (this result can
be obtained by a suitable iteration argument from the existing literature, but we give the precise statement and the
details of the proof for the reader’s convenience):

Lemma 4.2. Let s ∈ (0, 1), u be continuous in B1, with u ∈ L∞(Rn), f : B1 → R and suppose that

(−∆)su = f in B1

in the viscosity sense. Then, for any γ > 0 for which γ 6∈ N and γ + 2s 6∈ N,

‖u‖Cγ+2s(B1/2) 6 C
(
‖f‖Cγ(B1) + ‖u‖L∞(Rn)

)
,

for some C > 0, only depending on n, s and γ.
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Proof. We write γ = m+ θ, with m := bγc and θ ∈ (0, 1). The proof is by induction over m. When m = 0, the
claim follows from Proposition 7.2(b) in [3] (or Corollary 3.5 in [18]).

Now suppose that the claim is true for somem ∈ N and we prove it form+ 1. That is, we assume, recursively, that

‖u‖Cm+θ+2s(B1/2) 6 C
(
‖f‖Cm+θ(B1) + ‖u‖L∞(Rn)

)
, (4.12)

and we prove the same statement for m+ 1 in the place of m (up to renaming C and possibly resizing balls).

For the sake of simplicity, let us first deal with the case

θ + 2s > 1. (4.13)

For this, we take an incremental quotient of order m + 1, that is we fix ω1, . . . , ωm+1 ∈ Sn−1 and we let v :=

D
(ω1,...,ωm+1)
h u and g := D

(ω1,...,ωm+1)
h f (recall the notation of finite differences in Appendix A. Then, for small h,

we have that
(−∆)sv = g in B9/10

in the viscosity sense. Then, we take φ ∈ C∞0 (B1/4) with φ = 1 in B1/8 and we define w := φv. In this way, we
obtain that, for any x ∈ B1/16,

(−∆)sw(x) =

∫
Rn

v(x)− (φv)(y)

|x− y|n+2s
dy = g(x) +

∫
Rn

(1− φ(y))v(y)

|x− y|n+2s
dy

= g(x) +

∫
Rn

(1− φ(y))D
(ω1,...,ωm+1)
h u(y)

|x− y|n+2s
dy.

(4.14)

Notice that, if, for any x ∈ B1/16, we set

Ψ(x)(y) :=
1− φ(y)

|x− y|n+2s
,

we have that Ψ(x) vanishes in B1/8 and so Ψ(x) ∈ L1(Rn). Therefore, by Lemma A.2,

∫
Rn

(1− φ(y))D
(ω1,...,ωm+1)
h u(y)

|x− y|n+2s
dy =

∫
Rn

Ψ(x)(y)D
(ω1,...,ωm+1)
h u(y) dy

=

∫
Rn
D

(−ω1,...,−ωm+1)
h Ψ(x)(y)u(y) dy =: G(x),

with
‖G‖C1(B1/16) 6 C h

m+1 ‖u‖L∞(Rn).

Hence, (4.14) gives that (−∆)sw = H in B1/16, with H := g +G and, by Lemma A.1, we have

‖H‖Cθ(B1/16) 6 ‖g‖Cθ(B1/16) + ‖G‖Cθ(B1/16) 6 C h
m+1

(
‖f‖Cm+1+θ(B1/8) + ‖u‖L∞(Rn)

)
.

That is, using the claim with m = 0 and once more Lemma A.1,

‖D(ω1,...,ωm+1)
h u‖Cθ+2s(B1/32) = ‖w‖Cθ+2s(B1/32)

6 C
(
‖H‖Cθ(B1/16) + ‖w‖L∞(Rn)

)
6 Chm+1

(
‖f‖Cm+1+θ(B1/8) + ‖u‖L∞(Rn) + ‖u‖Cm+1(B1/4)

)
.
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Dividing by hm+1, sending h→ 0 and recalling again Lemma A.1, we thus find that

‖Dm+1u‖Cθ+2s(B1/32) 6 C
(
‖f‖Cm+1+θ(B1/8) + ‖u‖L∞(Rn) + ‖u‖Cm+1(B1/4)

)
.

This, together with (4.12) and (4.13), gives that

‖u‖Cm+1+θ+2s(B1/32) 6 C
(
‖f‖Cm+1+θ(B1) + ‖u‖L∞(Rn)

)
,

up to renaming C > 0, which is the iterative version of (4.12) (up to renaming constants and resizing balls), as
desired.

If, on the other hand, the condition in (4.13) does not hold, i.e. θ + 2s ∈ (0, 1), then the previous proof must be
done step by step, namely, one takes N̄ ∈ N so large that ᾱ := 1/N̄ < θ+ 2s. Then one considers the functions

v(x) := D
(ω1,...,ωm)
h u(x+ ωm+1)−D(ω1,...,ωm)

h u(x)

and g(x) := D
(ω1,...,ωm)
h f(x+ ωm+1)−D(ω1,...,ωm)

h f(x).

Then, the argument above would give a bound like

‖u‖Cm+ᾱ+θ+2s(B1/32) 6 C
(
‖f‖Cm+ᾱ+θ(B1) + ‖u‖L∞(Rn)

)
.

Hence, one repeats this argument over and over to get

‖u‖Cm+jᾱ+θ+2s(Brj ) 6 C
(
‖f‖Cm+jᾱ+θ(B1) + ‖u‖L∞(Rn)

)
for every j ∈ {1, . . . , N̄}, which gives the desired result in the end.

Now, we deal with the Schauder estimates in the case of the non-divergent fractional Laplacian, corresponding
to k := 0 in Theorem 1.3. This case is dealt with explicitly in the following result:

Proposition 4.3. [Sharp Schauder estimates for the classical fractional Laplacian] Let s ∈ (0, 1), u : Rn → R
and f : B1 → R.

Assume that u is continuous in B1 and that

Ju,0 :=

∫
Bc

1/2

|u(y)|
|y|n+2s

dy < +∞.

Suppose that
(−∆)su = f in B1

in the viscosity sense. Then, for any γ > 0 for which γ 6∈ N and γ + 2s 6∈ N,

‖u‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1) + Ju,0

)
, (4.15)

for some C > 0, only depending on n, s and γ.

Proof. Since we are dealing with interior estimates, up to resizing balls, we will assume that

(−∆)su = f in B4. (4.16)
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We take τ ∈ C∞0 (B3, [0, 1]) with τ = 1 in B2 and we set v := τu. We also define

f̃(x) :=

∫
Rn

(1− τ(y))u(y)

|x− y|n+2s
dy =

∫
Bc2

(1− τ(y))u(y)

|x− y|n+2s
dy

and g(x) := f(x) + f̃(x).

Hence, from (4.16), we see that, for any x ∈ B3/2,

(−∆)sv(x) =

∫
Rn

u(x)− τ(y)u(y)

|x− y|n+2s
= g(x).

Then, from Lemma 4.2, we know that

‖v‖Cγ+2s(B1) 6 C
(
‖v‖L∞(Rn) + ‖g‖Cγ(B3/2)

)
, (4.17)

for some C > 0.

Now we observe that, from (4.16) and Lemma 4.1,

‖v‖L∞(Rn) = ‖v‖L∞(B3) 6 ‖u‖L∞(B3) 6 C

(
[f ]Cγ(B4) +

∫
Bc2

|u(y)|
|y|n+2s

dy

)
, (4.18)

up to renaming C > 0.

Also, for any m ∈ N and any x, x̄ ∈ B3/2,

|Dmf̃(x)| 6 C
∫
Bc2

|u(y)|
|x− y|n+2s+m

dy

and |Dmf̃(x)−Dmf̃(x̄)| 6 C |x− x̄|
∫
Bc2

|u(y)|
|x− y|n+2s+m+1

dy,

with C > 0 depending on m. As a consequence,

‖f̃‖Cγ(B3/2) 6 C
∫
Bc2

|u(y)|
|y|n+2s

dy

and therefore

‖g‖Cγ(B3/2) 6 ‖f‖Cγ(B3/2) + ‖f̃‖Cγ(B3/2) 6 ‖f‖Cγ(B3/2) + C

∫
Bc2

|u(y)|
|y|n+2s

dy. (4.19)

We also observe that u = v in B1 and thus

‖v‖Cγ+2s(B1) = ‖u‖Cγ+2s(B1). (4.20)

So, we insert (4.18), (4.19) and (4.20) into (4.17) and we conclude that

‖u‖Cγ+2s(B1) 6 C

(
‖f‖Cγ(B3/2) + [f ]Cγ(B4) +

∫
Bc2

|u(y)|
|y|n+2s

dy

)
, (4.21)

for some C > 0.

Also, from (4.16) and Lemma 4.1, if we write γ = m+ β, with m := bγc and β ∈ (0, 1), we have that

‖f‖Cm(B3/2) 6 C

(
[f ]Cm+β(B4) +

∫
Bc2

|u(y)|
|y|n+2s

dy

)
.
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Therefore, summing [f ]Cm+β(B3/2) = [f ]Cγ(B3/2) to both sides of this inequality, we find that

‖f‖Cγ(B3/2) 6 C

(
[f ]Cγ(B4) +

∫
Bc2

|u(y)|
|y|n+2s

dy

)
.

So, we plug this information into (4.21) and we conclude that

‖u‖Cγ+2s(B1) 6 C

(
[f ]Cγ(B4) +

∫
Bc2

|u(y)|
|y|n+2s

dy

)
,

up to renaming C > 0, and this is (4.15), after resizing balls.

From Proposition 4.3, we obtain a Schauder estimate for the cutoff equation, as detailed in the following result:

Proposition 4.4. Let s ∈ (0, 1), k ∈ N and u : Rn → R.

Assume that u ∈ Cαloc(B1) for some α > 2s and that

Ju,k :=

∫
Bc

1/2

|u(y)|
|y|n+2s+k

dy < +∞.

Let fu be as in Corollary 3.2. Let also
γ > k − 1 (4.22)

such that γ 6∈ N and γ + 2s 6∈ N. Then, it holds that

‖u‖Cγ+2s(B1/2) 6 C
(

[fu]Cγ(B1) + Ju,k

)
, (4.23)

for some C > 0, only depending on n, s, γ and k.

Proof. We write γ = m+ θ, with m ∈ N and θ ∈ (0, 1). From (4.22), we infer that

m > k − 1. (4.24)

We take a family of cutoffs χR as in (1.3) and we exploit Theorem 3.1 with τ := χ4. Then, if we set v := χ4u, we
obtain that, for any x ∈ B1,

(−∆)sv(x) = Pu,χ4(x) + fu,χ4(x), (4.25)

and Pu,χ4 is a polynomial of degree at most k − 1.

In particular, from (4.24), we see that [DmPu,χ4 ]Cθ(B1) vanishes. Thus, from (4.25) and (4.15), we find that

‖u‖Cγ+2s(B1/2) = ‖v‖Cγ+2s(B1/2)

6 C
(

[Pu,χ4 + fu,χ4 ]Cγ(B1) + Jv,0

)
= C

(
[fu,χ4 ]Cγ(B1) + Jv,0

)
.

(4.26)

Now we set

f̃(x) :=

∫
Bc2

(χ4(y)− 1) u(y) ψ(x, y)

|y|n+2s+k
dy,

where ψ is as in Theorem 3.1. Notice that

Dmf̃(x) =

∫
Bc2

(χ4(y)− 1) u(y) Dmψ(x, y)

|y|n+2s+k
dy,
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and therefore

[f̃ ]Cγ(B1) 6 C
∫
Bc2

|u(y)|
|y|n+2s+k

dy 6 C Ju,k (4.27)

for some C > 0 (notice that the dependence of C on ψ here is inessential, due to Remark 3.3).

Also, from Remark 3.4, (3.5) and (3.15), we know that

fu,χ4 = fu − f3,u + f?u,χ4
= fu + f̃ .

This and (4.27) imply that
[fu,χ4 ]Cγ(B1) 6 [fu]Cγ(B1) + C Ju,k. (4.28)

Furthermore,

Jv,0 =

∫
Bc

1/2

|(χ4u)(y)|
|y|n+2s

dy 6
∫
B4\B1/2

|(χ4u)(y)|
|y|n+2s

dy

6 C
∫
B4\B1/2

|(χ4u)(y)|
|y|n+2s+k

dy 6 C Ju,k.

So, we insert this and (4.28) into (4.26) and we obtain the desired result.

By combining Definition 1.1 and Proposition 4.4, we obtain:

Corollary 4.5. Let s ∈ (0, 1), k ∈ N, u : Rn → R and f : B1 → R.

Assume that u is continuous in B1 and

Ju,k :=

∫
Bc

1/2

|u(y)|
|y|n+2s+k

dy < +∞.

Suppose that

(−∆)su
k
= f in B1. (4.29)

Then, for any
γ > k − 1 (4.30)

such that γ 6∈ N and γ + 2s 6∈ N, it holds that

‖u‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1) + Ju,k

)
, (4.31)

for some C > 0, only depending on n, s, γ and k.

Proof. First of all, we prove the result under the additional assumption that

u ∈ Cαloc(B1) for some α > 2s. (4.32)

In this case, we fall under the assumptions of Remark 3.5, and so we have that

(−∆)su
k
= fu in B1. (4.33)

Also,

(−∆)su
k
= f in B1, (4.34)
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Consequently, by (4.34) and (4.33), in view of Lemma 1.2, it follows that f − fu is a polynomial Pu of degree at
most k − 1.

From this and (4.30), we obtain that [fu]Cγ(B1) = [f ]Cγ(B1). This and (4.23) imply (4.31).

Now we consider the general case. For this, we take ρ ∈ C∞0 (B1) and consider the mollifier ρε(x) := ε−nρ(x/ε).
We consider the convolutions uε := u ∗ ρε and fε := f ∗ ρε and we know (see e.g. formula (3.2) in [19])
that (−∆)suε = fε in B99/100, as long as ε is small enough. Since (4.32) is satisfied by uε, we can apply the
result already established and conclude that, up to resizing balls,

‖uε‖Cγ+2s(B9/10) 6 C

(
[fε]Cγ(B9/10) +

∫
Bc

3/4

|uε(y)|
|y|n+2s+k

dy

)
, (4.35)

for some C > 0. In particular, uε converges to u in Cγ+2s(B1/2) and, by taking limits, we have that

lim
ε→0
‖uε‖Cγ+2s(B9/10) > ‖u‖Cγ+2s(B1/2) and lim

ε→0
[fε]Cγ(B9/10) 6 [f ]Cγ(B1). (4.36)

Furthermore, if y ∈ Bc
3/4 and ξ ∈ Bε(y), we have that

|ξ| 6 |y|+ |ξ − y| 6 |y|+ ε 6 2|y|,

and therefore∫
Bc

3/4

|uε(y)|
|y|n+2s+k

dy 6
∫
Bc

3/4

[∫
Bε(y)

|u(ξ)| |ρε(y − ξ)|
|y|n+2s+k

dξ

]
dy

6 C
∫
Bc

3/4

[∫
Bε(y)

|u(ξ)| |ρε(y − ξ)|
|ξ|n+2s+k

dξ

]
dy 6 C

∫
Bc

1/2

[∫
Rn

|u(ξ)| |ρε(y − ξ)|
|ξ|n+2s+k

dy

]
dξ

= C

∫
Bc

1/2

|u(ξ)|
|ξ|n+2s+k

dξ = CJu,k.

(4.37)

So we plug (4.36) and (4.37) into (4.35) and we obtain (4.31).

With this we are now in the position of giving the proof of Theorem 1.3:

Proof of Theorem 1.3. We claim that

‖u‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1;k) + Ju,k

)
, (4.38)

for some C > 0. We observe that when γ > k− 1 the claim in (4.38) follows from Corollary 4.5 and (1.12). Hence,
we can now focus on the case in which

γ < k − 1. (4.39)

We take v to be a solution of
(−∆)sv = f in B1, (4.40)

with v = 0 in Bc
1.

Then, from Proposition 1.1 in [17], we have that

‖v‖Cs(Rn) 6 C ‖f‖L∞(B1), (4.41)

for some C > 0.
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Also, from Proposition 4.3,

‖v‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1) + Jv,0

)
. (4.42)

Since, from (4.41),
Jv,0 6 C ‖v‖L∞(Rn) 6 C ‖f‖L∞(B1), (4.43)

we deduce from (4.42) that

‖v‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1) + ‖f‖L∞(B1)

)
. (4.44)

Also, from (4.40) and Corollary 3.8, we have that (−∆)sv
0
= f in B1.

From this and (1.7), we conclude that (−∆)sv
k
= f in B1.

So, we define w := u− v and we have that (−∆)sw
k
= 0 inB1. Hence, we take γ̄ := k− 1 + ε, for a fixed, small

ε > 0, and we are in the position of using Corollary 4.5 (notice indeed that γ̄ satisfies (4.30)). In this way, we obtain
that

‖w‖Cγ̄+2s(B1/2) 6 C Jw,k. (4.45)

We also point out that
Jw,k 6 Ju,k + Jv,k 6 Ju,k + C ‖f‖L∞(B1), (4.46)

where (4.43) has been used once again.

Also, γ̄ + 2s > γ + 2s, due to (4.39), and so

‖w‖Cγ̄+2s(B1/2) > ‖w‖Cγ+2s(B1/2) > ‖u‖Cγ+2s(B1/2) − ‖v‖Cγ+2s(B1/2).

Using this, (4.45) and (4.46), we find

‖u‖Cγ+2s(B1/2) 6 C
(
‖v‖Cγ+2s(B1/2) + Ju,k + ‖f‖L∞(B1)

)
.

This and (4.44) imply that

‖u‖Cγ+2s(B1/2) 6 C
(

[f ]Cγ(B1) + ‖f‖L∞(B1) + Ju,k

)
.

Now, since this estimate is valid for f satisfying (−∆)su
k
= f , it must be valid also for f + P , for any polynomial

P of degree k − 1 (recall (1.8)). Consequently, we can write

‖u‖Cγ+2s(B1/2) 6 C inf
(

[f + P ]Cγ(B1) + ‖f + P‖L∞(B1) + Ju,k

)
.

From this and Lemma C.1, it follows that (4.38) holds true, as desired.

We remark that (4.38) is indeed the desired result in (1.13), except that we wish to replace [f ]Cγ(B1;k) with
[f ]Cγ(B1;`) and Ju,k with Ju,`.

For this, we observe that both [f ]Cγ(B1;j) and Ju,j are decreasing in j ∈ N (up to multiplicative constants). Hence,
when ` 6 k, then (1.13) follows directly from (4.38).

On the other hand, when ` > k we see that (−∆)su
`
= f in B1, thanks to (1.7). So we can apply (4.38) with `

replacing k, which is the desired result in (1.13).
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5 Liouville Theorem for divergent fractional Laplacians

By using the Schauder estimates in Theorem 1.3 at any scale, we can now give the proof of Theorem 1.5.

Proof of Theorem 1.5. We first suppose that (−∆)su
k
= 0 in Rn and we show that u is necessarily a polynomial

of degree at most d(k, s). For this, we take

γ :=

{
k + 2− 2s if s ∈

(
1
2 , 1

)
,

k + 1− 2s if s ∈
(
0, 1

2

]
.

Notice that γ + 2s > k and

m := bγ + 2sc =

{
k + 2 if s ∈

(
1
2 , 1

)
,

k + 1 if s ∈
(
0, 1

2

]
.

In particular, we have that
m > k + 2s. (5.1)

Now, for any j ∈ N, j > 1, we define uj(x) := u(jx). Then, (−∆)suj
k
= 0 in B1, hence Theorem 1.3 gives that

‖Dmu‖L∞(Bj/2) = j−m‖Dmuj‖L∞(B1/2) 6 j
−m‖uj‖Cγ+2s(B1/2) 6 C j

−m Juj ,k

= C j2s+k−m
∫
Bc
j/2

|u(y)|
|y|n+2s+k

dy.

So we can send j → +∞ and use (5.1) to see that Dmu vanishes identically, hence u is a polynomial of degree
less than or equal to m− 1, as desired.

Now, we prove the converse statement. Namely, we show that

all the polynomials P of degree at most d(k, s)

satisfy (−∆)sP
k
= 0 in Rn.

(5.2)

The proof of this is by induction over k. If k = 0, then d(k, s) = 1 if s ∈
(

1
2 , 1

)
and d(k, s) = 0 if s ∈

(
0, 1

2

]
.

Hence, if P has degree at most d(k, s), it follows that P is affine if s ∈
(

1
2 , 1

)
and constant if s ∈

(
0, 1

2

]
, and∫

Rn

|P (y)|
1 + |y|n+2s

dy < +∞.

In any case, (−∆)sP is well defined in the standard sense, and (−∆)sP = 0 in Rn. Accordingly, by Corollary

3.8, we have that (−∆)sP
0
= 0 in Rn.

This is the desired result when k = 0. Hence, we now suppose recursively that the claim in (5.2) holds true for k−1
and we prove it for k.

For this, we take a polynomial P with degree at most d(k, s) and, for any fixed i ∈ {1, . . . , n}, we set Qi := ∂iP .
Notice thatQi is a polynomial with degree at most d(k, s)−1 = d(k−1, s). Therefore, by the inductive hypothesis
we know that

(−∆)sQi
k−1
= 0 in Rn. (5.3)

Furthermore, by Theorem 3.1 and Remark 3.4 (recall also Remark 3.6), we know that, fixed M > 0, for any large
R > 0,

(−∆)s(τRP ) = fP + gR + PR in BM , (5.4)
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where τR ∈ C∞0 (BR, [0, 1]) with τR = 1 in BR−1 and ‖∇τR‖L∞(Rn) 6 4, PR is a polynomial of degree k − 1
and

gR(x) :=

∫
BcR−1

(τR(y)− 1)P (y)ψ(x, y)

|y|n+2s+k
dy.

We define
ζR,i := (−∆)s(∂iτRP ).

We claim that

ζR,i = P̃R,i + ζ̃R,i , where P̃R,i is a polynomial of degree k − 2

and ζ̃R,i → 0 in BM as R→ +∞.
(5.5)

To check this, we observe that
∂iτRP = τR+1∂iτRP.

Thus, fixed M , we can use Theorem 3.1 (with τ := τR+1, u := ∂iτRP and k replaced by k− 1) and find that, for
any x ∈ BM ,

(−∆)s(∂iτRP )(x) = (−∆)s(τR+1∂iτRP )(x)

= P̃R,i(x) +

∫
B2M

(∂iτRP )(x)− (∂iτRP )(y)

|x− y|n+2s
dy +

∫
Bc2M

(∂iτRP )(x)

|x− y|n+2s
dy

+

∫
Bc2M

τR+1(y) (∂iτRP )(y) ψ(x, y)

|y|n+2s+k−1
dy,

for some polynomial P̃R,i, which has degree at most k − 2. Now, for large R, the terms supported in B2M vanish,
namely we can write that

(−∆)s(∂iτRP )(x) = P̃R,i(x) +

∫
BR\BR−1

τR+1(y) (∂iτRP )(y) ψ(x, y)

|y|n+2s+k−1
dy = P̃R,i(x) + ζ̃R,i(x),

with

ζ̃R,i(x) :=

∫
BR\BR−1

τR+1(y) (∂iτRP )(y) ψ(x, y)

|y|n+2s+k−1
dy.

Hence, to prove (5.5), we need to show that

ζ̃R,i → 0 in BM as R→ +∞. (5.6)

To this aim, we recall (3.3) and we compute, for large R,∣∣∣∣∣
∫
BR\BR−1

τR+1(y) (∂iτRP )(y) ψ(x, y)

|y|n+2s+k−1
dy

∣∣∣∣∣ 6 C
∫
BR\BR−1

|P (y)|
|y|n+2s+k−1

dy

6 C
∫
BR\BR−1

Rd(k,s)

|y|n+2s+k−1
dy 6 C Rd(k,s)−2s−k,

up to renaming C at any step. The latter quantity is infinitesimal as R → +∞, thanks to (1.14). This estab-
lishes (5.6), and so (5.5).

Notice also that

∂i(−∆)s(τRP ) = (−∆)s(∂iτRP ) + (−∆)s(τR∂iP ) = (−∆)s(∂iτRP ) + (−∆)s(τRQi).
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Accordingly, by (5.4) and (5.5), we obtain that, in BM ,

(−∆)s(τRQi) = ∂i(−∆)s(τRP )− (−∆)s(∂iτRP ) = ∂ifP + ∂igR + ∂iPR − P̃R,i − ζ̃R,i. (5.7)

Notice that, in view of (3.3), we have that ∂igR → 0. Also, ∂iPR is a polynomial of degree k−2. In consequence of

these observations and (5.7), we have that (−∆)sQi
k−1
= ∂ifP in BM . From this, (5.3) and Lemma 1.2, we obtain

that there exists a polynomial Q?i of degree at most k − 2 such that ∂ifP = Q?i .

This implies that, in BM ,
fP is a polynomial of degree at most k − 1. (5.8)

On the other hand, from Remark 3.5, we know that (−∆)sP
k
= fP inBM . Using this and (5.8), and recalling (1.8),

we can write (−∆)sP
k
= 0 in BM . Since M > 0 is arbitrary, it follows that (−∆)sP

k
= 0 in Rn, as desired.

6 Stability of divergent fractional Laplacians

The goal of this section is to prove Theorem 1.6, namely that the divergent fractional Laplacian is stable under limits
that are compatible with the viscosity setting. For this, we first consider the simpler case in which the functions vanish
in B1 (the advantage of this setting being that the smoothness assumption in Remark 3.5 is obviously satisfied).
The precise result goes as follows:

Lemma 6.1. Let s ∈ (0, 1) and k ∈ N. Let us consider sequences of functions vm : Rn → R and gm : B1 → R
such that vm = 0 in B1 and gm is continuous in B1, with

sup
m∈N

∫
Rn

|vm(y)|
1 + |y|n+2s+k

dy < +∞, (6.1)

and
(−∆)svm

k
= gm in B1. (6.2)

Assume that gm → g a.e. in B1 as m→ +∞, for some function g : B1 → R.

Suppose also that

lim
m→+∞

∫
Bc1

vm(y)ϕ(y)

|y|n+2s+k
dy =

∫
Bc1

v(y)ϕ(y)

|y|n+2s+k
dy (6.3)

for any ϕ ∈ L∞(Bc
1), for some function v : Rn → R with v = 0 in B1.

Then, it holds that

(−∆)sv
k
= g in B1. (6.4)

Proof. We can use Remark 3.5 and (3.14) and find that, for any x ∈ B1,

(−∆)svm(x)
k
= fvm(x) = −

∫
B2\B1

vm(y)

|x− y|n+2s
dy +

∫
Bc2

vm(y)ψ(x, y)

|y|n+2s+k
dy.

From this, (6.2) and Lemma 1.2, we obtain that

gm(x) = −
∫
B2\B1

vm(y)

|x− y|n+2s
dy +

∫
Bc2

vm(y)ψ(x, y)

|y|n+2s+k
dy + Pm(x),

where Pm is a polynomial of degree at most k − 1.
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We stress that, fixed x ∈ B1,

inf
y∈B2\B1

|x− y| > inf
y∈B2\B1

|y| − |x| = 1− |x|,

and so the function y 7→ 1
|x−y|n+2s belongs to L∞(B2 \B1). Thus, in view of (3.3) and (6.3), we have that, for any

fixed x ∈ B1,

lim
m→+∞

Pm(x) = g(x) +

∫
B2\B1

v(y)

|x− y|n+2s
dy −

∫
Bc2

v(y)ψ(x, y)

|y|n+2s+k
dy.

This and Lemma 2.1 imply that there exists a polynomial P of degree at most k − 1 such that

P (x) = g(x) +

∫
B2\B1

v(y)

|x− y|n+2s
dy −

∫
Bc2

v(y)ψ(x, y)

|y|n+2s+k
dy. (6.5)

Also, using (6.3) with ϕ := χ(0,+∞)(v(y)), we see that∫
Bc1

v+(y)

|y|n+2s+k
dy = lim

m→+∞

∫
Bc1

vm(y)χ(0,+∞)(v(y))

|y|n+2s+k
dy 6 sup

m∈N

∫
Bc1

|vm(y)|
|y|n+2s+k

dy,

which is finite, thanks to (6.1). With a similar computation on v−, we thus conclude that∫
Bc1

|v(y)|
|y|n+2s+k

dy < +∞.

So, we can use Remark 3.5 on v and obtain

(−∆)sv(x)
k
= fv(x) = −

∫
B2\B1

v(y)

|x− y|n+2s
dy +

∫
Bc2

v(y)ψ(x, y)

|y|n+2s+k
dy.

From this, (1.8) and (6.5), we deduce that (−∆)sv(x)
k
= g, as desired.

With this preliminary result, we can complete the proof of the stability theorem, by arguing as follows:

Proof of Theorem 1.6. We set

vm := (1− χ1)um, wm := χ1um,

v := (1− χ1)u and w := χ1u.

By construction, vm → v and wm → w locally uniformly in B1, as m→ +∞.

In light of (1.15) and Corollary 3.10 (used here with ρ := 1), we know that

(−∆)swm = f̄m +

∫
B2\B1

um(y)

|x− y|n+2s
dy −

∫
Bc2

um(y)ψ(x, y)

|y|n+2s+k
dy =: hm (6.6)

in B1 in the sense of viscosity, where
f̄m := fm + Pm (6.7)

and Pm is a polynomial of degree at most k − 1. Thus, from Corollary 3.8 and (1.7) we obtain that

(−∆)swm
k
= f̄m +

∫
B2\B1

um(y)

|x− y|n+2s
dy −

∫
Bc2

um(y)ψ(x, y)

|y|n+2s+k
dy.
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Hence, in view of (1.8), we obtain that

(−∆)swm
k
= fm +

∫
B2\B1

um(y)

|x− y|n+2s
dy −

∫
Bc2

um(y)ψ(x, y)

|y|n+2s+k
dy.

As a consequence, for any x ∈ B1,

(−∆)svm(x) = (−∆)sum(x)− (−∆)swm(x)

k
= fm(x)−

(
fm(x) +

∫
B2\B1

um(y)

|x− y|n+2s
dy −

∫
Bc2

um(y)ψ(x, y)

|y|n+2s+k
dy

)

= −
∫
B2\B1

um(y)

|x− y|n+2s
dy +

∫
Bc2

um(y)ψ(x, y)

|y|n+2s+k
dy =: gm(x).

(6.8)

Let also

g(x) := −
∫
B2\B1

u(y)

|x− y|n+2s
dy +

∫
Bc2

u(y)ψ(x, y)

|y|n+2s+k
dy.

Notice that, by (3.3) and (1.17), we have that gm → g pointwise in B1.

Also, fixed any ρ ∈ (0, 1), by (3.3),

sup
x∈Bρ

|∇gm(x)| 6 sup
x∈Bρ

C

(∫
B2\B1

|um(y)|
|x− y|n+2s+1

dy +

∫
Bc2

|um(y)| |∇ψ(x, y)|
|y|n+2s+k

dy

)

6 C

(∫
B2\B1

|um(y)|
(1− ρ)n+2s+1

dy +

∫
Bc2

|um(y)|
|y|n+2s+k

dy

)
,

which is bounded uniformly in m, thanks to (1.16). Accordingly, by the Theorem of Ascoli,

gm → g locally uniformly in B1. (6.9)

Thus, from (6.8) and Lemma 6.1, we conclude that

(−∆)sv
k
= g in B1. (6.10)

Now we prove that

(−∆)sw
k
= f − g in B1. (6.11)

For this, we take ϕ ∈ C∞0 (B1). We let U b B1 be the support of ϕ and we fix ε > 0 suitably small (also
in dependence of U and B1). We take ρ ∈ C∞0 (B1) and ρε(x) := ε−nρ(x/ε). We consider the convolu-
tions wm,ε := wm ∗ ρε and hm,ε := hm ∗ ρε. Notice that wm,ε is smooth and compactly supported in B11/10.
Then (see e.g. formula (3.2) in [19]) we have that (−∆)swm,ε = hm,ε in U in the smooth sense. Therefore we can
write that ∫

U
hm,εϕ =

∫
U

(−∆)swm,εϕ =

∫
Rn

(−∆)swm,εϕ

=

∫
Rn
wm,ε (−∆)sϕ =

∫
B11/10

wm,ε (−∆)sϕ.

Hence, for any m′, m ∈ N,∣∣∣∣∫
U

(hm,ε − hm′,ε)ϕ
∣∣∣∣ 6 ∫

B11/10

|wm,ε − wm′,ε| |(−∆)sϕ|.
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Since wm ∈ L1(Rn), by sending ε→ 0, we thus obtain that∣∣∣∣∫
U

(hm − hm′)ϕ
∣∣∣∣ 6 ∫

B11/10

|wm − wm′ | |(−∆)sϕ|

=

∫
B1

|wm − wm′ | |(−∆)sϕ| 6 C ‖wm − wm′‖L1(B1) ‖ϕ‖C2(Rn).

(6.12)

From the convergence of um in L1(B1), we also have that

lim
m→+∞

‖wm − χ1u‖L1(B1) = lim
m→+∞

‖um − u‖L1(B1) = 0. (6.13)

From (6.12) and (6.13), it follows that hm is a Cauchy sequence in the norm ‖ · ‖? introduced in (2.2). From the
uniform convergence, we also know that fm is a Cauchy sequence in the norm ‖ · ‖?. Moreover, by (6.9), we have
that gm is also a Cauchy sequence in the norm ‖ · ‖?.

Since
Pm = gm + hm − fm, (6.14)

these observations imply that Pm is also a Cauchy sequence in the norm ‖ · ‖? and so, in consequence of
Lemma 2.2, we obtain that Pm converges uniformly to some polynomial P of degree at most k − 1 in U , for
any U b B1.

This and (6.7) imply that f̄m converges locally uniformly inB1. Hence, writing hm = f̄m−gm, we conclude that hm
also converges locally uniformly in B1 to some function h.

We are therefore in the position to use Lemma 5 in [5] and deduce from (6.6) that (−∆)sw = h in B1 in the sense

of viscosity. Hence, by Corollary 3.8, we can write (−∆)sw
0
= h in B1.

Passing to the limit in (6.14), we obtain that
P = g + h− f

and so (−∆)sw
0
= f − g + P in B1.

From this, (1.7) and (1.8), we conclude that (6.11) holds true, as desired.

Now, by (6.10) and (6.11), we obtain that

(−∆)su = (−∆)sv + (−∆)sw
k
= g + (f − g) = f,

as desired.

A useful consequence of Theorem 1.6 is also a stability result under convolution, which goes as follows:

Proposition 6.2. Let k ∈ N, s ∈ (0, 1). Assume that u and f are continuous functions in B1, with∫
Rn

|u(y)|
1 + |y|n+2s+k

< +∞ (6.15)

and
(−∆)su

k
= f in B1.

Let ε > 0, ρ ∈ C∞0 (B1) and ρε(x) := ε−nρ(x/ε). Let uε := u ∗ ρε and fε := f ∗ ρε. Then

(−∆)suε
k
= fε in B99/100,

as long as ε is small enough.
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Proof. We know that
(−∆)s(χRu) = f + ηR + PR

in B1, in the viscosity sense, with ηR → 0 in B1 as R → +∞ and PR is a polynomial of degree at most k − 1.
As a matter of fact, by choosing the “optimal representative” in Lemma 3.11, we can also suppose that

ηR → 0 uniformly in B1. (6.16)

Let also
vR,ε(x) := (χRu) ∗ ρε(x).

Hence (see e.g. formula (3.2) in [19]) in B99/100 we have that

(−∆)svR,ε = fε + ηR ∗ ρε + PR ∗ ρε.

Hence, by Corollary 3.8,

(−∆)svR,ε
0
= fε + ηR ∗ ρε + PR ∗ ρε.

So, by (1.7), we have that

(−∆)svR,ε
k
= fε + ηR ∗ ρε + PR ∗ ρε. (6.17)

Now we check that
PR ∗ ρε is a polynomial of degree at most k − 1. (6.18)

For this, we can reduce to the case of monomials, and compute, for any α ∈ Nn with |α| 6 k − 1, that

xα ∗ ρε =

∫
Rn

(x− y)αρε(y) dy =
∑
β6α

(
α

β

)
xβ
∫
Rn

(−y)α−βρε(y) dy,

which is a polynomial of degree at most k − 1. This observation proves (6.18).

Then, from (1.8), (6.17) and (6.18), we conclude that

(−∆)svR,ε
k
= fε + ηR ∗ ρε. (6.19)

Our objective is now to send R→ +∞ and use the stability result in Theorem 1.6. To this aim, we define

v?ε(x) :=

∫
Rn
|u(y)| ρε(x− y) dy.

We observe that ∫
Bc

99/100

v?ε(y)

|y|n+2s+k
dy < +∞, (6.20)

see (4.37). Moreover, we have that

vR,ε(x) 6
∫
Rn

∣∣(χRu)(y)
∣∣ ρε(x− y) dy 6 v?ε(x). (6.21)

In addition ∣∣(χRu)(y)
∣∣ ρε(x− y) 6 ε−n |u(y)|χBε(x)(y) 6 (|x|+ 1)n+2s+k |u(y)|

εn |y|n+2s+k
.

This and (6.15) allow us to use the Dominated Convergence Theorem and take the limit as R → +∞ (for a
fixed ε > 0). In this way, we see that, for any fixed x ∈ Rn,

lim
R→+∞

vR,ε(x) =

∫
Rn

lim
R→+∞

(χRu)(y)ρε(x− y) dy = uε(x).
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This, (6.20) and (6.21) allow us to use again the Dominated Convergence Theorem to take the limit as R → +∞
and obtain that

lim
R→+∞

∫
Bc

99/100

|vR,ε(x)− uε(x)|
|x|n+2s+k

dx = 0. (6.22)

Also, vR,ε → uε and, in view of (6.16), fε + ηR ∗ ρε → fε locally uniformly in B99/100 as R → +∞. From this,
(6.21) and (6.22), we can exploit Theorem 1.6 and deduce from (6.19) that

(−∆)suε
k
= fε

in B99/100, as desired.

A Appendix A. Summary of the finite differences method

We recall here the classical method of the finite differences (or incremental quotients). Given ω ∈ Rn, we consider
the shift operator acting on functions, namely Tωf(x) := f(x+ ω). Of course, if ω = 0, this operator boils down
to the identity operator, which will be denoted by I .

For any h ∈ (0, 1) and ω ∈ Sn−1, we set
Dω
h := Thω − I.

Then, for any (ω1, . . . , ωd) ∈ (Sn−1)d and any h ∈ (0, 1) we consider the finite difference operator

D
(ω1,...,ωd)
h := Dω1

h . . . Dωd
h .

Notice that, since the shift operators commute with themselves, we also have that D
(ω1,...,ωd)
h = Dωd

h . . . Dω1
h .

The finite differences of order d approximate the derivatives of order d (after a renormalization of size hd), as pointed
out in the following result:

Lemma A.1. There exists ξ : Rn → [0, 1]d such that

h−d D
(ω1,...,ωd)
h f(x) =

∑
16i1,...id6n

∂df

∂xi1 . . . ∂xid

(
x+ hξ1(x)ω1 + · · ·+ hξd(x)ωd

)
ω1i1 . . . ωdid .

Proof. We argue by induction over d. When d = 1, we use the Mean Value Theorem and we see that

Dω1
h f(x) = f(x+ hω1)− f(x) = ∇f(x+ hξ1(x)ω1) · (hω1),

for some ξ1 : Rn → [0, 1].

This is the desired claim when d = 1. Hence, we now suppose that the claim is true for d− 1 and we prove it for d.
For this, we assume that

h1−d D
(ω1,...,ωd−1)
h f(x)

=
∑

16i1,...id−16n

∂d−1f

∂xi1 . . . ∂xid−1

(
x+ hξ1(x)ω1 + · · ·+ hξd−1(x)ωd−1

)
ω1i1 . . . ωd−1id−1

and we use the Mean Value Theorem to see that

∂d−1f

∂xi1 . . . ∂xid−1

(
x+ hξ1(x)ω1 + · · ·+ hξd−1(x)ωd−1 + hωd

)
− ∂d−1f

∂xi1 . . . ∂xid−1

(
x+ hξ1(x)ω1 + · · ·+ hξd−1(x)ωd−1

)
=

n∑
id=1

∂df

∂xi1 . . . ∂xid

(
x+ hξ1(x)ω1 + · · ·+ hξd(x)ωd

)
(hωdid),
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for some ξd : Rn → [0, 1]. These observations easily imply the desired claim.

We also give the following integration by parts formula:

Lemma A.2. Let f ∈ L1(Rn) and g ∈ L∞(Rn). Then∫
Rn
D

(ω1,...,ωd)
h f(x) g(x) dx =

∫
Rn
f(x)D

(−ω1,...,−ωd)
h g(x) dx.

Proof. We argue by induction on d. If d = 1, then∫
Rn
Dω1
h f(x) g(x) dx =

∫
Rn
f(x+ hω1) g(x) dx−

∫
Rn
f(x) g(x) dx

=

∫
Rn
f(x) g(x− hω1) dx−

∫
Rn
f(x) g(x) dx =

∫
Rn
f(x)D−ω1

h g(x) dx,

as desired.

For the inductive step, we compute recursively that∫
Rn
D

(ω1,...,ωd)
h f(x) g(x) dx =

∫
Rn
D

(ω1,...,ωd−1)
h Dωd

h f(x) g(x) dx

=

∫
Rn
Dωd
h f(x)D

(−ω1,...,−ωd−1)
h g(x) dx =

∫
Rn
f(x)D−ωdh D

(−ω1,...,−ωd−1)
h g(x) dx

=

∫
Rn
f(x)D

(−ω1,...,−ωd)
h g(x) dx,

which is the desired result.

B Appendix B. Proof of Lemmata 2.1 and 2.2

One proof of Lemma 2.1 can be done by exploiting the finite incremental quotients of order d (as discussed in
Appendix A), to show that DdF vanishes.

Another simple, and more geometric, argument is based on the idea that polynomials are, after all, a finite dimen-
sional space, and finite dimensional spaces are closed, with respect to any equivalent norm. The details are the
following.

Proof of Lemma 2.1. Up to a translation, we suppose that

0 ∈ U. (B.1)

Also, without loss of generality, we can suppose that

m in the statement of Lemma 2.1 is larger than d. (B.2)

We defineN to be the number of multi-indices µ ∈ Nn for which |µ| := µ1 + · · ·+µn 6 d−1. In this way, we can
endow RN with an ordering and consider the map T from RN to the space of polynomials of degree at most d− 1,
which is given by

RN 3 a = {aµ}|µ|6d−1 7−→ T (a) :=
∑
|µ|6d−1

aµx
µ.
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We fix distinct points q1, . . . , qd ∈ U ⊆ Rn. Then, on RN , we consider the two norms

‖a‖1 :=
d∑
i=1

|T (a)(qi)|

and ‖a‖2 := ‖T (a)‖Cm(U).

It is interesting to remark that ‖·‖1 is indeed a norm. For this, suppose that ‖a‖1 = 0. Then, it follows that T (a)(qi) =
0 for any i = 1, . . . , d, hence the polynomial T (a), which has degree at most d− 1, vanishes on d different points,
and so it has to be zero, which in turn implies that a = 0.

We also write
P (j) =

∑
|µ|6d−1

a(j)
µ xµ,

with a(j) = {a(j)
µ }|µ|6d−1. We remark that

T (a(j)) = P (j).

Therefore, given η > 0, if j, j′ ∈ N are sufficiently large (possibly in dependence of η), we have that

‖a(j) − a(j′)‖1 6 η,

thanks to (2.1), and so a(j) is a Cauchy sequence in RN , with respect to the norm ‖ · ‖1.

From the equivalence of the norms in RN , it thus follows that a(j) is a Cauchy sequence in RN , with respect to the
norm ‖ · ‖2. Consequently, given η > 0, if j, j′ ∈ N are sufficiently large,

η > ‖a(j) − a(j′)‖2 = ‖P (j) − P (j′)‖Cm(U).

Therefore, we have that P (j) is a sequence of functions that is of Cauchy type in Cm(U), and so it converges to
some function P ? in Cm(U).

In particular, the sequence P (j) is bounded in Cm(U). From this and (B.2) we obtain that, for any µ ∈ Nn
with |µ| 6 d− 1,

sup
j∈N
‖P (j)‖Cm(U) > sup

j∈N
‖DµP (j)‖L∞(U) > |DµP (j)(0)| = µ! |a(j)

µ |,

thanks to (B.1). Hence, for any µ ∈ Nn with |µ| 6 d − 1, up to a subsequence, we have that a
(j)
µ → a?µ

as j → +∞, for some a?µ ∈ R. Thus, possibly passing to a subsequence and using (2.1), we have that, for
any x ∈ U ,

F (x) = lim
j→+∞

P (j)(x) = lim
j→+∞

∑
|µ|6d−1

a(j)
µ xµ =

∑
|µ|6d−1

a?µx
µ,

that is the desired result.

Proof of Lemma 2.2. We use the setting given by the proof of Lemma 2.1, and we define the norm in RN given, for
a = {aµ}|µ|6d−1, by

‖a‖3 := sup
ϕ∈C2

0(U)

‖ϕ‖
C2(U)
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∫
U

∑
|µ|6d−1

aµ x
µ ϕ(x) dx.

We see that a
(j)
µ is a Cauchy sequence with respect to the norm ‖ · ‖3 and so it converges to some a? =

{a?µ}|µ|6d−1 ∈ RN , with respect to the norm ‖ · ‖3.

From the equivalence of the norms in RN , we conclude that

0 = lim
j→+∞

‖a(j)
µ − a?µ‖2 = lim

j→+∞
‖P (j) − T (a?)‖Cm(U),

which implies the desired result.
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C Appendix C. Reabsorbing lower order norms

The scope of this appendix is to show the following result:

Lemma C.1. Let k ∈ N, γ ∈ (0,+∞) \ N, with

bγc 6 k − 1, (C.1)

and f ∈ Cγ(B1). Then

inf ‖f − P‖L∞(B1) + [f − P ]Cγ(B1) 6 C [f ]Cγ(B1;k),

where the inf is taken over all the polynomials P of degree k − 1, and C > 0 depends on n, γ and k.

Proof. We write γ = m+ θ, with m := bγc ∈ N and θ ∈ (0, 1). We set

Tf (x) :=
∑
|α|6m

∂αf(0)

α!
xα,

Gf,α(x) := m

∫ 1

0
(1− t)m−1

(
∂αf(tx)− ∂αf(0)

)
dt

and Rf (x) :=
∑
|α|=m

Gf,α(x)
xα

α!
.

We observe that Tf , Gf,α and Rf are linear with respect to f and, in particular,

Rf+g = Rf +Rg,

for any functions f and g.

Notice also that, if |α| = m,

[Gf,α]Cθ(B1) 6 C[Dmf ]Cθ(B1) 6 C[f ]Cγ(B1).

Moreover, a Taylor expansion of f gives that
f = Tf +Rf .

Fix also a generic polynomial P of degree at most k − 1 of the form

P (x) = P1(x) + P2(x),

with P1(x) :=
∑
|α|6m

pαx
α

and P2(x) :=
∑

|α|∈[m+1,k−1]

pαx
α.

Then, using the inf notation in the statement of Lemma C.1,

inf
P
‖f − P‖L∞(B1) + [f − P ]Cγ(B1) = inf

P1,P2

‖f − P1 − P2‖L∞(B1) + [f − P1 − P2]Cγ(B1)

6 inf
P2

‖f − Tf − P2‖L∞(B1) + [f − Tf − P2]Cγ(B1)

= inf
P2

‖Rf − P2‖L∞(B1) + [Rf − P2]Cγ(B1)

= inf
P2

‖Rf−P2‖L∞(B1) + [Rf−P2 ]Cγ(B1).

(C.2)
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Now, we observe that, for any function g and any x ∈ B1,

[g]Cγ(B1) >
|Dmg(x)−Dmg(0)|

|x|θ
> |Dmg(x)−Dmg(0)|.

Since DmRh(0) = 0 for any function h, we can apply the latter estimate with g := Rf−P2 and find that

[Rf−P2 ]Cγ(B1) > |DmRf−P2(x)|,

and thus, taking supremum over x ∈ B1,

[Rf−P2 ]Cγ(B1) > ‖DmRf−P2‖L∞(B1). (C.3)

Now we observe that, for any function g with g(0) = 0 one has that

‖g‖L∞(B1) = sup
x∈B1

|g(x)| = sup
x∈B1

|g(x)− g(0)| 6 ‖∇g‖L∞(B1).

Since, for any function h, it holds that DjRh(0) = 0 for any j ∈ {0, . . . ,m − 1}, we can apply this estimate
repeatedly and find that

‖Rh‖L∞(B1) 6 C ‖∇Rh‖L∞(B1) 6 . . . 6 C ‖DmRh‖L∞(B1),

up to renaming C > 0.

From this and (C.3), we obtain
‖Rf−P2‖L∞(B1) 6 C [Rf−P2 ]Cγ(B1).

So, we insert this information into (C.2) and we obtain

inf
P
‖f − P‖L∞(B1) + [f − P ]Cγ(B1) 6 2 inf

P2

[Rf−P2 ]Cγ(B1)

= 2 inf
P2

[Rf −RP2 ]Cγ(B1) = 2 inf
P2

[Rf − P2]Cγ(B1).
(C.4)

We also remark that, since γ > m, it holds that

[h− P̄ − P2]Cγ(B1) = [h− P2]Cγ(B1),

for any function h and any polynomial P̄ of degree at most m, hence (C.4) gives that

inf
P
‖f − P‖L∞(B1) + [f − P ]Cγ(B1) 6 2 inf

P2

[Rf − P̄ − P2]Cγ(B1).

We choose now P̄ := Q̄− Tf , where Q̄ is a generic polynomial of degree at most m. In this way, we obtain

inf
P
‖f − P‖L∞(B1) + [f − P ]Cγ(B1) 6 2 inf

P2

[Rf + Tf − Q̄− P2]Cγ(B1) = 2 inf
P2

[f − Q̄− P2]Cγ(B1).

Since Q̄ + P2 is now the generic polynomial of degree at most k − 1 (notice indeed that m 6 k − 1, in view of
(C.1)), we obtain

inf
P
‖f − P‖L∞(B1) + [f − P ]Cγ(B1) 6 2 inf

P
[f − P ]Cγ(B1),

as desired (recall (1.11)).
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